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Abstract

In the modern oceans, the relative abundances of Glycerol dialkyl glycerol tetracther (GDGTs) compounds
produced by marine archaeal communities show a significant dependence on the local sea surface
temperature at the site of deposition. When preserved in ancient marine sediments, the measured
abundances of these fossil lipid biomarkers thus have the potential to provide a geological record of long-
term variability in planetary surface temperatures. Several empirical calibrations have been made between
observed GDGT relative abundances in late Holocene core top sediments and modern upper ocean
temperatures. These calibrations form the basis of the widely used TEXss palacothermometer. There are,
however, two outstanding problems with this approach, first the appropriate assignment of uncertainty to
estimates of ancient sea surface temperatures based on the relationship of the ancient GDGT assemblage to
the modern calibration data set; and second, the problem of making temperature estimates beyond the range
of the modern empirical calibrations (>30 °C). Here we apply modern machine-learning tools, including
Gaussian Process Emulators and forward modelling, to develop a new mathematical approach we call
OPTiMAL (Optimised Palacothermometry from Tetracthers via MAchine Learning) to improve
temperature estimation and the representation of uncertainty based on the relationship between ancient
GDGT assemblage data and the structure of the modern calibration data set. We reduce the root mean
square uncertainty on temperature predictions (validated using the modern data set) from ~* 6 °C using
TEX3gs based estimators to + 3.6 °C using Gaussian Process estimators for temperatures below 30 °C. We

also provide a new quantitative measure of the distance between an ancient GDGT assemblage and the
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nearest neighbour within the modern calibration dataset, as a test for significant non-analogue behaviour.
Finally, we advocate caution in the use of temperature estimates beyond the range of the modern empirical
calibration dataset, given the lack of a robust predictive biological model or extensive and reproducible

mesocosm experimental data in this elevated temperature range.

1. Introduction

Glycerol dibyphytanyl glycerol tetraethers (GDGTs) are membrane lipids consisting of isoprenoid carbon
skeletons ether-bound to glycerol (Schouten et al., 2013). In marine systems they are primarily produced
by ammonia oxidising marine Thaumarchaeota (Schouten et al., 2013). In modern marine core top
sediments, the relative abundance of GDGT compounds with more ring structures increases with the mean
annual sea surface temperature (SST) of the overlying waters (Schouten et al., 2002). This trend is most
likely driven by the need for increased cell membrane stability and rigidity at higher temperatures
(Sinninghe Damsté et al., 2002). On this basis, the TEXse (tetracther index of tetracthers containing 86
carbon atoms) ratio was derived to provide an index to represent the extent of cyclisation (Eq. 1; where
GDGT-x represents the fractional abundance of GDGT-x determined by liquid chromatography mass
spectrometery (LC-MS) peak area, and cren’ is the peak area of the isomer of crenarchaeol) (Schouten et

al., 2002; Liu et al. 2018) and was shown to be positively correlated with mean annual SSTs:

TEXss = (GDGT-2 + GDGT-3 + cren’)/ (GDGT-1+ GDGT-2 + GDGT-3 + cren’) (Eq. 1)

Early applications of TEXss to reconstruct ancient SSTs were promising, especially in providing
temperature estimates in environments where standard carbonate-based proxies are hampered by poor
preservation (Schouten et al., 2003; Herfort et al., 2006; Schouten et al., 2007; Huguet et al., 2006; Sluijs
et al., 2006; Brinkhuis et al., 2006; Pearson et al., 2007; Slujis et al., 2009). The TEXgs approach also
extended beyond the range of the widely used alkenone-based U* 3, thermometer, in both temperature space,
where U¥'3; saturates at ~28°C (Brassell, 2014; Zhang et al., 2017), and back into the early Cenozoic (Bijl
et al., 2009; Hollis et al., 2009; Bijl et al., 2013; Inglis et al., 2015) and Mesozoic (Schouten et al., 2002;
Jenkyns et al., 2012; O’Brien et al., 2017) where haptophyte-derived alkenones are typically absent from
marine sediments (Brassell, 2014). Initially, TEXgs was converted to SSTs using the core-top calibration

(Schouten et al. 2002) (Eq. 2):

TEXss = 0.015*SST+0.287 (Eq. 2)
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However as the number and range of applications of TEXgs palacothermometry grew, concerns arose about
proxy behaviour at both the high (Liu et al., 2009) and low (Kim et al., 2008) temperature ends of the
modern calibration. In response to these observations, a new expanded modern core top dataset (Kim et al.,
2010) was used to generate two new indices — TEX}, (Eq. 3), an exponential function that does not include
the crenarchaeol regio-isomer and was recommended for use across the entire temperature range of the new
core top data (-3 to 30 °C, particularly when SSTs are lower than 15 °C), and TEX.. (Eq. 4), also
exponential, and recommended for use when SSTs exceeded 15 °C (Kim et al., 2010). TEX%, also excludes
GDGT abundance data from the high-temperature regimes of the Red Sea, which are somewhat anomalous
and likely related to salinity effects on community composition in this region (Trommer et al., 2009, Kim

et al. 2010).

TEXL, = log ([ [6DeT2] )

GDGT1]+[GDGT2]+[GDGT3] Eq.3

[GDGT2]+[GDGT3}+[Cren’] ) 4
GDGT1]+[GDGT2)+[GDGT3]+[Cren’] 4

TEXL = log ([

Despite the recommendations of Kim et al. (2010), both TEX/L and TEX}, were widely used and tested
across a range of temperatures and palaecoenvironments, including comparisons against other
palaecotemperature proxy systems (Hollis et al. 2012; Lunt 2012 Dunkley Jones et al. 2013; Zhang et al.,
2014; Seki et al., 2014; Douglas et al., 2014; Linnert et al., 2014; Hertzberg et al., 2016). The rationale was
that both TEX}, and TEXEL were calibrated across a full temperature range, with the exception of the
inclusion or exclusion of Red Sea core-top data. The difference in model fit between the two proxy
formulations to the calibration dataset was also minor (Kim et al. 2010). In certain environments, however,
TEXE, was subject to significant variability in derived temperatures that were not apparent in TEXE
(Taylor et al., 2013). This was mostly due to changing GDGT2 to GDGT3 ratios, which strongly influence
TEXE,, and may be related to local non-thermal environmental conditions at the site of GDGT production,
and deep-water lipid production, (Taylor et al., 2013). As a result, TEX%, is no longer regarded as an
appropriate tool for palacotemperature reconstructions, except in limited Polar conditions (Kim et al., 2010;

Tierney, 2012).

Three fundamental issues have troubled the TEXgs proxy. The first is a concern about undetected non-
analogue palaco-GDGT assemblages, for which the modern calibration data set is inadequate to provide a

robust temperature estimation. Although various screening protocols, with independent indices and
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thresholds, have been proposed to test for an excessive influence of terrestrial lipids (Branched and
Isoprenoid Tetracther, BIT index; Hopmans et al., 2004), within sediment methanogenesis (Methane Index,
‘MI’; Zhang et al., 2011) and non-thermal effects such as nutrient levels and archaeal community structure
to impact the weighted average of cyclopentane moieties (Ring Index, ‘RI;” Zhang et al., 2016), these do
not provide a fundamental measure of the proximity between GDGT abundance distributions in the modern,
and ancient GDGT abundance distributions recorded in sediment samples. The fundamental question
remains — are measured ancient assemblages of GDGT compounds anything like the modern assemblages,
from which palaeotemperatures are being estimated? Understanding this question cannot easily be
addressed with the use of indices — TEXsg itself, or BIT and MI — that collapse the dimensionality of GDGT

abundance relationships onto a single axis of variation.

Second, from the earliest applications of the TEXss proxy to deep-time warm climate states (Schouten et
al., 2003) it was recognized that reconstructed temperatures beyond the range of the modern calibration
(>30 °C), were highly sensitive to model choice within the modern calibration range. Thus, Schouten et al.
(2003) restricted their calibration data for deep-time temperature estimates to core-top data in the modern
with mean annual SSTs over 20 °C. However, this problem of model choice, and its impact on temperature
estimation beyond the modern calibration range, persists (Hollis et al. 2019), with current arguments
focused on whether there is an exponential (e.g. Cramwinckel et al., 2018) or linear (Tierney & Tingley,

2015) dependency of TEXgs on SSTs, and the effect of these models on temperature estimates over 30 °C.

Culture and mesocosm studies are sometimes cited in support of extrapolations beyond the modern
calibration range when reconstructing ancient SSTs (Kim et al., 2010, Hollis et al., 2019). While there is a
basic underlying trend for more rings within GDGT structures at higher temperatures (Zhang et al. 2015;
Qin et al., 2015), the lack of a uniform response to archacal GDGT production in response to increasing
growth temperatures (e.g., Elling et al., 2015; Qin et al., 2015) suggests that this does not easily translate
into a simple linear model at the community scale (i.e. the core top calibration dataset). Wuchter et al.
(2004) and Schouten et al. (2007) show a compiled linear calibration of TEXgs against incubation
temperature (up to 40°C in the case of Schouten et al., 2007) based on strains that were enriched from
surface seawater collected from the North Sea and Indian Ocean respectively. Like Qin et al. (2015), we
note the non-linear nature of the individual experiments in Wuchter et al. (see Fig. 5 in Wuchter et al. 204).
Moreover, the relatively lower Cren’ in these studies yield a very different intercept and slope compared to

core-top calibrations (e.g. Kim et al. 2010) making direct comparisons problematic.
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More recently, Elling et al. (2015) studied three different strains (V. maritimus, NAOA6, NAOA2) isolated
from open ocean surface waters (South Atlantic) whilst Qin et al., (2015) studied a culture of N. maritimus
and three N. maritimus-like strains isolated from Puget Sound. All strains are of marine, mesophilic,
Thaumarchaeota within Marine Group 1 (equivalent to Crenarchacota Group 1). Both of these papers
clearly demonstrate distinctly different responses of membrane lipid composition to temperature in these
strains, whilst Qin et al. (2015) additionally show that oxygen concentration is at least as important as
temperature in controlling TEXss values in culture. The impact of Thaumarchaeota community change on
TEX3s in palacoclimate studies is further suggested by the downcore study of Polik et al (2019). All of these
culture studies, made on marine, mesophilic archaea demonstrate how community composition may have

a significant impact on measured environmental TEXgs signatures.

It is clear from the above discussion that there is evidence for more complex responses in GDGT-production
to growth temperature in some instances, and across distinct strains of archaea (Elling et al., 2015). More
fundamentally, in natural systems, it is likely that aggregated GDGT abundance variations in response to
growth temperatures result from changing compositions of archaeal populations as well as the physiological
response of individual strains to growth temperature (Elling et al. 2015). For instance, a multiproxy study
of Mediterranean Pliocene-Pleistocene sapropels indicates that specific distributions of archaeal lipids
might be reflective of temporal changes in thaumarchaeael communities rather than temperature alone
(Polik et al., 2018). Indeed, the potential influence of community switching on GDGT composition can be
seen in mesocosm studies, with different species preferentially thriving at different growth temperatures
(e.g., Schouten et al., 2007). To use the responses of single, selected archaeal strains in culture to validate
a particular model of community-level responses to growth temperature is problematic even in the modern
system (Elling et al., 2015). For deep time applications it is even more difficult, where there is no
independent constraint on the archaeal strains dominating production or their evolution through time (Elling
et al. 2015). What is notable, however, is that the Ring Index (RI) - calculated using all commonly measured
GDGTs (Zhang et al., 2016) — has a more robust relationship with culture temperature between archaeal

strains than TEXgs, indicating a potential loss of information within the TEXgs index (Elling et al. 2015).

Finally, the original uses of the TEXss proxy had a relatively poor representation of the true uncertainty
associated with palacotemperature estimates, as they included no assessment of non-analogue behavior
relative to the modern core-top data. Instead, uncertainty was typically based on the residuals on the modern
calibration, with no reference to the relationship between GDGT distributions of an ancient sample and the
modern calibration data. An improved Bayesian uncertainty model “BAYSPAR” is now in widespread use

for SST estimation, which models TEXgs to SSTs regression parameters, and associated uncertainty, as
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spatially varying functions (Tierney and Tingley, 2015). The Bayesian approach, as with all approaches
based on the TEXgs index, however, still does not include an uncertainty that reflects how well modelled
ancient GDGT assemblages are by the modern calibration — i.e. the degree to which they are non-analogue

- as it still functions on one-dimensional TEXge index values.

All empirical calibrations of GDGT-based proxies assume that mean annual SST is the master variable on
GDGT assemblages both today and in the past. Mean annual SST, however, is strongly correlated with
many other environmental variables (e.g., seasonality, pH, mixed layer depth, and productivity). In the
modern calibration dataset, mean annual SST shows the strongest correlation with TEXgs index (Schouten
et al., 2002), but this does not preclude an important (but undetectable) influence of these other
environmental variables. The use of empirical GDGT calibrations to infer ancient sea surface temperatures
thus implicitly assumes that the relationships between mean annual SST and all other GDGT-influencing
variables are invariant through time. This assumption is inescapable until, and unless, a more complete

biological mechanistic model of GDGT production emerges.

Here, we return to the primary modern core-top GDGT assemblage data (Tierney and Tingley, 2015), and
systematically explore the relationships between the modern GDGT distributions and surface ocean
temperatures using powerful mathematical tools. These tools can investigate correlations without prior
assumptions on the best form of relationship or a priori selection of GDGT compounds to be used. This
analysis is then extended through the exploration of the relationships between the modern core top GDGT
distributions and two compilations of ancient GDGT datasets, one from the Eocene (Inglis et al. 2015) and
one from the Cretaceous (O’Brien et al. 2017). We explore simple metrics to answer the fundamental
question — are modern core-top GDGT distributions good analogues for ancient distributions? We propose
the first robust methodology to answer this question, and so screen for significantly non-analogue palaeo-
assemblages. From this, we go on to derive a new machine learning approach ‘OPTiMAL’ (Optimised
Palacothermometry from Tetraethers via MAchine Learning) for reconstructing SSTs from GDGT
datasets, which outperforms previous GDGT palaecothermometers and includes robust error estimates that,

for the first time, accounts for model uncertainty.
2. Models for GDGT-based Temperature Reconstruction
Our new analyses use the modern core-top data compilation, and satellite-derived estimates of SSTs, of

Tierney and Tingley (2015) as well as compilations of Eocene (Inglis et al. 2015) and Cretaceous (O’Brien
et al. 2017) GDGT assemblages. Within these fossil assemblages, only data points with full characterisation



203
204
205
206
207
208
209
210
211
212
213
214
215

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

of individual GDGT relative abundances were used. We also note that, in the first instance, all available
fossil assemblage data were included, although later comparisons between BAYSPAR and our new
temperature predictor excludes fossil data that was regarded as unreliable based on standard pre-screening
indices, as noted within the original compilations (Inglis et al. 2015; O’Brien et al. 2017). All data used in

this study are tabulated in the supplementary information.

In order to enable meaningful comparison between new and existing temperature predictors, we use the
following consistent procedure for evaluating all predictors throughout this paper. We divide the modern
core-top data set of 854 data points into 85 validation data points (chosen randomly) and 769 calibration
points (as we require fractional abundances for all 6 commonly measured GDGTs, we excluded those data
points for which these values were not reported). We calibrate the predictor on the calibration points, and

then judge its performance on the validation points using the root mean square error:

1

Ny
oT= |5 ;(T(xk) D)

Ny

(Eq. 5)

where the sum is taken over each of N, = 85 validation points, 7 is the known measured temperature (which
we refer to as the true temperature) and 7 is the predicted temperature. For conciseness, we refer to 6T as
the predictor standard error. It is useful to compare the accuracy of the predictor to the standard deviation
of all temperatures in the data set T, which corresponds to using the mean temperature as the predictor in
Equation 1; for the modern data set, 6T= 10.0 °C. The coefficient of determination, R, provides a measure
of the fraction of the fluctuation in the temperature explained by the predictor. To facilitate performance
comparisons between different methods of predicting temperature, we use the same subset of validation
points for all analyses. To avoid sensitivity to the choice of validation points, we repeat the calibration-

validation procedure for 10 random choices from the validation dataset.

2.1 Nearest neighbours

We begin with an agnostic approach to using some combination of the proportions of each of the six
observables - GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol and cren’, which we will jointly refer
to as GDGTs - to predict sea surface temperatures. Whatever functional form the predictor might take, it

can only provide accurate temperature predictions if nearby points in the six-dimensional observable space
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- i.e. the distribution of all of the six commonly reported GDGTs - can be translated to nearby points in
temperature space. Conversely, if nearby points in the observable space correspond to vastly different
temperatures, then no predictor, regardless of which combination of GDGTs are used, will be able to
provide a useful temperature estimate. In other words, the structuring of GDGT distributions within multi-
dimensional space, must have some correspondence to the temperatures of formation (or rather the mean

annual SSTs used for standard calibrations).

We therefore consider the prediction offered by the temperature at the nearest point in the GDGT parameter
space. Of course, nearness depends on the choice of the distance metric. For example, it may be that sea
surface temperatures are very sensitive to a particular GDGT, so even a small change in that GDGT
corresponds to a significant distance, and rather insensitive to another, meaning that even with a large
difference in the nominal value of that GDGT the distance is insignificant. In the first instance, we use a
very simple Euclidian distance estimate Dy, where the distance along each GDGT is normalised by the total
spread in that GDGT across the entire data set. This normalisation ensures that a dimensionless distance
estimate can be produced even when observables have very different dynamical ranges, or even different

units. Thus, the normalised distance D between parameter data points x and y is

b2 =N (6DGTi(x) - GDGT,(»))?

YT . var(GDGT;)
i=

(Eq. 7)

We show the distribution of nearest distances of points in the modern data set, excluding the sample itself,
in (Fig. 1).

The nearest-sample temperature predictor is Trearest (X) = T(y) Where y is the nearest point to x over the
calibration data set, i.e., one that minimises D.,. Fig. 2 shows the scatter in the predicted temperature when
using the temperature of the nearest data point to make the prediction. Overall, the failure of the nearest-
neighbour predictor to provide accurate temperature estimates even when the normalised distance to the
nearest point is small, D., < 0.5, casts doubt on the possibility of designing an accurate predictor for
temperature based on GDGT observations. This is most likely due to additional environmental controls on
GDGT abundance distributions in natural systems, in particular the water depth (Zhang and Liu, 2018),
nutrient availability (Hurley et al., 2016; Polik et al., 2018; Park et al., 2018), seasonality, growth rate
(Elling et al., 2014; Hurley et al., 2016) and ecosystem composition (Polik et al., 2018), that obscure a

predominant relationship to mean annual SSTs.
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On the other hand, the standard error for the nearest-neighbour temperature predictor is 8T nearest = 4.5 °C.
This is less than half of the standard deviation ¢T in the temperature values across the modern data set.
Thus, the temperatures corresponding to nearby points in GDGT observable space also cluster in
temperature space. Consequently, there is hope that we can make some useful, if imperfect, temperature
predictions. The value of 6T rearest Will also serve as a useful benchmark in this design: while we may hope
to do better by, say, suitably averaging over multiple nearby calibration points rather than adopting the
temperature at one nearest point as a predictor, any method that performs worse than the nearest-neighbour

predictor is clearly suboptimal.

2.2 TEXss and Bayesian applications

The TEXs6 index reduces the six-dimensional observable GDGT space to a single number. While this has
the advantage of convenience for manipulation and the derivation of simple analytic formulae for
predictors, as illustrated below, this approach has one critical disadvantage: it wastes significant information
embedded in the hard-earned GDGT distribution data. Fig. 3 illustrates both the advantage and
disadvantage of TEXss. On the one hand, there is a clear correlation between TEXss and temperature (top
panel of Fig. 3), with a correlation coefficient of 0.81 corresponding to an overwhelming statistical
significance of 10, On the other hand, very similar TEXgs values can correspond to very different
temperatures. We can apply the nearest-neighbour temperature prediction approach to the TEXss value
alone rather than the full GDGT parameter space; this predictor yields a large standard error of 8T nearestTEX86
= 8.0 °C (bottom panel of Fig. 3). While smaller than ¢7, this is significantly larger than T nearest (Fig. 2),
consistent with the loss of information in TEXgs. We therefore do not expect other predictors based on

TEX3s to perform as well as those based on the full available data set.

Indeed, this is what we find when we consider predictors of the form T i/rex = @ + b/TEXgs and Trexu = ¢
+ d logrexss (Liu et al., 2009; Kim et al., 2010), i.e., the established relationships between GDGT
distributions and SST. We fit the free parameters a, b, ¢, and d by minimising the sum of squares of the
residuals over the calibration data sets (least squares regression). We find that 67rex = 6.1 °C (note that
this is slightly better than using the fixed values of @ and » from (Kim et al., 2010), which yield 67rex =
6.2 °C). We note that the corresponding R’ value associated with these TEXss based predictors is 0.64,
which is lower than the R’ values in Kim et al. (2010). We attribute this to the fact that we are using a larger
dataset based on Tierney and Tingley (2015), including data from the Red Sea (Kim et al. 2010).
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Tierney and Tingley (2014) proposed a more sophisticated approach to obtaining the transfer function from
TEX3gs to temperature, continuing to use simple linear regression, but with the addition of Gaussian
processes to model spatial variability in the temperature-TEX3gs relationship and working with a forward
model which is subsequently inverted to produce temperature predictions. This forward model
‘BAYSPAR’ is capable of generating an infinite number of calibration curves relating TEXgs to sea surface
temperatures (Tierney and Tingley, 2014). In order to derive a calibration for a specific dataset, the user
edits a range of parameters which vary depending on whether the dataset in question is from the relatively
recent past or deep time (Tierney and Tingley, 2014). For deep time applications, the authors propose a
modern analogue-type approach, in which they search the modern data for 20° x 20° grid boxes containing
‘nearby' TEXss measurements and subsequently apply linear regression models calibrated on the analogous

samples for making predictions.

However, along with the simpler TEXgs-based models described above, this approach still suffers from the
reduction of a six-dimensional data set to a single number. Therefore, it is not surprising that even the
simplest nearest-neighbour predictor (such as the one described above) that makes use of the full six-
dimensional dataset outperforms single-dimensional forward modelling approaches. Additionally,
uncertainty estimates do not account for the fact that TEXse is, fundamentally, an empirical proxy, and so
its validity outside the range of the modern calibration is not guaranteed. This is a fundamental issue for
attempts to reconstruct surface temperatures during Greenhouse climate states, when tropical and sub-

tropical SSTs were likely hotter than those observed in the modern oceans.

2.3 Machine learning Approaches — Random Forests

There are a number of options to improve on nearest-neighbour predictions using machine learning
techniques such as artificial neural networks and random forests. These flexible, non-parametric models
would ideally be based on the underlying processes driving the GDGT response to temperature, but since
these processes remain unconstrained at present, we choose to deploy models which can reasonably reflect
predictive uncertainty and will be sufficiently adaptable in future (as new information regarding controls
on GDGTs emerge). These machine learning approaches are all based on the idea of training a predictor by
fitting a set of coefficients in a sufficiently complex multi-layer model in order to minimise residuals on
the calibration data set. As an example of the power of this approach, we train a random forest of decision
trees with 100 learning cycles using a least-squares boosting to fit the regression ensemble. Figure 4 shows
the prediction accuracy for this random forest implementation. This machine learning predictor yields 67

= 4.1 °C degrees, outperforming the naive nearest-neighbour predictor by effectively applying a suitable

10
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weighted average over multiple near neighbours. This corresponds to a very respectable R’ = 0.83, meaning

that 83% of the variation in the observed temperature is successfully explained by our GDGT-based model.

2.4 Gaussian Process Regression

One downside of the random forest predictor is the difficulty of accurately estimating the uncertainty on
the prediction (Mentch and Hooker, 2016), although this is possible with, e.g., a bootstrapping approach
(Coulston et al., 2016). Fortunately, Gaussian process (GP) regression provides a robust alternative. For
full details on GP regression refer to Williams and Rasmussen (2006) and Rasmussen and Nickisch (2010).
Loosely, the objective here is to search among a large space of smoothly varying functions of GDGT
compositions for those functions which adequately describe temperature variability. This, essentially, is a
way of combining information from all calibration data points, not just the nearest neighbours, assigning
different weights to different calibration points depending on their utility in predicting the temperature at
the input of interest. The trained Gaussian process learns the best choice of weights to fit the data. Typically,
the GP will give greater weight to closer points, but, as we discuss below, it will learn the appropriate

distance metric on the multi-dimensional GDGT input space.

The weighting coefficients learned by the GP emulator represent a covariance matrix on the GDGT
parameter space. We can use this as a distance metric to provide meaningfully normalised distances
between points, removing the arbitrariness from the nearest neighbour distance (D, ) definition used earlier,
and this is the basis of the Dnearest metric described below. If the temperature is insensitive to a particular
GDGT input coordinate (i.e., the value of that input has a minimal effect on the temperature) then points
within GDGT space that have large differences in absolute input values in that coordinate are still near. We
find that Cren has very limited predictive power, and so points with large Cren differences are close in term
of the normalised distance. Conversely, if the temperature is sensitive to small changes in a particular
GDGT variant, then points with relatively nearby absolute input values in that coordinate are still distant.
We find that most GDGT parameters other than Cren are comparably useful in predicting temperature, with
GDGT-0 and GDGT-3 marginally the most informative. We considered whether interdependency of
percentage GDGT data could influence our calculations. Our analysis suggests that there are only five free
parameters. Machine learning tools should be able to pick up this correlation and effectively ignore one of
the parameters (or one parameter combination). For example, we do find that the GP emulator has a very
broad kernel in at least one dimension, signaling this. In principle, we could have considered only five of
six parameters. The smaller scale of some of the parameters is automatically accounted for by the trained

kernel size in GP regression, or by normalising to the appropriate dynamical range in our initial

11
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investigation. In short, the accuracy of Gaussian process regression is not adversely affected by correlations
between inputs (Rasmussen & Williams, 2006). Significantly correlated inputs that do not bring in new

predictive power are appropriately down-weighted.

We use a Gaussian process model with a squared exponential kernel with automatic relevance
determination (ARD) to allow for a separate length scale for each GDGT predictor. We fit the GP
parameters with an optimiser based on quasi-Newton approximation to the Hessian. Prediction accuracy is
shown in Figure 5, and we find that 67 = 3.72 °C, which is a substantial improvement over the existing
indices, at least on the modern data. As mentioned, the GP framework provides a natural quantification of
predictive uncertainty, which includes uncertainty about the learned function. This is in contrast to, for
example, the TEXss proxy, whereby the uncertainty associated with the selection of the particular functional
form used for predictions is ignored. While Tierney & Tingley (2014) also use Gaussian processes to model
uncertainty, they model spatial variability in the TEXss-temperature relationship with a Gaussian process
prior. While this is a valuable approach to understand regional effects in the TEXss-temperature

relationship, it does not deal with the ‘'non-analogue’ situations we are concerned with in this paper.

2.5 Data Structure

The random forest (Section 2.3) and GPR approaches (Section 2.4) are agnostic about any underlying bio-
physical model that might impart the observed temperature-dependence on GDGT relative abundances
produced by archaeca. They are essentially optimized interpolation tools for mapping correlations between
temperature and GDGT abundances within the range of the modern calibration data set; they can make no
sensible inference about the behavior of this relationship outside of the range of this training data. To move
from interpolation within, to extrapolation beyond, the modern calibration requires an understanding of,
and model for, the temperature-dependence of GDGT production. To explore these relationships and the
extent to which the ancient and modern data reside in a coherent relationship within GDGT space, we
employed two forms of dimensionality reduction to enable visualisation of the data in two or three
dimensions. The fundamental point is that if temperature is the dominant control, all of the data should lie
approximately on a one-dimensional curve in GDGT space, and the arclength along this curve should

correspond to temperature; we will revisit this point below.
We first employed a version of principal component analysis (PCA) tailored to compositional data

(Aitcheson, 1982, 1983; Aitcheston and Greenacre, 2002; Filzmoser et al., 2009a; Filzmoser et al., 2009b;

Filzmoser et al., 2012). Taking into account the compositional nature of the data is important because the
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sum-to-one constraint induces correlations between variables which are not accounted for by classical PCA.
Furthermore, apparently nonlinear structure in Euclidean space often corresponds to linearity in the simplex
(i.e. the restricted space in which all elements sum to one) (Egozcue et al., 2003). Figure 6 shows the
modern, Eocene and Cretaceous data projected onto the first two principal components. Aside from the
obvious outlying cluster of Cretaceous data, characterised by GDGT-3 fractions above 0.6, the bulk of the
data occupy a two-dimensional point cloud with a small amount of curvature. The large majority of the

Cretaceous data has more positive PC1 values relative to the modern data.

We also explored the data using diffusion maps (Coifman et al., 2005; Haghverdi et al., 2015), a nonlinear
dimensionality reduction tool designed to extract the dominant modes of variability in the data. Such
diffusion maps have been successfully used to infer latent variables that can explain patterns of gene
expression. In the case of biological organisms, this latent variable is commonly developmental age (called
pseudo-time) (Haghverdi et al., 2016). In our case, the assumption would be that this latent variable
corresponds to temperature. Inspection of the eigenvalues of the diffusion map transition matrix suggests
that four diffusion components are adequate to represent the data; we plot the second, third and fourth of
these components in Figure 7 for the modern and ancient data. The separate clusters marked "A' are the
outlying Cretaceous points with high GDGT-3 values. The bulk of the modern data lies on the branch
marked "B', while the bulk of the Cretaceous data lies on the branch marked "C'. Notably, the majority of
the modern points lying on branch C are from the Red Sea, which suggests that the Red Sea data is essential

for understanding ancient climates (particularly Cretaceous climates).

The relationship between the first diffusion component and TEXjss for all data is shown in Figure 8. There
is a clear correlation, despite the presence of some outlying Cretaceous points, some of which are not shown
because they lie so far outside the majority data range within this projection. This suggests that TEXsg is,
in one sense, a natural one-dimensional representation of the data. We also plot the first diffusion
component for the modern data as a function of temperature (Figure 9). We see a similar pattern emerging
to that displayed by TEXss - there is little sensitivity to temperature below 15 °C, and between ~20 and 25
°C. An interesting avenue for future research might be to explore the temperature-GDGT system from a
dynamical systems perspective, i.e. use simple mechanistic mathematical models to explore the
temperature-dependence of steady-state GDGT distributions. It may be that such models suggest that only
a few steady-states exist, and that temperature is a bifurcation parameter, i.e. it controls the switch between
the steady states. Note also the downward slope in the residual pattern in Figure 4 between 0 and 15-17
degrees celsius, and again at higher temperatures. This pattern is consistent with predictions that are biased

towards the centre of each “cluster', i.e. a system which is not very sensitive to temperature, but can
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distinguish between high and low temperatures reasonably well. This observation also links to recent culture
studies (Elling et al., 2015) and Pliocene-Pleistocene sapropel data (Polik et al., 2018), which support the
existence of discrete populations with unique GDGT-temperature relationships and that temporal changes

in population over time can drive changes in TEXss.

2.6 Forward Modelling

Based on the analysis of the combined modern and ancient data structure outlined above, there appears to
be some consistency to underlying trends in the overall variance of GDGT relative abundances. These
trends provide some hope that models of this variance, and its relationship to sea surface temperature, within
the modern dataset could be developed to predict ancient SSTs. TEXgs and BAYSPAR are such models,
but they are limited by, first, the reduction of six-dimensional GDGT space to a one-dimensional index;
and second, by an ad hoc model choice — linear, exponential — that does not account for uncertainty in
model fit to the modern calibration data, and the resultant uncertainty in the estimation of ancient SSTs
relating to model choice. To overcome these issues, we develop a forward model based on a multi-output
Gaussian Process (Alvarez et al., 2012), which models GDGT compositions as functions of temperature,
accounting for correlations between GDGT measurements. This model is then inverted to obtain
temperatures which are compatible with a measured GDGT composition. In simple terms, we posit that a
measured GDGT composition is generated by some unknown function of temperature and corrupted by
noise, which may be due to measurement error or some unmodelled particularity of the environment in
which the sample was generated. We proceed by defining a large (in this case infinite) set of functions of
temperature to explore and compare them to the available data, throwing away those functions which do
not adequately fit the data. This means, of course, that the behaviour of the functions we accept is allowed
to vary more widely outside the range of the modern data than within it. With no mechanistic underpinning,
choosing only one function (such as the inverse of TEXss) based on how well it fits the modern data grossly

underestimates our uncertainty about temperature where no modern analogue is available.

The forward modelling approach is similar to that of Haslett et al. (2006), who argue that it is preferable to
model measured compositions as functions of climate, before probabilistically inverting the model to infer
plausible climates given a composition. The cost of modelling the data in this more natural way is the loss
of degrees of freedom -- we are now attempting to fit a one-dimensional line through a multidimensional
point cloud rather than fit a multidimensional surface to the GDGT data, which means that the predictive
power of the model suffers, at least on the modern data. The existing BAYSPAR calibration also specifies

the model in the forward direction, however while BAYSPAR does model spatial variability it assumes a
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monotonic relationship between TEX and SST, only accounting for uncertainties on the parameters within
the model, rather than any systematic uncertainty in the model itself. As with all GP models, the choice of
kernel has a substantial impact on predictions (and their associated uncertainty) outside the range of the
modern data, where predictions revert to the prior implied by the kernel. Given that we have no mechanistic
model for the data generating process, we recommend the use of kernels which do not impose strong prior
assumptions on the form of the GDGT-temperature relationship (e.g. kernels with a linear component) and
thus reasonably represent model uncertainty outside the range of the modern data. We choose a zero-mean
Matern 3/2 kernel for the applications below. Note, however, that since we are working in ilr-transformed
coordinates, this corresponds to a prior assumption of uniform compositions at all temperatures, i.e. all

components are equally abundant.

The residuals for the forward model are shown in Figure 10. The clear pattern in the residuals does not
necessarily indicate model misspecification, since no explicit noise model is specified for temperatures.
Predictive distributions are to be interpreted in the Bayesian sense, in that they represent a 'degree of belief'
in temperatures given the model and the modern data. The residual pattern is similar to that of the random
forest (Figure 4) with two clear downward slopes, suggesting again that the data are clustered into
temperatures above and below 16-17 °C, and that predictions tend towards temperatures at the centres of

these clusters.

An advantage of the forward modelling approach is that the inversion can incorporate substantive prior
information about temperatures for individual data points. In particular, other proxy systems can be used to
elicit prior distributions over temperatures to constrain GDGT-based predictions, particularly when
attempting to reconstruct ancient climates with no modern analogue in GDGT-space. We emphasise that
outside the range of the modern data, the utility of the models is almost solely due to the prior information
included in the reconstruction. At present, the only priors being used in the forward model prescribe a
reasonable upper limit and lower limit on temperatures (see Supplementary Information). The only way to
improve these reconstructions will be for future iterations to incorporate prior information from other
proxies. It is worth noting that the predictive uncertainty, while reasonably well-described by the standard
deviation in cases where ancient data lie quite close to the modern data in GDGT space, can be highly
multimodal (Fig. 11). This is the case when estimates are significantly outside of the modern calibration
dataset, such as low latitude data in the Cretaceous, or where there is considerable scatter in the modern

calibration data, for example in the low temperature range (<5 °C).

3. Non-analogue behavior and Extrapolation
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In principle, the predictors described above can be applied directly to ancient data, such as data from the
Eocene or Cretaceous (Inglis et al., 2015; O’Brien et al., 2017). In practice, one should be careful with
using models outside their domain of applicability. The machine learning tools described above, which are
ultimately based on the analysis of nearby calibration data in GDGT space, are fundamentally designed for
interpolation. To the extent that ancient data occupy a very different region in GDGT space, extrapolation
is required, which the models do not adequately account for. The divergence between modern calibration
data and ancient data is evident from Fig. 12, which shows histograms of minimum normalised distances
between ‘high quality’ Eocene/Cretaceous data points (those that passed the screening tests applied by
O’Brien et al., 2017 and Inglis et al., 2015) and the nearest point in the full modern data set. We strongly
recommend the use of the weighted distance metric (Dnearest) as @ screening method to determine whether
the modern core top GDGT assemblage data is an appropriate basis for ancient SST estimation on a case-
by-case basis. Note that this distance measure is weighted by the scale length of the relevant parameter as
estimated by the Gaussian process emulator in order to quantify the relative position of ancient GDGT
assemblages to the modern core-top data. By using the GP-estimated covariance as the distance metric, we
account for the sensitivity of different GDGT components to temperature. Our inference is that samples
with Duearest >0.5, regardless of the calibration model or approach applied, are unlikely to generate
temperature estimates that are much better than informed guesswork. In these instances, in both our GPR
and Fwd models, the constraints provided by the modern calibration data set are so weak that estimates of
temperature have large uncertainty bands that are dictated by model priors; i.e. are unconstrained by the
calibration data (e.g., Figure 13 and Figure 14). This uncertainty is not apparent from estimates generated
by BAYSPAR or TEXL models, although the underlying and fundamental lack of constraints are the same.
While 93% of validation data points in the modern data have Dyearest <0.5, this is the case for only 33% of

Eocene samples and 3% for Cretaceous samples.

Where ancient GDGT distributions lie far from the modern calibration data set (Dnearest >0.5), we argue that
there is no suitable set of modern analogue GDGT distributions from which to infer growth temperatures
for this ancient GDGT distribution. Both the GPR and Fwd models revert to imposed priors once the
distance from the modern calibration dataset increases. We propose that this is more rigorous and justified
model behavior than extrapolation of TEXss or BAYSPAR predictors to non-analogue samples far from
the modern calibration data. As a result, the predictive models can only be applied to a subset of the Eocene
and Cretaceous data. We also note that there are two broad, non-mutually-exclusive categories of samples
that lie far from the modern calibration dataset (Dncarest >0.5), the first are samples that seem to lie ‘beyond’

the temperature-GDGT calibration relationship, likely with (unconstrained) GDGT formation temperatures
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higher than the modern core-top calibrations; the second are samples with anomalous GDGT distributions
lying on the margins of, or far away from the main GDGT clustering in 6-dimensional space (see outliers

in Fig. 8).

Given the (current) limit on natural mean annual surface ocean temperatures of ~30 °C, extending the
GDGT-temperature calibration might be possible through, 1) integration of full GDGT abundance
distributions produced in high temperature culture, mesocosm or artificially warmed sea surface
conditions into the models; followed by, 2) validation through robust inter-comparisons of any new
GDGT palaeothermometer for high temperatures conditions with other temperature proxies from past
warm climate states. As discussed in the introduction, the first approach is limited by the ability of culture
or mesocosm experiments to accurately represent the true diversity and growth environments and
dynamics of natural microbial populations. Such studies clearly indicate a more complex, community-
scale control on changing GDGT relative abundances to growth temperatures (e.g., Elling et al., 2015).
Community-scale temperature dependency can be modelled relatively well with analyses of natural
production preserved in core-top sediments, especially with more sophisticated model fitting, including
the GPR and Fwd model presented here. Above ~30°C, however, the behavior of even single strains of
mesophilic archaea are not well-constrained by culture experiments, and the natural community-level
responses above this temperature are, so far, completely unknown. While there is evidence for the
temperature-sensitivity of GDGT production by thermophilic and acidophilic archaea in older papers (de
Rosa et al., 1980; Gliozzi et al., 1983), recent work, characterised by more precise phylogenetic and
culturing techniques show a more complex relationship between GDGT production and temperature.
Elling et al., (2017) highlight that there is no correlation between TEXss and growth temperature in a
range of phylogenetically different thaumarchaeal cultures - including thermophilic species. Bale et al.
(2019) recently cultured Candidatus nitrosotenuis uzonensis from the moderately thermophilic order
Nitrosopumilales (that contains many mesophilic marine strains). They found no correlation between
TEXgs calibrations (either the Kim et al., core-top or Wuchter et al. 2004 and Schouten et al., 2008
mesocosm calibrations) with membrane lipid composition at different growth temperatures (37°C, 46°C,
and 50°C) and found that phylogeny generally seems to have a stronger influence on GDGT distribution
than temperature. In view of these existing data, we see no robust justification at present for the
extrapolation of modern core-top calibration data sets into the unknown above 30 °C, although the
coherent patterns apparent across GDGT space, between modern, Eocene and Cretaceous data (Figure 7),
do provide some grounds for hope that the extension of GDGT palaeothermometry beyond 30°C might be

possible in future.
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4. OPTIiMAL and Ducarest: A more robust method for GDGT-based paleothermometry

A more robust framework for GDGT-based palacothermometry, could be achieved with a flexible
predictive model that uses the full range of six GDGT relative abundances, and has transparent and robust
estimates of the prediction uncertainty. In this context, the Gaussian Process Regression model (GPR;
Section 2.4) outperforms the Forward model (Fwd; Section 2.6) within the modern calibration dataset and
we recommend standard use of the GPR model, henceforth called OPTiIMAL, over the Fwd model. Model
code for the calculation of Dyearest values and OPTiMAL SST estimates (Matlab script) and the Fwd Model
SST estimates R script) are archived in the GITHUB repository,
https://github.com/carbonatefan/OPTiMAL.

Following Tierney and Tingley (2014) we use a reduced calibration data set, with the exclusion of Arctic
data with observed SSTs less than 3°C (“NoNorth / TT13” of Tierney and Tingley (2014)) but with the
inclusion of additional core top data from Seki et al. (2014). Full details of this calibration dataset are
provided in the Supplementary Information; to distinguish from the original OPTIMAL calibration data,
which included the Arctic data <3°C, we refer to the original data as “Op1” and the new calibration dataset
as “Op3”. An “Op2” is also available, which is the same as Op1 except that it excludes the Seki et al. (2014)
data. In sensitivity tests to a range of applications across Quaternary and deep-time datasets, calibration
Opl and Op2 performed in almost identical fashion. The performance of Opl and Op3 were very similar
in most applications, except in applications to the paleo-Arctic (see below), where the inclusion of modern
Arctic calibration data (Opl) provided closer calibration constraints to the paleo-data. Although
superficially this may be regarded as beneficial, in these instances the paleo-data have previously been
rejected because of a potential bias by non-marine inputs indicated by high BIT indices (Sluijs et al. 2020).
In this case, either the modern Arctic calibration data is impacted by similar non-thermal processes,
generating unusual GDGT abundance patterns, which are not appropriate to use for SST calibration, or,
there could be some consistency between the modern and ancient GDGT production by marine archaea in
the Arctic which may help in the understanding of GDGT-based paleothermometry in this unusual
environment (Sluijs et al. 2020). The Dyearest methodology may prove useful in quantifying analogue and
non-analogue behavior through time in such conditions. For the purposes of this study, however, we take
the conservative approach, and one that maintains a more consistent calibration basis with BAYSPAR, by
using OPTiMAL calibration Op3 in the remainder of this discussion, and recommend its use in future

applications of OPTiMAL.
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To investigate the behaviour of the new OPTiMAL model, we compare temperature predictions including
uncertainties for the Eocene and Cretaceous datasets, made by OPTiIMAL and the BAYSPAR methodology
of Tierney and Tingley (2014) (Figures 13 and 14), using the default priors specified in the model code for
the BAYSPAR estimation. The OPTiMAL model systematically estimates slightly cooler temperatures
than BAYSPAR, with the biggest offsets below ~15 °C (Figure 13). Fossil GDGT assemblages that fail the
Dhcarest test are shown in grey, which clearly illustrate the regression to the mean in the OPTiIMAL model,
whereas BAYSPAR continues to make SST predictions up to and exceeding 40 °C for these “non-analogue”
samples due to the fact that BAYSPAR assumes that higher TEXgs values equate to higher temperatures as
part of the functional form of the model, whereas the GPR model is agnostic on this. A comparison of error
estimation between OPTiMAL and BAYSPAR is shown in Figure 14. For most of the predictive range
below the Dnearest cut-off of 0.5, OPTiMAL has smaller predicted uncertainties than BAYSPAR, especially
in the lower temperature range. As Dyearest increases, i.e. as the fossil GDGT assemblage moves further from
the constraints of the modern calibration dataset, the error on OPTiMAL increases, until it reaches the
standard deviation of the modern calibration dataset (i.e., is completely unconstrained). In other words,
OPTiMAL generates maximum likelihood SSTs with robust confidence intervals, which appropriately
reflect the relative position of an ancient sample used for SST estimation and the structure of the modern
calibration data set. Where there are strong constraints from near analogues in the modern data,
uncertainties will be small, where there are weak constraints, uncertainty increases. In contrast, while
uncertainty bounds do increase when BAYSPAR is used to extrapolate beyond the modern calibration, they

are not as large as Optimal because BAYSPAR assumes a linear increase in SST at higher TEX values.

We also provide an initial assessment of the inter-relationship between standard screening indices and
Dhcarest, for the Eocene and Cretaceous compilations where the data are available to calculate these measures
(Figure 15). For ease of comparison between Eocene and Cretaceous datasets and visualization of the
majority of the data, extreme outliers (Dnearest > 4.0) are not shown. The metrics include the BIT index
(Hopmans et al., 2004; Weijers et al., 2006), the Methane Index (MI; Zhang et al., 2011), the deviation
between TEXss and the Ring Index (ARI; Zhang et al., 2016) and the %GDGT-0 (Blaga et al., 2009;
Sinninghe Damsté et al., 2012). The standard screening levels for each of these metrics, as used in previous
paleo-compilations (O’Brien et al. 2017), are shown in the blue shaded areas on Figure 15 (BIT > 0.5; MI
>0.5; ARI>0.3; %GDGT-0 > 67%) — data points within these areas fail the standard screening. Also shown
on Figure 15 is the region where data pass our Dyearest SCreening requirement (grey shaded vertical region).
In nearly all cases GDGT assemblages that fail these traditional screening tests also have Dpcarest Values that
exceed 0.5 — i.e. “abnormal” GDGT assemblages are well screened Dyearest. The main exception to this is

the BIT index in the Eocene data set, where 15 samples have high BIT values (>0.5) but have GDGT
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assemblages that are close to modern analogues in the calibration dataset (Dpearest <0.5). Of these samples,
9 are from the Arctic Ocean between the PETM and ETM2, an interval noted for its relatively high BIT
index values (Sluijs et al. 2020), 3 are from the Eocene-Oligocene transition of ODP Site 1218 (eastern
Equatorial Pacific) (Liu et al. 2009), 2 are from the middle Eocene of Seymour Island (Douglas et al. 2014),
and 1 is from the late Eocene of DSDP Site 511, which has been already noted as an individual sample with
anomalous high BIT in this dataset (Liu et al. 2009; Inglis et al. 2015). Although high BIT at ODP Site
1218 has been inferred to represent “relatively high terrestrial input” (Inglis et al. 2015) this seems unusual
for a fully pelagic site situated on oceanic crust >3000 km away from the nearest continental landmass.
Interpreting high BIT values as exclusively caused by terrestrial organic components appears problematic
in this instance, especially as Dpearest <0.5 give some assurance that these GDGT assemblages from ODP
Site 1218 are well-modelled by the modern calibration dataset. GDGT assemblages from Seymour Island
associated with high BIT values (>0.4) appear to have an impact on the TEXss" SST proxy (Inglis et al.
2015), but the 2 samples that fail BIT (>0.5) but pass Dyearest (<0.5) give OPTiMAL SSTs consistent (5-
6°C) with the SSTs from samples that pass all other screening and Dncarest (~4-7°C). In summary, the
relationship between Dycarest and BIT suggests that BIT is not always closely coupled to GDGT assemblages

that are strongly divergent from the modern calibration dataset.

With respect to the other screening indices there are clear indications that increased distance from the
modern calibration (increased Dycarest) 1S associated with a trend towards the “thresholds of failure” in the
screening indices. This pattern is most clear with the ARI in both the Cretaceous and the Eocene data, as
increasing numbers of samples fail ARI as Dncarest increases. This supports ARI as a robust methodology for
identifying samples that strongly diverge from the expected temperature-dependence of GDGT
assemblages as modelled by TEXse in the modern calibration dataset. There are, however, samples that pass
Dhcarest <0.5 but fail ARI in both the Eocene and Cretaceous datasets — these must have “near neighbours”
in the modern calibration data, but yet have a temperature-sensitivity that is less well-modelled by TEXss
(divergence between RI and TEX3gs). Conversely there are many Eocene and Cretaceous data points with
ARI < 0.3, but which fail Dpearest (>0.5). These data most likely represent GDGT assemblages formed at

high temperatures, beyond the range of the modern calibration data.

To investigate these behaviours requires the publication of the full range GDGT abundance data. Whilst
key compilations of Eocene and Cretaceous GDGT data have strongly encouraged the release of such
datasets (Lunt et al. 2012; Dunkley Jones et al. 2013; Inglis et al. 2015; O’Brien et al. 2017), most Neogene
studies only publish TEXgs values. Without full GDGT assemblage data neither OPTiMAL nor other
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detailed assessments of GDGT behaviour and type can be made, and we would strongly encourage authors,

reviewers and editors to ensure the publication of full GDGT assemblages in future.

Finally, to test the behavior of OPTiMAL within established SST time series, we provide three examples
two from the late Pleistocene to Holocene (Figure 16) and one from the Eocene (Figures 17 and 18). For
the Pleistocene to Holocene examples OPTiMAL SSTs are shown against estimates from BAYSPAR and
the alkenone-based U*3; temperature proxy. The first of these timeseries is from GeoB 7702-3 in the
Eastern Mediterranean and spans the last 26 kyr, including data spanning Termination I (Castafieda et al.,
2010). The second is from ODP Site 1146 in the South China Sea and spans the last 350 kyr (Thomas et al.
2014). In both records the long-term dynamics are consistent between the independent U*3; SST proxy
and both BAYSPAR and OPTiMAL. In the Eastern Mediterranean OPTiMAL SSTs are slightly cooler in
the glacial and warmer in the Holocene than the other proxies. In the South China Sea, OPTiMAL is again
cooler than BAYSPAR during glacial intervals, but at this location is in closer agreement than BAYSPAR
with the U¥37 SST proxy through most of the record. In both these examples, we show the 5" and 95"
percentiles for OPTIMAL and those reported by the BAYSPAR methodology.

The final example is from the latest Paleocene to early Eocene of IODP Expedition 302 Hole 4A on
Lomonosov Ridge (Sluijs et al. 2006; Sluijs et al. 2009; Sluijs et al. 2020). This site is useful as it has been
the focus of detailed reassessment and reanalysis, using most of the available screening methodologies to
detect aberrant GDGT assemblages (Sluijs et al. 2020). Here we use this recently published data to compare
the new Dhcarest SCreening metric against multiple other screening protocols (Figure 17). We also show both
Dhcarest values and OPTIMAL SST estimates for two models — one with modern Arctic data with SST <3°C
included in the calibration (OPTiMA Lacic; equivalent to calibration dataset Opl1 first present by Eley et al.
2019) and one with this data excluded (OPTiM A Lxoarciic; €quivalent to the new calibration dataset Op3). It
is clear from the pattern of Dyearest for these two options, that the inclusion of modern Arctic data provides
more calibration data that are closer to the Eocene paleo-Arctic, to the extent that substantially more
samples pass the Dnearest < 0.5 constraint, especially in pre-ETM?2 interval from ~372 to 376 mcd. This
interval contains, however, samples with the highest BIT values of the succession (> 0.4), and elevated ARI
(> 0.3). With these other “warning signs” concerning the reliability of GDGT assemblages for SST
estimation in this interval, the relatively low Dnearest Values are most likely to represent some similarity in
the non-thermal controls on GDGT assemblages between the modern and paleo-Arctic. More work needs
to be done to constrain the reliability of temperature-dependence and archaeal GDGT production in these
modern high latitude systems before we can have confidence in their inclusion in calibration datasets for

paleo-SST estimation. It is on the basis that we recommend users of OPTiMAL use the the “noArctic”
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(Op3) calibration for the time being. The OPTiMAL methodology does, however, offer a simple means to
integrate new robust calibration data, and a method to explore the distance relationships between modern

and ancient GDGT production.

Considering the “noArctic” Dyearest and OPTIMAL SSTs for Exp. 302 Hole 4A, it is clear that of all the
screening methods, Dyearest Shows the strongest similarity to ARI — with high (“failure”) values in the pre-
PETM and then again between ~371 and 376 mcd, and even picking up the same short-lived “failure”
intervals, or spikes, between 368 and 371 mcd. SST estimates based on OPTiMAL show broadly similar
trends to TEXss" and BAYSPAR, with a warm PETM, cooling post-PETM and then warming again into
ETM2. It should be noted, however, that peak temperatures for OPTiMAL are ~5°C cooler than TEXss'
and BAYSPAR (e.g. PETM SSTs <20°C for OPTiMAL and > 25°C for TEXs' and BAYSPAR), and show
more cooling post-PETM, with SST estimates of ~10°C (OPTiMA Luoarctic) as opposed to ~20°C for TEXss'"
and BAYSPAR.

5. Conclusions

Although the fundamental issue of non-analogue behaviour is a key problem for GDGT-temperature
estimation, it has an undue impact on the community’s general confidence in this method. In part, this is
because these issues have not been clearly stated and circumscribed - rather they have been allowed to erode
confidence in the GDGT-based methodology through the use of GDGT-based palacothermometry far
outside the modern constraints on the behavior of this system. The use of GDGT abundances to estimate
temperatures in clearly non-analogue conditions is, at present, problematic on the basis of the available
calibration constraints or a good understanding of underlying biophysical models. We hope that this study
prompts further investigations that will improve these constraints for the use of GDGTs in deep-time
paleoclimate studies, where they clearly have substantial potential as temperature proxies. Temperature
estimates based on fossil GDGT assemblages that are within range of, or similar to, modern GDGT
calibration data, do, however, rest on a strong, underlying temperature-dependence observed in the
empirical data. With no effective means of separating the “good from the bad” can lead to either false
confidence and inappropriate inferences in non-analogue conditions, or a false pessimism when ancient

samples are actually well constrained by modern core-top assemblages.
In this study, we apply modern machine-learning tools, including Gaussian Process Emulators and forward

modelling, to improve temperature estimation and the representation of uncertainty in GDGT-based SST

reconstructions. Using our new nearest neighbour test, we demonstrate that >60% of Eocene, and >90% of
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Cretaceous, fossil GDGT distribution patterns differ so significantly from modern as to call into question
SSTs derived from these assemblages. For data that does show sufficient similarity to modern, we present
OPTiMAL, a new multi-dimensional Gaussian Process Regression tool which uses all six GDGTs (GDGT-
0, -1, -2, -3, Cren and Cren’) to generate an SST estimate with associated uncertainty. The key advantages
of the OPTiMAL approach are: 1) that these uncertainty estimates are intrinsically linked to the strength of
the relationship between the fossil GDGT distributions and the modern calibration data set, and 2) by
considering all GDGT compounds in a multi-dimensional regression model it avoids the dimensionality
reduction and loss of information that takes place when calibrating single parameters (TEXss) to
temperature. The methods presented above make very few assumptions about the data. We argue that such
methods are appropriate with the current absence of any reasonable mechanistic model for the data
generating process, in that they reflect model uncertainty in a natural way. Finally, we note the potential
for multi-proxy machine learning approaches, synthesising data from other palaeothermeters with

independent uncertainties and biases, to improve calibration of ancient GDGT-derived SST reconstructions.
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Figure Captions:

Figure 1. A histogram of the normalised distance to the nearest neighbour in GDGT space (Dx;:) for all

samples in the modern calibration dataset of Tierney and Tingley (2015).

Figure 2. The error of the nearest-neighbour temperature (D) predictor, for modern core-top data, as a

function of the distance to the nearest calibration sample.
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Figure 3. Top: The temperature of the modern data set as a function of the TEXss value, showing a clear
linear correlation between the two, but also significant scatter. Bottom: the error of the predictor based on

the nearest TEX3s calibration point.

Figure 4. The error of a random forest predictor as a function of the true temperature.

Figure 5. The error of the GPR (Gaussian Process regression) predictor as a function of the true

temperature.

Figure 6. Modern and ancient data projected onto the first two compositional principal components. Black:

Modern; Blue: Eocene (Inglis et al., 2015); Red: Cretaceous (O’Brien et al., 2017).

Figure 7. Diffusion map projection of the modern and ancient data. Black: Modern; Blue: Eocene (Inglis
et al., 2015); Red: Cretaceous (O’Brien et al., 2017). Separate clusters marked 'A' are the outlying
Cretaceous points with high GDGT-3 values. Branch ‘B’ is dominated by modern data points; branch ‘C’

by Cretaceous data.

Figure 8. The first diffusion component as a function of TEXgs . Some outlying points have been excluded
from the plot for the purposes of visualisation. Black: Modern; Blue: Eocene (Inglis et al., 2015); Red:
Cretaceous (O’Brien et al., 2017).

Figure 9. The first diffusion component as a function of temperature (modern data only).

Figure 10. Temperature residuals for the forward model.

Figure 11. The posterior distributions over temperature from the forward model for selected examples of
high and low temperature, Eocene and Cretaceous, data points. The Gaussian error envelope from the GPR
model is shown for comparison.

Figure 12. A histogram of normalised distances to the nearest sample in the modern data set for Eocene

and Cretaceous data, excluding samples that had been screened out in previous compilations using BIT, MI

and RI following the approach of (Inglis et al., 2015; O’Brien et al., 2017).
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Figure 13. Comparison of temperature estimates for the BAYSPAR and the OPTiIMAL GPR model, greyed
out data fails the Djearesr test (>0.5), and the colour scaling reflects Djeares: Values for those datapoints that
pass. Note that outside of the constraints of the modern calibration (training) dataset, (Dyeares: test >0.5) the
GPR model temperature estimates revert to the mean value of the calibration dataset, with an uncertainty

that reverts to the standard deviation of the training data.

Figure 14. Inter-comparison of temperature estimates and standard errors (y-axis) for compiled Eocene
and Cretaceous data calculated using OPTIMAL (top) and BAYSPAR (bottom). Greyed out data fails the
D scarest test (>0.5), and the colour scaling reflects Dyearess Values for those datapoints that pass. The black

dashed line shows the Dyeares threshold (>0.5).

Figure 15. Comparison of Dyeares: against standard screening indices, BIT and MI index, ARI and
%GDGT-O for the Eocene (Inglis et al., 2015) and Cretaceous (O’Brien et al., 2017) datasets. Blue
shaded regions show the standard cut-off points for these indices (see text); grey shaded region highlights
data that are below the Dcures threshold of 0.5. The outlined black box is the region of data that fails
traditional screening indices but passes Dyeares (<0.5).

Figure 16. Late Pleistocene to Holocene GDGT-derived OPTiMAL palacotemperatures compared to
BAYSPAR and U"3; SSTs. Shaded regions represent reported 5™ and 95™ percentile confidence intervals.
Top panel - Eastern Mediterranaean data from core GeoB 7702-3 (Castaneda et al. 2010); bottom panel —
South China Sea data from ODP Site 1146 (Thomas et al. 2014).

Figure 17. Comparison of GDGT screening indices, TEXss'', BAYSPAR and OPTiMAL SSTs from the
Eocene Arctic Site IODP Expedition 302 Hole 4A. Data and figures modified from the most recent

reassessment by Sluijs et al. (2020).
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Late Paleocene to early Eocene Arctic Ocean IODP Expedition 302 Hole 4A
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