Dear Editor,

We would like to thank you for your work on our MS. We feel that your work and that of the reviewers helped us greatly improve the original MS we submitted to Climate of the Past Discussions. Before answering your final (minor) queries, we highlight the following points to clarify the most important changes from our original submission.

1) From the Discussion paper, we increased the number of GIA models that we use to compare predicted RSL histories to our observations. This leads to more robust considerations.

2) We did a re-analysis of our original data, also in light of more precise tidal datums (we added one co-author who helped us on this aspect). As a result, the elevation values change slightly (few centimeters in most cases) from the original submission to the final version.

3) We extended the number of analyses we perform on the combination of GIA and RSL data. To do this, and to increase transparency in our methods, we share a series of Jupyter Notebooks under a separate DOI. We kindly ask that bugs or suggestions for improvements are reported to arovere@marum.de.

4) In general, we followed the constructive comments of the reviewers. This led to large modifications of the text and figures in the paper from the original MS published in the Discussion forum.

All our data, models and code used to analyze them are available and open-access. We welcome any feedback and suggestions for improvements readers might have.

In this latest version, we re-read carefully every paragraph trying to make it more clear for readers who might not be experts in sea-level studies. We corrected the English to the best of our possibilities.

We found one (minor) mistake in one formula in our excel files, that was affecting by 3 cm our measurements but not the paleo RSL calculations. We corrected the SM and tables in the paper accordingly. We re-checked all formulas and scripts, and now they are correct to the best of our knowledge.

In the following, the Editor’s comments are highlighted in gray, and our response follows.

Rev#2 on Fig3: I agree with reviewer 2 that you should consider to plot eroded data differently. I found not that easy to see the difference with other data. Making the figure larger would also make the figure more readable.

Rev#3 on Fig3: There is obviously a problem of readability of this important figure. I understand that you prefer keeping the symbols, but there should be way to improve this figure. Making it larger as suggested above might be part of the solution but not only.

Finding a suitable graphical representation of Figure 3 is challenging, and we have changed the layout of this figure several times already. The problem is that every time we manage to represent one aspect particularly well, another one gets lots. We propose one last version. We hope this is enough to give a coherent overview of our data. Readers can always download our extensive supplementary and make their plots. Overall, we also added throughout the MS reminders that eroded microatolls should be regarded with more caution. Despite this, they still are sea-level index points, reconstructed with the
highest possible scientific rigor, therefore we don’t think it is appropriate to take them out of Figure 3 as one reviewer suggested.

Rev #3 comment on Lines 117-131: Please point to one or several specific conceptual figures in the references that you cite in the Methods section. For example: (Figure 2 in Doe et al 2001).

Rev#3 comment on Line 117-141: Related to the above comment, your reply state that it is not necessary to outline the assumptions made in using microatolls to reconstruct sea-level change. I believe you can provide one or two sentences to explain these concepts as Climate of the Past is not a specialized journal in sea-level reconstruction, and your paper is definitively out of the zone of expertise of many readers. Another option is to add something as a Supplement.

In the text, we now point to two well-known references. Overall, we reworded and modified the first three paragraphs of section 4.1, trying to describe microatolls to a broader audience. We hope we managed to make this section more clear.

Rev#3 on Line 177: It is one thing to answer to this question in your reply, but I feel you should also add something in the text about this comment. It is quite simple to address.

This comment was referring to the study of Woodroffe et al., 2012, where microatolls were measured with GPS with respect to the ellipsoid, and had to be referred to MSL through a geoid model. Differences in the geoid would then cause a difference in the calculated elevation with respect to MSL. Our approach refers directly to MSL, so we address this simply without adding a long explanation of the different survey techniques and their implications. We believe that this is out of the scope of this MS and would unnecessarily confuse the reader. This is why we refrain from putting a further explanation of this in the text, we hope the Editor will agree with our decision.

Rev#3 on inferring GMSL: why don’t you write somewhere that your data are not suitable for calculating GMSL?

We now state this clearly at the beginning of section 6.6

Rev#3 on Table 3: Why don’t you add a note in the table caption that the errors are included in the Mann et al paper?

Done

Rev#3 on line 572: I also think you should specify “gradient in elevation” here, because even if you extensively discussed this above, it is not yet mentioned in the conclusion. Many readers only read parts of papers, and conclusion is one of the most popular parts. Your conclusion will gain in clarity and it is only 2 words to add.

Done

Rev#3 about Fig4: I guess your modification adds more confusion. I suggest writing: “Box plot of the HLC elevation measured in the Spermonde Archipelago; “n” indicates the number of living microatolls that were surveyed on each island.”. You can easily add a (*) next to Tambakulu and Sanrobengi that you measured yourself (as opposite to Mann)
We revised Figure 4, adding also the microatoll thickness reported by Mann et al. This gave us the possibility to discuss a bit more in detail a few things in the MS, and to show a bit better our data.

As for the suggestion of Reviewer #3 to restructuring the introduction, I understand that you changed an earlier version of the introduction according to previous reviewers recommendation and that it is difficult to reconcile reviewer’s #3 suggestion with earlier recommendation.

Thank you
Late Holocene (0-6ka) sea-level changes in the Makassar Strait, Indonesia

Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, Alessio Rovere

1. University Bremen, MARUM – Center for Marine Environmental Sciences, Leobener Straße 8, 28359 Bremen, Germany
2. ZMT – Leibniz Centre for Tropical Marine Research, Fahrenheitsstraße 6, 28359 Bremen, Germany
3. NIOZ – Royal Netherlands Institute for Sea Research, 17907 SZ ’t Horntje, Texel, Netherlands
4. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Hafenstrasse 43, 25992 List / Sylt, Germany
5. Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg 14473 Potsdam, Germany
6. Graduate School, Hasanuddin University, Makassar, 90245, Indonesia

Correspondence to: M. Bender (mbender@marum.de)

Keywords: Makassar Strait, Spermonde Archipelago, Holocene, Sea Level Changes
Abstract

The Spermonde Archipelago, off the coast of Southwest Sulawesi, consists of more than 100 small islands, and hundreds of shallow-water reef areas. Most of the islands are bordered by coral reefs that grew in the past in response to paleo relative sea-level changes. Remnants of these reefs, deposited in the Late Holocene, are preserved today in the form of fossil microatolls. In this study, we report the elevation, age and paleo relative sea-level estimates derived from fossil microatolls surveyed in five islands of the Spermonde Archipelago. We describe 24 new sea-level index points, and we compare our dataset with both previously published proxies and with relative sea-level predictions from a set of 54 Glacial Isostatic Adjustment (GIA) models, using different assumptions on both ice melting histories and mantle structure and viscosity. We use our new data and models to discuss Late Holocene (0-6 ka) relative sea-level changes in our study area and their implications in terms of modern relative sea-level estimates in the broader South and Southeast Asia region.
Introduction

After the Last Glacial Maximum, sea level rose as a result of increasing temperatures and ice loss in Polar regions. Rates of sea-level rise due to ice melting and thermal expansion (i.e., eustatic) progressively decreased between 8 to 2.5 ka BP (Lambeck et al., 2014), remaining constant thereafter (until the post-industrial sea-level rise). In areas far from Polar regions (i.e., far-field, Khan et al., 2015) the rapid eustatic sea-level rise after the Last Glacial Maximum was followed by a local (i.e., relative) sea-level highstand between ~6 and ~3 ka BP, and a subsequent sea-level fall towards present-day sea level. It has been long shown that the higher-than-present relative sea level (RSL) in the middle Holocene (e.g. Grossman et al., 1998; Mann et al., 2016) is not eustatic in origin, but was caused by the combined effects of glacial isostatic adjustment (GIA) (Milne and Mitrovica, 2008), that includes ocean syphoning (Milne and Mitrovica, 2008; Mitrovica and Milne, 2002; Mitrovica and Peltier, 1991) and redistribution of water masses due to changes in gravitational attraction and Earth rotation following ice mass loss (Kopp et al., 2015).

Due to the spatial-temporal variability of the processes causing it, the Late Holocene highstand differs regionally in both time and elevation. The occurrence and elevation of RSL indicators deposited during the highstand are dependent not only on the processes mentioned above, but also on the magnitude of Holocene land-level changes due to geological processes, such as subsidence resulting from sediment compaction or tectonics (e.g., Tjia et al., 1972; Zachariasen, 1998). Combining the use of precisely measured and dated RSL indicators with GIA models in areas where the highstand occurs, it is possible has the potential to improve our knowledge on long-term rates of land-level changes, which need to be considered in conjunction with local patterns and rates of current eustatic sea-level rise (e.g. Dangendorf et al., 2017) to gauge the sensitivity of different areas to future coastal inundation.

In this study, we present new Late Holocene sea-level data and GIA models from the Spermonde Archipelago (Central Indonesia, SW Sulawesi). In this region, a recent review (Mann et al., 2019) indicated discrepancies between the RSL data reported by different studies—a rarely studied region that does provide only 45 sea-level index points (including this study). To reconstruct the local paleo RSL we surveyed microatolls, i.e. particular coral morphologies forming in close connection with sea-level datums such as Mean Low Water (MLW) and Lowest Astronomical Tide (LAT) (e.g., Scoffin and Stoddart, 1978; Woodroffe et al., 2012; Woodroffe et al., 2014). For reconstructing paleo RSL, we first studied living coral microatolls to calculate the range of depth with respect to mean sea level (MSL) where corals are living at different islands. We then applied the results of the living microatolls (LMA) survey to fossil ones, that we surveyed and dated using radiocarbon.

In total, we surveyed 24 fossil microatolls (FMA), with ages are clustered around ~155 and ~5000 years Before Present (BP). We present this new dataset in conjunction with data provided by previous studies in the same region (Mann et al., 2016; Tjia et al., 1972; De Klerk, 1982) and new GIA models with varying ice histories and mantle properties. We use our data and models to discuss possible local subsidence mechanisms at one of the only heavily populated island (Barrang Lompo) among those we investigated, vertical land movements in the broader Spermonde Archipelago and implications of the different ice and earth models for modern sea level estimates.

Regional Setting

The Spermonde Archipelago, located between 4°00’ S to 6°00’ S and 119°00’ E to 119°30’ E, hosts several low-lying islands, with average elevations of 2 to 3 m above mean sea level (Janßen et al., 2017; Kench and Mann, 2017). All these islands consist of table, platform, patch reefs crowned by coral cays
4

(Sawall et al., 2011) and some are densely populated (Schwerdtner Mañez et al., 2012). Their low
elevation above MSL and the fact that they are composed mostly of calcareous sediments makes them
vulnerable to sea-level rise, inundation by waves and deficits in sediment supply (Kench and Mann,
2017). In the Spermonde Archipelago, the tidal cycle is mixed semi-diurnal with a maximum tidal range
of 1.5 m (data from Badan Informasi Geospasial, Indonesia).

In this study, we focused on five islands in the Spermonde Archipelago. Here, we surveyed fossil
microatolls that are complementary to those previously surveyed at two other islands in the same
archipelago, reported in Mann et al. (2016) (Figure 1a, b). Panambungan (RSL data in Mann et
al., 2016) (Figure 1g) is a small and uninhabited island, located 18 km northwest of Makassar
City. Barrang Lompo (RSL data in Mann et al., 2016) (Figure 1i) is located 11.2 km northwest
of Makassar and 11 km southwest of Panambungan, and is densely populated. Bone Batang (Figure
1h) is a narrow, uninhabited sandbank located south of the island of Panambungan and north
of the island of Barrang Lompo. South of Barrang Lompo, and 13 km southwest from the city of
Makassar, we surveyed Kodingareng Keke (Figure 1c), another uninhabited island. 25 km
south of Kodingareng Keke lies the island of Sanrobengi (Figure 1d), a small, sparsely inhabited
(less than 15 houses) reef island located close to the mainland of southern Sulawesi at the coast of
Galesong, 21 km south of Makassar city. Sanrobengi is located south of the previous islands, which are
close to each other off the coast of Makassar, towards the center of the Archipelago. The fourth and
fifth study islands are located northwest of Makassar, bordering the edge of the Spermonde
Archipelago. These two outer islands are Suranti (Figure 1f) and Tambakulu (Figure 1e) and both are uninhabited and located 58 km (Suranti) and 56 km (Tambakulu) from the City of
Makassar. Another island already reported and studied by Mann et al. (2016) (Sanane) is included in
this study only for the analysis of living microatolls, as fossil microatolls were not found on this island.
Its location is 2.7 km northwest of Panambungan, and it is densely populated. The exact coordinates
of the islands mentioned above are provided in SM1.
4 Methods

4.1 Coral microatolls

In most tropical areas, Holocene RSL changes can be reconstructed using several types of RSL indicators (Khan et al., 2015), among which are fossil coral microatolls (e.g., Scoffin and Stoddart, 1978; Woodroffe et al., 2012; Woodroffe and Webster, 2014). Fossil microatolls are particular growth forms adopted by massive corals (e.g., Porites) when they reach the upper bounds of their living range, close to sea level. In general, this restricted range of formation reflects the fact that the coral colony generally
grows upwards until they reach MLW, the lower part of the tidal range. At this point, successively, they keep growing horizontally at the same elevation forming “stoll-like” structures (Figure 1 in Scoffin and Stoddart, 1978 and Figure 8.1 in Meltzner and Woodroffe, 2015) that can widen up to several meters (Figure 1 in Scoffin and Stoddart, 1978 and Figure 8.1 in Meltzner and Woodroffe, 2015).

In the most standard definition, microatolls live at Mean Lower Low Water (MLLW), but their living range can span from Mean Low Water (MLW) down to the Lowest Astronomical Tide (LAT) (Mann et al., 2019). In general, this restricted range of formation reflects the fact that microatolls grow upwards until their polyps reach MLW, and successively keep growing horizontally at the same elevation (Figure 1 in Scoffin and Stoddart, 1978 and Figure 8.1 in Meltzner and Woodroffe, 2015). If sea level falls below LAT, the coral polyps desiccate and die, retaining their carbonate calcium fossil skeleton and their morphology only (Meltzner and Woodroffe, 2015). Due to this, since they can survive within a narrow range related to tidal datums, characteristic, fossil microatolls are often considered as an excellent RSL indicator (when found in good preservation state) as they constrain paleo RSL within a narrow range (Meltzner and Woodroffe, 2015).

The methodology to measure paleo RSL is based on the microatoll characteristic to always live within the range of MLLW to MLW. This behavior does not change over time, thus modern microatolls live in similar tidal datums and provide the same relationship to MSL as fossil microatolls, within an uncertainty range. Based on this, the elevation of the fossil microatoll can be referenced to modern MSL and by subtracting the elevation of modern microatolls with respect to MSL that is called the height of living coral (HLC), RSL can be derived. This allows determining the paleo RSL associated to fossil microatolls that were living in the same geographical setting as modern ones (i.e., the same island or group of islands). For this reason, in this study, we sampled both fossil and living microatolls elevations, and we determined the indicative meaning (i.e., the correlation with sea level) of the fossil microatolls from the HLC rather than to tidal datums.

As fossil microatolls are composed of calcium carbonate, they can be assigned an age, either with $^{14}$C (Woodroffe et al., 2012) or U-series dating (e.g., Azmy et al., 2010). Recent studies showed that the accurate measurement, dating and standardized interpretation of coral microatolls have the further potential to detail patterns and cyclicities related to short-term (e.g. decadal to centennial) sea-level fluctuations (Meltzner et al., 2017; Smithers and Woodroffe, 2001; Kench et al., 2019).

### 4.2 Elevation measurements

While the relationship of coral microatolls with the tidal datums described above is often maintained, several authors (e.g. Mann et al., 2016; Smithers and Woodroffe, 2001; Woodroffe et al., 2012) pointed out that deviations from microatoll living range and tidal datums may occur due to site-dependent characteristics, such as wave intensity and broader reef morphology (Meltzner and Woodroffe, 2015). It is also worth highlighting that a tide gauge with long enough time series might not be available at remote locations where microatolls are often found. Therefore, it is both more practical and more accurate to reconstruct paleo RSL at the time of microatoll life starting from the height of living coral microatolls (Height of Living Coral microatolls, HLC). Under the assumption that tide, wave, and reef morphology did not change significantly in time, this allows determining the paleo RSL associated to fossil microatolls that were living in the same geographical setting as modern ones (i.e., the same island or group of islands). For this reason, in this study, we sampled both fossil and living microatolls elevations, and we determined the indicative meaning (i.e., the correlation with sea level) of the fossil microatolls from the HLC rather than to tidal datums.
Fossil and living microatoll (respectively, FMA and LMA) heights were surveyed on Sanrobengi, Kodingareng Keke, Bone Batang, Suranti and Tambakulu (Figure 1c–i) with an automatic level. FMA and LMA heights were always taken on the top microatoll surface. Elevations were initially referenced to locally deployed water level sensors (Seametrics PT2X) acting as temporary benchmarks. Locations of water level logger positions are shown as stars in Figure 1c–i (stars), and logged water levels are reported in SM1. The sensors were fixed to either jetties or living corals close to the survey sites and logged the tide levels at 30-second intervals. To exclude differences in the Geoid over the Archipelago that affect the elevation measurements, we checked and excluded tidal level differences between the sensors on the study islands referenced to the tidal height of the water level sensor on Panambungan, for which we have the longest tide record of 8 days and 18 h. The Panambungan tidal readings were compared to readings at the national tide gauge at Makassar harbor (1.1.2011 – 19.12.2019, data courtesy of Badan Informasi Geospasial, Indonesia) to establish the reference of our sample sites to MSL. As a result of annual sea-level variability, the mean tidal level at Makassar during our surveys was slightly above (+0.014 m) the long-term MSL (1-Jan-2011 to 19-Dec-2019). Our elevation measurements were corrected accordingly.

FMA and LMA measurement errors were propagated using the root mean square of the sum of squares of the following values (see SM1 for calculations and details):

- Automatic level survey error = 0.02 m, as in Mann et al. (2016). If the automatic level had to be moved due to excessive distance from the benchmark to the measured point, this error is added twice.
- Error referencing island logger to Panambungan MSL. This error has been calculated comparing water levels measured at each island against those measured at Panambungan, and varies from 0.01 to 0.07 m (see SM1 for details)
- Error referencing Panambungan to Makassar MSL = 0.04 m, as in Mann et al. (2016).
- Error in calculating Makassar MSL from a limited time (8.9 yrs, 1-Jan-2011 to 19-Dec-2019) and not for an entire tidal cycle (18.6 yrs). We estimated this error to be 0.05 m.

### 4.3 Paleo RSL calculation

After relating all microatoll elevations to MSL, we used FMA and LMA elevation measurements to calculate paleo RSL. We then applied the concept of indicative meaning (see Shennan, 1986 for definition and applications) to coral microatolls. The indicative meaning allows us to quantifying the relationship between the RSL indicator and the former associated paleo sea level (see Shennan, 1986 for definition and applications). To reconstruct paleo RSL from measured data we use the following formula:

\[
RSL = E - HLC + Er
\]

where \( E \) is the surveyed elevation of the fossil microatoll; \( HLC \) is the average height of living coral microatolls and \( Er \) is the estimated portion that was eroded from the upper fossil microatoll surface. To calculate RSL, we measured HLC at each island individually or at the closest neighboring island where living microatolls could be found.

Concerning HLC, we surveyed living microatolls on Tambakulu (samples \( n=51 \)) and Sanrobengi (\( n=24 \)). On Suranti, Kodingareng Keke and Bone Batang, living microatolls were either restricted in number and with partly reworked appearance, or completely absent. Therefore, to calculate RSL at these islands, we used HLC elevations from Tambakulu (\( n=51 \)) for Suranti, from Panambungan (from Mann...
et al., 2016; n = 20) for Bone Batang, and from Barrang Lompo (from Mann et al., 2016; n=23) for Kodingareng Keke.

The Er value was included in our calculation only in presence of visibly eroded microatolls (see Table 2 for details, field example comparison with non-eroded microatolls in Figure 2a, b) to account for the lowering of the top microatoll-microatoll surface due to erosion. In Figure 3a and b, related these microatolls samples are indicated by light gray vertical error bars with a light gray halo. Measurements on modern microatolls at Barrang Lompo, Panambungan and Sanane (Figure 4a) by Mann et al. (2016) showed that the mean-average thickness of living microatolls in the Spermonde Archipelago was quantified by Mann et al. (2016) to be 0.48±0.19 m. Thus, to reconstruct the original fossil microatoll elevation below MSL for eroded FMAs, we added the missing centimeters to each eroded FMA thickness to the actual thickness of eroded fossil microatolls to reconstruct reach the thickness of 0.48±0.19 m. We remark that this calculation approach does not take into account the fact that modern microatolls may be thicker rather than wider than fossil ones because of the current rapidly rising sea level (that is forcing them to catch up, growing faster upwards). In contrast, under Late Holocene falling or stable sea-level changes, they were presumably getting wider, but not thicker. Hence, in our calculations, the added Er might be overestimated, as it is based on modern microatoll proxies. In the absence of better constraints, we maintain this approach.

Final paleo RSL uncertainties were calculated using the root mean square of the sum of squares of the following values (see SM1 for calculations and details):

- Elevation errors of both FMA and LMA, calculated as described above
- Half of the indicative range, represented by the standard deviation of the measured heights of living corals
- Uncertainty in estimating erosion = 0.19 m, derived from Mann et al. (2019) and discussed above.

Figure 2: Examples of a) non-eroded and b) eroded fossil microatoll at Sanrobengi.

4.4 Sampling and dating
The highest point of each FMA was sampled by hammer and chisel, or with a hand drill. Sub-samples from all samples taken in the field were analyzed via XRD at the Central Laboratory for Crystallography and Applied Material Sciences (ZEKAM), University of Bremen, Germany, in order to detect possible diagenetic alterations of the aragonite coral skeleton.

After the XRD screening, we performed one radiocarbon dating per sampled microatoll. AMS radiocarbon dating and age calibration to calendar years before present (a BP) was done at Beta Analytic Laboratory. We used the Marine 13 calibration curve (Reimer et al., 2013) and a delta R value (the reservoir age of the ocean) of 0±0 as recommended for Indonesia in Southon et al. (2002). In order to compare the new ages to the results from Mann et al. (2016), we recalculated their ages with the same delta R value.

The reason behind choosing a different delta R value than Mann et al. (2016) resides in the fact that the value they adopted (delta R = 89±70) was measured in southern Borneo (Southon et al., 2002) more than 900 km away from our study site. Their choice was based on the fact that there is no delta R value available between Sulawesi and southern Borneo that can be used for a radiocarbon age reservoir correction. Due to the long distance between Borneo and our study area and the presence of the Indonesian Throughflow between these two regions (Fieux et al., 1996), here we propose that there is no basis to assume a similar delta R value between southern Borneo and the Spermonde Archipelago. Therefore we follow the recommendation of Southon et al. (2002) to use a zero delta R, reported to be derived from unpublished data for the Makassar Strait.

All our samples were registered in the SESAR, the System for Earth Sample Registration, and assigned an International Geo-Sample Number (IGSN).

### 4.5 Glacial Isostatic Adjustment

In order to compare observations with RSL caused by isostatic adjustment since the Last Glacial Maximum, we calculated RSL as predicted by geophysical models of Glacial Isostatic Adjustment (GIA). These are based on the solution of the Sea-Level Equation (Clark and Farrell, 1976; Spada and Stocchi, 2007). We calculate GIA predictions using a suite of combinations of ice-sheets and solid Earth models.

The latter are self-gravitating, rotating, radially stratified, deformable and characterized by a Maxwell viscoelastic rheology. We discretize the Earth’s mantle in two layers: Upper and Lower Mantle (respectively, UM and LM). Each mantle viscosity profile is combined with a perfectly elastic lithosphere whose thickness is set to either 60, 90 or 120 km. We use 6 mantle viscosities for each lithospheric thickness, as shown in Table 1. We combine the Earth models with three different models: ICE5g, ICE6g (Peltier et al., 2015; Peltier, 2009) and ANICE (De Boer et al., 2015; De Boer et al., 2017). In total, we ran 54 different ice-earth model combinations (3 ice sheet models × 3 lithospheric thicknesses × 6 mantle viscosity profiles).

<table>
<thead>
<tr>
<th>Table 1: Upper and lower mantle viscosities for the different Earth models.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
</tr>
</tbody>
</table>

### 5 Results

#### 5.1 Living and fossil microatolls

Our dataset consists of a total of 25 fossil microatolls (FMA) surveyed in five islands of the Spermonde Archipelago (Table 2, see also SM1). Sixteen microatolls yield ages (calendar years) ranging from 5970 a BP to 3615 a BP (Figure 3a), while nine yield ages varying from 237 a BP to 37 a BP (Figure 3b). These are added to the 20 fossil microatolls and one modern microatoll from...
Barrang Lompo and Panambungan previously reported by Mann et al. (2016) (Figure 3a and Figure 3c, see also SM1) and the data from De Klerk (1982) and Tjia et al. (1972) (Figure 3c and Table 4, SM1). The microatoll PS_FMA 4 showed evidence of reworking, e.g., it was not fixed to the sea bottom, and thus it was subsequently rejected. Therefore, it is not shown in the results or discussed further. Among the 44 microatolls surveyed and dated in this study (n=24) and Mann et al., 2016 (n=20), 18 were eroded, and the erosion correction has been applied as reported in the methods section (gray bands in Figure 3a). The fact that these corrected data seem to plot consistently above the non-eroded microatolls might be indicative of the fact that our erosion correction may be overestimated. In absence of more precise data on the original thickness of fossil microatolls, we retain these indicators in our analyses.

Concerning living microatolls (LMA), our surveys included 51 individuals measured at the island of Tambakulu and 24 living microatolls measured at Sanrobengi (Figure 4ba). The living microatolls in this survey complement those measured by Mann et al. (2016) at Panambungan (n=20), Barrang Lompo (n=23) and Sanane islands (n=17).

In order to reference the measured elevations of both LMA and FMA to MSL as described in the methods section, we measured water levels at Barrang Lompo, Panambungan, Suranti, Tambakulu, Kodingareng Keke, Bone Batang and Sanrobengi for a total of 688 hours, over the period 6-Oct-2017 to 15-Oct-2017 (see water levels in SM1). An example of measured water levels is shown in Figure 4b.

For which concerns XRD analyses (see SM1 for details), 17 over 24 samples show an average value of aragonite at 98.7±1.1%. Among the other samples, one (SB_FMA26) contains 7% of calcite, which might affect its age. Other potential sources of secondary carbon might be present in PT_FMA9 and BB_FMA13 where Kutnohorite was detected (CaMn$^{2+}$(CO3)$_2$, respectively 3 and 6%). All the remaining samples show relatively low aragonitic content, but the other minerals contained in them do not contain carbon that could potentially affect the ages reported in this study (see SM1 for details on XRD analyses).

The fossil microatolls of Suranti show age ranges from 237±97 a BP to 114±114 a BP. These samples indicate paleo RSL positions of -0.53±0.25 m and -0.11±0.25 m. On Tambakulu, ages range between 114±114 a BP and 37±12 a BP. In this time span, the elevations of the fossil microatolls at this island indicate RSL positions between -0.24±0.13 m and 0.11±0.23 m. The samples from Bone Batang cover ages from 5196±118 a BP to 3693±108 a BP and provide paleo RSL positions of 0.13±0.22 m to 0.20±0.22 m. Samples from fossil microatoll ages from Kodingareng Keke vary from 5869±99 a BP to 5343±88 a BP, indicating paleo RSL positions between -0.02±0.12 m and 0.10±0.12 m. Fossil
microatoll samples from Sanrobengi range in age from 5970±89 a BP to 3615±99 a BP, with RSL from
0.14±0.12 m to 0.54±0.23 m.

Figure 3: Representation of data reported in Table 2 and Table 3. a) RSL index points dating ~6 to ~3.5 ka and
b) Common Era microatolls surveyed in this study. Gray vertical error bars in a) and b) represent the microatolls that
were recognized as eroded in the field, and to which the erosion correction explained in the text has been applied. Panel c)
shows the newly surveyed data in the context of previous studies.

Table 2: Fossil microatolls surveyed and dated at Suranti (PS_FMA 1 – 3), Tamberakulu (PT_FMA 5 – 9), Bone Batang (BB_FMA
11 – 13), Kodingseng Keke (KK_FMA 14 – 17) and Sanrobengi (SB_FMA 18 – 26). All ages are recalculated with the delta R
value of OaO (Southon et al., 2002). The elevation/age plot of these data is shown in Figure 3.
Table 3: Fossil microatolls sampled by Mann et al. (2016) surveyed on Barrang Lompo (FMA 1 (BL) – FMA 7 (BL)) and Panambungan (FMA 8 (PPB) – FMA 21 (PPB). All ages are recalculated with a delta R value of 0 and an error of 0 (Southon et al., 2002). All erosion corrections are already included in the RSL as provided in Mann et al. (2016) but all details are provided in the supplementary SM1. The elevation/age plot of these data is shown in Figure 3a.

Table 4: Marine and terrestrial limiting indicators from De Klerk (1982) and Tjia et al. (1972) studied in different locations in SW Sulawesi and the Spermonde Archipelago. This table is an extract from the database of Mann et al. (2019). * indicates samples from Tjia et al. (1972). The elevation/age plot of these data is shown in Figure 3c.
5.2 GIA models

As described in the Methods section, we use different Earth and ice models to produce 54 different RSL predictions, from 16 ka BP to present. The models are available in the form of NetCDF files including longitudes between 55.3° to 168.9° and latitudes between -28.6° and 38.6°. We provide the models in NetCDF format, with a Jupyter notebook to extract data at a single location and plot GIA maps (files can be retrieved from SM2).

An extract of the modelling results is shown in Figure 5 and Figure 6. While all models predict an RSL highstand in the Spermonde Archipelago, the RSL histories predicted by each model show significant differences. ICE5g—in fact—predicts the RSL highstand occurring ca. 2.5 ka later than ANICE and ICE6g. The maximum RSL predicted by ICE5g and ICE6g is higher than the one predicted by ANICE. ANICE is the only ice model for which some at least one Earth model iteration does not predict an RSL highstand, but a quasi-monotonous sea level rise from 8 ka BP to present.
6 Discussion

The dataset presented in Table 2 and shown in Figure 3 allow discussing several relevant points that need to be taken into account as Holocene sea-level studies in the Makassar Strait and SE Asia progress. Nevertheless, because of the high number of uncertainties presented in the methods and results, the following section avoids interpretations of our results in the context of the global mean sea level (GMSL).

6.1 Measuring living microatolls for paleo RSL calculations

As indicated by former studies (e.g. Mann et al., 2016; Smithers and Woodroffe, 2001; Woodroffe et al., 2012) the best practice to calculate paleo RSL from microatolls is, when possible, to measure the height of living coral microatolls (HLC) below MSL, in order to calculate their indicative meaning (Meltzner and Woodroffe, 2015).

Our results (Figure 4) show that, in the Spermonde Archipelago, HLC is subject to changes over short spatial scales. In fact, within similar reef contexts, we measured significant differences in HLC across the Spermonde Archipelago, that seem to conform to a geographic trend directed from nearshore towards the islands located on the outer shelf. The highest HLC (i.e., closer to mean sea level) was measured at the island closest to the mainland (Sanrobengi). The islands located in the middle of the archipelago (Panambungan, Sanane, and Barrang Lompo) differ slightly from each other but show comparable average HLC. At Tambakulu, located further away from the mainland (~70 km from Sanrobengi), the HLC is the lowest measured. On average, HLC at Tambakulu is, and is, on average, ~0.4 m lower than that recorded at Sanrobengi. We highlight that this value is of the same magnitude (several decimeters) as the differences found by other studies reporting coral microatolls HLC measurements at different sites (Hallmann et al., 2018; Smithers and Woodroffe, 2001; Woodroffe, 2003; Woodroffe et al., 2012).
This pattern seems confirmed by the water level data we measured at the islands of Tambakulu and Barrang Lompo (Figure 4). While our measurements are too short in time to extract well-constrained significant tidal datums, we remark that at Tambakulu (offshore) we measured a tidal range higher than at Barrang Lompo (mid-shelf), which in turn records a slightly higher tidal range than the Makassar tide gauge (onshore). The local tidal range is related to the bathymetry and can therefore differ even in relatively close proximity. We highlight that, while a complete analysis of the water level data we surveyed is beyond the scope of this work, SM1 contains all the water levels recorded during our surveys for further analysis. We highlight that the global EGM 2008 geoid model (2.5 minutes grid, Pavlis et al., 2012) and the SE Asia geoid model (0.5 degrees grid, Kadir, 1999) show no elevation differences between Sanrobengi and Tambakulu (our most inshore and offshore islands), while islands in the center of our study area are ca. 2 m higher than the others. This apparent anomaly is not confirmed by our observations, and we propose it may be regarded with caution as it derives from broad-scale geoid models that may not reconcile well with local-scale observations.

Our results discussed above stress the importance of measuring the HLC of living microatolls also at very small spatial scales. In fact, if we only focused on the HLC published by Mann et al. (2016) for Panambungan, Sanane and Barrang Lompo (located in the center of the archipelago), our paleo RSL reconstructions would have been biased. Specifically, we would have overestimated paleo RSL at Tambakulu and underestimated it at Sanrobengi. Our reconstructions would have been similarly biased had we used tidal datums derived from the tide gauge of Makassar.

6.2 Conflicting sea-level histories

Additionally to our new dataset and that of Mann et al. (2016) presenting index points, there are two studies reporting paleo sea-level observations for the Spermonde Archipelago: De Klerk (1982) and Tjia et al. (1972) (Figure 7). Mann et al. (2019) re-analyzed data from these studies and recognized that most of the data originally interpreted as index points were instead better described as marine or terrestrial limiting indicators (Figure 3c). Our new data agrees with those from Mann et al. (2016), but show relevant differences with Tjia et al. (1972) and De Klerk (1982) studies, that place RSL at 6–4 ka conspicuously higher than what is calculated using the microatoll record (Figure 3c).

This mismatch was recently pointed out by Mann et al. (2019), who wrote: “site-specific discrepancies between [...] Tjia et al. (1972) [...] and De Klerk (1982) and Mann et al. (2016) [...] must be resolved with additional high-accuracy RSL data before the existing datasets can be used to decipher regional driving processes of Holocene RSL change within SE Asia”.

While the study by Mann et al. (2016) was based only on two islands, the data presented in this study provide definitive evidence to call for a reconsideration of the data reported by Tjia et al. (1972) and De Klerk (1982). Notwithstanding the importance of these datasets, we highlight that the apparently higher late Holocene RSL histories reported by these two authors are largely at odds with more precise RSL indicators such as coral microatolls reported here. Hence, the question arises: what is the possible reason for Tjia et al. (1972) and De Klerk (1982) data to be higher than the data reported by this study and Mann et al. (2016)?

One possible source of mismatch could reside in regional GIA differences. We suggest rejecting this hypothesis comparing the location of the areas surveyed in the Spermonde Archipelago with the outputs of our GIA models. Using the GIA models producing the most extreme differences within our
region, we show that the discrepancy between the data cannot be explained by regional differences in the GIA signal. In fact, GIA differences remain within one meter among our sites (Figure 7a, b).

Similarly to GIA, another possible hypothesis is that the differences among sites in the Spermonde Archipelago are caused by differential tectonic histories between sites. While this is a possibility that would need further paleo RSL data to be explored (expanding the search of RSL indicators beyond the islands of the Spermonde Archipelago), we argue that there are several inconsistencies between the microatoll data and other sea-level data points surveyed within short geographic distances. For example, a fossil coral (not specified if in growth position) surveyed at Tanah Keke (GrN-9883, Table 4) by De Klerk (1982) would indicate that, at 4237±180 a BP, RSL was above 1.03 m. At the same time, microatoll data from Sanrobengi (SB_FMA25, Table 2, ~20 km North of Tanah Keke) show that RSL was 0.46±0.23 m above present sea level. Similarly, at the site of Sarappo, De Klerk (1982) surveyed coral and shell accumulations that would propose the sea level was above 0.7 m at 3837±267 a BP (GrN-10978). This data point is at odds with microatoll data from the nearby islands of Panambungan, Bone Batang and Sanrobengi where, at the same time RSL is recorded by microatolls at elevations between -0.02±0.11 m and 0.46±0.23 m (BB_FMA13, SB_FMA26, Table 2 and FMA14 (PP), Table 3). We argue that invoking significant differential tectonic shifts between islands located so closely in space would require the presence of tectonic structures on the shelf of the Spermonde Archipelago that are, at present, unknown.

Another possibility is that, while the original descriptions of Tjia et al. (1972) and De Klerk (1982) seem to indicate “marine limiting” points (i.e., indicating that sea level was above the measured elevation, Mann et al., 2019), some of them may be instead representative of other environments, thus naturally above our paleo RSL index points. For example, it is not clear whether the “shell accumulations” reported at several sites and interpreted by Mann et al. (2019) as marine
limiting points may be instead representative of high-magnitude wave deposits by storms. The Spermonde Archipelago is subject to occasional strong storms that may explain the high emplacement of these deposits (see wave statistics in Figure 8).

Also, tsunamis are not unusual along the coasts of SE Asia (e.g. Rhodes et al., 2011) with the broader region in the Makassar Strait being one of the most tsunamigenic regions in Indonesia (Harris and Major, 2017; Prasetya et al., 2001). Nevertheless, the tsunamigenic earthquakes reported in this region are far north with respect to our study area (Prasetya et al., 2001, see the left panel in Figure 8), and in general, they appear shallow and too small in magnitude to produce significant tsunamis propagating towards the Spermonde Archipelago. The earthquakes in this area are all generated along the Paternoster transform fault, which would point to tsunamis generated mostly by earthquake-triggered landslides rather than earthquakes themselves. Nevertheless, a tsunamigenic source for marine sediment deposition significantly above MSL cannot be ruled out until the deposits reported by Tjia et al. (1972) and De Klerk (1982) are re-investigated with respect to their precise elevations above MSL and their sediment facies.

Only further field data at the locations reported by Tjia et al. (1972) and De Klerk (1982) might help clarify the stratigraphy of these deposits and the processes that led to their deposition (i.e., paleo sea-level changes versus high-energy events).

Figure 8: Maximum significant wave height (a) and period (b) extracted from the CAWCR wave hindcast (Durrant et al., 2013; Durrant et al., 2015). The left panel shows the approximate location and year of the three historical tsunami records reported by Prasetya et al. (2001), their Figure 1. Faultline and axis of spreading of the Paternoster fault are derived from Prasetya et al. (2001), their Figure 5. The box delimited by the white line indicates the approximate location of Figure 7 within this figure. CAWCR source: Bureau of Meteorology and CSIRO Copyright 2013.

6.3 Mismatch of the record of Barrang Lompo Island Subsidence at a highly populated island?

As shown in Figure 3a, the data presented in this study together with the data from Mann et al. (2016), confirm a sea-level history with a higher-than-present RSL at 6–3.5 ka BP. The only exception to this pattern is the island of Barrang Lompo, where microatolls of roughly the same age are consistently lower (light blue crosses in Figure 3a). We compare the data at Barrang Lompo to the other RSL data points in the Spermonde Archipelago using a Monte-Carlo simulation (see SM2 for details and methods) to highlight spatio-temporal clustering in these two datasets. We calculate that, on average, at ~5100 a BP, RSL at Barrang Lompo is 0.8±0.3 m lower than all the other islands where we surveyed microatolls of the same age (Figure 9).
Figure 9: Joint plot showing bivariate (central plot) and univariate (marginal axes) distribution of RSL data points at Barrang Lompo (left) and all the other islands surveyed in this study and in Mann et al. (2016) (right). Darker blue areas in the central plots indicate a higher density of RSL point therefore darker colors indicate a higher probability of RSL at the given time. The Jupyter notebook used to create this graph is available as SM2.

The mismatch in RSL histories described above can hardly be reconciled by differential crustal movements due to either tectonics or GIA over such short spatial scales (Figure 1b). For example, Bone Batang (where fossil microatolls were surveyed slightly above present sea level) and Barrang Lompo (where microatolls of roughly the same age were surveyed ca. 0.8 m below those of Bone Batang) are separated by less than 5 km and is, hence, highly unlikely that they were subject to very different tectonic or isostatic histories.

The only geographic characteristic that separates Barrang Lompo from the other islands we surveyed is that it is heavily populated (~4.5 thousand people living on an island of 0.26 km²) (Syamsir et al., 2019). As such, it is characterized by a very dense network of buildings and concrete docks. The island is also subject to groundwater extraction (at least 8 wells were reported on Barrang Lompo, Syamsir et al., 2019).

The island of Barrang Lompo was populated since at least the 1720s (Clark, 2010; de Radermacher, 1786 as cited in Schwerdtner Manez and Ferse, 2010) when Barrang Lompo was (as it is today) a hub
for sea cucumber fisheries (Schwerdtner Manez and Ferse, 2010). Assuming that the localized subsidence is anthropogenic, we cannot exclude that it started since the early colonization, but it seems appropriate to date it back to, at least, 100–150 years ago. Since at this time, the island population likely the island population started to grow and to extract more groundwater for its own sustenance. Using these inferences, our microatoll data show that Barrang Lompo might be affected by a subsidence rate in the order of ~3–11 mm/a (depending on the adopted subsidence amount and time of colonization) compared to the non-populated islands in the archipelago. Notwithstanding the obvious differences in patterns and causes of subsidence, we note that this rate is at least one order of magnitude smaller than what is observed in Indonesian mega-cities due to anthropogenic influences (Almuddin et al., 2013). As this subsidence rate is a relative rate among different islands, any other natural-regional subsidence or uplift rate (i.e., tectonic uplift or GIA-induced vertical land motions) should be added to this estimate.

As the fossil microatolls surveyed at anomalous positions were all located near the coast, we propose one possibility is that they might have been affected by local subsidence due to the combined effect of groundwater extraction and construction load on the coral island. One point worth highlighting is that the depth of living microatolls, surveyed on the modern reef flat few hundred meters away from the island, does not show significant differences when compared to other islands nearby (Figure 4a). If the island is indeed subsiding, this observation could be interpreted in two ways. One is that the subsidence might be limited to the portions closer to the shoreline, and not to the distal parts (i.e., the reef flat) where modern microatolls are growing. The second is that the island has been subsiding fast in the recent past, but is now subsiding at roughly the same rate of upward growth of the living microatolls (Simons et al., 2007). Meltzner and Woodroffe (2015) report that microatolls are in general characterized by growth rates of ~10 mm/a, with extremes between 5 to 25 mm/a for those belonging to the genus Porites. These rates would allow modern microatolls to keep up with sea-level rise. We remark that, on average, living microatolls at Barrang Lompo are slightly thicker than those of islands nearby (Mann et al., 2016, Figure 4a).

A partial confirmation hint of a possible subsidence pattern at Barrang Lompo is given by the intense erosion problems that this island is experiencing reported to experience, which may be the consequence of high rates of land subsidence. Relatively recent reports indicate that coastal erosion is a particularly striking problem at Barrang Lompo (Williams, 2013; Tahir et al., 2012). Interviews of the local community led by Tahir et al. (2009) indicate that large parts of the island suffer from severe erosion problems, and that "coastline retreat has occurred with a rate of change of 0.5 m/yr". Williams (2013) reported that "local people had constructed a double seawall of dead coral to mitigate erosion". We recognize that the mechanism of subsidence for Barrang Lompo proposed above should be regarded as merely hypothetical and needs confirmation by means of through independent datasets. For example, the RSL change rates we propose for Barrang Lompo would be observable by instrumental means. For example, a comparative study using GPS measurements for a few days per year over a period of 3–5 years would provide enough information to inform on vertical land motion rates in Barrang Lompo. Another approach would be the use of tide gauges to investigate multi-yearly patterns of land and sea-level changes in Barrang Lompo and at other comparable non-populated nearby islands. This would surely help understanding the reasons for the mismatch highlighted by our data. To our knowledge, there is only one instrumental example of the kind of subsidence we infer here. At Funafuti Island (Tuvalu), Church et al. (2006) report that two closely located tide gauges (ca. 3 km apart) show a difference of RSL rise rates. They state that this tilting may be caused by tectonic movement or (most probably) local subsidence (for example, due to groundwater withdrawal) and demonstrates that even on a single island, the relative sea-level trend may differ by as much as 0.6 mm/a.
Another way to detect recent vertical land movements between the island of Barrang Lompo and other uninhabited islands nearby would be to investigate whether there are differences in the morphology and growth patterns of living microatolls. In fact, if Barrang Lompo rapid subsidence is affecting also the distal part of the reef, this may be detectable through higher annual growth rates of the microatolls at this island with respect to compared to that affecting to that measured at other islands.

To our knowledge, there is only one instrumental example of the kind of subsidence we infer here. At Funafuti Island (Tuvalu), Church et al. (2006) report that two closely located tide gauges (ca. 3 km apart) show a difference in RSL rise rates. They, in the search for an explanation to this pattern, they state that “this tilting may be caused by tectonic movement or (most probably) local subsidence (for example, due to groundwater withdrawal) and demonstrates that even on a single island, the relative sea-level trend may differ by as much as 0.6 mm yr⁻¹.”

6.4 Common Era microatolls

Eight microatolls from the islands of Suranti and Tambakulu (located in the North of our study area, 12 km apart from each other) yielded ages spanning the last ~300 years (Figure 3b). This period of time represents the most recent part of the Common Era. Sea-level data from this period are relevant to assess rates of sea-level changes beyond the instrumental record (Kopp et al., 2016). Within Southeast Asia, the database of Mann et al. (2019) (DOI: 10.17632/mr247yy42x.1 - Version 1) reports only one index point for this time frame (Singapore, Bird et al., 2010).

As the two islands of Suranti and Tambakulu are uninhabited and hence are not subject to the hypothetical anthropogenic subsidence discussed above for the island of Barrang Lompo, it is possible to use these data to calculate short-term vertical land motions. To do this, we first need to correct the paleo RSL as reported in Figure 3b to account for the 20th century sea-level rise and GIA land uplift since the microatolls were drowned (see SM2 for the complete calculation). We make this correction using the 20th century global sea-level rise of 184.8±25.9 mm (Dangendorf et al., 2019) and GIA rates from our models (0.3±0.09 mm/a, see SM1 for details). We remark that this correction applied to our data represents an approximation, as we use global 20th century RSL rise rates instead of local rates, which are not available for this area due to the absence of a long-term tide gauge. Yet, it can give an insight on potential land motions in the Spermonde Archipelago.

We then iterate multiple linear fits through our data points by randomly selecting ages and CE RSL corrected as described above (full procedure and script available in SM2). After 10⁴ iterations, we calculate that the average VLM rate indicated by our microatolls is -0.88±0.61 mm/a (Figure 10). While this range indicates that natural subsidence might be occurring at these islands, we cannot discard the possibility of a slight uplift or stability.

We recognize that the calculation applied above to our data represents an approximation. Hence, the calculated rate is subject to several sources of uncertainty. First, five of eight Common Era microatolls were eroded, therefore the paleo RSL might be overestimated. Second, four of eight microatolls have large age error bars. Then, in our calculations, we use global mean sea-level rise rates instead of local ones, which are not available for this area due to the absence of a long-term tide gauge. The GIA models we employ are also limited, albeit they span a large range of possible mantle and ice configurations. Yet, our calculation is the best possible with the available data.

Notwithstanding the caveats above, while caution is needed when comparing long-term rates to the short-term ones measured by GNSS stations, we remark also that the values-averaged vertical land motion rates we calculate based on Common Era microatolls (-0.88±0.61 mm/a) are in agreement with the average vertical motion of -0.92±0.53 mm/a reported by Simons et al. (2007) (see their Supplementary
Table 6) for the PARE GPS station (Lon: 119.650°, Lat: -3.978°, Height: 135 m). This station is located on the mainland, 78 km ENE of Tambakulu and Suranti. Nevertheless, the subsidence indicated by both our data and the PARE station appears at odds with another GPS station reported by Simons et al. (2007) in the proximity of Makassar (UIPD, Lon: 119.581°, Lat: -5.154°, Height: 153 m), that measures instead uplift rates at rates of 2.78±0.60 mm/a. While caution is needed when comparing long-term rates to the short-term ones measured by GNSS stations, these results provide important stepping stones for future studies in this area.

Figure 10: Common Era data points, corrected for 20th century sea-level rise and GIA uplift (blue crosses). Gray lines show the results of re-iterating a linear fit through random normal samples of the blue points. Dotted black lines show the linear fits with maximum and minimum slopes. Dashed black lines show average + standard deviation and average − standard deviation slopes. The solid black line shows the average slope. The Jupyter notebook used to create this graph is available as SM2.

6.5 Comparison with GIA models

Excluding the microatoll data from the island of Barrang Lompo (that, as per the discussion above, may have been subject to recent subsidence), 29 fossil microatolls in the Spermonde Archipelago (including also the data reported by Mann et al., 2016, Figure 3) date between 3615 to 5970 a BP. This dataset can be compared with the predicted RSL from GIA models once vertical land movements due to causes different from GIA are considered. To estimate such movements in the Spermonde Archipelago, two options are available.

The first is to consider that the area has been tectonically stable during the Middle Holocene. This is plausible under the notion that, unlike the northern sector of Western Sulawesi (that is characterized by active lateral and thrust faults, (Bird, 2003), South Sulawesi is not characterized by strong tectonic movements (Sasajima et al., 1980; Hall, 1997; Walpersdorf et al., 1998; Prasetya et al., 2001). Considering the Spermonde Archipelago as tectonically stable (Figure 11a), our RSL data show a best fit with the RSL predicted by the ANICE model (VM2 – 60km, see Table 1 for details), in particular with those iterations predicting RSL at 6–4 ka few decimeters higher than present.

The second option is to interpret the rate of RSL change calculated from Common Era fossil microatolls (-0.88±0.61 mm/a), and make two assumptions: 1) that they were uniform through time and 2) that they can be applied to the entire Archipelago. Under these assumptions, we show in Figure 11b that, with subsidence rates below -0.5 mm/a, our data do not match any of our RSL predictions. Data start to match RSL predictions obtained using the ICE6g ice model with lower subsidence rates. For example, with a subsidence rate of -0.27 mm/a, representing the upper end of the 2-sigma range...
shown in Figure 10, the data show a good match with ICE6g (Figure 11c). As discussed above, based on both our Common Era data and GPS data from Simons et al. (2007) we cannot exclude that, instead of subsidence, the Archipelago is characterized by tectonic uplift. The maximum uplift compatible with our RSL data and models is 0.05 mm/a (Figure 11d). Regardless of the tectonic history chosen, we note that our data does not match the peak highstand predicted at 5 ka by the iterations of the ICE5g model.

![Figure 11: Comparison between RSL observations (except the island of Barrang Lompo) and predictions from GIA models (see Table 1 for model details). The model predictions were extracted by averaging latitude and longitude of all islands reported in this study, minus Barrang Lompo. Colored lines represent, respectively, ANICE, ICE5g and ICE6g models. Black thicker lines identify best fitting models. The different panels (a-d) show different tectonic corrections applied to the observed RSL data. The Jupyter notebook used to create this graph is available as SM2.](image)

6.6 Paleo to modern RSL changes

Due to the existing uncertainties on vertical land motions discussed above, it is clear that the data in the Spermonde Archipelago cannot be used to infer global mean sea level. Yet, the matching exercise of our RSL data with GIA models under different vertical land motion scenarios shown in Figure 11 allows discussing the contribution of GIA to relative sea-level changes at broader spatial scales. The different possible matches between paleo RSL data and GIA models shown in Figure 11 have a broader significance concerning rates and patterns of modern changes in relative sea level at broad scale. In fact, GIA effects need to be taken into account in the analysis of both tide gauge and satellite altimetry data (see Rovere et al., 2016 for a review). One way to choose the GIA model(s) employed for this correction is to select those matching better with Late Holocene data.

To make an example of how different modeling choices (based on RSL data) propagate onto estimated modern GIA rates RSL estimates, in Figure 12a–c, we show the modern land motion rates of caused by GIA as predicted by three models across Southern and Southeast Asia. These are the broad geographic results associated with the best-matching models under different assumptions on VLM (as shown in Figure 11). The difference between the two most extreme models matching with our data is within -0.3 and 0.5 mm/a (Figure 12d), and it appears widely relevant within the broader geographic context included in our models.
For example, to give an example of the difference between these models, the values shown in Figure 697 show that ICE6g-VM6-60km predicts faster modern GIA rates than ANICESELEN-VM1-60km for India and Sri Lanka. As these rates would need to be subtracted from the data recorded by a tide gauge, this would have an effect on any attempt of decoupling the magnitude of eustatic vs other land motions at tide gauges in that area.

Figure 12 a–c) GIA-induced vertical land motion derived by linearly interpolating the last time step in our models (1 ka for ANICE, 0.5 ka for ICE6g) to present. d) Difference between the models with the most extreme predictions matching our Late Holocene sea-level index points under different vertical land motion scenarios (see Figure 11). The purple dot indicates the approximate position of the Spermonde Archipelago.

7 Conclusions

In this study, we report 25 new RSL index points (of which one was rejected due to evidence of reworking) and 75 living microatoll measurements from the Spermonde Archipelago. We also report 54 new GIA model iterations that span a large geographic region extending beyond Southeast Asia. Together with the data reported in Mann et al. (2016), these represent an accurate dataset against which paleo RSL changes in the Spermonde Archipelago and adjacent coasts (including the city of Makassar, the seventh-largest in Indonesia) can be benchmarked. Multiple implications are deriving from our discussions, that we summarize below.

Our measurements of living microatolls show that there is an elevation difference between the HLC results gradients from the nearshore islands of the Archipelago (Sanroengi, Figure 1) towards the outer shelf ones (Tambakulu and Suranti, Figure 1). The magnitude of this gradient seems to be confirmed by water level data we measured at different islands and is ca. 0.4 m, with living microatolls deepening towards the offshore area. Recognizing the presence of this gradient was important in order to obtain coherent RSL reconstructions among different islands. This strengthens the notion that, when using microatolls as RSL indicators, living microatolls must be surveyed in close proximity of fossil ones in order to avoid biases in sea-level reconstructions.
The data surveyed in the Spermonde Archipelago by De Klerk (1982) and Tjia et al. (1972) are largely at odds with precisely measured and interpreted fossil microatolls presented in this study. We propose that, pending more accurate elevation measurements and new reinterpretation of these data, they are excluded from sea-level compilations (i.e., Mann et al., 2019 in Khan et al., 2019). We also propose that there is the possibility that these deposits might represent storm (or tsunami) accumulations: this hypothesis needs further field investigations to be tested.

Data from the heavily populated island of Barrang Lompo are significantly lower (ca. 80 cm) than those at all the other islands. Here, we propose the hypothesis that groundwater extraction and loading of buildings on the island may be the cause of this discrepancy, that which would result in local subsidence rates of Barrang Lompo in the order of ~3–11 mm/a. Due to the lack of instrumental data to support our hypothesis, we highlight the need for future studies acquiring both instrumental records and high-resolution RSL histories from fossil microatolls (e.g., reconstructing die-downs from microatoll slabs) across islands with different human population patterns. If verified, this mechanism of local subsidence needs to be verified with independent data. If confirmed, this would have wider implications for the resilience of low-lying, highly populated tropical islands to changes in sea level.

Besides the mechanism of local anthropogenic subsidence, we propose for the island of Barrang Lompo, eight microatolls dating to the last ca. 300–400 years give us the opportunity to calculate recent vertical land motion rates. Using different subsets of these data, we calculate that they our data may indicate average subsidence vertical land motion rates of -0.88±0.61 mm/a. As these rates were calculated only for the two offshore islands in our dataset, we advise caution in extrapolating to broader areas. Nevertheless, we point out that this rate of subsidence is very consistent with that derived from a GPS station less than 100 km away (that recorded a rate of -0.92±0.53 mm/a, Simons et al., 2007), but at odds with another GPS station in Makassar, for which uplift is reported.

Comparing the part of our dataset dated to 3–4 ka with the RSL predictions from a large set of GIA models, we show that the best matching ice model depends on the assumptions on vertical land movements. A generally better fit with models using the ICE6g ice history is obtained with moderate subsidence rates (~0.27 mm/a), while models using the ANICE ice history are more consistent with hypotheses of stability or slight tectonic uplift (0.05 mm/a). The ice model ICE5g shows a peak in RSL at ca. 5 ka that does not match with our RSL observations at the same time.

In this study, we are not favoring one model over the others nor claim that our model ensemble is a complete representation of the possible variable space. We use the example of the Spermonde Archipelago to highlight how Holocene RSL data, coupled with GIA models, can inform on two aspects that are ultimately of interest to coastal populations.

First, they may help defining benchmark local subsidence rates beyond-obtained from modern technologies GPS or tide gauges. It appears that, for the Spermonde Archipelago, long-term subsidence, tectonic stability or slight uplift are all possible. To settle this uncertainty, instrumental measures and more precise Common Era sea level datasets should represent a focus of future sea-level research in this area.

Second, we showed here that matching GIA model predictions with Late-Holocene RSL data is useful to constrain which models might be a better choice to predict ongoing regional rates of GIA. While we do not have a definite "best match" for the Spermonde Archipelago, we suggest that iterations of ICE6g and ANICE fit better with our data, and might produce more reliable GIA predictions than ICE5g, that seems not to match our data as well as the other two. In order to enable
data/model comparisons such as the one performed in this study the supplementary material (SM2) contains all our model results at broad spatial scales for Southern and Southeast Asia.

**8 Author contributions**

MB organized fieldwork and sampling, which were conducted in collaboration with TM and DK. JJ gave on-site support in Makassar and provided essential support with sampling and research permits in Indonesia. MB organized the data analysis, with supervision and inputs by TM and AR. The python codes provided in the Supplementary material were written by AR, in collaboration with MB and PS. TS and JI analyzed the tidal datum and calculated MSL, providing expertise on modern sea-level processes. PS offered expertise, performed model runs and provided discussion inputs on Glacial Isostatic Adjustment. MB drafted the first version of the manuscript. MB and AR wrote the final version of the manuscript jointly. All authors revised and approved the content of the manuscript.

**Declaration of Interest**

The authors declare no conflict of interest

**9 Data availability**

SM1 – spreadsheet including 10-12 sheets containing the following information.

- **Sheet 1** – Site coordinates: Coordinates of the islands surveyed in this study and in Mann et al., 2016. The sheet includes the tidal model outputs calculated for each island and statistics on tidal levels.
- **Sheet 2** – Water level logger: raw data of the water level loggers positioned at each island, including date/time, depth and coordinates of deployment.
- **Sheet 3** – MSL calculations: details of the calculations done to reduce the water level at each island to MSL.
- **Sheet 4** – Complete table: spreadsheet version of the Tables 2, 3, 4 in the main text.
- **Sheets 5-9** – Data for each island: details on living and fossil microatolls surveyed at each island.
- **Sheet 10** – Modern GIA: current GIA rates for the Spermonde Archipelago extracted from the last time step of ANICE (1ka), ICE5g and ICE6g (0.5ka).
- **Sheet 11** – Results of XRD elemental analysis.
- **Sheet 12** – Living microatolls average and standard deviation elevation, and distance from the mainland.

SM2 – NetCDF files of GIA models and collection of Jupyter notebooks to reproduce the analyses in the paper. Available as: [here](http://doi.org/10.5281/zenodo.3593965)

SM3 – Laboratory data for Radiocarbon analyses.

**10 Acknowledgments**
We would like to thank SEASCHANGE (RO-5245/1-1) and HAnsea (MA-6967/2-1) from the Deutsche Forschungsgemeinschaft (DFG), which are part of the Special Priority Program (SPP)-1889 "Regional Sea Level Change and Society" for supporting this work. Thanks to Thomas Lorscheid and Deirdre Ryan for help and thoughtful comments. We acknowledge the help of the following Indonesian students and collaborators Andi Eka Puji Pratiwi "Wiwi", Supardi and Veronica Lepong Purara, who provided support during fieldwork and sampling. We are grateful to the Indonesian Ministry for Research, Technology and Higher Education (RISTEKDIKTI) for assistance in obtaining research permits. The fieldwork for this study was conducted under Research Permit No. 311/SIP/FRP/ES/Dit.KI/IX/2017. We are also grateful to the Badan Informasi Geospasial (BIG), Indonesia, for sharing Makassar tide gauge data.

11 References


Table 2: Fossil microatolls surveyed and dated at Suranti (PS_FMA 1 – 3), Tambakulu (PT_FMA 5 – 9), Bone Batang (BB_FMA 11 – 13), Kodingareng Keke (KK_FMA 14 – 17) and Sanrobengi (SB_FMA 18 – 26). All ages are recalculated with the delta R value of 0±0 (Southon et al., 2002). The elevation/age plot of these data is shown in Figure 3a, b.

<table>
<thead>
<tr>
<th>IGSN</th>
<th>Lab Code</th>
<th>Sample Name</th>
<th>Island Name</th>
<th>14 C age</th>
<th>± 14 C error</th>
<th>Mean age [cal a BP]</th>
<th>± Error (yr)</th>
<th>Elevation [m] with respect to msl</th>
<th>HLC [m]</th>
<th>RSL [m]</th>
<th>± Vertical error [m]</th>
<th>+ Erosion error (σEr) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEMBMPSFMA1</td>
<td>Beta – 487554</td>
<td>PS_FMA1</td>
<td>Suranti</td>
<td>490</td>
<td>30</td>
<td>114</td>
<td>114</td>
<td>-1.48±1.46</td>
<td>-0.75-0.72</td>
<td>-0.53-0.53</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>IEMBMPSFMA2</td>
<td>Beta – 508373</td>
<td>PS_FMA2</td>
<td>Suranti</td>
<td>560</td>
<td>30</td>
<td>187.5</td>
<td>91.5</td>
<td>-1.22±1.20</td>
<td>-0.75-0.72</td>
<td>-0.14-0.14</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>IEMBMPSFMA3</td>
<td>Beta – 487555</td>
<td>PS_FMA3</td>
<td>Suranti</td>
<td>620</td>
<td>30</td>
<td>236.5</td>
<td>96.5</td>
<td>-1.19±1.17</td>
<td>-0.75-0.72</td>
<td>-0.11-0.11</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>IEMBMPTFMA5</td>
<td>Beta – 487558</td>
<td>PT_FMA5</td>
<td>Tambakulu</td>
<td>460</td>
<td>30</td>
<td>95</td>
<td>95</td>
<td>-0.91±0.88</td>
<td>-0.75-0.72</td>
<td>-0.16-0.16</td>
<td>0.13</td>
<td>0</td>
</tr>
<tr>
<td>IEMBMPTFMA6</td>
<td>Beta – 508375</td>
<td>PT_FMA6</td>
<td>Tambakulu</td>
<td>490</td>
<td>30</td>
<td>114</td>
<td>114</td>
<td>-0.91±0.88</td>
<td>-0.75-0.72</td>
<td>-0.16-0.16</td>
<td>0.13</td>
<td>0</td>
</tr>
<tr>
<td>IEMBMPTFMA7</td>
<td>Beta – 508376</td>
<td>PT_FMA7</td>
<td>Tambakulu</td>
<td>470</td>
<td>30</td>
<td>112.5</td>
<td>112.5</td>
<td>-0.99±0.96</td>
<td>-0.75-0.72</td>
<td>-0.24-0.24</td>
<td>0.13</td>
<td>0</td>
</tr>
<tr>
<td>IEMBMPTFMA8</td>
<td>Beta – 487559</td>
<td>PT_FMA8</td>
<td>Tambakulu</td>
<td>106.55</td>
<td>0.4 pMC</td>
<td>36.5</td>
<td>11.5</td>
<td>-0.84±0.81</td>
<td>-0.75-0.72</td>
<td>0.110±0.11</td>
<td>0.23</td>
<td>0.2</td>
</tr>
<tr>
<td>IEMBMPTFMA9</td>
<td>Beta – 508377</td>
<td>PT_FMA9</td>
<td>Tambakulu</td>
<td>420</td>
<td>30</td>
<td>58</td>
<td>58</td>
<td>-0.97±0.94</td>
<td>-0.75-0.72</td>
<td>-0.09-0.09</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>IEMBMBBFMA1</td>
<td>Beta – 487545</td>
<td>BB_FMA11</td>
<td>Bone Batang</td>
<td>4630</td>
<td>30</td>
<td>4869</td>
<td>75</td>
<td>-0.58±0.56</td>
<td>-0.50</td>
<td>0.200±0.23</td>
<td>0.22</td>
<td>0.28</td>
</tr>
<tr>
<td>IEMBM<strong>BFMA</strong>12</td>
<td>Beta – 487546</td>
<td>BB_FMA12</td>
<td>Bone Batang</td>
<td>4910</td>
<td>30</td>
<td>5196</td>
<td>118</td>
<td>-0.65</td>
<td>-0.63</td>
<td>-0.50</td>
<td>0.150</td>
<td>0.22</td>
</tr>
<tr>
<td>IEMBM<strong>BFMA</strong>13</td>
<td>Beta – 508378</td>
<td>BB_FMA13</td>
<td>Bone Batang</td>
<td>3750</td>
<td>30</td>
<td>3692.5</td>
<td>107.5</td>
<td>-0.67</td>
<td>-0.65</td>
<td>-0.50</td>
<td>0.130</td>
<td>0.22</td>
</tr>
<tr>
<td>IEMBM<strong>KKFA</strong>14</td>
<td>Beta – 487556</td>
<td>KK_FMA14</td>
<td>Kodingareng Keke</td>
<td>4970</td>
<td>30</td>
<td>5342.5</td>
<td>87.5</td>
<td>-0.47</td>
<td>-0.45</td>
<td>-0.47</td>
<td>0.130</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>KKFA</strong>15</td>
<td>Beta – 508379</td>
<td>KK_FMA15</td>
<td>Kodingareng Keke</td>
<td>5500</td>
<td>30</td>
<td>5866.5</td>
<td>198.5</td>
<td>-0.48</td>
<td>-0.46</td>
<td>-0.47</td>
<td>0.020</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>KKFA</strong>16</td>
<td>Beta – 487557</td>
<td>KK_FMA16</td>
<td>Kodingareng Keke</td>
<td>5160</td>
<td>30</td>
<td>5519.5</td>
<td>65.5</td>
<td>-0.36</td>
<td>-0.34</td>
<td>-0.47</td>
<td>0.129</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>KKFA</strong>17</td>
<td>Beta – 508380</td>
<td>KK_FMA17</td>
<td>Kodingareng Keke</td>
<td>5160</td>
<td>30</td>
<td>5519.5</td>
<td>65.5</td>
<td>-0.44</td>
<td>-0.42</td>
<td>-0.47</td>
<td>0.029</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>18</td>
<td>Beta – 487547</td>
<td>SB_FMA18</td>
<td>Sanrobengi</td>
<td>4730</td>
<td>30</td>
<td>4954.5</td>
<td>109.5</td>
<td>-0.20</td>
<td>-0.17</td>
<td>-0.34</td>
<td>0.140</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>19</td>
<td>Beta – 508371</td>
<td>SB_FMA19</td>
<td>Sanrobengi</td>
<td>5560</td>
<td>30</td>
<td>5956.5</td>
<td>83.5</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.34</td>
<td>0.220</td>
<td>0.12</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>20</td>
<td>Beta – 487548</td>
<td>SB_FMA20</td>
<td>Sanrobengi</td>
<td>5140</td>
<td>30</td>
<td>5509.5</td>
<td>66.5</td>
<td>-0.17</td>
<td>-0.14</td>
<td>-0.34</td>
<td>0.500</td>
<td>0.23</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>21</td>
<td>Beta – 487549</td>
<td>SB_FMA21</td>
<td>Sanrobengi</td>
<td>5570</td>
<td>30</td>
<td>5970</td>
<td>89</td>
<td>-0.13</td>
<td>-0.10</td>
<td>-0.34</td>
<td>0.540</td>
<td>0.23</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>22</td>
<td>Beta – 487550</td>
<td>SB_FMA22</td>
<td>Sanrobengi</td>
<td>5200</td>
<td>30</td>
<td>5550.5</td>
<td>77.5</td>
<td>-0.020</td>
<td>-0.01</td>
<td>-0.34</td>
<td>0.320</td>
<td>0.13</td>
</tr>
<tr>
<td>IEMBM<strong>SBFA</strong>23</td>
<td>Beta – 487551</td>
<td>SB_FMA23</td>
<td>Sanrobengi</td>
<td>4550</td>
<td>30</td>
<td>4740.5</td>
<td>94.5</td>
<td>-0.020</td>
<td>-0.01</td>
<td>-0.34</td>
<td>0.320</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Beta –</td>
<td>SB_FMA</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEMBMSBFMA24</td>
<td>487552</td>
<td>SB_FMA24</td>
<td>Sanrobenga</td>
<td>4350</td>
<td>30</td>
<td>4488.5</td>
<td>91.5</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEMBMSBFMA25</td>
<td>487553</td>
<td>SB_FMA25</td>
<td>Sanrobenga</td>
<td>4320</td>
<td>30</td>
<td>4453.5</td>
<td>92.5</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEMBMSBFMA26</td>
<td>508372</td>
<td>SB_FMA26</td>
<td>Sanrobenga</td>
<td>3700</td>
<td>30</td>
<td>3614.5</td>
<td>98.5</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>