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Abstract 15 

 16 

In the modern oceans, the relative abundances of Glycerol dialkyl glycerol tetraether (GDGTs) compounds 17 

produced by marine archaeal communities show a significant dependence on the local sea surface 18 

temperature at the site of deposition. When preserved in ancient marine sediments, the measured 19 

abundances of these fossil lipid biomarkers thus have the potential to provide a geological record of long-20 

term variability in planetary surface temperatures. Several empirical calibrations have been made between 21 

observed GDGT relative abundances in late Holocene core top sediments and modern upper ocean 22 

temperatures. These calibrations form the basis of the widely used TEX86 palaeothermometer. There are, 23 

however, two outstanding problems with this approach, first the appropriate assignment of uncertainty to 24 

estimates of ancient sea surface temperatures based on the relationship of the ancient GDGT assemblage to 25 

the modern calibration data set; and second, the problem of making temperature estimates beyond the range 26 

of the modern empirical calibrations (>30 ºC). Here we apply modern machine-learning tools, including 27 

Gaussian Process Emulators and forward modelling, to develop a new mathematical approach we call 28 

OPTiMAL (Optimised Palaeothermometry from Tetraethers via MAchine Learning) to improve 29 

temperature estimation and the representation of uncertainty based on the relationship between ancient 30 

GDGT assemblage data and the structure of the modern calibration data set. We reduce the root mean 31 

square uncertainty on temperature predictions (validated using the modern data set) from ~± 6 ºC using 32 

TEX86 based estimators to ± 3.6 ºC using Gaussian Process estimators for temperatures below 30 ºC. We 33 

also provide a new quantitative measure of the distance between an ancient GDGT assemblage and the 34 



 2 

nearest neighbour within the modern calibration dataset, as a test for significant non-analogue behaviour. 35 

Finally, we advocate caution in the use of temperature estimates beyond the range of the modern empirical 36 

calibration dataset, given the lack of a robust predictive biological model or extensive and reproducible 37 

mesocosm experimental data in this elevated temperature range. 38 

 39 

1. Introduction 40 

 41 

Glycerol dibyphytanyl glycerol tetraethers (GDGTs) are membrane lipids consisting of isoprenoid carbon 42 

skeletons ether-bound to glycerol (Schouten et al., 2013). In marine systems they are primarily produced 43 

by ammonia oxidising marine Thaumarchaeota (Schouten et al., 2013). In modern marine core top 44 

sediments, the relative abundance of GDGT compounds with more ring structures increases with the mean 45 

annual sea surface temperature (SST) of the overlying waters (Schouten et al., 2002). This trend is most 46 

likely driven by the need for increased cell membrane stability and rigidity at higher temperatures 47 

(Sinninghe Damsté et al., 2002). On this basis, the TEX86 (tetraether index of tetraethers containing 86 48 

carbon atoms) ratio was derived to provide an index to represent the extent of cyclisation (Eq. 1; where 49 

GDGT-x represents the fractional abundance of GDGT-x determined by liquid chromatography mass 50 

spectrometery (LC-MS) peak area, and cren’ is the peak area of the isomer of crenarchaeol) (Schouten et 51 

al., 2002; Liu et al. 2018) and was shown to be positively correlated with mean annual SSTs: 52 

 53 

TEX86 = (GDGT-2 + GDGT-3 + cren’)/ (GDGT-1+ GDGT-2 + GDGT-3 + cren’)  (Eq. 1) 54 
 55 

Early applications of TEX86 to reconstruct ancient SSTs were promising, especially in providing 56 

temperature estimates in environments where standard carbonate-based proxies are hampered by poor 57 

preservation (Schouten et al., 2003; Herfort et al., 2006; Schouten et al., 2007; Huguet et al., 2006; Sluijs 58 

et al., 2006; Brinkhuis et al., 2006; Pearson et al., 2007; Slujis et al., 2009). The TEX86 approach also 59 

extended beyond the range of the widely used alkenone-based Uk’
37 thermometer, in both temperature space, 60 

where Uk’
37 saturates at ~28ºC (Brassell, 2014; Zhang et al., 2017), and back into the early Cenozoic (Bijl 61 

et al., 2009; Hollis et al., 2009; Bijl et al., 2013; Inglis et al., 2015) and Mesozoic (Schouten et al., 2002; 62 

Jenkyns et al., 2012; O’Brien et al., 2017) where haptophyte-derived alkenones are typically absent from 63 

marine sediments (Brassell, 2014). Initially, TEX86 was converted to SSTs using the core-top calibration 64 

(Schouten et al. 2002) (Eq. 2): 65 

 66 

TEX86 = 0.015*SST+0.287 (Eq. 2)  67 

 68 
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However as the number and range of applications of TEX86 palaeothermometry grew, concerns arose about 69 

proxy behaviour at both the high (Liu et al., 2009) and low (Kim et al., 2008) temperature ends of the 70 

modern calibration. In response to these observations, a new expanded modern core top dataset (Kim et al., 71 

2010) was used to generate two new indices – 𝑇𝐸𝑋$%&  (Eq. 3), an exponential function that does not include 72 

the crenarchaeol regio-isomer and was recommended for use across the entire temperature range of the new 73 

core top data (-3 to 30 ºC, particularly when SSTs are lower than 15 ºC), and 𝑇𝐸𝑋$%'  (Eq. 4), also 74 

exponential, and recommended for use when SSTs exceeded 15 ºC (Kim et al., 2010). 𝑇𝐸𝑋$%&  also excludes 75 

GDGT abundance data from the high-temperature regimes of the Red Sea, which are somewhat anomalous 76 

and likely related to salinity effects on community composition in this region (Trommer et al., 2009, Kim 77 

et al. 2010).  78 

 79 

𝑇𝐸𝑋$%& = 𝑙𝑜𝑔, [./.01]
[./.03]4[./.01]4[./.05]

6  Eq. 3 80 

 81 

 82 

𝑇𝐸𝑋$%' = 𝑙𝑜𝑔, [./.01]4[./.05}4[89:;<]
[./.03]4[./.01]4[./.05]4[89:;<]

6  Eq. 4 83 

 84 

Despite the recommendations of Kim et al. (2010), both 𝑇𝐸𝑋$%'  and 𝑇𝐸𝑋$%&  were widely used and tested 85 

across a range of temperatures and palaeoenvironments, including comparisons against other 86 

palaeotemperature proxy systems (Hollis et al. 2012; Lunt 2012 Dunkley Jones et al. 2013; Zhang et al., 87 

2014; Seki et al., 2014; Douglas et al., 2014;  Linnert et al., 2014; Hertzberg et al., 2016). The rationale was 88 

that both 𝑇𝐸𝑋$%&  and 𝑇𝐸𝑋$%'  were calibrated across a full temperature range, with the exception of the 89 

inclusion or exclusion of Red Sea core-top data. The difference in model fit between the two proxy 90 

formulations to the calibration dataset was also minor (Kim et al. 2010). In certain environments, however, 91 

𝑇𝐸𝑋$%&  was subject to significant variability in derived temperatures that were not apparent in 𝑇𝐸𝑋$%'  92 

(Taylor et al., 2013). This was mostly due to changing GDGT2 to GDGT3 ratios, which strongly influence 93 

𝑇𝐸𝑋$%& , and may be related to local non-thermal environmental conditions at the site of GDGT production, 94 

and deep-water lipid production, (Taylor et al., 2013). As a result, 𝑇𝐸𝑋$%&  is no longer regarded as an 95 

appropriate tool for palaeotemperature reconstructions, except in limited Polar conditions (Kim et al., 2010; 96 

Tierney, 2012).  97 

 98 

Three fundamental issues have troubled the TEX86 proxy. The first is a concern about undetected non-99 

analogue palaeo-GDGT assemblages, for which the modern calibration data set is inadequate to provide a 100 

robust temperature estimation. Although various screening protocols, with independent indices and 101 
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thresholds, have been proposed to test for an excessive influence of terrestrial lipids (Branched and 102 

Isoprenoid Tetraether, BIT index; Hopmans et al., 2004), within sediment methanogenesis (Methane Index, 103 

‘MI’; Zhang et al., 2011) and non-thermal effects such as nutrient levels and archaeal community structure 104 

to impact the weighted average of cyclopentane moieties (Ring Index, ‘RI;’ Zhang et al., 2016), these do 105 

not provide a fundamental measure of the proximity between GDGT abundance distributions in the modern, 106 

and ancient GDGT abundance distributions recorded in sediment samples. The fundamental question 107 

remains – are measured ancient assemblages of GDGT compounds anything like the modern assemblages, 108 

from which palaeotemperatures are being estimated? Understanding this question cannot easily be 109 

addressed with the use of indices – TEX86 itself, or BIT and MI – that collapse the dimensionality of GDGT 110 

abundance relationships onto a single axis of variation. 111 

 112 

Second, from the earliest applications of the TEX86 proxy to deep-time warm climate states (Schouten et 113 

al., 2003) it was recognized that reconstructed temperatures beyond the range of the modern calibration 114 

(>30 ºC), were highly sensitive to model choice within the modern calibration range. Thus, Schouten et al. 115 

(2003) restricted their calibration data for deep-time temperature estimates to core-top data in the modern 116 

with mean annual SSTs over 20 ºC. However, this problem of model choice, and its impact on temperature 117 

estimation beyond the modern calibration range, persists (Hollis et al. 2019), with current arguments 118 

focused on whether there is an exponential (e.g. Cramwinckel et al., 2018) or linear (Tierney & Tingley, 119 

2015) dependency of TEX86 on SSTs, and the effect of these models on temperature estimates over 30 ºC.  120 

 121 

Culture and mesocosm studies are sometimes cited in support of extrapolations beyond the modern 122 

calibration range when reconstructing ancient SSTs (Kim et al., 2010, Hollis et al., 2019). While there is a 123 

basic underlying trend for more rings within GDGT structures at higher temperatures (Zhang et al. 2015; 124 

Qin et al., 2015), the lack of a uniform response to archaeal GDGT production in response to increasing 125 

growth temperatures (e.g., Elling et al., 2015; Qin et al., 2015) suggests that this does not easily translate 126 

into a simple linear model at the community scale (i.e. the core top calibration dataset). Wuchter et al. 127 

(2004) and Schouten et al. (2007) show a compiled linear calibration of TEX86 against incubation 128 

temperature (up to 40ºC in the case of Schouten et al., 2007) based on strains that were enriched from 129 

surface seawater collected from the North Sea and Indian Ocean respectively. Like Qin et al. (2015), we 130 

note the non-linear nature of the individual experiments in Wuchter et al. (see Fig. 5 in Wuchter et al. 204). 131 

Moreover, the relatively lower Cren’ in these studies yield a very different intercept and slope compared to 132 

core-top calibrations (e.g. Kim et al. 2010) making direct comparisons problematic.  133 

 134 
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More recently, Elling et al. (2015) studied three different strains (N. maritimus, NAOA6, NAOA2) isolated 135 

from open ocean surface waters (South Atlantic) whilst Qin et al., (2015) studied a culture of N. maritimus  136 

and three N. maritimus-like strains isolated from Puget Sound. All strains are of marine, mesophilic, 137 

Thaumarchaeota within Marine Group 1  (equivalent to Crenarchaeota Group 1). Both of these papers 138 

clearly demonstrate distinctly different responses of membrane lipid composition to temperature in these 139 

strains, whilst Qin et al. (2015) additionally show that oxygen concentration is at least as important as 140 

temperature in controlling TEX86 values in culture. The impact of Thaumarchaeota community change on 141 

TEX86 in palaeoclimate studies is further suggested by the downcore study of Polik et al (2019). All of these 142 

culture studies, made on marine, mesophilic archaea demonstrate how community composition may have 143 

a significant impact on measured environmental TEX86 signatures.  144 

 145 

It is clear from the above discussion that there is evidence for more complex responses in GDGT-production 146 

to growth temperature in some instances, and across distinct strains of archaea (Elling et al., 2015). More 147 

fundamentally, in natural systems, it is likely that aggregated GDGT abundance variations in response to 148 

growth temperatures result from changing compositions of archaeal populations as well as the physiological 149 

response of individual strains to growth temperature (Elling et al. 2015). For instance, a multiproxy study 150 

of Mediterranean Pliocene-Pleistocene sapropels indicates that specific distributions of archaeal lipids 151 

might be reflective of temporal changes in thaumarchaeael communities rather than temperature alone 152 

(Polik et al., 2018). Indeed, the potential influence of community switching on GDGT composition can be 153 

seen in mesocosm studies, with different species preferentially thriving at different growth temperatures 154 

(e.g., Schouten et al., 2007). To use the responses of single, selected archaeal strains in culture to validate 155 

a particular model of community-level responses to growth temperature is problematic even in the modern 156 

system (Elling et al., 2015). For deep time applications it is even more difficult, where there is no 157 

independent constraint on the archaeal strains dominating production or their evolution through time (Elling 158 

et al. 2015). What is notable, however, is that the Ring Index (RI) - calculated using all commonly measured 159 

GDGTs (Zhang et al., 2016) – has a more robust relationship with culture temperature between archaeal 160 

strains than TEX86, indicating a potential loss of information within the TEX86 index (Elling et al. 2015). 161 

 162 

Finally, the original uses of the TEX86 proxy had a relatively poor representation of the true uncertainty 163 

associated with palaeotemperature estimates, as they included no assessment of non-analogue behavior 164 

relative to the modern core-top data. Instead, uncertainty was typically based on the residuals on the modern 165 

calibration, with no reference to the relationship between GDGT distributions of an ancient sample and the 166 

modern calibration data. An improved Bayesian uncertainty model “BAYSPAR” is now in widespread use 167 

for SST estimation, which models TEX86 to SSTs regression parameters, and associated uncertainty, as 168 
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spatially varying functions (Tierney and Tingley, 2015). The Bayesian approach, as with all approaches 169 

based on the TEX86 index, however, still does not include an uncertainty that reflects how well modelled 170 

ancient GDGT assemblages are by the modern calibration – i.e. the degree to which they are non-analogue 171 

- as it still functions on one-dimensional TEX86 index values. 172 

 173 

All empirical calibrations of GDGT-based proxies assume that mean annual SST is the master variable on 174 

GDGT assemblages both today and in the past. Mean annual SST, however, is strongly correlated with 175 

many other environmental variables (e.g., seasonality, pH, mixed layer depth, and productivity). In the 176 

modern calibration dataset, mean annual SST shows the strongest correlation with TEX86 index (Schouten 177 

et al., 2002), but this does not preclude an important (but undetectable) influence of these other 178 

environmental variables. The use of empirical GDGT calibrations to infer ancient sea surface temperatures 179 

thus implicitly assumes that the relationships between mean annual SST and all other GDGT-influencing 180 

variables are invariant through time. This assumption is inescapable until, and unless, a more complete 181 

biological mechanistic model of GDGT production emerges.  182 

 183 

Here, we return to the primary modern core-top GDGT assemblage data (Tierney and Tingley, 2015), and 184 

systematically explore the relationships between the modern GDGT distributions and surface ocean 185 

temperatures using powerful mathematical tools. These tools can investigate correlations without prior 186 

assumptions on the best form of relationship or a priori selection of GDGT compounds to be used. This 187 

analysis is then extended through the exploration of the relationships between the modern core top GDGT 188 

distributions and two compilations of ancient GDGT datasets, one from the Eocene (Inglis et al. 2015) and 189 

one from the Cretaceous (O’Brien et al. 2017). We explore simple metrics to answer the fundamental 190 

question – are modern core-top GDGT distributions good analogues for ancient distributions? We propose 191 

the first robust methodology to answer this question, and so screen for significantly non-analogue palaeo-192 

assemblages. From this, we go on to derive a new machine learning approach ‘OPTiMAL’ (Optimised 193 

Palaeothermometry from Tetraethers via MAchine Learning) for reconstructing SSTs from GDGT 194 

datasets, which outperforms previous GDGT palaeothermometers and includes robust error estimates that, 195 

for the first time, accounts for model uncertainty.   196 

 197 

2. Models for GDGT-based Temperature Reconstruction 198 

 199 

Our new analyses use the modern core-top data compilation, and satellite-derived estimates of SSTs, of 200 

Tierney and Tingley (2015) as well as compilations of Eocene (Inglis et al. 2015) and Cretaceous (O’Brien 201 

et al. 2017) GDGT assemblages. Within these fossil assemblages, only data points with full characterisation 202 
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of individual GDGT relative abundances were used. We also note that, in the first instance, all available 203 

fossil assemblage data were included, although later comparisons between BAYSPAR and our new 204 

temperature predictor excludes fossil data that was regarded as unreliable based on standard pre-screening 205 

indices, as noted within the original compilations (Inglis et al. 2015; O’Brien et al. 2017). All data used in 206 

this study are tabulated in the supplementary information.  207 

 208 

In order to enable meaningful comparison between new and existing temperature predictors, we use the 209 

following consistent procedure for evaluating all predictors throughout this paper.  We divide the modern 210 

core-top data set of 854 data points into 85 validation data points (chosen randomly) and 769 calibration 211 

points (as we require fractional abundances for all 6 commonly measured GDGTs, we excluded those data 212 

points for which these values were not reported).  We calibrate the predictor on the calibration points, and 213 

then judge its performance on the validation points using the root mean square error: 214 

 215 

𝛿𝑇 =	?
1

𝑁B − 1
	D(𝑇F(𝑥H) − 𝑇(𝑥H))1
JK

HL3

 216 

           (Eq. 5) 217 

 218 

where the sum is taken over each of Nv = 85 validation points, T  is the known measured temperature (which 219 

we refer to as the true temperature) and 𝑇F is the predicted temperature.  For conciseness, we refer to 𝛿𝑇 as 220 

the predictor standard error.  It is useful to compare the accuracy of the predictor to the standard deviation 221 

of all temperatures in the data set 𝜎𝑇, which corresponds to using the mean temperature as the predictor in 222 

Equation 1; for the modern data set, 𝜎𝑇= 10.0 ºC.  The coefficient of determination, R2, provides a measure 223 

of the fraction of the fluctuation in the temperature explained by the predictor.  To facilitate performance 224 

comparisons between different methods of predicting temperature, we use the same subset of validation 225 

points for all analyses. To avoid sensitivity to the choice of validation points, we repeat the calibration-226 

validation procedure for 10 random choices from the validation dataset.  227 

 228 

2.1 Nearest neighbours 229 

 230 

We begin with an agnostic approach to using some combination of the proportions of each of the six 231 

observables - GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol and cren’, which we will jointly refer 232 

to as GDGTs - to predict sea surface temperatures. Whatever functional form the predictor might take, it 233 

can only provide accurate temperature predictions if nearby points in the six-dimensional observable space 234 
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- i.e. the distribution of all of the six commonly reported GDGTs - can be translated to nearby points in 235 

temperature space. Conversely, if nearby points in the observable space correspond to vastly different 236 

temperatures, then no predictor, regardless of which combination of GDGTs are used, will be able to 237 

provide a useful temperature estimate. In other words, the structuring of GDGT distributions within multi-238 

dimensional space, must have some correspondence to the temperatures of formation (or rather the mean 239 

annual SSTs used for standard calibrations).  240 

 241 

We therefore consider the prediction offered by the temperature at the nearest point in the GDGT parameter 242 

space. Of course, nearness depends on the choice of the distance metric. For example, it may be that sea 243 

surface temperatures are very sensitive to a particular GDGT, so even a small change in that GDGT 244 

corresponds to a significant distance, and rather insensitive to another, meaning that even with a large 245 

difference in the nominal value of that GDGT the distance is insignificant. In the first instance, we use a 246 

very simple Euclidian distance estimate Dx,y where the distance along each GDGT is normalised by the total 247 

spread in that GDGT across the entire data set.  This normalisation ensures that a dimensionless distance 248 

estimate can be produced even when observables have very different dynamical ranges, or even different 249 

units.  Thus, the normalised distance D between parameter data points x and y is 250 

 251 

𝐷O,Q	1 	≡D
(𝐺𝐷𝐺𝑇T(𝑥) − 𝐺𝐷𝐺𝑇T(𝑦))1

𝑣𝑎𝑟(𝐺𝐷𝐺𝑇T)

Y

TLZ

	252 

           (Eq. 7) 253 

 254 
We show the distribution of nearest distances of points in the modern data set, excluding the sample itself, 255 
in (Fig. 1).  256 
 257 
The nearest-sample temperature predictor is 𝑇Fnearest (x) = T(y) where y is the nearest point to x over the 258 

calibration data set, i.e., one that minimises Dx,y.  Fig. 2 shows the scatter in the predicted temperature when 259 

using the temperature of the nearest data point to make the prediction.  Overall, the failure of the nearest-260 

neighbour predictor to provide accurate temperature estimates even when the normalised distance to the 261 

nearest point is small, Dx,y  ≤ 0.5, casts doubt on the possibility of designing an accurate predictor for 262 

temperature based on GDGT observations.  This is most likely due to additional environmental controls on 263 

GDGT abundance distributions in natural systems, in particular the water depth (Zhang and Liu, 2018), 264 

nutrient availability (Hurley et al., 2016; Polik et al., 2018; Park et al., 2018), seasonality, growth rate 265 

(Elling et al., 2014; Hurley et al., 2016) and ecosystem composition (Polik et al., 2018), that obscure a 266 

predominant relationship to mean annual SSTs.  267 

 268 
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On the other hand, the standard error for the nearest-neighbour temperature predictor is 𝛿𝑇nearest = 4.5 ºC.  269 

This is less than half of the standard deviation 𝜎𝑇 in the temperature values across the modern data set. 270 

Thus, the temperatures corresponding to nearby points in GDGT observable space also cluster in 271 

temperature space.  Consequently, there is hope that we can make some useful, if imperfect, temperature 272 

predictions.  The value of 𝛿𝑇nearest will also serve as a useful benchmark in this design: while we may hope 273 

to do better by, say, suitably averaging over multiple nearby calibration points rather than adopting the 274 

temperature at one nearest point as a predictor, any method that performs worse than the nearest-neighbour 275 

predictor is clearly suboptimal.  276 

 277 

2.2 TEX86 and Bayesian applications 278 

 279 

The TEX86 index reduces the six-dimensional observable GDGT space to a single number.  While this has 280 

the advantage of convenience for manipulation and the derivation of simple analytic formulae for 281 

predictors, as illustrated below, this approach has one critical disadvantage: it wastes significant information 282 

embedded in the hard-earned GDGT distribution data.  Fig. 3 illustrates both the advantage and 283 

disadvantage of TEX86.  On the one hand, there is a clear correlation between TEX86 and temperature (top 284 

panel of Fig. 3), with a correlation coefficient of 0.81 corresponding to an overwhelming statistical 285 

significance of 10-198.  On the other hand, very similar TEX86 values can correspond to very different 286 

temperatures.  We can apply the nearest-neighbour temperature prediction approach to the TEX86 value 287 

alone rather than the full GDGT parameter space; this predictor yields a large standard error of 𝛿𝑇nearestTEX86 288 

= 8.0 ºC (bottom panel of Fig. 3).  While smaller than σT, this is significantly larger than 𝛿𝑇nearest (Fig. 2), 289 

consistent with the loss of information in TEX86. We therefore do not expect other predictors based on 290 

TEX86 to perform as well as those based on the full available data set. 291 

 292 

Indeed, this is what we find when we consider predictors of the form 𝑇F	1/TEX = a + b/TEX86 and 𝑇FTEXH = c 293 

+ d logTEX86 (Liu et al., 2009; Kim et al., 2010), i.e., the established relationships between GDGT 294 

distributions and SST. We fit the free parameters a, b, c, and d by minimising the sum of squares of the 295 

residuals over the calibration data sets (least squares regression).  We find that δT1/TEX = 6.1 ºC (note that 296 

this is slightly better than using the fixed values of a and b from (Kim et al., 2010), which yield δT1/TEX = 297 

6.2 ºC).  We note that the corresponding R2 value associated with these TEX86  based predictors is 0.64, 298 

which is lower than the R2 values in Kim et al. (2010). We attribute this to the fact that we are using a larger 299 

dataset based on Tierney and Tingley (2015), including data from the Red Sea (Kim et al. 2010).  300 

 301 
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Tierney and Tingley (2014) proposed a more sophisticated approach to obtaining the transfer function from 302 

TEX86 to temperature, continuing to use simple linear regression, but with the addition of Gaussian 303 

processes to model spatial variability in the temperature-TEX86 relationship and working with a forward 304 

model which is subsequently inverted to produce temperature predictions. This forward model 305 

‘BAYSPAR’ is capable of generating an infinite number of calibration curves relating TEX86 to sea surface 306 

temperatures (Tierney and Tingley, 2014). In order to derive a calibration for a specific dataset, the user 307 

edits a range of parameters which vary depending on whether the dataset in question is from the relatively 308 

recent past or deep time (Tierney and Tingley, 2014). For deep time applications, the authors propose a 309 

modern analogue-type approach, in which they search the modern data for 20º x 20º grid boxes containing 310 

`nearby' TEX86  measurements and subsequently apply linear regression models calibrated on the analogous 311 

samples for making predictions. 312 

 313 

However, along with the simpler TEX86-based models described above, this approach still suffers from the 314 

reduction of a six-dimensional data set to a single number.  Therefore, it is not surprising that even the 315 

simplest nearest-neighbour predictor (such as the one described above) that makes use of the full six-316 

dimensional dataset outperforms single-dimensional forward modelling approaches. Additionally, 317 

uncertainty estimates do not account for the fact that TEX86 is, fundamentally, an empirical proxy, and so 318 

its validity outside the range of the modern calibration is not guaranteed. This is a fundamental issue for 319 

attempts to reconstruct surface temperatures during Greenhouse climate states, when tropical and sub-320 

tropical SSTs were likely hotter than those observed in the modern oceans. 321 

 322 

2.3 Machine learning Approaches – Random Forests 323 

 324 

There are a number of options to improve on nearest-neighbour predictions using machine learning 325 

techniques such as artificial neural networks and random forests. These flexible, non-parametric models 326 

would ideally be based on the underlying processes driving the GDGT response to temperature, but since 327 

these processes remain unconstrained at present, we choose to deploy models which can reasonably reflect 328 

predictive uncertainty and will be sufficiently adaptable in future (as new information regarding controls 329 

on GDGTs emerge). These machine learning approaches are all based on the idea of training a predictor by 330 

fitting a set of coefficients in a sufficiently complex multi-layer model in order to minimise residuals on 331 

the calibration data set.  As an example of the power of this approach, we train a random forest of decision 332 

trees with 100 learning cycles using a least-squares boosting to fit the regression ensemble.  Figure 4 shows 333 

the prediction accuracy for this random forest implementation.  This machine learning predictor yields δT 334 

= 4.1 ºC degrees, outperforming the naive nearest-neighbour predictor by effectively applying a suitable 335 
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weighted average over multiple near neighbours.  This corresponds to a very respectable R2 = 0.83, meaning 336 

that 83% of the variation in the observed temperature is successfully explained by our GDGT-based model. 337 

 338 

2.4 Gaussian Process Regression 339 

 340 

One downside of the random forest predictor is the difficulty of accurately estimating the uncertainty on 341 

the prediction (Mentch and Hooker, 2016), although this is possible with, e.g., a bootstrapping approach 342 

(Coulston et al., 2016).  Fortunately, Gaussian process (GP) regression provides a robust alternative. For 343 

full details on GP regression refer to Williams and Rasmussen (2006) and  Rasmussen and Nickisch (2010). 344 

Loosely, the objective here is to search among a large space of smoothly varying functions of GDGT 345 

compositions for those functions which adequately describe temperature variability. This, essentially, is a 346 

way of combining information from all calibration data points, not just the nearest neighbours, assigning 347 

different weights to different calibration points depending on their utility in predicting the temperature at 348 

the input of interest. The trained Gaussian process learns the best choice of weights to fit the data. Typically, 349 

the GP will give greater weight to closer points, but, as we discuss below, it will learn the appropriate 350 

distance metric on the multi-dimensional GDGT input space.  351 

 352 

The weighting coefficients learned by the GP emulator represent a covariance matrix on the GDGT 353 

parameter space.  We can use this as a distance metric to provide meaningfully normalised distances 354 

between points, removing the arbitrariness from the nearest neighbour distance (Dx,y) definition used earlier, 355 

and this is the basis of the Dnearest metric described below.  If the temperature is insensitive to a particular 356 

GDGT input coordinate (i.e., the value of that input has a minimal effect on the temperature) then points 357 

within GDGT space that have large differences in absolute input values in that coordinate are still near.  We 358 

find that Cren has very limited predictive power, and so points with large Cren differences are close in term 359 

of the normalised distance.   Conversely, if the temperature is sensitive to small changes in a particular 360 

GDGT variant, then points with relatively nearby absolute input values in that coordinate are still distant. 361 

We find that most GDGT parameters other than Cren are comparably useful in predicting temperature, with 362 

GDGT-0 and GDGT-3 marginally the most informative. We considered whether interdependency of 363 

percentage GDGT data could influence our calculations. Our analysis suggests that there are only five free 364 

parameters. Machine learning tools should be able to pick up this correlation and effectively ignore one of 365 

the parameters (or one parameter combination). For example, we do find that the GP emulator has a very 366 

broad kernel in at least one dimension, signaling this. In principle, we could have considered only five of 367 

six parameters. The smaller scale of some of the parameters is automatically accounted for by the trained 368 

kernel size in GP regression, or by normalising to the appropriate dynamical range in our initial 369 



 12 

investigation. In short, the accuracy of Gaussian process regression is not adversely affected by correlations 370 

between inputs (Rasmussen & Williams, 2006). Significantly correlated inputs that do not bring in new 371 

predictive power are appropriately down-weighted. 372 

 373 

We use a Gaussian process model with a squared exponential kernel with automatic relevance 374 

determination (ARD) to allow for a separate length scale for each GDGT predictor. We fit the GP 375 

parameters with an optimiser based on quasi-Newton approximation to the Hessian. Prediction accuracy is 376 

shown in Figure 5, and we find that δT = 3.72 ºC, which is a substantial improvement over the existing 377 

indices, at least on the modern data. As mentioned, the GP framework provides a natural quantification of 378 

predictive uncertainty, which includes uncertainty about the learned function. This is in contrast to, for 379 

example, the TEX86 proxy, whereby the uncertainty associated with the selection of the particular functional 380 

form used for predictions is ignored. While Tierney & Tingley (2014) also use Gaussian processes to model 381 

uncertainty, they model spatial variability in the TEX86-temperature relationship with a Gaussian process 382 

prior. While this is a valuable approach to understand regional effects in the TEX86-temperature 383 

relationship, it does not deal with the `non-analogue’ situations we are concerned with in this paper.  384 

 385 

2.5 Data Structure 386 

 387 

The random forest (Section 2.3) and GPR approaches (Section 2.4) are agnostic about any underlying bio-388 

physical model that might impart the observed temperature-dependence on GDGT relative abundances 389 

produced by archaea.  They are essentially optimized interpolation tools for mapping correlations between 390 

temperature and GDGT abundances within the range of the modern calibration data set; they can make no 391 

sensible inference about the behavior of this relationship outside of the range of this training data.  To move 392 

from interpolation within, to extrapolation beyond, the modern calibration requires an understanding of, 393 

and model for, the temperature-dependence of GDGT production.  To explore these relationships and the 394 

extent to which the ancient and modern data reside in a coherent relationship within GDGT space, we 395 

employed two forms of dimensionality reduction to enable visualisation of the data in two or three 396 

dimensions. The fundamental point is that if temperature is the dominant control, all of the data should lie 397 

approximately on a one-dimensional curve in GDGT space, and the arclength along this curve should 398 

correspond to temperature; we will revisit this point below.  399 

 400 

We first employed a version of principal component analysis (PCA) tailored to compositional data 401 

(Aitcheson, 1982, 1983; Aitcheston and Greenacre, 2002; Filzmoser et al., 2009a; Filzmoser et al., 2009b; 402 

Filzmoser et al., 2012). Taking into account the compositional nature of the data is important because the 403 
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sum-to-one constraint induces correlations between variables which are not accounted for by classical PCA. 404 

Furthermore, apparently nonlinear structure in Euclidean space often corresponds to linearity in the simplex 405 

(i.e. the restricted space in which all elements sum to one) (Egozcue et al., 2003). Figure 6 shows the 406 

modern, Eocene and Cretaceous data projected onto the first two principal components. Aside from the 407 

obvious outlying cluster of Cretaceous data, characterised by GDGT-3 fractions above 0.6, the bulk of the 408 

data occupy a two-dimensional point cloud with a small amount of curvature. The large majority of the 409 

Cretaceous data has more positive PC1 values relative to the modern data. 410 

 411 

We also explored the data using diffusion maps (Coifman et al., 2005; Haghverdi et al., 2015), a nonlinear 412 

dimensionality reduction tool designed to extract the dominant modes of variability in the data. Such 413 

diffusion maps have been successfully used to infer latent variables that can explain patterns of gene 414 

expression. In the case of biological organisms, this latent variable is commonly developmental age (called 415 

pseudo-time) (Haghverdi et al., 2016). In our case, the assumption would be that this latent variable 416 

corresponds to temperature. Inspection of the eigenvalues of the diffusion map transition matrix suggests 417 

that four diffusion components are adequate to represent the data; we plot the second, third and fourth of 418 

these components in Figure 7 for the modern and ancient data. The separate clusters marked `A' are the 419 

outlying Cretaceous points with high GDGT-3 values. The bulk of the modern data lies on the branch 420 

marked `B', while the bulk of the Cretaceous data lies on the branch marked `C'. Notably, the majority of 421 

the modern points lying on branch C are from the Red Sea, which suggests that the Red Sea data is essential 422 

for understanding ancient climates (particularly Cretaceous climates). 423 

 424 

The relationship between the first diffusion component and TEX86 for all data is shown in Figure 8. There 425 

is a clear correlation, despite the presence of some outlying Cretaceous points, some of which are not shown 426 

because they lie so far outside the majority data range within this projection. This suggests that TEX86 is, 427 

in one sense, a natural one-dimensional representation of the data. We also plot the first diffusion 428 

component for the modern data as a function of temperature (Figure 9). We see a similar pattern emerging 429 

to that displayed by TEX86 - there is little sensitivity to temperature below 15 ºC, and between ~20 and 25 430 

ºC. An interesting avenue for future research might be to explore the temperature-GDGT system from a 431 

dynamical systems perspective, i.e. use simple mechanistic mathematical models to explore the 432 

temperature-dependence of steady-state GDGT distributions. It may be that such models suggest that only 433 

a few steady-states exist, and that temperature is a bifurcation parameter, i.e. it controls the switch between 434 

the steady states. Note also the downward slope in the residual pattern in Figure 4 between 0 and 15-17 435 

degrees celsius, and again at higher temperatures. This pattern is consistent with predictions that are biased 436 

towards the centre of each `cluster', i.e. a system which is not very sensitive to temperature, but can 437 
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distinguish between high and low temperatures reasonably well. This observation also links to recent culture 438 

studies (Elling et al., 2015) and Pliocene-Pleistocene sapropel data (Polik et al., 2018), which support the 439 

existence of discrete populations with unique GDGT-temperature relationships and that temporal changes 440 

in population over time can drive changes in TEX86. 441 

 442 

2.6 Forward Modelling 443 

 444 

Based on the analysis of the combined modern and ancient data structure outlined above, there appears to 445 

be some consistency to underlying trends in the overall variance of GDGT relative abundances. These 446 

trends provide some hope that models of this variance, and its relationship to sea surface temperature, within 447 

the modern dataset could be developed to predict ancient SSTs. TEX86 and BAYSPAR are such models, 448 

but they are limited by, first, the reduction of six-dimensional GDGT space to a one-dimensional index; 449 

and second, by an ad hoc model choice – linear, exponential – that does not account for uncertainty in 450 

model fit to the modern calibration data, and the resultant uncertainty in the estimation of ancient SSTs 451 

relating to model choice. To overcome these issues, we develop a forward model based on a multi-output 452 

Gaussian Process (Alvarez et al., 2012), which models GDGT compositions as functions of temperature, 453 

accounting for correlations between GDGT measurements. This model is then inverted to obtain 454 

temperatures which are compatible with a measured GDGT composition. In simple terms, we posit that a 455 

measured GDGT composition is generated by some unknown function of temperature and corrupted by 456 

noise, which may be due to measurement error or some unmodelled particularity of the environment in 457 

which the sample was generated. We proceed by defining a large (in this case infinite) set of functions of 458 

temperature to explore and compare them to the available data, throwing away those functions which do 459 

not adequately fit the data. This means, of course, that the behaviour of the functions we accept is allowed 460 

to vary more widely outside the range of the modern data than within it. With no mechanistic underpinning, 461 

choosing only one function (such as the inverse of TEX86) based on how well it fits the modern data grossly 462 

underestimates our uncertainty about temperature where no modern analogue is available. 463 

 464 

The forward modelling approach is similar to that of Haslett et al. (2006), who argue that it is preferable to 465 

model measured compositions as functions of climate, before probabilistically inverting the model to infer 466 

plausible climates given a composition. The cost of modelling the data in this more natural way is the loss 467 

of degrees of freedom -- we are now attempting to fit a one-dimensional line through a multidimensional 468 

point cloud rather than fit a multidimensional surface to the GDGT data, which means that the predictive 469 

power of the model suffers, at least on the modern data. The existing BAYSPAR calibration also specifies 470 

the model in the forward direction, however while BAYSPAR does model spatial variability it assumes a 471 
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monotonic relationship between TEX and SST, only accounting for uncertainties on the parameters within 472 

the model, rather than any systematic uncertainty in the model itself. As with all GP models, the choice of 473 

kernel has a substantial impact on predictions (and their associated uncertainty) outside the range of the 474 

modern data, where predictions revert to the prior implied by the kernel. Given that we have no mechanistic 475 

model for the data generating process, we recommend the use of kernels which do not impose strong prior 476 

assumptions on the form of the GDGT-temperature relationship (e.g. kernels with a linear component) and 477 

thus reasonably represent model uncertainty outside the range of the modern data. We choose a zero-mean 478 

Matern 3/2 kernel for the applications below. Note, however, that since we are working in ilr-transformed 479 

coordinates, this corresponds to a prior assumption of uniform compositions at all temperatures, i.e. all 480 

components are equally abundant.  481 

 482 

The residuals for the forward model are shown in Figure 10. The clear pattern in the residuals does not 483 

necessarily indicate model misspecification, since no explicit noise model is specified for temperatures. 484 

Predictive distributions are to be interpreted in the Bayesian sense, in that they represent a 'degree of belief' 485 

in temperatures given the model and the modern data. The residual pattern is similar to that of the random 486 

forest (Figure 4) with two clear downward slopes, suggesting again that the data are clustered into 487 

temperatures above and below 16-17 ºC, and that predictions tend towards temperatures at the centres of 488 

these clusters. 489 

 490 

An advantage of the forward modelling approach is that the inversion can incorporate substantive prior 491 

information about temperatures for individual data points. In particular, other proxy systems can be used to 492 

elicit prior distributions over temperatures to constrain GDGT-based predictions, particularly when 493 

attempting to reconstruct ancient climates with no modern analogue in GDGT-space. We emphasise that 494 

outside the range of the modern data, the utility of the models is almost solely due to the prior information 495 

included in the reconstruction. At present, the only priors being used in the forward model prescribe a 496 

reasonable upper limit and lower limit on temperatures (see Supplementary Information). The only way to 497 

improve these reconstructions will be for future iterations to incorporate prior information from other 498 

proxies. It is worth noting that the predictive uncertainty, while reasonably well-described by the standard 499 

deviation in cases where ancient data lie quite close to the modern data in GDGT space, can be highly 500 

multimodal (Fig. 11). This is the case when estimates are significantly outside of the modern calibration 501 

dataset, such as low latitude data in the Cretaceous, or where there is considerable scatter in the modern 502 

calibration data, for example in the low temperature range (<5 ºC). 503 

 504 

3. Non-analogue behavior and Extrapolation 505 
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 506 

In principle, the predictors described above can be applied directly to ancient data, such as data from the 507 

Eocene or Cretaceous (Inglis et al., 2015; O’Brien et al., 2017).  In practice, one should be careful with 508 

using models outside their domain of applicability.  The machine learning tools described above, which are 509 

ultimately based on the analysis of nearby calibration data in GDGT space, are fundamentally designed for 510 

interpolation.  To the extent that ancient data occupy a very different region in GDGT space, extrapolation 511 

is required, which the models do not adequately account for. The divergence between modern calibration 512 

data and ancient data is evident from Fig. 12, which shows histograms of minimum normalised distances 513 

between ‘high quality’ Eocene/Cretaceous data points (those that passed the screening tests applied by 514 

O’Brien et al., 2017 and Inglis et al., 2015) and the nearest point in the full modern data set.  We strongly 515 

recommend the use of the weighted distance metric (Dnearest) as a screening method to determine whether 516 

the modern core top GDGT assemblage data is an appropriate basis for ancient SST estimation on a case-517 

by-case basis. Note that this distance measure is weighted by the scale length of the relevant parameter as 518 

estimated by the Gaussian process emulator in order to quantify the relative position of ancient GDGT 519 

assemblages to the modern core-top data.  By using the GP-estimated covariance as the distance metric, we 520 

account for the sensitivity of different GDGT components to temperature. Our inference is that samples 521 

with Dnearest >0.5, regardless of the calibration model or approach applied, are unlikely to generate 522 

temperature estimates that are much better than informed guesswork. In these instances, in both our GPR 523 

and Fwd models, the constraints provided by the modern calibration data set are so weak that estimates of 524 

temperature have large uncertainty bands that are dictated by model priors; i.e. are unconstrained by the 525 

calibration data (e.g., Figure 13 and Figure 14). This uncertainty is not apparent from estimates generated 526 

by BAYSPAR or 𝑇𝐸𝑋$%'  models, although the underlying and fundamental lack of constraints are the same. 527 

While 93% of validation data points in the modern data have Dnearest <0.5, this is the case for only 33% of 528 

Eocene samples and 3% for Cretaceous samples.  529 

 530 

Where ancient GDGT distributions lie far from the modern calibration data set (Dnearest >0.5), we argue that 531 

there is no suitable set of modern analogue GDGT distributions from which to infer growth temperatures 532 

for this ancient GDGT distribution.  Both the GPR and Fwd models revert to imposed priors once the 533 

distance from the modern calibration dataset increases.  We propose that this is more rigorous and justified 534 

model behavior than extrapolation of TEX86 or BAYSPAR predictors to non-analogue samples far from 535 

the modern calibration data.  As a result, the predictive models can only be applied to a subset of the Eocene 536 

and Cretaceous data. We also note that there are two broad, non-mutually-exclusive categories of samples 537 

that lie far from the modern calibration dataset (Dnearest >0.5), the first are samples that seem to lie ‘beyond’ 538 

the temperature-GDGT calibration relationship, likely with (unconstrained) GDGT formation temperatures 539 
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higher than the modern core-top calibrations; the second are samples with anomalous GDGT distributions 540 

lying on the margins of, or far away from the main GDGT clustering in 6-dimensional space (see outliers 541 

in Fig. 8). 542 

 543 

Given the (current) limit on natural mean annual surface ocean temperatures of ~30 ºC, extending the 544 

GDGT-temperature calibration might be possible through, 1) integration of full GDGT abundance 545 

distributions produced in high temperature culture, mesocosm or artificially warmed sea surface 546 

conditions into the models; followed by, 2) validation through robust inter-comparisons of any new 547 

GDGT palaeothermometer for high temperatures conditions with other temperature proxies from past 548 

warm climate states. As discussed in the introduction, the first approach is limited by the ability of culture 549 

or mesocosm experiments to accurately represent the true diversity and growth environments and 550 

dynamics of natural microbial populations. Such studies clearly indicate a more complex, community-551 

scale control on changing GDGT relative abundances to growth temperatures (e.g., Elling et al., 2015). 552 

Community-scale temperature dependency can be modelled relatively well with analyses of natural 553 

production preserved in core-top sediments, especially with more sophisticated model fitting, including 554 

the GPR and Fwd model presented here. Above ~30ºC, however, the behavior of even single strains of 555 

mesophilic archaea are not well-constrained by culture experiments, and the natural community-level 556 

responses above this temperature are, so far, completely unknown. While there is evidence for the 557 

temperature-sensitivity of GDGT production by thermophilic and acidophilic archaea in older papers (de 558 

Rosa et al., 1980; Gliozzi et al., 1983), recent work, characterised by more precise phylogenetic and 559 

culturing techniques show a more complex relationship between GDGT production and temperature. 560 

Elling et al., (2017) highlight that there is no correlation between TEX86 and growth temperature in a 561 

range of phylogenetically different thaumarchaeal cultures - including thermophilic species. Bale et al. 562 

(2019) recently cultured Candidatus nitrosotenuis uzonensis from the moderately thermophilic order 563 

Nitrosopumilales (that contains many mesophilic marine strains). They found no correlation between 564 

TEX86 calibrations (either the Kim et al., core-top or Wuchter et al. 2004 and Schouten et al., 2008 565 

mesocosm calibrations) with membrane lipid composition at different growth temperatures (37°C, 46°C, 566 

and 50°C) and found that phylogeny generally seems to have a stronger influence on GDGT distribution 567 

than temperature. In view of these existing data, we see no robust justification at present for the 568 

extrapolation of modern core-top calibration data sets into the unknown above 30 ºC, although the 569 

coherent patterns apparent across GDGT space, between modern, Eocene and Cretaceous data (Figure 7), 570 

do provide some grounds for hope that the extension of GDGT palaeothermometry beyond 30ºC might be 571 

possible in future.  572 

 573 
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4. OPTiMAL and Dnearest: A more robust method for GDGT-based paleothermometry 574 

 575 

A more robust framework for GDGT-based palaeothermometry, could be achieved with a flexible 576 

predictive model that uses the full range of six GDGT relative abundances, and has transparent and robust 577 

estimates of the prediction uncertainty. In this context, the Gaussian Process Regression model (GPR; 578 

Section 2.4) outperforms the Forward model (Fwd; Section 2.6) within the modern calibration dataset and 579 

we recommend standard use of the GPR model, henceforth called OPTiMAL, over the Fwd model. Model 580 

code for the calculation of Dnearest values and OPTiMAL SST estimates (Matlab script) and the Fwd Model 581 

SST estimates (R script) are archived in the GITHUB repository, 582 

https://github.com/carbonatefan/OPTiMAL.  583 

 584 

Following Tierney and Tingley (2014) we use a reduced calibration data set, with the exclusion of Arctic 585 

data with observed SSTs less than 3ºC (“NoNorth / TT13” of Tierney and Tingley (2014)) but with the 586 

inclusion of additional core top data from Seki et al. (2014). Full details of this calibration dataset are 587 

provided in the Supplementary Information; to distinguish from the original OPTiMAL calibration data, 588 

which included the Arctic data <3ºC, we refer to the original data as “Op1” and the new calibration dataset 589 

as “Op3”. An “Op2” is also available, which is the same as Op1 except that it excludes the Seki et al. (2014) 590 

data. In sensitivity tests to a range of applications across Quaternary and deep-time datasets, calibration 591 

Op1 and Op2 performed in almost identical fashion. The performance of Op1 and Op3 were very similar 592 

in most applications, except in applications to the paleo-Arctic (see below), where the inclusion of modern 593 

Arctic calibration data (Op1) provided closer calibration constraints to the paleo-data. Although 594 

superficially this may be regarded as beneficial, in these instances the paleo-data have previously been 595 

rejected because of a potential bias by non-marine inputs indicated by high BIT indices (Sluijs et al. 2020).  596 

In this case, either the modern Arctic calibration data is impacted by similar non-thermal processes, 597 

generating unusual GDGT abundance patterns, which are not appropriate to use for SST calibration, or, 598 

there could be some consistency between the modern and ancient GDGT production by marine archaea in 599 

the Arctic which may help in the understanding of GDGT-based paleothermometry in this unusual 600 

environment (Sluijs et al. 2020). The Dnearest methodology may prove useful in quantifying analogue and 601 

non-analogue behavior through time in such conditions. For the purposes of this study, however, we take 602 

the conservative approach, and one that maintains a more consistent calibration basis with BAYSPAR, by 603 

using OPTiMAL calibration Op3 in the remainder of this discussion, and recommend its use in future 604 

applications of OPTiMAL. 605 

 606 
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To investigate the behaviour of the new OPTiMAL model, we compare temperature predictions including 607 

uncertainties for the Eocene and Cretaceous datasets, made by OPTiMAL and the BAYSPAR methodology 608 

of Tierney and Tingley (2014) (Figures 13 and 14), using the default priors specified in the model code for 609 

the BAYSPAR estimation. The OPTiMAL model systematically estimates slightly cooler temperatures 610 

than BAYSPAR, with the biggest offsets below ~15 ºC (Figure 13). Fossil GDGT assemblages that fail the 611 

Dnearest test are shown in grey, which clearly illustrate the regression to the mean in the OPTiMAL model, 612 

whereas BAYSPAR continues to make SST predictions up to and exceeding 40 ºC for these “non-analogue” 613 

samples due to the fact that BAYSPAR assumes that higher TEX86 values equate to higher temperatures as 614 

part of the functional form of the model, whereas the GPR model is agnostic on this. A comparison of error 615 

estimation between OPTiMAL and BAYSPAR is shown in Figure 14.  For most of the predictive range 616 

below the Dnearest cut-off of 0.5, OPTiMAL has smaller predicted uncertainties than BAYSPAR, especially 617 

in the lower temperature range. As Dnearest increases, i.e. as the fossil GDGT assemblage moves further from 618 

the constraints of the modern calibration dataset, the error on OPTiMAL increases, until it reaches the 619 

standard deviation of the modern calibration dataset (i.e., is completely unconstrained). In other words, 620 

OPTiMAL generates maximum likelihood SSTs with robust confidence intervals, which appropriately 621 

reflect the relative position of an ancient sample used for SST estimation and the structure of the modern 622 

calibration data set. Where there are strong constraints from near analogues in the modern data, 623 

uncertainties will be small, where there are weak constraints, uncertainty increases. In contrast, while 624 

uncertainty bounds do increase when BAYSPAR is used to extrapolate beyond the modern calibration, they 625 

are not as large as Optimal because BAYSPAR assumes a linear increase in SST at higher TEX values. 626 

 627 

We also provide an initial assessment of the inter-relationship between standard screening indices and 628 

Dnearest, for the Eocene and Cretaceous compilations where the data are available to calculate these measures 629 

(Figure 15).  For ease of comparison between Eocene and Cretaceous datasets and visualization of the 630 

majority of the data, extreme outliers (Dnearest  > 4.0) are not shown. The metrics include the BIT index 631 

(Hopmans et al., 2004; Weijers et al., 2006), the Methane Index (MI; Zhang et al., 2011), the deviation 632 

between TEX86 and the Ring Index (DRI; Zhang et al., 2016) and the %GDGT-0 (Blaga et al., 2009; 633 

Sinninghe Damsté et al., 2012). The standard screening levels for each of these metrics, as used in previous 634 

paleo-compilations (O’Brien et al. 2017), are shown in the blue shaded areas on Figure 15 (BIT > 0.5; MI 635 

> 0.5; DRI > 0.3; %GDGT-0 > 67%) – data points within these areas fail the standard screening. Also shown 636 

on Figure 15 is the region where data pass our Dnearest screening requirement (grey shaded vertical region). 637 

In nearly all cases GDGT assemblages that fail these traditional screening tests also have Dnearest values that 638 

exceed 0.5 – i.e. “abnormal” GDGT assemblages are well screened Dnearest. The main exception to this is 639 

the BIT index in the Eocene data set, where 15 samples have high BIT values (>0.5) but have GDGT 640 
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assemblages that are close to modern analogues in the calibration dataset (Dnearest <0.5). Of these samples, 641 

9 are from the Arctic Ocean between the PETM and ETM2, an interval noted for its relatively high BIT 642 

index values (Sluijs et al. 2020), 3 are from the Eocene-Oligocene transition of ODP Site 1218 (eastern 643 

Equatorial Pacific) (Liu et al. 2009), 2 are from the middle Eocene of Seymour Island (Douglas et al. 2014), 644 

and 1 is from the late Eocene of DSDP Site 511, which has been already noted as an individual sample with 645 

anomalous high BIT in this dataset (Liu et al. 2009; Inglis et al. 2015). Although high BIT at ODP Site 646 

1218 has been inferred to represent “relatively high terrestrial input” (Inglis et al. 2015) this seems unusual 647 

for a fully pelagic site situated on oceanic crust >3000 km away from the nearest continental landmass. 648 

Interpreting high BIT values as exclusively caused by terrestrial organic components appears problematic 649 

in this instance, especially as Dnearest <0.5 give some assurance that these GDGT assemblages from ODP 650 

Site 1218 are well-modelled by the modern calibration dataset. GDGT assemblages from Seymour Island 651 

associated with high BIT values (>0.4) appear to have an impact on the TEX86
H SST proxy (Inglis et al. 652 

2015), but the 2 samples that fail BIT (>0.5) but pass Dnearest (<0.5) give OPTiMAL SSTs consistent (5-653 

6ºC) with the SSTs from samples that pass all other screening and Dnearest (~4-7ºC). In summary, the 654 

relationship between Dnearest and BIT suggests that BIT is not always closely coupled to GDGT assemblages 655 

that are strongly divergent from the modern calibration dataset. 656 

 657 

With respect to the other screening indices there are clear indications that increased distance from the 658 

modern calibration (increased Dnearest) is associated with a trend towards the “thresholds of failure” in the 659 

screening indices. This pattern is most clear with the DRI in both the Cretaceous and the Eocene data, as 660 

increasing numbers of samples fail DRI as Dnearest increases. This supports DRI as a robust methodology for 661 

identifying samples that strongly diverge from the expected temperature-dependence of GDGT 662 

assemblages as modelled by TEX86 in the modern calibration dataset. There are, however, samples that pass 663 

Dnearest <0.5 but fail DRI in both the Eocene and Cretaceous datasets – these must have “near neighbours” 664 

in the modern calibration data, but yet have a temperature-sensitivity that is less well-modelled by TEX86 665 

(divergence between RI and TEX86). Conversely there are many Eocene and Cretaceous data points with 666 

DRI < 0.3, but which fail Dnearest (>0.5). These data most likely represent GDGT assemblages formed at 667 

high temperatures, beyond the range of the modern calibration data. 668 

  669 

To investigate these behaviours requires the publication of the full range GDGT abundance data. Whilst 670 

key compilations of Eocene and Cretaceous GDGT data have strongly encouraged the release of such 671 

datasets (Lunt et al. 2012; Dunkley Jones et al. 2013; Inglis et al. 2015; O’Brien et al. 2017), most Neogene 672 

studies only publish TEX86 values. Without full GDGT assemblage data neither OPTiMAL nor other 673 
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detailed assessments of GDGT behaviour and type can be made, and we would strongly encourage authors, 674 

reviewers and editors to ensure the publication of full GDGT assemblages in future. 675 

 676 

Finally, to test the behavior of OPTiMAL within established SST time series, we provide three examples 677 

two from the late Pleistocene to Holocene (Figure 16) and one from the Eocene (Figures 17 and 18). For 678 

the Pleistocene to Holocene examples OPTiMAL SSTs are shown against estimates from BAYSPAR and 679 

the alkenone-based Uk’
37 temperature proxy. The first of these timeseries is from GeoB 7702-3 in the 680 

Eastern Mediterranean and spans the last 26 kyr, including data spanning Termination I (Castañeda et al., 681 

2010). The second is from ODP Site 1146 in the South China Sea and spans the last 350 kyr (Thomas et al. 682 

2014).  In both records the long-term dynamics are consistent between the independent Uk’
37 SST proxy 683 

and both BAYSPAR and OPTiMAL. In the Eastern Mediterranean OPTiMAL SSTs are slightly cooler in 684 

the glacial and warmer in the Holocene than the other proxies. In the South China Sea, OPTiMAL is again 685 

cooler than BAYSPAR during glacial intervals, but at this location is in closer agreement than BAYSPAR 686 

with the Uk’
37 SST proxy through most of the record. In both these examples, we show the 5th and 95th 687 

percentiles for OPTiMAL and those reported by the BAYSPAR methodology. 688 

 689 

The final example is from the latest Paleocene to early Eocene of IODP Expedition 302 Hole 4A on 690 

Lomonosov Ridge (Sluijs et al. 2006; Sluijs et al. 2009; Sluijs et al. 2020). This site is useful as it has been 691 

the focus of detailed reassessment and reanalysis, using most of the available screening methodologies to 692 

detect aberrant GDGT assemblages (Sluijs et al. 2020). Here we use this recently published data to compare 693 

the new Dnearest screening metric against multiple other screening protocols (Figure 17). We also show both 694 

Dnearest values and OPTiMAL SST estimates for two models – one with modern Arctic data with SST < 3ºC 695 

included in the calibration (OPTiMALArctic; equivalent to calibration dataset Op1 first present by Eley et al. 696 

2019) and one with this data excluded (OPTiMALnoArctic; equivalent to the new calibration dataset Op3). It 697 

is clear from the pattern of Dnearest for these two options, that the inclusion of modern Arctic data provides 698 

more calibration data that are closer to the Eocene paleo-Arctic, to the extent that substantially more 699 

samples pass the Dnearest < 0.5 constraint, especially in pre-ETM2 interval from ~372 to 376 mcd. This 700 

interval contains, however, samples with the highest BIT values of the succession (> 0.4), and elevated DRI 701 

(> 0.3). With these other “warning signs” concerning the reliability of GDGT assemblages for SST 702 

estimation in this interval, the relatively low Dnearest values are most likely to represent some similarity in 703 

the non-thermal controls on GDGT assemblages between the modern and paleo-Arctic. More work needs 704 

to be done to constrain the reliability of temperature-dependence and archaeal GDGT production in these 705 

modern high latitude systems before we can have confidence in their inclusion in calibration datasets for 706 

paleo-SST estimation. It is on the basis that we recommend users of OPTiMAL use the the “noArctic” 707 
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(Op3) calibration for the time being. The OPTiMAL methodology does, however, offer a simple means to 708 

integrate new robust calibration data, and a method to explore the distance relationships between modern 709 

and ancient GDGT production.  710 

 711 

Considering the “noArctic” Dnearest and OPTiMAL SSTs for Exp. 302 Hole 4A, it is clear that of all the 712 

screening methods, Dnearest shows the strongest similarity to DRI – with high (“failure”) values in the pre-713 

PETM and then again between ~371 and 376 mcd, and even picking up the same short-lived “failure” 714 

intervals, or spikes, between 368 and 371 mcd. SST estimates based on OPTiMAL show broadly similar 715 

trends to TEX86
H and BAYSPAR, with a warm PETM, cooling post-PETM and then warming again into 716 

ETM2. It should be noted, however, that peak temperatures for OPTiMAL are ~5ºC cooler than TEX86
H 717 

and BAYSPAR (e.g. PETM SSTs <20ºC for OPTiMAL and > 25ºC for TEX86
H and BAYSPAR), and show 718 

more cooling post-PETM, with SST estimates of ~10ºC (OPTiMALnoArctic) as opposed to ~20ºC for TEX86
H 719 

and BAYSPAR. 720 

 721 

5. Conclusions 722 

 723 

Although the fundamental issue of non-analogue behaviour is a key problem for GDGT-temperature 724 

estimation, it has an undue impact on the community’s general confidence in this method. In part, this is 725 

because these issues have not been clearly stated and circumscribed - rather they have been allowed to erode 726 

confidence in the GDGT-based methodology through the use of GDGT-based palaeothermometry far 727 

outside the modern constraints on the behavior of this system. The use of GDGT abundances to estimate 728 

temperatures in clearly non-analogue conditions is, at present, problematic on the basis of the available 729 

calibration constraints or a good understanding of underlying biophysical models. We hope that this study 730 

prompts further investigations that will improve these constraints for the use of GDGTs in deep-time 731 

paleoclimate studies, where they clearly have substantial potential as temperature proxies. Temperature 732 

estimates based on fossil GDGT assemblages that are within range of, or similar to, modern GDGT 733 

calibration data, do, however, rest on a strong, underlying temperature-dependence observed in the 734 

empirical data. With no effective means of separating the “good from the bad” can lead to either false 735 

confidence and inappropriate inferences in non-analogue conditions, or a false pessimism when ancient 736 

samples are actually well constrained by modern core-top assemblages. 737 

 738 

In this study, we apply modern machine-learning tools, including Gaussian Process Emulators and forward 739 

modelling, to improve temperature estimation and the representation of uncertainty in GDGT-based SST 740 

reconstructions. Using our new nearest neighbour test, we demonstrate that >60% of Eocene, and >90% of 741 
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Cretaceous, fossil GDGT distribution patterns differ so significantly from modern as to call into question 742 

SSTs derived from these assemblages. For data that does show sufficient similarity to modern, we present 743 

OPTiMAL, a new multi-dimensional Gaussian Process Regression tool which uses all six GDGTs (GDGT-744 

0, -1, -2, -3, Cren and Cren’) to generate an SST estimate with associated uncertainty. The key advantages 745 

of the OPTiMAL approach are: 1) that these uncertainty estimates are intrinsically linked to the strength of 746 

the relationship between the fossil GDGT distributions and the modern calibration data set, and 2) by 747 

considering all GDGT compounds in a multi-dimensional regression model it avoids the dimensionality 748 

reduction and loss of information that takes place when calibrating single parameters (TEX86) to 749 

temperature. The methods presented above make very few assumptions about the data. We argue that such 750 

methods are appropriate with the current absence of any reasonable mechanistic model for the data 751 

generating process, in that they reflect model uncertainty in a natural way. Finally, we note the potential 752 

for multi-proxy machine learning approaches, synthesising data from other palaeothermeters with 753 

independent uncertainties and biases, to improve calibration of ancient GDGT-derived SST reconstructions.  754 

 755 
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 769 

Figure Captions: 770 

 771 

Figure 1. A histogram of the normalised distance to the nearest neighbour in GDGT space (Dx,yt) for all 772 

samples in the modern calibration dataset of Tierney and Tingley (2015). 773 

 774 

Figure 2. The error of the nearest-neighbour temperature (Dx,y) predictor, for modern core-top data, as a 775 

function of the distance to the nearest calibration sample.  776 

 777 
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Figure 3. Top: The temperature of the modern data set as a function of the TEX86 value, showing a clear 778 

linear correlation between the two, but also significant scatter.  Bottom: the error of the predictor based on 779 

the nearest TEX86 calibration point. 780 

 781 

Figure 4. The error of a random forest predictor as a function of the true temperature.  782 
 783 

Figure 5. The error of the GPR (Gaussian Process regression) predictor as a function of the true 784 

temperature. 785 

 786 

Figure 6. Modern and ancient data projected onto the first two compositional principal components. Black: 787 

Modern; Blue: Eocene (Inglis et al., 2015); Red: Cretaceous (O’Brien et al., 2017). 788 

 789 

Figure 7. Diffusion map projection of the modern and ancient data. Black: Modern; Blue: Eocene (Inglis 790 

et al., 2015); Red: Cretaceous (O’Brien et al., 2017). Separate clusters marked `A' are the outlying 791 

Cretaceous points with high GDGT-3 values. Branch ‘B’ is dominated by modern data points; branch ‘C’ 792 

by Cretaceous data. 793 

 794 

Figure 8. The first diffusion component as a function of TEX86 . Some outlying points have been excluded 795 

from the plot for the purposes of visualisation. Black: Modern; Blue: Eocene (Inglis et al., 2015); Red: 796 

Cretaceous (O’Brien et al., 2017). 797 

 798 

Figure 9. The first diffusion component as a function of temperature (modern data only). 799 

 800 

Figure 10. Temperature residuals for the forward model. 801 

 802 

Figure 11. The posterior distributions over temperature from the forward model for selected examples of 803 

high and low temperature, Eocene and Cretaceous, data points. The Gaussian error envelope from the GPR 804 

model is shown for comparison. 805 

 806 

Figure 12. A histogram of normalised distances to the nearest sample in the modern data set for Eocene 807 

and Cretaceous data, excluding samples that had been screened out in previous compilations using BIT, MI 808 

and RI following the approach of (Inglis et al., 2015; O’Brien et al., 2017). 809 

 810 
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Figure 13. Comparison of temperature estimates for the BAYSPAR and the OPTiMAL GPR model, greyed 811 

out data fails the Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that 812 

pass. Note that outside of the constraints of the modern calibration (training) dataset, (Dnearest test >0.5) the 813 

GPR model temperature estimates revert to the mean value of the calibration dataset, with an uncertainty 814 

that reverts to the standard deviation of the training data.  815 

 816 

Figure 14. Inter-comparison of temperature estimates and standard errors (y-axis) for compiled Eocene 817 

and Cretaceous data calculated using OPTiMAL (top) and BAYSPAR (bottom). Greyed out data fails the 818 

Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that pass. The black 819 

dashed line shows the Dnearest threshold (>0.5). 820 

 821 
Figure 15. Comparison of Dnearest against standard screening indices, BIT and MI index, DRI and 822 
%GDGT-O for the Eocene (Inglis et al., 2015) and Cretaceous (O’Brien et al., 2017) datasets. Blue 823 
shaded regions show the standard cut-off points for these indices (see text); grey shaded region highlights 824 
data that are below the Dnearest threshold of 0.5. The outlined black box is the region of data that fails 825 
traditional screening indices but passes Dnearest (<0.5). 826 
  827 
Figure 16. Late Pleistocene to Holocene GDGT-derived OPTiMAL palaeotemperatures compared to 828 

BAYSPAR and Uk’
37 SSTs. Shaded regions represent reported 5th and 95th percentile confidence intervals. 829 

Top panel - Eastern Mediterranaean data from core GeoB 7702-3 (Castaneda et al. 2010); bottom panel – 830 

South China Sea data from ODP Site 1146 (Thomas et al. 2014). 831 

 832 

Figure 17. Comparison of GDGT screening indices, TEX86
H, BAYSPAR and OPTiMAL SSTs from the 833 

Eocene Arctic Site IODP Expedition 302 Hole 4A. Data and figures modified from the most recent 834 

reassessment by Sluijs et al. (2020).  835 
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