Dear Editor,

Thank you very much for giving us the opportunity to respond to the reviewers' remarks, suggestions, etc. We are very grateful for all their opinions and suggestions, which were usually very helpful and constructive. All passages where changes in the article have been made are also placed in the text below.

All changes in the text are marked in red fonts. For clarity the reviewers' texts are in black and our answers are in blue. Corrected attached passages are shown in italic.

We would kindly like to inform you that the following alterations have been made to the text regarding the reviewers' comments, suggestions and opinions:

Anonymous Referee #1

Received and published: 10 July 2019

Dear authors, I highly appreciate the approach of combining and complementing available tree-ring width chronologies, written documentary accounts and instrumental data to investigate droughts, i.e. their occurrence, frequency and intensity, in Poland back to ca. 900 CE. An amazing 200 documented drought accounts for the period 1451–1800 were collected and categorized into three classes of severity. In addition, 22 tree-ring width chronologies were used to detect years of extreme low annual growth, so-called negative pointer years, which were attributed to drought events. The extension into the industrial period was done using the Standardized Precipitation Index (SPI) with different seasonal lengths and which was calculated on eight long precipitation records.

Overall, the comprehensive analysis of drought events and duration using existing proxy data is needed, especially under current climate change. However, the amount of statistical approaches applied make the study partly difficult to understand. Moreover, there are several shortcomings in the manuscript regarding the structure and content. Substantial improvements should be made prior to publication and I strongly recommend that the English be revised by a professional service or a native Englishspeaking scientist working in the field.

The entire text was corrected by a native speaker.

General comments

- The title is not reflecting the study very well, maybe include that a multi-proxy approach was used or highlight the main result, for example.

Answer: was changed according to the reviewer's suggestion.

Final title: Droughts in the area of Poland in recent centuries in the light of multi-proxy data

- The abstract needs shortening and a clear structure by including a motivation of the study which is followed by data, methods, results and conclusion/significance of the study. The abstract should not be too long and should not include references.

Answer: was shortened and all remarks of the Reviewer were taken into account

Final text of Abstract: The history of drought occurrence in Poland in the last millennium is poorly known. To improve this knowledge we have conducted a comprehensive analysis using both proxy data (documentary and

dendrochronological) and instrumental measurements of precipitation. The paper presents the main features of droughts in Poland in recent centuries, including their frequency of occurrence, coverage, duration and intensity. The reconstructions of droughts based on all the mentioned sources of data covered the period 996–2015. Examples of megadroughts were also chosen using documentary evidence, and some of them were described.

Various documentary sources have been used to identify droughts in the area of Poland in period 1451– 1800 and to estimate their intensity, spatial coverage and duration. Twenty-two local chronologies of trees (pine, oak, and fir) from Poland were taken into account for detecting negative pointer years (exceptionally narrow rings). The longest chronology covers the years 996–1986 and was constructed for eastern Pomerania. The delimitation of droughts based on instrumental data (eight long-term precipitation series) was conducted using two independent approaches (Standard Precipitation Index (SPI) calculated for 1-, 3-, and 24-month time scales, and new method proposed by authors). For delimitation of droughts (dry months), the criteria used were those proposed by McKee and modified for the climate conditions of Poland by Labedzki.

More than one hundred droughts were found in documentary sources in the period 1451-1800, including 17 megadroughts. A greater-than-average number of droughts was observed in the second halves of the 17^{th} century, and of the 18^{th} century in particular. Dendrochronological data confirmed this general tendency in the mentioned period. The clearly greatest number of negative pointer years occurred in the 18^{th} century and then in the period 1451-1500. In the period 996–2015, a total of 758 negative pointer years were recorded.

Analysis of SPI (including its lowest values, i.e. droughts) showed that the long-term frequency of droughts in Poland has been stable in the last two or three centuries. Extreme and severe droughts were most frequent in the coastal part of Poland and in Silesia. Most droughts had a duration of two months (about 60–70%), or 3–4 months (10–20%). Frequencies of droughts with a duration of 5 and more months were lower than 10%. The longest droughts had a duration of 7–8 months. The frequency of droughts of all categories in Poland in the instrumental period 1722–2015 was greatest in winter, while the documentary evidence (1451–1800) rarely mentions droughts in this season. The occurrence of negative pointer years (a good proxy for droughts) was compared with droughts delimited based on documentary and instrumental data. A good correspondence was found between the timing of occurrence of droughts identified using all three kinds of data (sources).

- The introduction needs improvement by 1) removing unnecessary information e.g. reduce p.3, l. 17-20, 2) write in a more precise way e.g. p.2, l.10. "statistical analyses" of what?,

Answer: The Introduction part was corrected and the present version is as below:

The increase in rate in degree of global warming that has been observed in recent decades also influences characteristic changes in the occurrence and intensity of precipitation (IPCC, 2013). Although precipitation totals are slightly greater from year to year in some regions, frequency of precipitation is getting lower, while its intensity is increasing. As a result, breaks between precipitation episodes are getting longer and longer, which significantly favours the occurrence of droughts. The majority of statistical analyses presenting results of frequency and intensity of droughts conducted averaged for the entire world (Dai and Trenberth, 1998; Dai et al., 2004; Dai, 2011a, b, 2013; IPCC, 2013) and its different regions (see, e.g., Held et al., 2005; Alexander et al., 2006; Bartholy and Pongracz, 2007; Łabędzki, 2007; Brázdil et al., 2009; Seneviratne et al., 2012; NAS, 2013; Miles et al., 2015; Osuch et al., 2016; Bąk and Kubiak-Wójcicka, 2017; Brázdil et al. 2018) usually confirm their rising tendencies, in particular in more frequency and intensity of droughts recent decades. On the other hand, However, some authors document that this change for the entire globe is not as big clear as is presented in some of thethe above mentioned publications and depends among others on the drought metrics used (Sheffield et al., 2012; Greve et al., 2014 and references therein). For example, Sheffield et al. (2012) They argue that overestimation of the rate of change of global droughts is related to the shortcomings (simplifications) of the Palmer Drought Severity Index (PDSI) used for this purpose.

Sheffield et al., 2012 They write: "The simplicity of the PDSI, which is calculated from a simple waterbalance model forced by monthly precipitation and temperature data, makes it an attractive tool in large-scale drought assessments, but may give biased results in the context of climate change." Thus, the reliable estimate of global tendencies in the occurrence and intensity of droughts still needs more research. Nevertheless, a greater or lesser increase in frequency of droughts in many regions global scale has been observed in recent decades. Moreover, climatic models project that this tendency will probably be more common and clear in the future world. also be seen in the entire 21st century. The **IPCC** (2013) report concludes It is very likely that droughts will be not only more frequent, but also more intense in many regions, but particularly in areas with dry conditions in today's climate (IPCC, $\frac{2013}{2}$. For this reason, the study of drought occurrence and its intensity is very important, in particular when its manifold negative socio-economic consequences are taken into account. Many aspects dealing with drought (definition; kinds – meteorological, agricultural, hydrological, socio-economic; quantitative ways of measurement; socio-economic consequences; etc.) were described recently in many publications (e.g. Wilhite and Glantz, 1985; Tate and Gustard, 2000; Herweijer et al., 2007; Mishra and Singh, 2010; Dai 2011a; Brázdil et al., 2013, 2018; IPCC, 2014; Fragoso et al., 2018; White et al., 2018) and therefore a brief overview is omitted here.

To estimate how unprecedented is the scale of climate drying in recent decades, a longer perspective is needed. Therefore, in recent decades quite a lot of drought reconstructions encompassing almost the entire millennium, or the shorter historical, pre-industrial period, were constructed for different greater or smaller regions (e.g. Inglot, 1968; Piervitali and Colacino, 2001; Cook et al., 2004, 2010, 2015; Herweijer et al., 2007; Pfister et al., 2006; Brewer et al., 2007; Domínguez-Castro et al., 2008, 2010; Woodhouse et al., 2010; Brázdil et al., 2013, 2016, 2018 (see references herein); Dobrovolný et al., 2015; Fragoso et al., 2018; Hanel et al., 2018).

What is the state of knowledge about droughts occurrence and intensity in Poland – the area that is the object of our studies in the paper? It must be said that for the instrumental period, and in particular for the period after World War II, the knowledge is good. Papers have been published analysing: 1) classification of drought types and the development of drought indices (Bąk and Łabędzki, 2002; Łabędzki, 2007; Łabędzki and Kanecka-Geszke, 2009; Tokarczyk, 2013; Łabędzki and Bąk, 2014); 2) tendencies in drought occurrence and intensity (Farat et al., 1998; Magier et al., 2000; Łabędzki, 2007; Kalbarczyk, 2010; Bartczak et al., 2014; Radzka, 2015; Wypych et al., 2015; Bąk and Kubiak-Wójcicka, 2017); 3) monitoring of drought conditions (Łabędzki, 2006; Doroszewski et al., 2008, 2012; Tokarczyk and Szalińska, 2013; IMGW, 2014; ITP, 2014; Łabędzki and Bąk, 2014); and 4) drought hazard assessment for periods when observations are available (Łabędzki, 2009; Tokarczyk and Szalińska, 2014). In recent years the influence of future climate change on the occurrence of droughts in Poland in the 21st century has also been addressed (Liszewska et al., 2012; Osuch et al., 2012, 2016). On the other hand, little is known about drought occurrence in the pre-instrumental and early instrumental periods in Poland. Generally, only one attempt team of researchers under the direction of professor Stefan Inglot of Wrocław University was focusing on this issue, in the 1960s. As a result, a first attempted chronology at a chronology of droughts for the 16th to mid-19th century was proposed based on documentary evidence (Inglot, 1968).

Drought is the one of the most stressful factors for trees (Vitas, 2001; Allen et al., 2010; Sohar et al., 2013). The measurement of tree ring widths is one of the ways to study the effect of climate parameters on trees (Zielski et al., 2010). Some factors such as frost or summer drought may have an immediate effect on ring width, whereas other factors, such as winter drought, may have a delayed effect on ring widths. This delayed effect occurs because the meristematic tissues are dormant during the winter months in temperate and cold climates. The effect of different factors is seen as variations in ring size and structure, which change systematically, or vary slowly throughout the life of the tree (Fritts, 1976). The effect of drought on tree rings is observed as narrow rings (Koprowski et al., 2012; Opała, 2015). The relationships are significant enough to reconstruct drought in temperate climate also in cold regions like Finland (Helama and Lindholm, 2003), Sweden (Seftigen et al., 2013) and Czech Republic (Dobrovolný et al., 2015). Therefore, we have assumed that information derived from tree rings can complement the existing knowledge about past droughts in Poland. According to studies by Somorowska (2016), the effect of drought extends from the south-west towards the centre of the country and, in some cases, to the north-east of Poland. Another study suggest that in the future some of the highest probabilities of drought occurrence may be in the central part, with the lowest probability in southeastern Poland (Diakowska et al., 2018).

Although in the last three decades many climate reconstructions for the last millennium have been conducted for Poland (see Przybylak et al., 2005 or Przybylak, 2016 for a review), droughts were not analysed. Therefore, to fill this important gap we decided to investigate them in a more detailed manner than was done by Inglot's team. Moreover, for this purpose we used more sorts of proxy data (not only documentary but also dendrochronological). The reconstructions of droughts based on all the mentioned sources of data covered the period 996–2015. Thus, the main aim of the paper is to present the main features of drought occurrence, duration and intensity in the area of Poland in this period. Section 2 describes all the kinds of data used and their quality. Section 3 addresses the methods used in this study, including drought indices. Section 4 presents the results of three reconstructions of droughts derived from 1) documentary, 2) instrumental, and 3) dendrochronological data. Examples of megadroughts are also analysed here. The results obtained are discussed in Section 5, and main conclusions in the last section.

and 3) provide more information e.g. p.3, 1.21. in which areas is drought the most stressful factor - to only provide a few examples.

Answer: We updated the text with information about areas with the most frequent occurrence of drought in Poland. The following passage was added:

According to studies by Somorowska (2016) the effect of drought extends from the south-west towards the centre of the country and, in some cases, to the north-east of Poland. Another study suggest that in the future some of the highest probabilities of drought occurrence may be in the central part, with the lowest probability in south-eastern Poland (Diakowska et al., 2018).

Also, I was wondering why the authors cite four lines of a publication on l. 18-21? This can be summarized.

Answer: Sorry, but in the mentioned lines there is no citing of publications in any of page in the entire manuscript? It must be a mistake?

- Structure of the Data and Methods chapters needs improvement. A straightforward description of the documentary data is missing. After reading the chapter 2.1, it is not entirely clear what data from whom were used. Maybe start with the summarizing paragraph (p.5, 1. 30 - p.6., 1.18) and add some (and only) important information from the paragraphs before.

Answer: It seems to us that it is precisely written in the text from which historical sources weather excerpts were taken. The structure of the chapter 2.1 is typical from the historical point of view and therefore we have decided to leave the chapter as it is. At the beginning the published sources are described, divided into different types, and then the archival sources (not published). At the end of the chapter a short summing-up is given. It is rather difficult and in our opinion not appropriate to summarize this not-too-long chapter.

For the dendrochronological data, no information about the quality of the individual tree-ring width chronologies is provided. Information of the number of samples, inter-series correlation, mean segment lengths can be easily added in Table. 1. Information on the sample replication in a tree-ring width chronology is essential to evaluate drought events that were detected during a low replicated time period.

Answer: Table 1 was updated. We provided the information about number of samples, EPS and rbar.tot. In the case of Site 12 the EPS is extremely low; however, the chronologies were not used for climate reconstruction but for detecting negative pointer years. Pointer years confirmed the information from historical sources and show that drought can also affect the trees. It is also worthwhile to note after Buras (2017) that "EPS is a measure of how well a finite sample of tree-ring data represents an infinite population chronology, but it will not necessarily indicate whether a tree-ring chronology is suitable for climate reconstruction purposes."

Site number	Site name	Time span	Number of samples	EPS	rbar.tot	Species	Source
				Region I (Ba	altic Province)	
Site 1	Koszalin	1782– 1987	22	0.899	0.339	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 2	Gdańsk	1762– 1986	45	0.887	0.192	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 3	Wolin	1554– 1987	23	0.877	0.318	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)

Site 4	Gdańsk	1175– 1396	13	0.579	0.388	Oak	Dąbrowski HP, unpublished
Site 5	western Pomerania	996– 1986	205	0.907	0.250	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
			Regio	n II (Masuria	a-Podlasie Pro	vince)	
Site 6	Gołdap	1871– 1987	22	0.941	0.472	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 7	Suwałki	1861– 1987	19	0.872	0.303	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 8	Hajnówka	1720– 1985	19	0.851	0.314	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
		I	Region III	(Greater Pol	and-Pomerani	a Provinc	e)
Site 9	Poznań	1836– 1987	17	0.904	0.385	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 10	Zielona Góra	1774– 1987	19	0.876	0.330	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 11	Toruń	1714– 2015	48	0.886	0.335	Oak	Puchałka et al., 2016 (updated)
Site 12	Tuchola	1249– 1490	7	0.054	0.347	Pine	Dąbrowski HP, unpublished
Site 13	Kuyavia- Pomerania	1169– 2015	247	0.816	0.195	Pine	Koprowski et al., 2012
Site 14	Chojnice	1100– 1468	21	0.688	0.327	Oak	Dąbrowski HP, unpublished
			Regior	n IV (Masovi	a-Podlasie Pr	ovince)	
Site 15	Warszawa	1690– 1985	19	0.850	0.291	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
]	Region V (Si	lesia Province	e)	
Site 16	Upper Silesia	1770– 2010	80	0.880 (average)	correlation 0.530	Pine and oak	Opała and Mendecki, 2014
Site 17	Wrocław	1727– 1987	22	0.870	0.327	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 18	Upper Silesia	1568– 2010	178	0.850	correlation 0.510	Pine	Opała, 2015
			Regi	on VI (Lesse	er Poland Prov	vince)	
Site 19	Kraków	1792– 1986	29	0.906	0.361	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 20	Kosobudy	1782– 1989	22	0.937	0.448	Oak	https://www.ncdc.noaa.gov/ (Ważny, 1990)
Site 21	Lesser Poland	1109– 2004	238	No data	No data	Pine	Szychowska-Krąpiec, 2010
Site 22	Lesser Poland	1109– 2006	560	No data	No data	Fir	Szychowska-Krąpiec, 2010

For the Method chapter, the examples of the individual drought classes in chapter 3.1 are quite long. Please, consider reduction to only 2 to 3 examples and place the remaining examples in the supplementary material.

Answer: the examples of the individual drought classes in chapter 3.1 were significantly reduced according to the reviewer's suggestion, see tables 3–5 below:

Year	Description	Translation	Source
------	-------------	-------------	--------

1463	[] fuit magnus calor et	[] there were such great heat	Rocznik
	arditas, ita quod sylvae,	and drought that forests,	wrocławski
	nemora et montana	groves and mountain	dawny, MPH,
	incenderentur, ex voragine	vegetation burned, and were	vol. 3, p. 686
	ignis pro magna parte	largely destroyed by the fire	
	absumptae		
1473	[] caumata et penuriam	[] hot weather and a lack of	Długosz, vol. 12,
	aquarum, adeo ut perennes	water, to such an extent that	p. 336
	aquae verterentur in aridam, et	the places where there had	
	flumina Poloniae principalia	always been water dried up	
	ubique fuerunt permeabilia,	everywhere, and the main	
	insignis. [] Fumabant in	Polish rivers could be crossed	
	universis Poloniae regionibus	everywhere. [] Forests,	
	silvae, borrae, arbusta, saltus,	woods, thickets and forested	
	irremediabili igne, nec ante	hills burnt with fire; there was	
	rescindi flamma poterat, donec	no way to put it out, and it	
	ignis etiam radicem arborum	was impossible to extinguish	
	voraret, ex quo ubique fragor	the flame before the fire even	
	ruentium saltuum audiebatur.	devoured the root of the trees;	
	Apum quoque et alveariorum	from here you could hear the	
	arbores plurimae deletae,	clatter of collapsing thickets.	
	segetes vernales exterminatae	Very numerous bee and	
	siccitate.	beekeeping trees were	
		destroyed, and many spring	
		crops were destroyed due to	
		drought.	
1540	[] fuit in aestate horrenda	[] in the summer there was	Archivum vetus
	siccitas adeo, ut silices, montes	such a terrible drought that	et novum
	et valles quasi igne flagrarent,	the rocks, mountains and	ecclesiae
	duravit haec siccitas usque ad	valleys were burned down	archipresbyteralis
	hyemem.	with fire; this drought lasted	Heilsbergensis,
		until winter	in: MHW, vol. 8,
			p. 597

r			1
1561	Im Julio und Augusto war es	In July and August there were	Pol, vol. 4, p. 17
	sehr dürre und dürre Winde,	dry and very dry winds, so	
	dass das Wasser sehr	that the water completely	
	austrocknete. Die Oder war	dried out. The Odra became	
	klein, dass es keinem Mann	shallow as it had never been	
	gedachte. Viel Brunnen	before. Many wells dried up.	
	t rockneten aus.		
1575	At in Polonia inaudita fere	However, in Poland, a truly	Orzelski, in:
	siccitas vere, aestate, autumno	unbelievable drought, in	SRP, vol. 22, p.
	et hyeme denique aestivalium	summer, autumn and winter,	360
	segetum, quas arefecerat,	along with spring crops that	
	penuriam fecit, amnium vero	had dried up, caused	
	undas adeo minuit, ut iis	<pre>poverty[;] the level of the</pre>	
	passim fere privaretur ipsaque	water in rivers had fallen so	
	Vistula infra Dobrinum multis	much that everywhere the	
	locis vadabilis fieret, unde nec	rivers almost disappeared,	
	sal e Russia per Sanum in	while the Wisła Vistula in	
	Vistulam permeari potuit.	many areas below Dobrzyń	
		became quite shallow, and it	
		was not possible to transport	
		any salt from Ruthenia	
		through the San to the Wisła	
		Vistula.	
1590	Ist ein sehr heisser truckener	The summer was so hot [and]	Pol, vol. 4, p. 156
	Sommer gewesen, also, dass	dry that national regional	
	auch die Landflüsse, als der	rivers like the Bóbr, the	
	Bober, Queiss, Katzbach,	Kwisa, the Kaczawa, the	
	Weida, Olau, Lohe, und andere	Widawa, the Oława, the Ślęża	
	mehr gänzlich ausgetrucknet.	[Silesia, auth. suppl.] and	
	Die Oder ist auch so klein	many others dried up	
	worden, dass man sie an allen	completely. The Odra also	
	Orten durchwatten können.	became very shallow, so you	
		could cross it anywhere.	

	38 Wochen regnete es nicht.		Reinhold, 1846,
	Die Flüsse trockneten aus.	It did not rain for 38 weeks.	p. 143
		The rivers dried up.	
	Zacken und andere Flüsse		Bergemann, J.G.,
	trockneten völlig aus	The Kamienna and other	1830a, p. 84
		rivers dried up completely.	
	Der Bober trocknete infolge		Bergemann, J.G.
	starker Hitze ganz aus.	The Bóbr dried up completely	1830b, vol. 3, p.
		due to severe drought.	85
1653	In Monath Maii fiel ein dürres	In the month of May the dry	Gomolcke, p. 53
	Wetter ein, und dauerte biss	weather began and lasted until	
	Ende August. Die alle Bäche	the end of August. All	
	vertrockneten, auch Flachs und	streams dried up, as did flax	
	Gerste verdorrete.	and barley.	
1676	Tego roku straszne Panowały	That year a terrible drought	Muz. Nar. w
	Susze, że zboża wypalało w	took place so that crops burnt	Krakowie rps.
	polach.	in the fields.	MNKr. 169, p. 82
1683	Im Jahre 1683 entstand durch	In 1683, due to the great	Pisański,
	die grosse Dürre und den	drought and poor growth [of	Beschreibung der
	Misswachs eine starke	grain], high prices and almost	Stadt
	Theuerung und ein fast	complete lack of grain	Johannisburg, p.
	gäntzlicher Mangel an	prevailed.	96
	Getreyde.		
1684	[] folgete auf Johanni	The great long-lasting drought	Gomolcke, p. 54
	[24.06.] eine grosse	arrived on the St. John's Day	
	anhaltende Hitze darauf;	[24.06.]; the ground became	
	davon das Erdreich dermassen	dry, the crops became dry;	
	dürre wurde, dass das	flax and barley grew very	
	Sommer Getreyde, Flachs, und	poorly before the proper ear	
	Grass, gantz zurücke	of grain had come out, which	
	geblieben, das Winter-Korn an	caused very high prices []	
	vielen Orten überreiffte, ehe es		
	sich gehöriger massen in die		

Ahren kaum angesetzet, dahero	
Theurung entstanden []	

Year	Description	Translation	Source
1456	Fuitque anno eodem precipue	And that year there was an	Catalogus
	circa partes nostras, ubi plures	exceptionally great drought in	abbatum
	sunt agri sabulosi et argillosi,	our area, where there are	Saganensium, in:
	post festa paschalia siccitas	numerous sandy and loamy	Scriptores rerum
	magna et usque ad messem	soils; it occurred after the	Silesiacarum, vol.
	continuata. Messis autem tante	Easter holidays and lasted until	I, p. 340
	humiditatis et instabilitatis,	the harvest. In the harvest	
		period it [the weather] was so	
		wet and unstable []	
1472	Dieser Sommer, von Pfingsten	That summer from Whitsunday	Pol, vol. 2, p. 89
	bis auf aller Heiligen, war ganz	to the All Saints Day it was	
	trocken und warm []	quite dry and warm []	
1532	Ein dürrer Sommer. Es regnete	Dry summer. It did not rain for	Pol, vol. 3, p. 72
	in sieben Wochen nicht. Das	seven weeks. The grain and	
	Getreide und die Weide	grass on the hillsides dried up.	
	verdorrete auf den Hügeln ganz	In some places there was	
	aus. In etlichen Dörfern war	almost no water. In the	
	kein gar Wasser. Auf dem Lande	countryside, it was impossible	
	konnte man nicht mahlen. Zu 10.	to grind grain. One needed to	
	12. 18. Meilen musste man zur	go 10, 12, 18 miles to reach	
	Mühle führen. Die Olau	mills. The Oława River dried	
	trocknete und dorrete auch aus,	up [Silesia, auth. suppl.] and	
	und hatte kein Wasser bis auf	there was no water in it until	
	Bartholomei [24.08].	the Saint Bartholomew's Day	
		[August 24].	

1585	Mensis hic [March] fuit	That month [March] the	Reszka, p. 91
	serenissimus usque ad	weather was fine and it was dry	
	<i>miraculum et siccus</i>		
1637	Przy przeważającej w tym	With the drought that prevailed	Radziwiłł
	miesiącu suszy ogień zniszczył	that month, fire destroyed	Albrycht
	liczne miasta i wsie, widać	many cities and villages, we	Stanisław,
	słabnące plony []	could see the yields failing [].	Pamiętnik o
			dziejach w
			Polsce, vol. 2
			1637–1646, A.
			Przyboś, R.
			Żelewski (eds),
			Warszawa, 1980
1665	Der Sommer des Jahres 1665	The summer of 1665 was	Wernicke, Gesch.
	wird als ungemein heiss	incredibly hot; not even once	Thorns., vol. 2, p.
	angegehen, und soll es die	did it rain – so called "Dog	321
	ganzen Hundstage [10.07.–	Days".	
	20.08.] hindurch auch nicht		
	einmal geregnet haben.		

Year	Description	Translation	Source
1461	Eodem anno fuit estas	That year the summer was the	Sigismundi
	calidissima et fluvius Odere	hottest and the water level of	Rosiczii
	valde modicus, similiter et alii	the Odra River fell, as did	chronica, p. 78.
	fluvii.	other rivers.	
1531	Nazajutrz po bitwie pod	The following day, after the	Bielski, p. 311
	Obertynem [22.08.] kometa nie	battle of Obertyn [22.08.], the	
	dała się iuż tak świetnie	comet did not let itself be	
	widzieć iako przesłey nocy:	seen so well as it had the	
	która ieśli nie porażkę	previous night, which augured	

	Wołoską, tedy suszą podobno	the defeat of the Vlachs, or	
	znamieniowała; iakoż tego	drought; And then the drought	
	czasu była susza wielka.	was really great.	
1552	Den 5 Junii [] nach der	On June 5 [] after the	Pol, vol. 3, p.
	Vesper und grosser Dürre kam	evening and after a great	158.
	ein gewünschter Regen, aber	drought, came the desired rain	
	mit grossem Wetter	with a great storm.	
1661	Es folgte aber ein dürrer	However, a dry summer	Happelius, p.
	Sommer.	came.	148.

On page 19, chapter "2.3 Instrumental data" needs to be moved into "2. Data chapter".

Answer: No. This is just an error. The numbering of the subchapter should be 3.3 and not 2.3 as it is in the original version. We corrected the numbering.

Instead there should be a clearly written paragraph about the detection of the climategrowth relationships of all tree-ring width chronologies, for which period and for what climate variables. Why not use the SPI data for the analysis of the climate response of the trees which would simplify the entire study a lot and at the same time, prove your hypotheses (p.18, 1.9)?

Answer: SPI was not taken into account because this parameter results directly from precipitation data.

- Description of the methods lacks detailed and important information. For example, on p. 18, l. 14 "climate monthly precipitation and temperature" were used to evaluate the climate growth relationship. However, only results for precipitation are shown in Fig. 2 and information of the period over which the correlation was done is missing.

Answer: additional information were added in the new Table 6. The information about temperature was also updated (see text below and Table 6).

For each site the climate growth relationships were tested against monthly precipitation and temperature data starting from 1951 and covers maximum time span depending on the length of the chronology (Table 6). Because the time span was too short (for example for Site 2 when chronology covers the years 1951-1986) for some extended analysis going back to previous months, the common period from previous October to current September was taken into account.

Table 6. Climate growth relationships for analysed sites. Only the highest correlation coefficients are presented – with level of significance p < 0.05.

Site		Analy	Highest	Months with	Meteorolog		
numb	Site name	sed	Pearson	highest	ical station	Speci	Source
er		period	correlation	correlation		es	
		1	coefficient	coefficient			
			0.378	gion I (Baltic Pa Sum of	Koszalin	1	
		1951–	0.378	precipitation	KUSZaIIII		https://www.ncdc.noaa.g
Site 1	Koszalin	1931–		from May to		Oak	ov/ (Ważny, 1990)
		1707		June			ov, (vuzily, 1990)
			0.296 (not	Sum of	Gdańsk		
0.4.0	C 1 1	1951–	significant	precipitation		0.1	https://www.ncdc.noaa.g
Site 2	Gdańsk	1986)	from June to		Oak	ov/ (Ważny, 1990)
				July			
			0.565	Sum of	Świnoujści		
Site 3	Wolin	1951–		precipitation	е	Oak	https://www.ncdc.noaa.g
51100	,, onin	1987		from June to		ouii	ov/ (Ważny, 1990)
		1175	NT 1.	August	NT 11 /		
Site 4	Gdańsk	1175-	No climate	No climate	No climate data	Oak	Dąbrowski HP,
		1396	data 0.456	data Sum of	Koszalin		unpublished
	western	1951–	0.430	precipitation	KUSZallii		https://www.ncdc.noaa.g
Site 5	Pomerania	1986		from June to		Oak	ov/ (Ważny, 1990)
	1 oniorania	1700		July			o (((uzhij, 1990)
	1		Region I	[(Masuria-Podl	asie Province)		
Sita 6	Galdan	1951–	0.589	Temperature	Suwałki	Oak	https://www.ncdc.noaa.g
Site 6	Gołdap	1987		current May		Оак	ov/ (Ważny, 1990)
			0.50	Sum of	Suwałki		
Site 7	Suwałki	1951–		precipitation		Oak	https://www.ncdc.noaa.g
Sile /	20110111	1987		from June to		ouii	ov/ (Ważny, 1990)
			0.005	July	D'1 (1		
		1951–	0.285	Sum of	Białystok		https://www.pada.paga.g
Site 8	Hajnówka	1931–		precipitation from July to		Oak	https://www.ncdc.noaa.g ov/ (Ważny, 1990)
		1705		August			0 v/ (wazny, 1990)
			Region III (G	reater Poland-Po	omerania Provi	nce)	
			0.485	Sum of	Poznan	,	
Site 9	Poznań	1951-		precipitation		Oak	https://www.ncdc.noaa.g
Sile 9	Poznan	1987		from May to		Оак	ov/ (Ważny, 1990)
				July			
Site	Zielona	1951–	-0.322	Temperature	Gorzów		https://www.ncdc.noaa.g
10	Góra	1987		, previous	Wielkopols	Oak	ov/ (Ważny, 1990)
			0.001	December	ki		
			0.334	Sum of	Toruń		
Site		1951–	-0.334	precipitation from May to			Puchałka et al., 2016
11	Toruń	2015		June,		Oak	(updated)
11		2015		temperature			(updated)
				in June			
Site		1249-	No climate	No climate	No climate	D .	Dąbrowski HP,
12	Tuchola	1490	data	data	data	Pine	unpublished
			0.443	Sum of	Toruń		
Site	Kuyavia-	1951–		precipitation		Pine	Koprowski et al., 2012
13	Pomerania	2015		from May to		inc	150p10 woki 01 al., 2012
<i>a</i> .		4405		July			D 1 11775
Site	Chojnice	1100-	No climate	No climate	No climate	Oak	Dąbrowski HP,
14	v	1468	data Decice U	data	data		unpublished
	Region IV (Masovia-Podlasie Province)						

Site 15	Warszawa	1951– 1985	-0.316	Temperature , previous December	Warszawa	Oak	https://www.ncdc.noaa.g ov/ (Ważny, 1990)
Region V (Silesia Province)							
Site 16	Upper Silesia	1886– 1984	>0.4 Precipitati on data not presented due to lower statistical significanc e	Temperature of February and March for pine	Opole, Wrocław, Katowice and Racibórz	Pine and oak	Opała and Mendecki, 2014
Site 17	Wrocław	1951– 1987	0.376	Sum of precipitation from May to June,	Wrocław	Oak	https://www.ncdc.noaa.g ov/ (Ważny, 1990)
Site 18	Upper Silesia	1568– 2010	Only pointer years were analysed			Pine	Opała, 2015
Region VI (Lesser Poland Province)							
Site 19	Kraków	1915– 1986	0.324 (not significant)	Temperature in February	Kraków	Oak	https://www.ncdc.noaa.g ov/ (Ważny, 1990)
Site 20	Kosobudy	1951– 1989	0.314 -0.323	Sum of precipitation from May to July, temperature in June	Lublin and Radawiec	Oak	https://www.ncdc.noaa.g ov/ (Ważny, 1990)
Site 21	Lesser Poland	1881- 1999	>0.4	Temperature in March	Kraków	Pine	Szychowska-Krąpiec, 2010
Site 22	Lesser Poland	1881- 1999	>0.4	Temperature in February	Kraków	Fir	Szychowska-Krąpiec, 2010

- Methodology for the evaluation of the climate-growth relationship is not sufficient. Firstly, it is not clear if the age trend from the individual tree-ring width series is removed and what method was applied. Secondly, it is questionable if daily precipitation data need to be used given 1) that this led the authors to a generalization which might be not true (p.19, 1.4) and 2) the description and mention of the droughts in the documentary data are not on daily resolution either. Moreover, I would like to see a comprehensive climate-growth analysis of all tree-ring width chronologies with information of species, Pearson correlation coefficients, period of correlation etc., at least in a Table. This is very important since a publication by Przybylak et al. 2005 used a tree-ring width chronology from pine (Pinus sylvestris) to reconstruct mean January – April air temperature for Poland.

Answer: we added the passage describing detrending methods used by us, see text below

De-trending of the chronology was done with the dplR software (Bunn 2008) using the smoothing spline option, which reflects trends in the chronology better than other options. The ''n-year spline'' was fixed at two thirds the wavelength of n years (Cook et al. 1990). The residual version of the chronology was built by pre-whitening, performed by fitting an autoregressive model to the data with AIC model selection (Bunn 2008).

Daily data shows more precisely the period of the year which influences tree growth. We used this analysis to prove assumptions about the effect of drought on trees creating narrow rings. For the rest of the comments please see the text below and Table 6.

For each site the climate growth relationships were tested against monthly precipitation and temperature data starting from 1951 and covers maximum time span depending on the length of the chronology (Table 6). Because the time span was too short (for example for Site 2 when chronology covers the years 1951-1986) for some extended analysis going back to previous months, the common period from previous October to current September was taken into account.

- Please avoid repetitions, e.g., on p.19, 1.7-11: the two sentences are the same.

Answer: Repeated parts were deleted

- P.19, 1.11-16: please rephrase and clarify this entire paragraph since it is not clear what was done and why.

Answer: Paragraph was updated to the following version:

The optimal window of days was revealed to be from May 6 to August 3 for pine with maximal correlation coefficient 0.435, and from April 21 to July 19 for oak with maximal correlation coefficient 0.305.

Anonymous Referee #2

Received and published: 11 July 2019

This article contains a useful review, and assessment, of the occurrence and severity of drought in Poland during the past five centuries using both instrumental data (from the 18th century), historical documentary data and tree-ring width data. As past drought, or hydroclimate in general, in Poland is an under-researched topic, the manuscript is clearly worth publication after revision. The manuscript is in need of some polishing and English language editing but can otherwise, in my opinion, be published.

The entire text was corrected by a native speaker.

That said, I would still recommend the authors to consider a few things:

1) Streamline part of the text, including the Abstract and the Introduction, as especially the Abstract is too long and too detailed.

Answer: was corrected, the first Reviewer also gave the same remarks. For text see reply to the first Reviewer.

Moreover, part of the Introduction does not really well capture the state-of-the-art knowledge of hydroclimatic changes with global warming and the selection of references in the introduction is a bit biased.

Answer: We have introduced some changes to the *Introduction* Section according to the Reviewer's suggestion (for details, please see the text in the reply to the first Reviewer). We hope that now the Introduction presents the real state and is not biased.

2) The translation of narrow tree-rings to dry years/growing seasons are a bit problematic as the response between tree-growth and hydroclimate is non-linear, and not stable over time, and low temperatures may also produce narrow rings. My concern here is mainly that some of the narrow rings during the

climax of the Little Ice Age c. 1570–1710, as well as during some other shorter time intervals, may in some cases be a result of very cold springs and summers. The authors could probably systematically compare the narrow rings with climate information in the documentary sources to rule this possibility out. It is a bit unclear in the present version of the manuscript if this has been done or not. Regarding the non-linear relationship between tree growth and climate, see the discussion and references given in: https://iopscience.iop.org/article/10.1088/1748-9326/ab2c7e

Answer: We are aware of these limitations. Pointer years confirmed the information from historical sources and show that drought can also affect the trees.

3) I would recommend the authors to better include, and cite, the recent scholarship in historical climatology. A good starting point, with ample references, could be the articles in The Palgrave Handbook of Climate History, ed. S White et al (London: Palgrave Macmillan).

Answer: Thank you for this recommendation. According to the Reviewer's suggestion the mentioned publication, which is important for general knowledge about drought occurrence in the world and their environmental and societal consequences, was cited. There is a myriad of publications dealing with the issue of droughts, thus the authors tried to cite the most important of them. To our knowledge the most important publication items dealing with the history of drought occurrence in Poland and central Europe in the last millennium are included in the paper.

Minor comments:

Page 2 (in general): The evidence for increasing droughts in recent decades is weaker, and more controversial, than evident from what the authors write. To a large extent, the results are dependent on which drought metrics is used.

Answer: The remarks of the reviewer were taken into account, the text has been changed and we hope that we have fulfilled the reviewer's expectation, see the Introduction chapter in the reply to the first Reviewer.

It is also questionable, except in some particular regions, if there is any empirical evidence for longer breaks between episodes of precipitation.

Answer: But we wrote (see lines 5-8) that this statement concerns only "... some regions".

The present reviewer has in the past six years worked considerably with hydroclimate and not found support for this in the literature.

Answer: we added one more reference showing the small changes in drought occurrence and the sentence that the issue still needs more research. See again the Introduction chapter in the reply to the first Reviewer.

Page 2, line 5: "The increase in degree of" is a strange formulation here.

Answer: was corrected to: The increase in rate in degree of global warming.

Page 2, line 16: Cite also: Greve P et al 2014 Global assessment of trends in wetting and drying over land Nat. Geosci. 7 716–21

Answer: citation was added.

Page 3, lines 30–33: I guess the authors provide these examples to show that hydroclimate reconstructions also can be obtained for rather cold regions of Europe? It should be made clearer here.

Answer: The text was changed to: *Also in other countries lying near Poland, such as Finland* (*Helama and Lindholm, 2003*), *Sweden (Seftigen et al., 2013) and Czech Republic (Dobrovolný et al., 2015) the relationships are significant enough to reconstruct drought.*

Page 12, lines 12–14: It should be better pointed out that some statements about rivers that had dried out certain summers likely are not reliable or that they, at least, are overstatements.

Answer: It seems to us that the information that the reviewer suggest to include in this passage is, in reality, present in the original text, see text below:

Sometimes, and probably in an exaggerated way, sources reported the drying up of smaller rivers.

For this reason, this kind of information was treated by us very carefully.

Section 2.2 and section 3.2: This must be placed in a better dendro research context. In particular, the non-linear relationships between temperature and hydroclimate and tree-growth need to be discussed. I also note that the correlation between the tree-ring records and precipitation is very weak. It is far weaker than in tree-ring chronologies explicitly developed for reconstructing hydroclimate. I think it is important, and fair to the reader, to point out that many of the included tree-ring chronologies have not be developed with that purpose explicitly in mind.

Answer: After the taking into account only narrow rings and precipitation in selected period from daily data the correlation coefficient is 0.79 (p<0.05) for pine, and 0.65 (p<0.05) for oak.

Page 23, lines 7–10: This part can be shortened as it is not very clear what is meant with that drought has not been "very frequent".

Answer: the passage was shortened according to the Reviewer's suggestion, see below the present version:

Records on drought for historical reconstruction of climate can be found in many different historical sources from Poland. Their number has significantly increased since the mid-15th century, which is why the mid-15th century was adopted as the initial chronological boundary for the reconstruction of the number and intensity of droughts in the Polish territory using documentary evidence.

Page 25, lines 15–16: This is an interesting and potentially important part. Could it also be that there were fewer droughts in the first half of the 17th century in Poland because it also was the coldest part of the Little Ice Age with less evapotranspiration due to lower temperatures?

Answer: According to the reconstruction made by Przybylak et al. (2005) this period had the same winter and summer temperatures as the neighbouring historical periods. Therefore we rather prefer to leave the text as it is.

Page 26, line 31: Very strange formulation. Please, consider revision.

Answer: Text was changed to: More chronologies in the last 300 years result from existing living trees.

Section 3.2 and Fig. 7: The low number of dry pointer years in the medieval times is certainly a result of fewer records. This should be pointed out as dry years in the region actually seem to have been more frequent back in medieval times. See, most recently: Scharnweber, T., Heußner, K.-U., Smiljanic, M., Heinrich, I., van der MaatenTheunissen, M., van der Maaten, E., Struwe, T., Buras, A., Wilmking, M., 2019. Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought. Sci. Rep. 9, 2509. https://doi.org/10.1038/s41598-019-39040-5.

Answer: We agree with the Reviewer's opinion and therefore the following text was added:

However the small number of pointer years from 996 to 1200 may be related to the low number of samples. This period is called the "medieval climate anomaly" and reconstruction for northern-central Europe revealed considerably drier conditions for these years (Scharnweber et al., 2019).

Page 33: Try to make changes in drought trends over time clearer to the reader. As it is written now, it is a bit hard to follow this.

Answer: According to the Reviewer's suggestions some changes (see text below) were introduced to the text. We hope that now the passage is more clear for readers.

In winter, extreme droughts do not show any significant changes over time, but it should be emphasised here that they were slightly more frequent in 1951–2000 than in 1851–1900. In spring, moderate droughts prevailed still in the period 1851–1950 (usually 4–6 cases), with a greater frequency in the earlier 50-year period. Both severe and extreme droughts were most frequent (usually 1–3 cases) in both 1851–1900 and, in particular, 1951–2000 (Fig. 10). In summer, there is a clear change in the time pattern of drought occurrence: drought frequency rises in the 20th century (except severe droughts), and in the case of moderate droughts is evidently higher in between the 20th century compared to the pre-1900 period. is very clear, primarily in the case of extreme droughts. In autumn, moderate droughts do not show great changes in the last two centuries, while severe and extreme droughts were most frequent in the first and second halves of the 20th century, respectively (Fig. 10).

Page 44, lines 18–21: The formulation is unclear and a bit hard to follow.

Answer: the text was rewritten and its final state is:

On the basis of the research presented in this paper, we conclude that severe and extreme droughts of greater importance (indexes -2, -3, respectively) were in fact slightly less frequent, while their occurrence was increasing slightly in the period from the 15th to the 18th century, as previously stated

Page 45, line 7: "T" is missing in "This".

Answer: was corrected

Page 45, line 22: Insects rather than vermin.

Answer: was corrected