
Response to general comments by Peter Bijl 
 
We thank Dr Bijl for his appreciation of our attempts to work across fields. Although it is not 
easy to communicate the results of this work to both “home” communities we hope that the 
methods have the detail required to be reproducible, whilst the aims and results of these new 
analytical approaches are presented in an accessible way to the general readership of Climates 
of the Past. 
 
We agree with Dr Bijl’s assessment of our paper as focusing on two key themes – reducing the 
residual error on the modern calibration and understanding the GDGT-temperature relationship 
extrapolated beyond modern ranges. We appreciate the acknowledgement that we have 
advanced on the reduction of residual error within the modern calibration range through the 
use of the full suite of GDGT assemblage data and new machine learning methodologies.  
 
We also agree that we have made no advancement on providing a more robust calibration or 
new constraints for GDGT-based SST estimation from GDGT assemblages that fall 
significantly outside of the calibration range. These assemblages we describe as “non-
analogue”, by which we mean they are significantly dissimilar to GDGT assemblage within 
the modern core-top database.  
 
Where we diverge with Dr Bijl is in the suggestion that we have nothing to add to the 
“extrapolation” or “non-analogue” problem. We have no answer to this problem but a key part 
of our proposed method, and we actually think the most useful and powerful component, is the 
proposal of a metric which, for the first time, quantifies the degree of distance (meaningfully 
scaled to the temperature-dependence within the modern GDGT core-top data) between fossil 
GDGT assemblages and the modern calibration dataset. It is with this metric that, for the first 
time, we can start to quantify how far beyond the constraints of the modern calibration data our 
ancient samples fall. We also note that this distance metric is not just for the identification of 
extrapolation to formation temperatures beyond the limits of the modern calibration, but also, 
we hope, to help in the identification of non-analogue conditions due to either changes in 
environment or microbial communities that may cause significant divergence from the 
assumption of uniformitarian behaviour with the modern system. 
 
We do, however, take the thrust of Dr Bijl’s critique seriously, especially in the presentation 
and discussion of where OPTiMAL will be most able to aid SST reconstructions, and where a 

Response to Interactive comment on “OPTiMAL: A new machine learning approach for 
GDGT-based palaeothermometry” by Tom Dunkley Jones et al.  
 
Dear Dr Reyes, 
    
Thank you for your letter and for the reviews of our resubmission. 
 
Here we address the points raised by new reviewer, Dr Peter Bijl. Line numbers in our 
responses refer to the new “tracked changes” document. 
 
Kind regards, 
 
Dr Tom Dunkley Jones, on behalf of all the co-authors.  
  



consideration of the Dnearest metric alone is appropriate. We have reread the text carefully and 
have sought to make clarifications in this direction. 
 
Specific comments: 
 
Lines 85-89: The rationale for using TEXL outside of its modern limit of 15 degrees has 
also been because it was unknown what factor limited its use: SST itself or a factor that 
correlates to SST? Bijl et al., 2013 plotted both TEXH and TEXL because of the high 
paleolatitude position of the site. The use of TEXL to temps below 15 degrees modern 
SSTs could also have been a latitudinal restriction (i.e., use TEXL South/North of 55 
degrees latitude, because SSTs of 15 degrees correspond to that latitude. See 
explanation in Bijl et al., 2013. It was however strange that while proxy fit at high SSTs 
was similar, TEXH and TEXL were consistently offset when applied in the Eocene 
sample set. 
 
Simplified to avoid the above implication. 
 
Lines 106-107: Here the authors should emphasize the abundant evidence of a 
temperature control on isoGDGT assemblages that have non-analogue compositions (see 
above). That is, if this section is retained after revision.  
 
Have modified to avoid implication that there is not a strong temperature control on isoGDGT 
distributions.  
 
Lines 122-133: Focus this culture paragraph on what these show for the isoGDGT-
temperature relationships in modern analogue temperatures, as that is what OPTIMAL 
is all about. You can still stress that there is complexity in GDGT production to growth 
temperature (lines 146-147) which explains the remaining scatter in the modern core top 
dataset rather than provides information on the extrapolation of its regression.  
 
This was largely shaped by previous reviewer / other comments about the evidence for a 
particular form of TEX86 relationship beyond the modern core-top calibration range. In 
agreement with Dr Bijl’s comments we have simplified to focus on the key points. 
 
163-172: Does this point also hold true for SST reconstructions within the modern T 
range, or only for the extrapolation out of that? Clarify and specify.  
 
Yes, holds true for both. We have clarified. 
 
Lines 702_704: So, if I understand correctly, Dnearest can be small for samples and 
modern sites that have structurally different SSTs? What is then the real significance of 
Dnearest as a criterium?  
 
Yes, but only if you choose to include those sites in your calibration. The Dnearest tells you how 
close your ancient sample is from your modern calibration data set. It does not tell you what to 
include or exclude from your calibration dataset. For example, I could (but wouldn’t 
recommend) including lake or soil samples in the calibration dataset for the determination of 
marine temperatures in the past. That’s (probably) a bad choice, but the Dnearest metric can’t tell 
you whether to do this or not. If you did do it, then (probably) Dnearest would be low for ancient 
samples that are heavily influenced or completely dominated by terrestrial organic matter, 



because the ancient (terrestrial) biomarker assemblage would be close to the modern 
(terrestrial) biomarker assemblage. Although not as extreme as this case, the inclusion of 
modern Arctic core-top data could suffer similar problems – it’s a question of how confident 
we are that GDGT production in these modern Arctic environments is related to the wider 
marine system and carries a significant temperature control on GDGT assemblages. In the 
paper we merely highlight that: 1) some Eocene Arctic GDGT assemblages show proximity to 
modern Arctic GDGT assemblages; but that, 2) these same Eocene Arctic assemblages are 
rejected on traditional screening criteria. This conclusion invites further screening of modern 
Arctic core-top data but is beyond the scope of this paper. 
 
Lines 724: It is not necessarily non-analogue behaviour, but confounding environmental 
or biological factors, which as yet cannot be quantitatively corrected for.  
 
We think these are separate but related issues (think Rumsfeld’s “known unknowns”, and 
“unknown unknowns”). If you have fossil GDGT assemblages that are nothing like the modern 
(non-analogue), then you’re in the space of “known unknown” – i.e. I know this sample is 
nothing like the modern, and I therefore don’t have confidence in SSTs derived from it. This 
could be due to a range of evolutionary, ecological or environmental factors that were different 
during the formation of this ancient GDGT assemblage. The Dnearest metric is designed to 
identify (to “know”) when this is the case. Then there are likely also environmental or 
biological factors that shift GDGT distributions within the range of the modern calibration but 
are not well understood (“unknown unknowns”). These non-thermal effects, if better 
understood in the modern, could lead to improved calibration models and improved SST 
estimation based on ancient assemblages, as long as these non-thermal effects could also be 
controlled for in the fossil record.  
 
Lines 726: I strongly disagree with the conclusions that ‘issues have not been clearly 
stated and circumscribed’. There is no proxy in paleoclimate research that comes with a 
longer description of methods, analysis data, data scrutinization and critical evaluation 
than the biomarker-based proxies. On the front of error the field is evolving, along with 
that in other proxies. The community has been extremely careful in interpreting and 
presenting their data, against modern data, against other data in the same sediments, 
against other proxies for SST. And no, that has not eroded confidence, it has set a bar for 
critical assessment of assumptions in other proxies. Rephrase to make this point clear.  
 
Accepted and apologies – you are correct in the extensive work that has gone into this proxy. 
It is the issue of extrapolation that we wish to highlight and have rephrased. 
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Abstract 15 

 16 

In the modern oceans, the relative abundances of Glycerol dialkyl glycerol tetraether (GDGTs) compounds 17 

produced by marine archaeal communities show a significant dependence on the local sea surface 18 

temperature at the site of deposition. When preserved in ancient marine sediments, the measured 19 

abundances of these fossil lipid biomarkers thus have the potential to provide a geological record of long-20 

term variability in planetary surface temperatures. Several empirical calibrations have been made between 21 

observed GDGT relative abundances in late Holocene core top sediments and modern upper ocean 22 

temperatures. These calibrations form the basis of the widely used TEX86 palaeothermometer. There are, 23 

however, two outstanding problems with this approach, first the appropriate assignment of uncertainty to 24 

estimates of ancient sea surface temperatures based on the relationship of the ancient GDGT assemblage to 25 

the modern calibration data set; and second, the problem of making temperature estimates beyond the range 26 

of the modern empirical calibrations (>30 ºC). Here we apply modern machine-learning tools, including 27 

Gaussian Process Emulators and forward modelling, to develop a new mathematical approach we call 28 

OPTiMAL (Optimised Palaeothermometry from Tetraethers via MAchine Learning) to improve 29 

temperature estimation and the representation of uncertainty based on the relationship between ancient 30 

GDGT assemblage data and the structure of the modern calibration data set. We reduce the root mean 31 

square uncertainty on temperature predictions (validated using the modern data set) from ~± 6 ºC using 32 

TEX86 based estimators to ± 3.6 ºC using Gaussian Process estimators for temperatures below 30 ºC. We 33 

also provide a new quantitative measure of the distance between an ancient GDGT assemblage and the 34 



 2 

nearest neighbour within the modern calibration dataset, as a test for significant non-analogue behaviour. 35 

Finally, we advocate caution in the use of temperature estimates beyond the range of the modern empirical 36 

calibration dataset, given the lack of a robust predictive biological model or extensive and reproducible 37 

mesocosm experimental data in this elevated temperature range. 38 

 39 

1. Introduction 40 

 41 

Glycerol dibyphytanyl glycerol tetraethers (GDGTs) are membrane lipids consisting of isoprenoid carbon 42 

skeletons ether-bound to glycerol (Schouten et al., 2013). In marine systems they are primarily produced 43 

by ammonia oxidising marine Thaumarchaeota (Schouten et al., 2013). In modern marine core top 44 

sediments, the relative abundance of GDGT compounds with more ring structures increases with the mean 45 

annual sea surface temperature (SST) of the overlying waters (Schouten et al., 2002). This trend is most 46 

likely driven by the need for increased cell membrane stability and rigidity at higher temperatures 47 

(Sinninghe Damsté et al., 2002). On this basis, the TEX86 (tetraether index of tetraethers containing 86 48 

carbon atoms) ratio was derived to provide an index to represent the extent of cyclisation (Eq. 1; where 49 

GDGT-x represents the fractional abundance of GDGT-x determined by liquid chromatography mass 50 

spectrometery (LC-MS) peak area, and cren’ is the peak area of the isomer of crenarchaeol) (Schouten et 51 

al., 2002; Liu et al. 2018) and was shown to be positively correlated with mean annual SSTs: 52 

 53 

TEX86 = (GDGT-2 + GDGT-3 + cren’)/ (GDGT-1+ GDGT-2 + GDGT-3 + cren’) (Eq. 1) 54 
 55 

Early applications of TEX86 to reconstruct ancient SSTs were promising, especially in providing 56 

temperature estimates in environments where standard carbonate-based proxies are hampered by poor 57 

preservation (Schouten et al., 2003; Herfort et al., 2006; Schouten et al., 2007; Huguet et al., 2006; Sluijs 58 

et al., 2006; Brinkhuis et al., 2006; Pearson et al., 2007; Slujis et al., 2009). The TEX86 approach also 59 

extended beyond the range of the widely used alkenone-based Uk’
37 thermometer, in both temperature space, 60 

where Uk’
37 saturates at ~28ºC (Brassell, 2014; Zhang et al., 2017), and back into the early Cenozoic (Bijl 61 

et al., 2009; Hollis et al., 2009; Bijl et al., 2013; Inglis et al., 2015) and Mesozoic (Schouten et al., 2002; 62 

Jenkyns et al., 2012; O’Brien et al., 2017) where haptophyte-derived alkenones are typically absent from 63 

marine sediments (Brassell, 2014). Initially, TEX86 was converted to SSTs using the core-top calibration 64 

(Schouten et al. 2002) (Eq. 2): 65 

 66 

TEX86 = 0.015*SST+0.287 (Eq. 2)  67 

 68 
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However as the number and range of applications of TEX86 palaeothermometry grew, concerns arose about 69 

proxy behaviour at both the high (Liu et al., 2009) and low (Kim et al., 2008) temperature ends of the 70 

modern calibration. In response to these observations, a new expanded modern core top dataset (Kim et al., 71 

2010) was used to generate two new indices – 𝑇𝐸𝑋$%&  (Eq. 3), an exponential function that does not include 72 

the crenarchaeol regio-isomer and was recommended for use across the entire temperature range of the new 73 

core top data (-3 to 30 ºC, particularly when SSTs are lower than 15 ºC), and 𝑇𝐸𝑋$%'  (Eq. 4), also 74 

exponential, and recommended for use when SSTs exceeded 15 ºC (Kim et al., 2010). 𝑇𝐸𝑋$%&  also excludes 75 

GDGT abundance data from the high-temperature regimes of the Red Sea, which are somewhat anomalous 76 

and likely related to salinity effects on community composition in this region (Trommer et al., 2009, Kim 77 

et al. 2010).  78 

 79 

𝑇𝐸𝑋$%& = 𝑙𝑜𝑔, [./.01]
[./.03]4[./.01]4[./.05]

6  Eq. 3 80 

 81 

 82 

𝑇𝐸𝑋$%' = 𝑙𝑜𝑔, [./.01]4[./.05}4[89:;<]
[./.03]4[./.01]4[./.05]4[89:;<]

6  Eq. 4 83 

 84 

Despite the recommendations of Kim et al. (2010), bBoth 𝑇𝐸𝑋$%'  and 𝑇𝐸𝑋$%&  were widely used and tested 85 

across a range of temperatures and palaeoenvironments, including comparisons against other 86 

palaeotemperature proxy systems (Hollis et al. 2012; Lunt et al. 2012; Bijl et al. 2013; Dunkley Jones et al. 87 

2013; Zhang et al., 2014; Seki et al., 2014; Douglas et al., 2014; Linnert et al., 2014; Hertzberg et al., 2016). 88 

The rationale was that both 𝑇𝐸𝑋$%&  and 𝑇𝐸𝑋$%'  were calibrated across a full temperature range, with the 89 

exception of the inclusion or exclusion of Red Sea core-top data. The difference in model fit between the 90 

two proxy formulations to the calibration dataset was also minor (Kim et al. 2010). In certain environments, 91 

however, 𝑇𝐸𝑋$%&  was subject to significant variability in derived temperatures that were not apparent in 92 

𝑇𝐸𝑋$%'  (Taylor et al., 2013). This was mostly due to changing GDGT2 to GDGT3 ratios, which strongly 93 

influence 𝑇𝐸𝑋$%& , and may be related to local non-thermal environmental conditions at the site of GDGT 94 

production, and deep-water lipid production, (Taylor et al., 2013). As a result, 𝑇𝐸𝑋$%&  is no longer regarded 95 

as an appropriate tool for palaeotemperature reconstructions, except in limited Polar conditions (Kim et al., 96 

2010; Tierney, 2012).  97 

 98 

Ongoing work to strengthen GDGT-based paleothemometry focus on three fundamental key issues have 99 

troubled the TEX86 proxy. The first is a concern about undetected non-analogue palaeo-GDGT 100 

assemblages, for which the modern calibration data set is inadequate to provide a robust temperature 101 
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estimation. Although various screening protocols, with independent indices and thresholds, have been 102 

proposed to test for an excessive influence of terrestrial lipids (Branched and Isoprenoid Tetraether, BIT 103 

index; Hopmans et al., 2004), within sediment methanogenesis (Methane Index, ‘MI’; Zhang et al., 2011) 104 

and non-thermal effects such as nutrient levels and archaeal community structure to impact the weighted 105 

average of cyclopentane moieties (Ring Index, ‘RI;’ Zhang et al., 2016), these do not provide a fundamental 106 

measure of the proximity between GDGT abundance distributions in the modern, and ancient GDGT 107 

abundance distributions recorded in sediment samples. The fundamental question remains – are measured 108 

ancient assemblages of GDGT compounds anything like the modern assemblages, from which 109 

palaeotemperatures are being estimated? Understanding this question cannot easily be addressed with the 110 

use of indices – TEX86 itself, or BIT and MI – that collapse the dimensionality of GDGT abundance 111 

relationships onto a single axis of variation. 112 

 113 

Second, from the earliest applications of the TEX86 proxy to deep-time warm climate states (Schouten et 114 

al., 2003) it was recognized that reconstructed temperatures beyond the range of the modern calibration 115 

(>30 ºC), were highly sensitive to model choice within the modern calibration range. Thus, Schouten et al. 116 

(2003) restricted their calibration data for deep-time temperature estimates to core-top data in the modern 117 

with mean annual SSTs over 20 ºC. However, this problem of model choice, and its impact on temperature 118 

estimation beyond the modern calibration range, persists (Hollis et al. 2019), with current arguments 119 

focused on whether there is an exponential (e.g. Cramwinckel et al., 2018) or linear (Tierney & Tingley, 120 

2015) dependency of TEX86 on SSTs, and the effect of these models on temperature estimates over 30 ºC.  121 

 122 

Culture and mesocosm studies are sometimes cited in support of extrapolations beyond the modern 123 

calibration range when reconstructing ancient SSTs (Kim et al., 2010, Hollis et al., 2019). While there is a 124 

basic underlying trend for more rings within GDGT structures at higher temperatures (Zhang et al. 2015; 125 

Qin et al., 2015), the lack of a uniform response to archaeal GDGT production in response to increasing 126 

growth temperatures (e.g., Elling et al., 2015; Qin et al., 2015) suggests that this does not easily translate 127 

into a simple linear model at the community scale (i.e. the core top calibration dataset). Wuchter et al. 128 

(2004) and Schouten et al. (2007) show a compiled linear calibration of TEX86 against incubation 129 

temperature (up to 40ºC in the case of Schouten et al., 2007) based on strains that were enriched from 130 

surface seawater collected from the North Sea and Indian Ocean respectively. Like Qin et al. (2015), we 131 

note the non-linear nature of the individual experiments in Wuchter et al. (see Fig. 5 in Wuchter et al. 204). 132 

Moreover, the relatively lower Cren’ in these studies yield a very different intercept and slope compared to 133 

core-top calibrations (e.g. Kim et al. 2010) making direct comparisons problematic.  134 

 135 
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More recently, Elling et al. (2015) studied three different strains (N. maritimus, NAOA6, NAOA2) isolated 136 

from open ocean surface waters (South Atlantic) whilst Qin et al., (2015) studied a culture of N. maritimus 137 

and three N. maritimus-like strains isolated from Puget Sound. All strains are of marine, mesophilic, 138 

Thaumarchaeota within Marine Group 1 (equivalent to Crenarchaeota Group 1). Both of these papers 139 

clearly demonstrate distinctly different responses of membrane lipid composition to temperature in these 140 

strains, whilst Qin et al. (2015) additionally show that oxygen concentration is at least as important as 141 

temperature in controlling TEX86 values in culture. The impact of Thaumarchaeota community change on 142 

TEX86 in palaeoclimate studies is further suggested by the downcore study of Polik et al (2019). All of these 143 

culture studies, made on marine, mesophilic archaea demonstrate how community composition may have 144 

a significant impact on measured environmental TEX86 signatures.  145 

 146 

It is clear from the above discussion that there is evidence for more complex responses in GDGT-production 147 

to growth temperature in some instances, and across distinct strains of archaea (Elling et al., 2015). More 148 

fundamentally, In natural systems, it is likely that aggregated GDGT abundance variations in response to 149 

growth temperatures result from changing compositions of archaeal populations as well as the physiological 150 

response of individual strains to growth temperature (Elling et al. 2015). For instance, a multiproxy study 151 

of Mediterranean Pliocene-Pleistocene sapropels indicates that specific distributions of archaeal lipids 152 

might be reflective of temporal changes in thaumarchaeael communities rather than temperature alone 153 

(Polik et al., 2018). Indeed, the potential influence of community switching on GDGT composition can be 154 

seen in mesocosm studies, with different species preferentially thriving at different growth temperatures 155 

(e.g., Schouten et al., 2007). To use the responses of single, selected archaeal strains in culture to validate 156 

a particular model of community-level responses to growth temperature is problematic even in the modern 157 

system (Elling et al., 2015). For deep time applications it is even more difficult, where there is no 158 

independent constraint on the archaeal strains dominating production or their evolution through time (Elling 159 

et al. 2015). What is notable, however, is that the Ring Index (RI) - calculated using all commonly measured 160 

GDGTs (Zhang et al., 2016) – has a more robust relationship with culture temperature between archaeal 161 

strains than TEX86, indicating a potential loss of information within the TEX86 index (Elling et al. 2015). 162 

 163 

Finally, the original uses of the under some conditions, the original TEX86 proxy had a relatively poor 164 

representation of the true uncertainty associated with palaeotemperature estimates, as they it included no 165 

assessment of non-analogue behavior relative to the modern core-top data. Instead, uncertainty was 166 

typically based on the residuals on the modern calibration, with no reference to the relationship between 167 

GDGT distributions of an ancient sample and the modern calibration data. An improved Bayesian 168 

uncertainty model “BAYSPAR” is now in widespread use for SST estimation, which models TEX86 to 169 
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SSTs regression parameters, and associated uncertainty, as spatially varying functions (Tierney and 170 

Tingley, 2015). The Bayesian approach, as with all approaches based on the TEX86 index, however, still 171 

does not include an uncertainty that reflects how well modelled ancient GDGT assemblages are by the 172 

modern calibration – i.e. the degree to which they are non-analogue - as it still functions on one-dimensional 173 

TEX86 index values. 174 

 175 

All empirical calibrations of GDGT-based proxies assume that mean annual SST is the master variable on 176 

GDGT assemblages both today and in the past. Mean annual SST, however, is strongly correlated with 177 

many other environmental variables (e.g., seasonality, pH, mixed layer depth, and productivity). In the 178 

modern calibration dataset, mean annual SST shows the strongest correlation with TEX86 index (Schouten 179 

et al., 2002), but this does not preclude an important (but undetectable) influence of these other 180 

environmental variables. The use of empirical GDGT calibrations to infer ancient sea surface temperatures 181 

thus implicitly assumes that the relationships between mean annual SST and all other GDGT-influencing 182 

variables are invariant through time. This assumption is inescapable until, and unless, a more complete 183 

biological mechanistic model of GDGT production emerges.  184 

 185 

Here, we return to the primary modern core-top GDGT assemblage data (Tierney and Tingley, 2015), and 186 

systematically explore the relationships between the modern GDGT distributions and surface ocean 187 

temperatures using powerful mathematical tools. These tools can investigate correlations without prior 188 

assumptions on the best form of relationship or a priori selection of GDGT compounds to be used. This 189 

analysis is then extended through the exploration of the relationships between the modern core top GDGT 190 

distributions and two compilations of ancient GDGT datasets, one from the Eocene (Inglis et al. 2015) and 191 

one from the Cretaceous (O’Brien et al. 2017). We explore simple metrics to answer the fundamental 192 

question – are modern core-top GDGT distributions good analogues for ancient distributions? We propose 193 

the first robust methodology to answer this question, and so screen for significantly non-analogue palaeo-194 

assemblages. From this, we go on to derive a new machine learning approach ‘OPTiMAL’ (Optimised 195 

Palaeothermometry from Tetraethers via MAchine Learning) for reconstructing SSTs from GDGT 196 

datasets, which outperforms previous GDGT palaeothermometers and includes robust error estimates that, 197 

for the first time, accounts for model uncertainty.  198 

 199 

2. Models for GDGT-based Temperature Reconstruction 200 

 201 

Our new analyses use the modern core-top data compilation, and satellite-derived estimates of SSTs, of 202 

Tierney and Tingley (2015) as well as compilations of Eocene (Inglis et al. 2015) and Cretaceous (O’Brien 203 
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et al. 2017) GDGT assemblages. Within these fossil assemblages, only data points with full characterisation 204 

of individual GDGT relative abundances were used. We also note that, in the first instance, all available 205 

fossil assemblage data were included, although later comparisons between BAYSPAR and our new 206 

temperature predictor excludes fossil data that was regarded as unreliable based on standard pre-screening 207 

indices, as noted within the original compilations (Inglis et al. 2015; O’Brien et al. 2017). All data used in 208 

this study are tabulated in the supplementary information.  209 

 210 

In order to enable meaningful comparison between new and existing temperature predictors, we use the 211 

following consistent procedure for evaluating all predictors throughout this paper. We divide the modern 212 

core-top data set of 854 data points into 85 validation data points (chosen randomly) and 769 calibration 213 

points (as we require fractional abundances for all 6 commonly measured GDGTs, we excluded those data 214 

points for which these values were not reported). We calibrate the predictor on the calibration points, and 215 

then judge its performance on the validation points using the root mean square error: 216 

 217 

𝛿𝑇 =	?
1

𝑁B − 1
	D(𝑇F(𝑥H) − 𝑇(𝑥H))1
JK

HL3

 218 

           (Eq. 5) 219 

 220 

where the sum is taken over each of Nv = 85 validation points, T is the known measured temperature (which 221 

we refer to as the true temperature) and 𝑇F is the predicted temperature. For conciseness, we refer to 𝛿𝑇 as 222 

the predictor standard error. It is useful to compare the accuracy of the predictor to the standard deviation 223 

of all temperatures in the data set 𝜎𝑇, which corresponds to using the mean temperature as the predictor in 224 

Equation 1; for the modern data set, 𝜎𝑇= 10.0 ºC. The coefficient of determination, R2, provides a measure 225 

of the fraction of the fluctuation in the temperature explained by the predictor. To facilitate performance 226 

comparisons between different methods of predicting temperature, we use the same subset of validation 227 

points for all analyses. To avoid sensitivity to the choice of validation points, we repeat the calibration-228 

validation procedure for 10 random choices from the validation dataset.  229 

 230 

2.1 Nearest neighbours 231 

 232 

We begin with an agnostic approach to using some combination of the proportions of each of the six 233 

observables - GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol and cren’, which we will jointly refer 234 

to as GDGTs - to predict sea surface temperatures. Whatever functional form the predictor might take, it 235 
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can only provide accurate temperature predictions if nearby points in the six-dimensional observable space 236 

- i.e. the distribution of all of the six commonly reported GDGTs - can be translated to nearby points in 237 

temperature space. Conversely, if nearby points in the observable space correspond to vastly different 238 

temperatures, then no predictor, regardless of which combination of GDGTs are used, will be able to 239 

provide a useful temperature estimate. In other words, the structuring of GDGT distributions within multi-240 

dimensional space, must have some correspondence to the temperatures of formation (or rather the mean 241 

annual SSTs used for standard calibrations).  242 

 243 

We therefore consider the prediction offered by the temperature at the nearest point in the GDGT parameter 244 

space. Of course, nearness depends on the choice of the distance metric. For example, it may be that sea 245 

surface temperatures are very sensitive to a particular GDGT, so even a small change in that GDGT 246 

corresponds to a significant distance, and rather insensitive to another, meaning that even with a large 247 

difference in the nominal value of that GDGT the distance is insignificant. In the first instance, we use a 248 

very simple Euclidian distance estimate Dx,y where the distance along each GDGT is normalised by the total 249 

spread in that GDGT across the entire data set. This normalisation ensures that a dimensionless distance 250 

estimate can be produced even when observables have very different dynamical ranges, or even different 251 

units. Thus, the normalised distance D between parameter data points x and y is 252 

 253 

𝐷O,Q	1 	≡D
(𝐺𝐷𝐺𝑇T(𝑥) − 𝐺𝐷𝐺𝑇T(𝑦))1

𝑣𝑎𝑟(𝐺𝐷𝐺𝑇T)

Y

TLZ

	254 

           (Eq. 7) 255 

 256 
We show the distribution of nearest distances of points in the modern data set, excluding the sample itself, 257 
in (Fig. 1).  258 
 259 
The nearest-sample temperature predictor is 𝑇Fnearest (x) = T(y) where y is the nearest point to x over the 260 

calibration data set, i.e., one that minimises Dx,y. Fig. 2 shows the scatter in the predicted temperature when 261 

using the temperature of the nearest data point to make the prediction. Overall, the failure of the nearest-262 

neighbour predictor to provide accurate temperature estimates even when the normalised distance to the 263 

nearest point is small, Dx,y ≤ 0.5, casts doubt on the possibility of designing an accurate predictor for 264 

temperature based on GDGT observations. This is most likely due to additional environmental controls on 265 

GDGT abundance distributions in natural systems, in particular the water depth (Zhang and Liu, 2018), 266 

nutrient availability (Hurley et al., 2016; Polik et al., 2018; Park et al., 2018), seasonality, growth rate 267 

(Elling et al., 2014; Hurley et al., 2016) and ecosystem composition (Polik et al., 2018), that obscure a 268 

predominant relationship to mean annual SSTs.  269 
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 270 

On the other hand, the standard error for the nearest-neighbour temperature predictor is 𝛿𝑇nearest = 4.5 ºC. 271 

This is less than half of the standard deviation 𝜎𝑇 in the temperature values across the modern data set. 272 

Thus, the temperatures corresponding to nearby points in GDGT observable space also cluster in 273 

temperature space. Consequently, there is hope that we can make some useful, if imperfect, temperature 274 

predictions. The value of 𝛿𝑇nearest will also serve as a useful benchmark in this design: while we may hope 275 

to do better by, say, suitably averaging over multiple nearby calibration points rather than adopting the 276 

temperature at one nearest point as a predictor, any method that performs worse than the nearest-neighbour 277 

predictor is clearly suboptimal.  278 

 279 

2.2 TEX86 and Bayesian applications 280 

 281 

The TEX86 index reduces the six-dimensional observable GDGT space to a single number. While this has 282 

the advantage of convenience for manipulation and the derivation of simple analytic formulae for 283 

predictors, as illustrated below, this approach has one critical disadvantage: it wastes significant information 284 

embedded in the hard-earned GDGT distribution data. Fig. 3 illustrates both the advantage and disadvantage 285 

of TEX86. On the one hand, there is a clear correlation between TEX86 and temperature (top panel of Fig. 286 

3), with a correlation coefficient of 0.81 corresponding to an overwhelming statistical significance of 10-287 
198. On the other hand, very similar TEX86 values can correspond to very different temperatures. We can 288 

apply the nearest-neighbour temperature prediction approach to the TEX86 value alone rather than the full 289 

GDGT parameter space; this predictor yields a large standard error of 𝛿𝑇nearestTEX86 = 8.0 ºC (bottom panel 290 

of Fig. 3). While smaller than σT, this is significantly larger than 𝛿𝑇nearest (Fig. 2), consistent with the loss 291 

of information in TEX86. We therefore do not expect other predictors based on TEX86 to perform as well as 292 

those based on the full available data set. 293 

 294 

Indeed, this is what we find when we consider predictors of the form 𝑇F	1/TEX = a + b/TEX86 and 𝑇FTEXH = c 295 

+ d logTEX86 (Liu et al., 2009; Kim et al., 2010), i.e., the established relationships between GDGT 296 

distributions and SST. We fit the free parameters a, b, c, and d by minimising the sum of squares of the 297 

residuals over the calibration data sets (least squares regression). We find that δT1/TEX = 6.1 ºC (note that 298 

this is slightly better than using the fixed values of a and b from (Kim et al., 2010), which yield δT1/TEX = 299 

6.2 ºC). We note that the corresponding R2 value associated with these TEX86 based predictors is 0.64, 300 

which is lower than the R2 values in Kim et al. (2010). We attribute this to the fact that we are using a larger 301 

dataset based on Tierney and Tingley (2015), including data from the Red Sea (Kim et al. 2010).  302 

 303 
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Tierney and Tingley (2014) proposed a more sophisticated approach to obtaining the transfer function from 304 

TEX86 to temperature, continuing to use simple linear regression, but with the addition of Gaussian 305 

processes to model spatial variability in the temperature-TEX86 relationship and working with a forward 306 

model which is subsequently inverted to produce temperature predictions. This forward model 307 

‘BAYSPAR’ is capable of generating an infinite number of calibration curves relating TEX86 to sea surface 308 

temperatures (Tierney and Tingley, 2014). In order to derive a calibration for a specific dataset, the user 309 

edits a range of parameters which vary depending on whether the dataset in question is from the relatively 310 

recent past or deep time (Tierney and Tingley, 2014). For deep time applications, the authors propose a 311 

modern analogue-type approach, in which they search the modern data for 20º x 20º grid boxes containing 312 

`nearby' TEX86 measurements and subsequently apply linear regression models calibrated on the analogous 313 

samples for making predictions. 314 

 315 

However, along with the simpler TEX86-based models described above, this approach still suffers from the 316 

reduction of a six-dimensional data set to a single number. Therefore, it is not surprising that even the 317 

simplest nearest-neighbour predictor (such as the one described above) that makes use of the full six-318 

dimensional dataset outperforms single-dimensional forward modelling approaches. Additionally, 319 

uncertainty estimates do not account for the fact that TEX86 is, fundamentally, an empirical proxy, and so 320 

its validity outside the range of the modern calibration is not guaranteed. This is a fundamental issue for 321 

attempts to reconstruct surface temperatures during Greenhouse climate states, when tropical and sub-322 

tropical SSTs were likely hotter than those observed in the modern oceans. 323 

 324 

2.3 Machine learning Approaches – Random Forests 325 

 326 

There are a number of options to improve on nearest-neighbour predictions using machine learning 327 

techniques such as artificial neural networks and random forests. These flexible, non-parametric models 328 

would ideally be based on the underlying processes driving the GDGT response to temperature, but since 329 

these processes remain unconstrained at present, we choose to deploy models which can reasonably reflect 330 

predictive uncertainty and will be sufficiently adaptable in future (as new information regarding controls 331 

on GDGTs emerge). These machine learning approaches are all based on the idea of training a predictor by 332 

fitting a set of coefficients in a sufficiently complex multi-layer model in order to minimise residuals on 333 

the calibration data set. As an example of the power of this approach, we train a random forest of decision 334 

trees with 100 learning cycles using a least-squares boosting to fit the regression ensemble. Figure 4 shows 335 

the prediction accuracy for this random forest implementation. This machine learning predictor yields δT = 336 

4.1 ºC degrees, outperforming the naive nearest-neighbour predictor by effectively applying a suitable 337 
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weighted average over multiple near neighbours. This corresponds to a very respectable R2 = 0.83, meaning 338 

that 83% of the variation in the observed temperature is successfully explained by our GDGT-based model. 339 

 340 

2.4 Gaussian Process Regression 341 

 342 

One downside of the random forest predictor is the difficulty of accurately estimating the uncertainty on 343 

the prediction (Mentch and Hooker, 2016), although this is possible with, e.g., a bootstrapping approach 344 

(Coulston et al., 2016). Fortunately, Gaussian process (GP) regression provides a robust alternative. For 345 

full details on GP regression refer to Williams and Rasmussen (2006) and Rasmussen and Nickisch (2010). 346 

Loosely, the objective here is to search among a large space of smoothly varying functions of GDGT 347 

compositions for those functions which adequately describe temperature variability. This, essentially, is a 348 

way of combining information from all calibration data points, not just the nearest neighbours, assigning 349 

different weights to different calibration points depending on their utility in predicting the temperature at 350 

the input of interest. The trained Gaussian process learns the best choice of weights to fit the data. Typically, 351 

the GP will give greater weight to closer points, but, as we discuss below, it will learn the appropriate 352 

distance metric on the multi-dimensional GDGT input space.  353 

 354 

The weighting coefficients learned by the GP emulator represent a covariance matrix on the GDGT 355 

parameter space. We can use this as a distance metric to provide meaningfully normalised distances 356 

between points, removing the arbitrariness from the nearest neighbour distance (Dx,y) definition used earlier, 357 

and this is the basis of the Dnearest metric described below. If the temperature is insensitive to a particular 358 

GDGT input coordinate (i.e., the value of that input has a minimal effect on the temperature) then points 359 

within GDGT space that have large differences in absolute input values in that coordinate are still near. We 360 

find that Cren has very limited predictive power, and so points with large Cren differences are close in term 361 

of the normalised distance.  Conversely, if the temperature is sensitive to small changes in a particular 362 

GDGT variant, then points with relatively nearby absolute input values in that coordinate are still distant. 363 

We find that most GDGT parameters other than Cren are comparably useful in predicting temperature, with 364 

GDGT-0 and GDGT-3 marginally the most informative. We considered whether interdependency of 365 

percentage GDGT data could influence our calculations. Our analysis suggests that there are only five free 366 

parameters. Machine learning tools should be able to pick up this correlation and effectively ignore one of 367 

the parameters (or one parameter combination). For example, we do find that the GP emulator has a very 368 

broad kernel in at least one dimension, signaling this. In principle, we could have considered only five of 369 

six parameters. The smaller scale of some of the parameters is automatically accounted for by the trained 370 

kernel size in GP regression, or by normalising to the appropriate dynamical range in our initial 371 
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investigation. In short, the accuracy of Gaussian process regression is not adversely affected by correlations 372 

between inputs (Rasmussen & Williams, 2006). Significantly correlated inputs that do not bring in new 373 

predictive power are appropriately down-weighted. 374 

 375 

We use a Gaussian process model with a squared exponential kernel with automatic relevance 376 

determination (ARD) to allow for a separate length scale for each GDGT predictor. We fit the GP 377 

parameters with an optimiser based on quasi-Newton approximation to the Hessian. Prediction accuracy is 378 

shown in Figure 5, and we find that δT = 3.72 ºC, which is a substantial improvement over the existing 379 

indices, at least on the modern data. As mentioned, the GP framework provides a natural quantification of 380 

predictive uncertainty, which includes uncertainty about the learned function. This is in contrast to, for 381 

example, the TEX86 proxy, whereby the uncertainty associated with the selection of the particular functional 382 

form used for predictions is ignored. While Tierney & Tingley (2014) also use Gaussian processes to model 383 

uncertainty, they model spatial variability in the TEX86-temperature relationship with a Gaussian process 384 

prior. While this is a valuable approach to understand regional effects in the TEX86-temperature 385 

relationship, it does not deal with the `non-analogue’ situations we are concerned with in this paper.  386 

 387 

2.5 Data Structure 388 

 389 

The random forest (Section 2.3) and GPR approaches (Section 2.4) are agnostic about any underlying bio-390 

physical model that might impart the observed temperature-dependence on GDGT relative abundances 391 

produced by archaea. They are essentially optimized interpolation tools for mapping correlations between 392 

temperature and GDGT abundances within the range of the modern calibration data set; they can make no 393 

sensible inference about the behavior of this relationship outside of the range of this training data. To move 394 

from interpolation within, to extrapolation beyond, the modern calibration requires an understanding of, 395 

and model for, the temperature-dependence of GDGT production. To explore these relationships and the 396 

extent to which the ancient and modern data reside in a coherent relationship within GDGT space, we 397 

employed two forms of dimensionality reduction to enable visualisation of the data in two or three 398 

dimensions. The fundamental point is that if temperature is the dominant control, all of the data should lie 399 

approximately on a one-dimensional curve in GDGT space, and the arclength along this curve should 400 

correspond to temperature; we will revisit this point below.  401 

 402 

We first employed a version of principal component analysis (PCA) tailored to compositional data 403 

(Aitcheson, 1982, 1983; Aitcheston and Greenacre, 2002; Filzmoser et al., 2009a; Filzmoser et al., 2009b; 404 

Filzmoser et al., 2012). Taking into account the compositional nature of the data is important because the 405 



 13 

sum-to-one constraint induces correlations between variables which are not accounted for by classical PCA. 406 

Furthermore, apparently nonlinear structure in Euclidean space often corresponds to linearity in the simplex 407 

(i.e. the restricted space in which all elements sum to one) (Egozcue et al., 2003). Figure 6 shows the 408 

modern, Eocene and Cretaceous data projected onto the first two principal components. Aside from the 409 

obvious outlying cluster of Cretaceous data, characterised by GDGT-3 fractions above 0.6, the bulk of the 410 

data occupy a two-dimensional point cloud with a small amount of curvature. The large majority of the 411 

Cretaceous data has more positive PC1 values relative to the modern data. 412 

 413 

We also explored the data using diffusion maps (Coifman et al., 2005; Haghverdi et al., 2015), a nonlinear 414 

dimensionality reduction tool designed to extract the dominant modes of variability in the data. Such 415 

diffusion maps have been successfully used to infer latent variables that can explain patterns of gene 416 

expression. In the case of biological organisms, this latent variable is commonly developmental age (called 417 

pseudo-time) (Haghverdi et al., 2016). In our case, the assumption would be that this latent variable 418 

corresponds to temperature. Inspection of the eigenvalues of the diffusion map transition matrix suggests 419 

that four diffusion components are adequate to represent the data; we plot the second, third and fourth of 420 

these components in Figure 7 for the modern and ancient data. The separate clusters marked `A' are the 421 

outlying Cretaceous points with high GDGT-3 values. The bulk of the modern data lies on the branch 422 

marked `B', while the bulk of the Cretaceous data lies on the branch marked `C'. Notably, the majority of 423 

the modern points lying on branch C are from the Red Sea, which suggests that the Red Sea data is essential 424 

for understanding ancient climates (particularly Cretaceous climates). 425 

 426 

The relationship between the first diffusion component and TEX86 for all data is shown in Figure 8. There 427 

is a clear correlation, despite the presence of some outlying Cretaceous points, some of which are not shown 428 

because they lie so far outside the majority data range within this projection. This suggests that TEX86 is, 429 

in one sense, a natural one-dimensional representation of the data. We also plot the first diffusion 430 

component for the modern data as a function of temperature (Figure 9). We see a similar pattern emerging 431 

to that displayed by TEX86 - there is little sensitivity to temperature below 15 ºC, and between ~20 and 25 432 

ºC. An interesting avenue for future research might be to explore the temperature-GDGT system from a 433 

dynamical systems perspective, i.e. use simple mechanistic mathematical models to explore the 434 

temperature-dependence of steady-state GDGT distributions. It may be that such models suggest that only 435 

a few steady-states exist, and that temperature is a bifurcation parameter, i.e. it controls the switch between 436 

the steady states. Note also the downward slope in the residual pattern in Figure 4 between 0 and 15-17 437 

degrees celsius, and again at higher temperatures. This pattern is consistent with predictions that are biased 438 

towards the centre of each `cluster', i.e. a system which is not very sensitive to temperature, but can 439 
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distinguish between high and low temperatures reasonably well. This observation also links to recent culture 440 

studies (Elling et al., 2015) and Pliocene-Pleistocene sapropel data (Polik et al., 2018), which support the 441 

existence of discrete populations with unique GDGT-temperature relationships and that temporal changes 442 

in population over time can drive changes in TEX86. 443 

 444 

2.6 Forward Modelling 445 

 446 

Based on the analysis of the combined modern and ancient data structure outlined above, there appears to 447 

be some consistency to underlying trends in the overall variance of GDGT relative abundances. These 448 

trends provide some hope that models of this variance, and its relationship to sea surface temperature, within 449 

the modern dataset could be developed to predict ancient SSTs. TEX86 and BAYSPAR are such models, 450 

but they are limited by, first, the reduction of six-dimensional GDGT space to a one-dimensional index; 451 

and second, by an ad hoc model choice – linear, exponential – that does not account for uncertainty in 452 

model fit to the modern calibration data, and the resultant uncertainty in the estimation of ancient SSTs 453 

relating to model choice. To overcome these issues, we develop a forward model based on a multi-output 454 

Gaussian Process (Alvarez et al., 2012), which models GDGT compositions as functions of temperature, 455 

accounting for correlations between GDGT measurements. This model is then inverted to obtain 456 

temperatures which are compatible with a measured GDGT composition. In simple terms, we posit that a 457 

measured GDGT composition is generated by some unknown function of temperature and corrupted by 458 

noise, which may be due to measurement error or some unmodelled particularity of the environment in 459 

which the sample was generated. We proceed by defining a large (in this case infinite) set of functions of 460 

temperature to explore and compare them to the available data, throwing away those functions which do 461 

not adequately fit the data. This means, of course, that the behaviour of the functions we accept is allowed 462 

to vary more widely outside the range of the modern data than within it. With no mechanistic underpinning, 463 

choosing only one function (such as the inverse of TEX86) based on how well it fits the modern data grossly 464 

underestimates our uncertainty about temperature where no modern analogue is available. 465 

 466 

The forward modelling approach is similar to that of Haslett et al. (2006), who argue that it is preferable to 467 

model measured compositions as functions of climate, before probabilistically inverting the model to infer 468 

plausible climates given a composition. The cost of modelling the data in this more natural way is the loss 469 

of degrees of freedom -- we are now attempting to fit a one-dimensional line through a multidimensional 470 

point cloud rather than fit a multidimensional surface to the GDGT data, which means that the predictive 471 

power of the model suffers, at least on the modern data. The existing BAYSPAR calibration also specifies 472 

the model in the forward direction, however while BAYSPAR does model spatial variability it assumes a 473 
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monotonic relationship between TEX and SST, only accounting for uncertainties on the parameters within 474 

the model, rather than any systematic uncertainty in the model itself. As with all GP models, the choice of 475 

kernel has a substantial impact on predictions (and their associated uncertainty) outside the range of the 476 

modern data, where predictions revert to the prior implied by the kernel. Given that we have no mechanistic 477 

model for the data generating process, we recommend the use of kernels which do not impose strong prior 478 

assumptions on the form of the GDGT-temperature relationship (e.g. kernels with a linear component) and 479 

thus reasonably represent model uncertainty outside the range of the modern data. We choose a zero-mean 480 

Matern 3/2 kernel for the applications below. Note, however, that since we are working in ilr-transformed 481 

coordinates, this corresponds to a prior assumption of uniform compositions at all temperatures, i.e. all 482 

components are equally abundant.  483 

 484 

The residuals for the forward model are shown in Figure 10. The clear pattern in the residuals does not 485 

necessarily indicate model misspecification, since no explicit noise model is specified for temperatures. 486 

Predictive distributions are to be interpreted in the Bayesian sense, in that they represent a 'degree of belief' 487 

in temperatures given the model and the modern data. The residual pattern is similar to that of the random 488 

forest (Figure 4) with two clear downward slopes, suggesting again that the data are clustered into 489 

temperatures above and below 16-17 ºC, and that predictions tend towards temperatures at the centres of 490 

these clusters. 491 

 492 

An advantage of the forward modelling approach is that the inversion can incorporate substantive prior 493 

information about temperatures for individual data points. In particular, other proxy systems can be used to 494 

elicit prior distributions over temperatures to constrain GDGT-based predictions, particularly when 495 

attempting to reconstruct ancient climates with no modern analogue in GDGT-space. We emphasise that 496 

outside the range of the modern data, the utility of the models is almost solely due to the prior information 497 

included in the reconstruction. At present, the only priors being used in the forward model prescribe a 498 

reasonable upper limit and lower limit on temperatures (see Supplementary Information). The only way to 499 

improve these reconstructions will be for future iterations to incorporate prior information from other 500 

proxies. It is worth noting that the predictive uncertainty, while reasonably well-described by the standard 501 

deviation in cases where ancient data lie quite close to the modern data in GDGT space, can be highly 502 

multimodal (Fig. 11). This is the case when estimates are significantly outside of the modern calibration 503 

dataset, such as low latitude data in the Cretaceous, or where there is considerable scatter in the modern 504 

calibration data, for example in the low temperature range (<5 ºC). 505 

 506 

3. Non-analogue behavior and Extrapolation 507 



 16 

 508 

In principle, the predictors described above can be applied directly to ancient data, such as data from the 509 

Eocene or Cretaceous (Inglis et al., 2015; O’Brien et al., 2017). In practice, one should be careful with using 510 

models outside their domain of applicability. The machine learning tools described above, which are 511 

ultimately based on the analysis of nearby calibration data in GDGT space, are fundamentally designed for 512 

interpolation. To the extent that ancient data occupy a very different region in GDGT space, extrapolation 513 

is required, which the models do not adequately account for. The divergence between modern calibration 514 

data and ancient data is evident from Fig. 12, which shows histograms of minimum normalised distances 515 

between ‘high quality’ Eocene/Cretaceous data points (those that passed the screening tests applied by 516 

O’Brien et al., 2017 and Inglis et al., 2015) and the nearest point in the full modern data set. We strongly 517 

recommend the use of the weighted distance metric (Dnearest) as a screening method to determine whether 518 

the modern core top GDGT assemblage data is an appropriate basis for ancient SST estimation on a case-519 

by-case basis. Note that this distance measure is weighted by the scale length of the relevant parameter as 520 

estimated by the Gaussian process emulator in order to quantify the relative position of ancient GDGT 521 

assemblages to the modern core-top data. By using the GP-estimated covariance as the distance metric, we 522 

account for the sensitivity of different GDGT components to temperature. Our inference is that samples 523 

with Dnearest >0.5 are unlikely to be well constrained by any current calibration model. regardless of the 524 

calibration model or approach applied, are unlikely to generate temperature estimates that are much better 525 

than informed guesswork. In these instances, in both our GPR and Fwd models, the constraints provided 526 

by the modern calibration data set are so weak such that estimates of temperature have large uncertainty 527 

bands that are dictated by model priors; i.e. are unconstrained by the calibration data (e.g., Figure 13 and 528 

Figure 14). This uncertainty is not apparent from estimates generated by BAYSPAR or 𝑇𝐸𝑋$%'  models, 529 

although the underlying and fundamental lack of constraints are the same. While 93% of validation data 530 

points in the modern data have Dnearest <0.5, this is the case for only 33% of Eocene samples and 3% for 531 

Cretaceous samples.  532 

 533 

Where ancient GDGT distributions lie far from the modern calibration data set (Dnearest >0.5), we argue that 534 

there is no suitable set of modern analogue GDGT distributions from which to infer growth temperatures 535 

for this ancient GDGT distribution. Both the GPR and Fwd models revert to imposed priors once the 536 

distance from the modern calibration dataset increases. We propose that this is more rigorous and justified 537 

model behavior than extrapolation of TEX86 or BAYSPAR predictors to non-analogue samples far from 538 

the modern calibration data. As a result, the predictive models can only be applied to a subset of the Eocene 539 

and Cretaceous data. We also note that there are two broad, non-mutually-exclusive categories of samples 540 

that lie far from the modern calibration dataset (Dnearest >0.5), the first are samples that seem to lie ‘beyond’ 541 
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the temperature-GDGT calibration relationship, likely with (unconstrained) GDGT formation temperatures 542 

higher than the modern core-top calibrations; the second are samples with anomalous GDGT distributions 543 

lying on the margins of, or far away from the main GDGT clustering in 6-dimensional space (see outliers 544 

in Fig. 8). 545 

 546 

Given the (current) limit on natural mean annual surface ocean temperatures of ~30 ºC, extending the 547 

GDGT-temperature calibration might be possible through, 1) integration of full GDGT abundance 548 

distributions produced in high temperature culture, mesocosm or artificially warmed sea surface 549 

conditions into the models; followed by, 2) validation through robust inter-comparisons of any new 550 

GDGT palaeothermometer for high temperatures conditions with other temperature proxies from past 551 

warm climate states. As discussed in the introduction, the first approach is limited by the ability of culture 552 

or mesocosm experiments to accurately represent the true diversity and growth environments and 553 

dynamics of natural microbial populations. Such studies clearly indicate a more complex, community-554 

scale control on changing GDGT relative abundances to growth temperatures (e.g., Elling et al., 2015). 555 

Community-scale temperature dependency can be modelled relatively well with analyses of natural 556 

production preserved in core-top sediments, especially with more sophisticated model fitting, including 557 

the GPR and Fwd model presented here. Above ~30ºC, however, the behavior of even single strains of 558 

mesophilic archaea are not well-constrained by culture experiments, and the natural community-level 559 

responses above this temperature are, so far, completely unknown. While there is evidence for the 560 

temperature-sensitivity of GDGT production by thermophilic and acidophilic archaea in older papers (de 561 

Rosa et al., 1980; Gliozzi et al., 1983), recent work, characterised by more precise phylogenetic and 562 

culturing techniques show a more complex relationship between GDGT production and temperature. 563 

Elling et al., (2017) highlight that there is no correlation between TEX86 and growth temperature in a 564 

range of phylogenetically different thaumarchaeal cultures - including thermophilic species. Bale et al. 565 

(2019) recently cultured Candidatus nitrosotenuis uzonensis from the moderately thermophilic order 566 

Nitrosopumilales (that contains many mesophilic marine strains). They found no correlation between 567 

TEX86 calibrations (either the Kim et al., core-top or Wuchter et al. 2004 and Schouten et al., 2008 568 

mesocosm calibrations) with membrane lipid composition at different growth temperatures (37°C, 46°C, 569 

and 50°C) and found that phylogeny generally seems to have a stronger influence on GDGT distribution 570 

than temperature. In view of these existing data, we see no robust justification at present for the 571 

extrapolation of modern core-top calibration data sets into the unknown above 30 ºC is uncertain, 572 

although the coherent patterns apparent across GDGT space, between modern, Eocene and Cretaceous 573 

data (Figure 7), do provide some grounds for hope that the extension of GDGT palaeothermometry 574 

beyond 30ºC might be possible in future.  575 
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 576 

4. OPTiMAL and Dnearest: A more robust method for GDGT-based paleothermometry 577 

 578 

A more robust framework for GDGT-based palaeothermometry, could be achieved with a flexible 579 

predictive model that uses the full range of six GDGT relative abundances, and has transparent and robust 580 

estimates of the prediction uncertainty. In this context, the Gaussian Process Regression model (GPR; 581 

Section 2.4) outperforms the Forward model (Fwd; Section 2.6) within the modern calibration dataset and 582 

we recommend standard use of the GPR model, henceforth called OPTiMAL, over the Fwd model. Model 583 

code for the calculation of Dnearest values and OPTiMAL SST estimates (Matlab script) and the Fwd Model 584 

SST estimates (R script) are archived in the GITHUB repository, 585 

https://github.com/carbonatefan/OPTiMAL.  586 

 587 

Following Tierney and Tingley (2014) we use a reduced calibration data set, with the exclusion of Arctic 588 

data with observed SSTs less than 3ºC (“NoNorth / TT13” of Tierney and Tingley (2014)) but with the 589 

inclusion of additional core top data from Seki et al. (2014). Full details of this calibration dataset are 590 

provided in the Supplementary Information; to distinguish from the original OPTiMAL calibration data, 591 

which included the Arctic data <3ºC, we refer to the original data as “Op1” and the new calibration dataset 592 

as “Op3”. An “Op2” is also available, which is the same as Op1 except that it excludes the Seki et al. (2014) 593 

data. In sensitivity tests to a range of applications across Quaternary and deep-time datasets, calibration 594 

Op1 and Op2 performed in almost identical fashion. The performance of Op1 and Op3 were very similar 595 

in most applications, except in applications to the paleo-Arctic (see below), where the inclusion of modern 596 

Arctic calibration data (Op1) provided closer calibration constraints to the paleo-data. Although 597 

superficially the inclusion of modern Arctic data may well be beneficial for the study of high latitude 598 

palaeoclimate archives this may be regarded as beneficial, we are initially cautious as in this in these 599 

instance the deep-time paleo-data have previously been rejected because of a potential bias by non-marine 600 

inputs indicated by high BIT indices (Sluijs et al. 2020). In this case either the modern Arctic calibration 601 

data is impacted by similar non-thermal processes, generating unusual GDGT abundance patterns, which 602 

are not appropriate to use for SST calibration, or, there could be some consistency between the modern and 603 

ancient GDGT production by marine archaea in the Arctic which may help in the understanding of GDGT-604 

based paleothermometry in this unusual environment (Sluijs et al. 2020). but we recommend further 605 

investigation of the modern Artic core-top biomarker assemblages before their regular inclusion into the 606 

calibration dataset. The Dnearest methodology may prove useful in quantifying analogue and non-analogue 607 

behavior through time in such conditions. For the purposes of this study, however, we take the conservative 608 

approach, and one that maintains a more consistent calibration basis with BAYSPAR, by using OPTiMAL 609 
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calibration Op3 in the remainder of this discussion, and recommend its use in future applications of 610 

OPTiMAL. 611 

 612 

To investigate the behaviour of the new OPTiMAL model, we compare temperature predictions including 613 

uncertainties for the Eocene and Cretaceous datasets, made by OPTiMAL and the BAYSPAR methodology 614 

of Tierney and Tingley (2014) (Figures 13 and 14), using the default priors specified in the model code for 615 

the BAYSPAR estimation. The OPTiMAL model systematically estimates slightly cooler temperatures 616 

than BAYSPAR, with the biggest offsets below ~15 ºC (Figure 13). Fossil GDGT assemblages that fail the 617 

Dnearest test are shown in grey, which clearly illustrate the regression to the mean in the OPTiMAL model, 618 

whereas BAYSPAR continues to make SST predictions up to and exceeding 40 ºC for these “non-analogue” 619 

samples due to the fact that BAYSPAR assumes that higher TEX86 values equate to higher temperatures as 620 

part of the functional form of the model, whereas the GPR model is agnostic on this. A comparison of error 621 

estimation between OPTiMAL and BAYSPAR is shown in Figure 14. For most of the predictive range 622 

below the Dnearest cut-off of 0.5, OPTiMAL has smaller predicted uncertainties than BAYSPAR, especially 623 

in the lower temperature range. As Dnearest increases, i.e. as the fossil GDGT assemblage moves further from 624 

the constraints of the modern calibration dataset, the error on OPTiMAL increases, until it reaches the 625 

standard deviation of the modern calibration dataset (i.e., is completely unconstrained). In other words, 626 

OPTiMAL generates maximum likelihood SSTs with robust confidence intervals, which appropriately 627 

reflect the relative position of an ancient sample used for SST estimation and the structure of the modern 628 

calibration data set. Where there are strong constraints from near analogues in the modern data, 629 

uncertainties will be small, where there are weak constraints, uncertainty increases. In contrast, while 630 

uncertainty bounds do increase when BAYSPAR is used to extrapolate beyond the modern calibration, they 631 

are not as large as OPTiMAL because BAYSPAR assumes a linear increase in SST at higher TEX values. 632 

 633 

We also provide an initial assessment of the inter-relationship between standard screening indices and 634 

Dnearest, for the Eocene and Cretaceous compilations where the data are available to calculate these measures 635 

(Figure 15). For ease of comparison between Eocene and Cretaceous datasets and visualization of the 636 

majority of the data, extreme outliers (Dnearest > 4.0) are not shown. The metrics include the BIT index 637 

(Hopmans et al., 2004; Weijers et al., 2006), the Methane Index (MI; Zhang et al., 2011), the deviation 638 

between TEX86 and the Ring Index (DRI; Zhang et al., 2016) and the %GDGT-0 (Blaga et al., 2009; 639 

Sinninghe Damsté et al., 2012). The standard screening levels for each of these metrics, as used in previous 640 

paleo-compilations (O’Brien et al. 2017), are shown in the blue shaded areas on Figure 15 (BIT > 0.5; MI 641 

> 0.5; DRI > 0.3; %GDGT-0 > 67%) – data points within these areas fail the standard screening. Also shown 642 

on Figure 15 is the region where data pass our Dnearest screening requirement (grey shaded vertical region). 643 
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In nearly all cases GDGT assemblages that fail these traditional screening tests also have Dnearest values that 644 

exceed 0.5 – i.e. “abnormal” GDGT assemblages are well screened Dnearest. The main exception to this is 645 

the BIT index in the Eocene data set, where 15 samples have high BIT values (>0.5) but have GDGT 646 

assemblages that are close to modern analogues in the calibration dataset (Dnearest <0.5). Of these samples, 647 

9 are from the Arctic Ocean between the PETM and ETM2, an interval noted for its relatively high BIT 648 

index values (Sluijs et al. 2020), 3 are from the Eocene-Oligocene transition of ODP Site 1218 (eastern 649 

Equatorial Pacific) (Liu et al. 2009), 2 are from the middle Eocene of Seymour Island (Douglas et al. 2014), 650 

and 1 is from the late Eocene of DSDP Site 511, which has been already noted as an individual sample with 651 

anomalous high BIT in this dataset (Liu et al. 2009; Inglis et al. 2015). Although high BIT at ODP Site 652 

1218 has been inferred to represent “relatively high terrestrial input” (Inglis et al. 2015) this seems unusual 653 

for a fully pelagic site situated on oceanic crust >3000 km away from the nearest continental landmass. 654 

Interpreting high BIT values as exclusively caused by terrestrial organic components appears problematic 655 

in this instance, especially as Dnearest <0.5 give some assurance that these GDGT assemblages from ODP 656 

Site 1218 are well-modelled by the modern calibration dataset. GDGT assemblages from Seymour Island 657 

associated with high BIT values (>0.4) appear to have an impact on the TEX86
H SST proxy (Inglis et al. 658 

2015), but the 2 samples that fail BIT (>0.5) but pass Dnearest (<0.5) give OPTiMAL SSTs consistent (5-659 

6ºC) with the SSTs from samples that pass all other screening and Dnearest (~4-7ºC). In summary, the 660 

relationship between Dnearest and BIT suggests that BIT is not always closely coupled to GDGT assemblages 661 

that are strongly divergent from the modern calibration dataset. 662 

 663 

With respect to the other screening indices there are clear indications that increased distance from the 664 

modern calibration (increased Dnearest) is associated with a trend towards the “thresholds of failure” in the 665 

screening indices. This pattern is most clear with the DRI in both the Cretaceous and the Eocene data, as 666 

increasing numbers of samples fail DRI as Dnearest increases. This supports DRI as a robust methodology for 667 

identifying samples that strongly diverge from the expected temperature-dependence of GDGT 668 

assemblages as modelled by TEX86 in the modern calibration dataset. There are, however, samples that pass 669 

Dnearest <0.5 but fail DRI in both the Eocene and Cretaceous datasets – these must have “near neighbours” 670 

in the modern calibration data, but yet have a temperature-sensitivity that is less well-modelled by TEX86 671 

(divergence between RI and TEX86). Conversely there are many Eocene and Cretaceous data points with 672 

DRI < 0.3, but which fail Dnearest (>0.5). These data most likely represent GDGT assemblages formed at 673 

high temperatures, beyond the range of the modern calibration data. 674 

  675 

To investigate these behaviours requires the publication of the full range GDGT abundance data. Whilst 676 

key compilations of Eocene and Cretaceous GDGT data have strongly encouraged the release of such 677 
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datasets (Lunt et al. 2012; Dunkley Jones et al. 2013; Inglis et al. 2015; O’Brien et al. 2017), most Neogene 678 

studies only publish TEX86 values. Without full GDGT assemblage data neither OPTiMAL nor other 679 

detailed assessments of GDGT behaviour and type can be made, and we would strongly encourage authors, 680 

reviewers and editors to ensure the publication of full GDGT assemblages in future. 681 

 682 

Finally, to test the behavior of OPTiMAL within established SST time series, we provide three examples 683 

two from the late Pleistocene to Holocene (Figure 16) and one from the Eocene (Figures 17 and 18). For 684 

the Pleistocene to Holocene examples OPTiMAL SSTs are shown against estimates from BAYSPAR and 685 

the alkenone-based Uk’
37 temperature proxy. The first of these timeseries is from GeoB 7702-3 in the 686 

Eastern Mediterranean and spans the last 26 kyr, including data spanning Termination I (Castañeda et al., 687 

2010). The second is from ODP Site 1146 in the South China Sea and spans the last 350 kyr (Thomas et al. 688 

2014). In both records the long-term dynamics are consistent between the independent Uk’
37 SST proxy and 689 

both BAYSPAR and OPTiMAL. In the Eastern Mediterranean OPTiMAL SSTs are slightly cooler in the 690 

glacial and warmer in the Holocene than the other proxies. In the South China Sea, OPTiMAL is again 691 

cooler than BAYSPAR during glacial intervals, but at this location is in closer agreement than BAYSPAR 692 

with the Uk’
37 SST proxy through most of the record. In both these examples, we show the 5th and 95th 693 

percentiles for OPTiMAL and those reported by the BAYSPAR methodology. 694 

 695 

The final example is from the latest Paleocene to early Eocene of IODP Expedition 302 Hole 4A on 696 

Lomonosov Ridge (Sluijs et al. 2006; Sluijs et al. 2009; Sluijs et al. 2020). This site is useful as it has been 697 

the focus of detailed reassessment and reanalysis, using most of the available screening methodologies to 698 

detect aberrant GDGT assemblages (Sluijs et al. 2020). Here we use this recently published data to compare 699 

the new Dnearest screening metric against multiple other screening protocols (Figure 17). We also show both 700 

Dnearest values and OPTiMAL SST estimates for two models – one with modern Arctic data with SST < 3ºC 701 

included in the calibration (OPTiMALArctic; equivalent to calibration dataset Op1 first present by Eley et al. 702 

2019) and one with this data excluded (OPTiMALnoArctic; equivalent to the new calibration dataset Op3). It 703 

is clear from the pattern of Dnearest for these two options, that the inclusion of modern Arctic data provides 704 

more calibration data that are closer to the Eocene paleo-Arctic, to the extent that substantially more 705 

samples pass the Dnearest < 0.5 constraint, especially in pre-ETM2 interval from ~372 to 376 mcd. This 706 

interval contains, however, samples with the highest BIT values of the succession (> 0.4), and elevated DRI 707 

(> 0.3). With these other “warning signs” concerning the reliability of GDGT assemblages for SST 708 

estimation in this interval, the relatively low Dnearest values are most likely to represent some similarity in 709 

the non-thermal controls on GDGT assemblages between the modern and paleo-Arctic. More work needs 710 

to be done to constrain the reliability of temperature-dependence and archaeal GDGT production in these 711 
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modern high latitude systems so that we can have confidence in their inclusion in calibration datasets for 712 

paleo-SST estimation. It is on this basis that we recommend users of OPTiMAL use the the “noArctic” 713 

(Op3) calibration as the default. The OPTiMAL methodology does, however, offer a simple means to 714 

integrate new robust calibration data, and a method to explore the distance relationships between modern 715 

and ancient GDGT production.  716 

 717 

Considering the “noArctic” Dnearest and OPTiMAL SSTs for Exp. 302 Hole 4A, it is clear that of all the 718 

screening methods, Dnearest shows the strongest similarity to DRI – with high (“failure”) values in the pre-719 

PETM and then again between ~371 and 376 mcd, and even picking up the same short-lived “failure” 720 

intervals, or spikes, between 368 and 371 mcd. SST estimates based on OPTiMAL show broadly similar 721 

trends to TEX86
H and BAYSPAR, with a warm PETM, cooling post-PETM and then warming again into 722 

ETM2. It should be noted, however, that peak temperatures for OPTiMAL are ~5ºC cooler than TEX86
H 723 

and BAYSPAR (e.g. PETM SSTs <20ºC for OPTiMAL and > 25ºC for TEX86
H and BAYSPAR), and show 724 

more cooling post-PETM, with SST estimates of ~10ºC (OPTiMALnoArctic) as opposed to ~20ºC for TEX86
H 725 

and BAYSPAR. 726 

 727 

5. Conclusions 728 

 729 

Although the fundamental issue of non-analogue is a key problem for GDGT-temperature estimation, it has 730 

an undue impact on the community’s general confidence in this method. In part, this is because these issues 731 

have not been clearly stated and circumscribed - rather they have been allowed to erode confidence in the 732 

GDGT-based methodology through the use of GDGT-based palaeothermometry far outside the modern 733 

constraints on the behavior of this system. The use of GDGT abundances to estimate temperatures in clearly 734 

non-analogue conditions is, at present, problematic on the basis of the available calibration constraints or a 735 

good understanding of underlying biophysical models. We hope that this study prompts further 736 

investigations that will improve these constraints for the use of GDGTs in deep-time paleoclimate studies, 737 

where they clearly have substantial potential as temperature proxies. Temperature estimates based on fossil 738 

GDGT assemblages that are within range of, or similar to, modern GDGT calibration data, do, however, 739 

rest on a strong, underlying temperature-dependence observed in the empirical data. With no effective 740 

means of separating the “good from the bad” can lead to either false confidence and inappropriate inferences 741 

in non-analogue conditions, or a false pessimism when ancient samples are actually well constrained by 742 

modern core-top assemblages. 743 

 744 
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In this study, we apply modern machine-learning tools, including Gaussian Process Emulators and forward 745 

modelling, to improve temperature estimation and the representation of uncertainty in GDGT-based SST 746 

reconstructions. Using our new nearest neighbour test, we demonstrate that >60% of Eocene, and >90% of 747 

Cretaceous, fossil GDGT distribution patterns are poorly constrained by the modern core-top calibration 748 

data. differ so significantly from modern as to call into question SSTs derived from these assemblages. For 749 

data that does show sufficient similarity to modern, we present OPTiMAL, a new multi-dimensional 750 

Gaussian Process Regression tool which uses all six GDGTs (GDGT-0, -1, -2, -3, Cren and Cren’) to 751 

generate an SST estimate with associated uncertainty. The key advantages of the OPTiMAL approach are: 752 

1) that these uncertainty estimates are intrinsically linked to the strength of the relationship between the 753 

fossil GDGT distributions and the modern calibration data set, and 2) by considering all GDGT compounds 754 

in a multi-dimensional regression model it avoids the dimensionality reduction and loss of information that 755 

takes place when calibrating single parameters (TEX86) to temperature. The methods presented above make 756 

very few assumptions about the data. We argue that such methods are appropriate with the current absence 757 

of any reasonable mechanistic model for the data generating process, in that they reflect model uncertainty 758 

in a natural way. Finally, we note the potential for multi-proxy machine learning approaches, synthesising 759 

data from other palaeothermeters with independent uncertainties and biases, to improve calibration of 760 

ancient GDGT-derived SST reconstructions.  761 

 762 
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Figure Captions: 777 

 778 

Figure 1. A histogram of the normalised distance to the nearest neighbour in GDGT space (Dx,yt) for all 779 

samples in the modern calibration dataset of Tierney and Tingley (2015). 780 
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 781 

Figure 2. The error of the nearest-neighbour temperature (Dx,y) predictor, for modern core-top data, as a 782 

function of the distance to the nearest calibration sample.  783 

 784 

Figure 3. Top: The temperature of the modern data set as a function of the TEX86 value, showing a clear 785 

linear correlation between the two, but also significant scatter. Bottom: the error of the predictor based on 786 

the nearest TEX86 calibration point. 787 

 788 

Figure 4. The error of a random forest predictor as a function of the true temperature.  789 
 790 

Figure 5. The error of the GPR (Gaussian Process regression) predictor as a function of the true 791 

temperature. 792 

 793 

Figure 6. Modern and ancient data projected onto the first two compositional principal components. Black: 794 

Modern; Blue: Eocene (Inglis et al., 2015); Red: Cretaceous (O’Brien et al., 2017). 795 

 796 

Figure 7. Diffusion map projection of the modern and ancient data. Black: Modern; Blue: Eocene (Inglis 797 

et al., 2015); Red: Cretaceous (O’Brien et al., 2017). Separate clusters marked `A' are the outlying 798 

Cretaceous points with high GDGT-3 values. Branch ‘B’ is dominated by modern data points; branch ‘C’ 799 

by Cretaceous data. 800 

 801 

Figure 8. The first diffusion component as a function of TEX86 . Some outlying points have been excluded 802 

from the plot for the purposes of visualisation. Black: Modern; Blue: Eocene (Inglis et al., 2015); Red: 803 

Cretaceous (O’Brien et al., 2017). 804 

 805 

Figure 9. The first diffusion component as a function of temperature (modern data only). 806 

 807 

Figure 10. Temperature residuals for the forward model. 808 

 809 

Figure 11. The posterior distributions over temperature from the forward model for selected examples of 810 

high and low temperature, Eocene and Cretaceous, data points. The Gaussian error envelope from the GPR 811 

model is shown for comparison. 812 

 813 
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Figure 12. A histogram of normalised distances to the nearest sample in the modern data set for Eocene 814 

and Cretaceous data, excluding samples that had been screened out in previous compilations using BIT, MI 815 

and RI following the approach of (Inglis et al., 2015; O’Brien et al., 2017). 816 

 817 

Figure 13. Comparison of temperature estimates for the BAYSPAR and the OPTiMAL GPR model, greyed 818 

out data fails the Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that 819 

pass. Note that outside of the constraints of the modern calibration (training) dataset, (Dnearest test >0.5) the 820 

GPR model temperature estimates revert to the mean value of the calibration dataset, with an uncertainty 821 

that reverts to the standard deviation of the training data.  822 

 823 

Figure 14. Inter-comparison of temperature estimates and standard errors (y-axis) for compiled Eocene 824 

and Cretaceous data calculated using OPTiMAL (top) and BAYSPAR (bottom). Greyed out data fails the 825 

Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that pass. The black 826 

dashed line shows the Dnearest threshold (>0.5). 827 

 828 
Figure 15. Comparison of Dnearest against standard screening indices, BIT and MI index, DRI and 829 
%GDGT-O for the Eocene (Inglis et al., 2015) and Cretaceous (O’Brien et al., 2017) datasets. Blue 830 
shaded regions show the standard cut-off points for these indices (see text); grey shaded region highlights 831 
data that are below the Dnearest threshold of 0.5. The outlined black box is the region of data that fails 832 
traditional screening indices but passes Dnearest (<0.5). 833 
  834 
Figure 16. Late Pleistocene to Holocene GDGT-derived OPTiMAL palaeotemperatures compared to 835 

BAYSPAR and Uk’
37 SSTs. Shaded regions represent reported 5th and 95th percentile confidence intervals. 836 

Top panel - Eastern Mediterranaean data from core GeoB 7702-3 (Castaneda et al. 2010); bottom panel – 837 

South China Sea data from ODP Site 1146 (Thomas et al. 2014). 838 

 839 

Figure 17. Comparison of GDGT screening indices, TEX86
H, BAYSPAR and OPTiMAL SSTs from the 840 

Eocene Arctic Site IODP Expedition 302 Hole 4A. Data and figures modified from the most recent 841 

reassessment by Sluijs et al. (2020).  842 
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