
Response to Interactive comment on “OPTiMAL: A new machine learning approach for 
GDGT-based palaeothermometry” by Yvette L. Eley et al.  
 
Dear Dr Reyes, 
    
Thank you for your letter and for the reviews of our resubmission. We are pleased to note the 
“accept as is” judgement of Anonymous Reviewer 1, and their assessment of the manuscript 
as both excellent in its scientific significance and quality.  
 
Here we address the points raised by new reviewer, Dr Tierney, which follow up on our 
response to her open discussion comments on our manuscript. Line numbers in our responses 
refer to the new “tracked changes” document. 
 
Dr Tierney’s comments below are highlighted in bold with our responses in plain text. 
 
Kind regards, 
 
Dr Tom Dunkley Jones, on behalf of all the co-authors.  
  
General comments: 
 
This is a re-review of Eley et al., who present the OPTIMAL model for converting GDGT 
distributions to SST. In the first round of review I brought up a number of issues which 
came down to 1) tone of the paper, 2) concerns about over-fitting and/or mathematical 
clarity and 3) lack of applications. In reading the revised version I think that the tone is 
now much more appropriate and respectful (with a few small exceptions noted in the 
specific comments below). I am still concerned about overfitting. The authors argue that 
their in-sample validation technique (leave out a portion of the coretop data for 
validation iteratively) is proof enough that the method is not overfitted. This is not the 
case, because they are still validating on the training dataset (the coretop data). Out-of-
sample validation is the gold standard. This is one reason why I suggested last time that 
they add a number of applications of OPTIMAL to downcore datasets and compare the 
results to previous calibrations. They now provide an example in Figure 14 (application 
to ODP 806 and ODP 850), but this Figure needs comparison with previous calibrations 
(i.e. BAYSPAR) so that the readers can see the differences. It is not an ideal choice b/c 
the alkenones at ODP 806 are saturated for much of the record. The authors need to add 
more examples beyond this one. I suggest 1 high-resolution late Quaternary record, and 
1 deeper time record (Eocene perhaps). There should be data out there that have all of 
the fractional GDGTs, or else they can email the authors and get this. Note that Figures 
13 and 14 are not really helpful - it is very difficult for readers to take much away from 
these. Paleoceanographers need to see applications. This is standard for new calibration 
papers and not, as the authors claim, out of the scope of the study. Only through this 
out-of-sample testing can we assess whether OPTIMAL is performing well. 
 
We have included three downcore records as requested – two from the late Pleistocene, with 
direct comparisons against independent alkenone-based  Uk’37 SSTs, and one from the Eocene. 
These are shown in new Figures 16 and 17 and discussed in Section 4 of the revised 
manuscript. 
 



 
Regarding mathematical clarity, the paper is still lacking on this front. I noticed there 
are more details in the SOM - this should all be in the main text, including Fig. S1 which 
is incredibly helpful. I suggest reorganizing their Methods section so that everything is 
much more clear and straightforward: describe the math, define the terms.  
 
The revised manuscript is already extensive, running to over 13,000 words, and it is our 
judgment that the methodological details of the Forward Model – which is included as an 
exploratory way of trying to provide improved calibrations, but is not a part of the final 
OPTiMAL GPR model – is better placed within the Supplementary Materials. These methods 
are clearly laid out in the Supplement for those who want to follow this detail and explore this 
model further, whereas inclusion in the text would likely reduce the accessibility of the core 
message and purpose of this manuscript from the general reader of Climates of the Past.  
 
 
It is also now evident that inversion of the GPR model is Bayesian. This should be made 
explicit in the main text along with a description of the priors used for SST. 
 
Dr Tierney is confused – the inversion is only relevant to the forward modelling not the GPR 
model. Only the GPR model is involved in generating the OPTiMAL SST estimates. This 
supports our contention to keep the forward model detailed methodology in the SOM to 
prevent confusion with the primary GPR model (OPTiMAL).  
 
 
It also seems that the model can in fact be extrapolated (?) but that the uncertainties will 
be high unless an informative prior is made.  
 
The forward model can be extrapolated, and uncertainties will be large, unless “an informativ 
prior is made”. That is exactly our point – that SST estimation out of range of the modern 
calibration, is largely controlled by the choice of “an informative prior”. We don’t think there 
are, yet, informative priors to provide confidence outside of the modern calibration range, but 
these might become available through either further culture or mesocosm studies, or paleo 
proxy-proxy calibrations.  
 
 
Could you use constraints from other proxies here? That might provide some hope for 
deep-time users. 
 
Yes, that could be attempted, but is beyond the scope of this paper. It would require a detailed 
assessment of all the uncertainty within other proxy systems for these constraints to be 
robustly integrated into a calibration model for GDGT paleothermometry. It would also 
involve the loss of independence between proxy systems. 
 
 
All in all, it will be much easier to understand the steps that the authors took if the math 
is laid out in detail, along with (as I asked for last time) a description of what platforms 
and codes were used (Matlab, Python packages). 
 
The underlying maths is laid out in detail within the paper; the full details of the coding are 
provided in GitHub: https://github.com/carbonatefan/OPTiMAL.  



 
 
Also, my questions about collinearity (the fact that the GDGT predictors are not 
independent but in fact correlated with each other to a high degree) and possible 
regresssion dilution in the GPR model (or some other problem - maybe with the prior) 
were not explicitly addressed. 
 
The machine learning methods we propose do not require inputs to be independent.  
Techniques such as Gaussian process regression learn from the data. If some inputs are 
uninformative (either because they are not correlated with the property we are trying to predict, 
or because they can be reconstructed from other inputs and therefore do not add value), they 
are recognised as such.  They may not help, but they do not harm, either. 
 
While we are, of course, sensitive to measurement noise in the independent variables, we do 
not perform linear regression and do not suffer from regression dilution in the usual sense of 
this term.  Variability in both input and output variables is included in the uncertainty of the 
prediction. 
 
GDGT abundance are definitely correlated, and that’s expected — but not so correlated that 
you can effectively reduce the information to a single dimension, as TEX attempts to do.  Here 
is the matrix of Spearman rank correlation coefficients (rows and columns are, in order, 
GDGT-0, GDGT-1, GDGT-2, GDGT-3, Cren, Cren’): 
 
  1.0000   -0.4165   -0.7898   -0.7986   -0.8937   -0.7266 
 -0.4165    1.0000    0.7807    0.4340    0.0364    0.6335 
 -0.7898    0.7807    1.0000    0.7443    0.4835    0.8844 
 -0.7986    0.4340    0.7443    1.0000    0.6690    0.6460 
 -0.8937    0.0364    0.4835    0.6690    1.0000    0.4399 
 -0.7266    0.6335    0.8844    0.6460    0.4399    1.0000 
 
A lack of independence in the GDGT inputs is simply not an issue for Gaussian process 
regression (see C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine 
Learning, the MIT Press, 2006). 
 
 
I welcome the inclusion of a comparison of Dnearest to BIT and MI, but deltaRI should 
be here too. In practice this is one of the most valuable metrics for identifying aberrant 
GDGT distributions. 
 
Done. 
 
 
Finally, it seems like the authors misunderstood my comment last time about providing 
some first-order constraints on their model. I was advocating for enforcing 
monotonicity, i.e. more rings = higher temperature. I was not advocating for a particular 
form for that (linear vs. non-linear). A monotonic constraint still seems appropriate to 
me. Couldn't this be built into OPTIMAL? Why would one not want to do so? The 
authors mention culture studies, most of which find more rings at higher T's. Even Bale 
et al. 2019 find more cren and cren' at higher T's, as expected. It seems like we have 
enough evidence in favor of monotonicity. 



  
“Why would one not want to do so?” – because it would build-in unnecessary assumptions 
about the behaviour of the relationship into the calibration model. If this relationship is 
present in the data, our approach will find it; if it is not, then our approach won’t be biased 
by a prior user-assumption about the form of the temperature dependency. 
 
 
If the authors can revise their paper to make the math clear, discuss any limitations as 
appropriate, and demonstrate that OPTIMAL can perform reasonably well on out-of-
sample data (downcore time series) that would make me (and I suppose all readers) 
much more comfortable in terms of using this new approach. 
 
With the new examples that we have provided, we hope we have provided some of this 
assurance, and look forward to Dr Tierney making use of OPTiMAL in near future. 
 
 
Specific comments: 
 
Line 131: "Like Qin et al. (2015), we note the non-linear nature of the individual 
experiments in Wuchter et al. (2004; see Fig. 5)." Need to clarify here that you mean 
Wuchter et al's Figure 5 and not your own. However this statement is deceiving. What 
Figure 5 in that paper shows is no response of TEX to SST b/t 5-15 degrees, and then a 
linear response thereafter in the series I incubation, plus no response in series II. It is 
not a non-linear (i.e. exponential) relationship. Combined with Schouten '07, the 
mesocosm data are linear b/t 10C and 40C (Schouten et al., 2007, Figure 4). I agree that 
this does not preclude a non-linear relationship in the real world - but it's important to 
not misstate what the data show. 
 
We added a direct reference to the figure. We have not changed our text – if experiments show 
no or varied response of TEX86 to temperature across the temperature range, as Tierney notes 
in this case, then we think it is valid to say that this is a “non-linear” response.  
 
 
Line 150: "As such, these are collectively more representative of the community 
production contributing to samples in the global core-top TEX86 calibrations of Kim et 
al., (2010) and BAYSPAR (Tierney & Tingley, 2014), which predominantly sample 
continental margin environments, rather than deep ocean / pelagic environments." I 
don't agree with this. How could a single-strain culture be more representative that 
environmental samples, which likely reflect multiple strains? There is no way that it 
could be. We don't know what strains contribute to the coretop dataset but it is certainly 
more diverse than just N. maritimus. Please remove. 
 
This is a misreading of the sentence. The sentence meaning is that culture strains recovered 
from epi-continental shelf environments are more likely to represent the strains contributing 
to production of GDGTs going into core top calibrations, which are from the same epi-
continental margin environments. However, this is a minor point, and to avoid confusion we 
have deleted these lines. 
 
 
Line 164: "To use the responses of single, selected archaeal strains in culture to validate 



a particular model of community-level responses to growth temperature is problematic 
even in the modern system (Elling et al., 2015)." I agree, and this directly contradicts the 
statement on Line 150. 
 
See comment above – it was a misreading of this section, but it is now removed.  
 
 
Line 195" "Powerful mathematical tools." I asked you to please delete this last time, as 
it is hyperbolic and non-specific. The tools here are no more powerful than other 
mathematical approaches. Replace with "an analysis of distance metrics", "machine 
learning" "GPR" or something similar. 
 
Yes – and we disagree and retain. These machine learning tools presented are considerably 
more powerful at modelling complex relationships within multi-dimensional datasets than, 
say, linear regression. They are powerful tools. 
 
 
Line 252: "For example, it may be that sea surface temperatures are very sensitive to 
one observable." I think you mean the reverse here - the observables are the GDGTs, 
and they might be more or less sensitive to SST. This paragraph would be easier to 
understand if you just use the term "each GDGT" vs. "observable". 
 
Changed for clarity. 
 
 
Eq. 7: The description of this distance metric is not totally clear. Can you clarify what 
x and y are here? Also as pointed out by Yi Ge, there are only five degrees of freedom, 
so doesn't this need to be adjusted accordingly? 
 
Line 259:  “Thus, the normalised distance D between parameter data points x and y is:” 
 
Points x and y are samples within the GDGT space; Dx,y is the normalised Eucledian 
distance between these two points. The sum in Eq. 7 should be taken over 6 parameters 
(GDGT-0, GDGT-1, GDGT-2, GDGT-3, cren, cren’) and we apologize for a typo in the 
equation where the sum should be taken from 0 to 5, not 0 to 6. This has been corrected. 
 
 
Lines 289-300: To what extent is the gain in information from the individual GDGTs 
due simply to the use of more than one parameters? As I pointed out in my first review, 
adding more parameters will improve RMSE but doesn't necessarily mean an 
improvement in skill. This should be addressed here. You can't say that the NN 
predictor "outperforms" TEX unless you rule out the effect of using more parameters, 
which incidentally are also not independent from each other. 
 
There are no free parameters in the nearest neighbour approach: the predictor is just the 
temperature of the closest training set point in input space.  And, indeed, as we say, the gain 
lies precisely in  having more information available in 6 (5 independent) coordinates of the 
input point than in their one-dimensional combination, TEX. 
 



 
Line 345: This R^2 of 0.83 is identical to what BAYSPAR can do with all of the data 
(R^2 = 0.84, Figure 5 in TT14). So it seems like both the random forest and BAYSPAR 
model perform similarly, even though BAYSPAR uses TEX86. Worth noting. 
 
BAYSPAR computes R2 by using the same data for calibration and validation, which allows 
for over-fitting and over-predicts R2. 
 
 
Line 372: The authors haven't answered my question yet about the effects of 
collinearity (the correlation of the fractional GDGT abundances with each other). This 
seems like a good place to clarify this issue. 
 
See points above, but have clarified in the main text (line 379-381): “The accuracy of 
Gaussian process regression is not adversely affected by correlations between inputs 
(Rasmussen & Williams, 2006).  Significantly correlated inputs that do not bring in new 
predictive power are appropriately down-weighted.” 
 
 
Line 425: The DCs look like they are showing evidence of the "horseshoe effect" 
common to standard PCA, in that branches B and C are part of the same horseshoe. 
This would signal a strong linear response in the multivariate data that isn't well-
separated (?) When this occurs in standard PCA, the PCs are not interpretable. Can 
the authors comment here on this as it applies to the diffusion map technique? 
 
PCA is fundamentally a linear transformation — a rotation of the coordinates. The so-called 
horseshoe effect is an indication of nonlinear correlations, which the PCA cannot account 
for.  Diffusion maps are nonlinear dimensionality reduction tools, and so are generally 
capable of handling nonlinear correlations. 
 
 
Line 477: "it does not account for the systematic uncertainty in the model when 
extrapolated beyond the calibration range" It does in that all possible regression lines 
are extrapolated, creating wide error bars and coalescing towards the prior if no other 
information is there. I would change to, "it still assumes a monotonic relationship 
between TEX and SST" which is a more accurate. However I don't think this is a bad 
assumption (see comment above). 
 
Rephrased. Our point here is that BAYSPAR assumes that the linear model is intrinsically 
correct, and only uncertainties on the parameters within the model are accounted for, rather 
than any systematic uncertainty in the model itself. 
 
Lines 481-486: So if I understand this correctly, the inversion of your model is 
Bayesian inference with priors placed on...what? This section needs some mathemetical 
description to make this clear. 
 
GPR need not be strictly Bayesian, though the calibration process can be viewed as Bayesian 
inference on the hyper-parameters of the model. For example, with the squared exponential 
kernel with automatic relevance determination that we use, these hyper-parameters are the 
kernel widths in each dimension. The priors referred to (e.g., in “Given that we have no 



mechanistic model for the data generating process, we recommend the use of kernels which 
do not impose strong prior assumptions on the form of the GDGT-temperature relationship”) 
are not the classical Bayesian inference priors on model parameters of interest to the user that 
the Dr Tierney may be thinking of. 
 
 
Line 488: "The clear pattern in the residuals does not necessarily indicate model 
misspecification, since no explicit noise model is specified for temperatures". I noted this 
last time - this looks like regression dilution. But if the model was specified as TEX = 
f(SST) + error this shouldn't happen, unless...the prior is too tight? Please clarify what 
your priors are. 
 
TEX is not used here at all. Regression dilution is simply not relevant as described above. 
 
 
Line 521: This is the first mention of Dnearest, but it is not defined. Is Dnearest the 
same as D(x,y) described above? Please clarify. 
 
No – as explained lines 523 - 525 
 
 
Line 569: Bale et al. did observe an increase in cren and cren' in their culture 
experiments though, which suggests that there is some response of GDGTs to 
temperature, albeit not well-expressed in TEX86. 
  
Fine. We state there is no correlation with TEX86. 
 
 
Line 592: Figures 13 and 14 don't really communicate well how the Optimal model 
performs. It would be more useful to show a couple of time series and compare 
Optimal vs. BAYSPAR. 
 
Have added timeseries as requested. 
 
 
Line 610: It's not necessary to italicize "parametric" here. I would rephrase this to 
more accurately describe the difference b/t BAYSPAR and Optimal: "In contrast, 
while uncertainty bounds do increase when BAYSPAR is used to extrapolate beyond 
the modern calibration, they are not as large as Optimal because BAYSPAR still 
makes an assumption of a linear increase in SST at higher TEX values." As I said last 
time, BAYSPAR does account for model uncertainty, the issue is that the model we use 
is a linear one. 
  
Parametric no longer italicized; rephrased in line with suggestion. 
 
 
Line 615: deltaRI should be included here. It is arguably the most useful metric for 
ID'ing strange GDGT distributions. 
  
Done. 



 

 
 
Figure 16: I don't think this is an ideal application b/c UK37 is at its limit here at 806. 
Plus optimal should be compared to the previous calibrations (BAYSPAR, TEXH if you 
want, although the regression dilution in TEXH makes things hard to interpret). 
  
Done 
 
 
SOM: This should be in the main text, esp. Figure 1. Also the SOM appears to contain 
comments and incomplete references (refs). 
 
See comments above about the forward model.   
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Abstract 16 

 17 

In the modern oceans, the relative abundances of Glycerol dialkyl glycerol tetraether (GDGTs) compounds 18 

produced by marine archaeal communities show a significant dependence on the local sea surface 19 

temperature at the site of deposition. When preserved in ancient marine sediments, the measured 20 

abundances of these fossil lipid biomarkers thus have the potential to provide a geological record of long-21 

term variability in planetary surface temperatures. Several empirical calibrations have been made between 22 

observed GDGT relative abundances in late Holocene core top sediments and modern upper ocean 23 

temperatures. These calibrations form the basis of the widely used TEX86 palaeothermometer. There are, 24 

however, two outstanding problems with this approach, first the appropriate assignment of uncertainty to 25 

estimates of ancient sea surface temperatures based on the relationship of the ancient GDGT assemblage to 26 

the modern calibration data set; and second, the problem of making temperature estimates beyond the range 27 

of the modern empirical calibrations (>30 ºC). Here we apply modern machine-learning tools, including 28 

Gaussian Process Emulators and forward modelling, to develop a new mathematical approach we call 29 

OPTiMAL (Optimised Palaeothermometry from Tetraethers via MAchine Learning) to improve 30 

temperature estimation and the representation of uncertainty based on the relationship between ancient 31 

GDGT assemblage data and the structure of the modern calibration data set. We reduce the root mean 32 

square uncertainty on temperature predictions (validated using the modern data set) from ~± 6 ºC using 33 

TEX86 based estimators to ± 3.6 ºC using Gaussian Process estimators for temperatures below 30 ºC. We 34 

also provide a new quantitative measure of the distance between an ancient GDGT assemblage and the 35 



 2 

nearest neighbour within the modern calibration dataset, as a test for significant non-analogue behaviour. 36 

Finally, we advocate caution in the use of temperature estimates beyond the range of the modern empirical 37 

calibration dataset, given the lack of a robust predictive biological model or extensive and reproducible 38 

mesocosm experimental data in this elevated temperature range. 39 

 40 

1. Introduction 41 

 42 

Glycerol dibyphytanyl glycerol tetraethers (GDGTs) are membrane lipids consisting of isoprenoid carbon 43 

skeletons ether-bound to glycerol (Schouten et al., 2013). In marine systems they are primarily produced 44 

by ammonia oxidising marine Thaumarchaeota (Schouten et al., 2013). In modern marine core top 45 

sediments, the relative abundance of GDGT compounds with more ring structures increases with the mean 46 

annual sea surface temperature (SST) of the overlying waters (Schouten et al., 2002). This trend is most 47 

likely driven by the need for increased cell membrane stability and rigidity at higher temperatures 48 

(Sinninghe Damsté et al., 2002). On this basis, the TEX86 (tetraether index of tetraethers containing 86 49 

carbon atoms) ratio was derived to provide an index to represent the extent of cyclisation (Eq. 1; where 50 

GDGT-x represents the fractional abundance of GDGT-x determined by liquid chromatography mass 51 

spectrometery (LC-MS) peak area, and cren’ is the peak area of the isomer of crenarchaeol) (Schouten et 52 

al., 2002; Liu et al. 2018) and was shown to be positively correlated with mean annual SSTs: 53 

 54 

TEX86 = (GDGT-2 + GDGT-3 + cren’)/ (GDGT-1+ GDGT-2 + GDGT-3 + cren’)  (Eq. 1) 55 
 56 

Early applications of TEX86 to reconstruct ancient SSTs were promising, especially in providing 57 

temperature estimates in environments where standard carbonate-based proxies are hampered by poor 58 

preservation (Schouten et al., 2003; Herfort et al., 2006; Schouten et al., 2007; Huguet et al., 2006; Sluijs 59 

et al., 2006; Brinkhuis et al., 2006; Pearson et al., 2007; Slujis et al., 2009). The TEX86 approach also 60 

extended beyond the range of the widely used alkenone-based Uk’
37 thermometer, in both temperature space, 61 

where Uk’
37 saturates at ~28ºC (Brassell, 2014; Zhang et al., 2017), and back into the early Cenozoic (Bijl 62 

et al., 2009; Hollis et al., 2009; Bijl et al., 2013; Inglis et al., 2015) and Mesozoic (Schouten et al., 2002; 63 

Jenkyns et al., 2012; O’Brien et al., 2017) where haptophyte-derived alkenones are typically absent from 64 

marine sediments (Brassell, 2014). Initially, TEX86 was converted to SSTs using the core-top calibration 65 

(Schouten et al. 2002) (Eq. 2): 66 

 67 

TEX86 = 0.015*SST+0.287 (Eq. 2)  68 

 69 
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However as the number and range of applications of TEX86 palaeothermometry grew, concerns arose about 70 

proxy behaviour at both the high (Liu et al., 2009) and low (Kim et al., 2008) temperature ends of the 71 

modern calibration. In response to these observations, a new expanded modern core top dataset (Kim et al., 72 

2010) was used to generate two new indices – !"#$%&  (Eq. 3), an exponential function that does not include 73 

the crenarchaeol regio-isomer and was recommended for use across the entire temperature range of the new 74 

core top data (-3 to 30 ºC, particularly when SSTs are lower than 15 ºC), and !"#$%'  (Eq. 4), also 75 

exponential, and recommended for use when SSTs exceeded 15 ºC (Kim et al., 2010). !"#$%&  also excludes 76 

GDGT abundance data from the high-temperature regimes of the Red Sea, which are somewhat anomalous 77 

and likely related to salinity effects on community composition in this region (Trommer et al., 2009, Kim 78 

et al. 2010).  79 

 80 

!"#$%
& = )*+,

[./.01]

[./.03]4[./.01]4[./.05]
6  Eq. 3 81 

 82 

 83 

!"#$%
' = )*+,

[./.01]4[./.05}4[89:;<]
[./.03]4[./.01]4[./.05]4[89:;<]

6  Eq. 4 84 

 85 

Despite the recommendations of Kim et al. (2010), both !"#$%'  and !"#$%&  were widely used and tested 86 

across a range of temperatures and palaeoenvironments, including comparisons against other 87 

palaeotemperature proxy systems (Hollis et al. 2012; Lunt 2012 Dunkley Jones et al. 2013; Zhang et al., 88 

2014; Seki et al., 2014; Douglas et al., 2014;  Linnert et al., 2014; Hertzberg et al., 2016). The rationale was 89 

that both !"#$%&  and !"#$%'  were calibrated across a full temperature range, with the exception of the 90 

inclusion or exclusion of Red Sea core-top data. The difference in model fit between the two proxy 91 

formulations to the calibration dataset was also minor (Kim et al. 2010). In certain environments, however, 92 

!"#$%
&  was subject to significant variability in derived temperatures that were not apparent in !"#$%'  93 

(Taylor et al., 2013). This was mostly due to changing GDGT2 to GDGT3 ratios, which strongly influence 94 

!"#$%
& , and may be related to local non-thermal environmental conditions at the site of GDGT production, 95 

and deep-water lipid production, (Taylor et al., 2013). As a result, !"#$%&  is no longer regarded as an 96 

appropriate tool for palaeotemperature reconstructions, except in limited Polar conditions (Kim et al., 2010; 97 

Tierney, 2012).  98 

 99 

Three fundamental issues have troubled the TEX86 proxy. The first is a concern about undetected non-100 

analogue palaeo-GDGT assemblages, for which the modern calibration data set is inadequate to provide a 101 

robust temperature estimation. Although various screening protocols, with independent indices and 102 
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thresholds, have been proposed to test for an excessive influence of terrestrial lipids (Branched and 103 

Isoprenoid Tetraether, BIT index; Hopmans et al., 2004), within sediment methanogenesis (Methane Index, 104 

‘MI’; Zhang et al., 2011) and non-thermal effects such as nutrient levels and archaeal community structure 105 

to impact the weighted average of cyclopentane moieties (Ring Index, ‘RI;’ Zhang et al., 2016), these do 106 

not provide a fundamental measure of the proximity between GDGT abundance distributions in the modern, 107 

and ancient GDGT abundance distributions recorded in sediment samples. The fundamental question 108 

remains – are measured ancient assemblages of GDGT compounds anything like the modern assemblages, 109 

from which palaeotemperatures are being estimated? Understanding this question cannot easily be 110 

addressed with the use of indices – TEX86 itself, or BIT and MI – that collapse the dimensionality of GDGT 111 

abundance relationships onto a single axis of variation. 112 

 113 

Second, from the earliest applications of the TEX86 proxy to deep-time warm climate states (Schouten et 114 

al., 2003) it was recognized that reconstructed temperatures beyond the range of the modern calibration 115 

(>30 ºC), were highly sensitive to model choice within the modern calibration range. Thus, Schouten et al. 116 

(2003) restricted their calibration data for deep-time temperature estimates to core-top data in the modern 117 

with mean annual SSTs over 20 ºC. However, this problem of model choice, and its impact on temperature 118 

estimation beyond the modern calibration range, persists (Hollis et al. 2019), with current arguments 119 

focused on whether there is an exponential (e.g. Cramwinckel et al., 2018) or linear (Tierney & Tingley, 120 

2015) dependency of TEX86 on SSTs, and the effect of these models on temperature estimates over 30 ºC.  121 

 122 

Culture and mesocosm studies are sometimes cited in support of extrapolations beyond the modern 123 

calibration range when reconstructing ancient SSTs (Kim et al., 2010, Hollis et al., 2019). While there is a 124 

basic underlying trend for more rings within GDGT structures at higher temperatures (Zhang et al. 2015; 125 

Qin et al., 2015), the lack of a uniform response to archaeal GDGT production in response to increasing 126 

growth temperatures (e.g., Elling et al., 2015; Qin et al., 2015) suggests that this does not easily translate 127 

into a simple linear model at the community scale (i.e. the core top calibration dataset). Wuchter et al. 128 

(2004) and Schouten et al. (2007) show a compiled linear calibration of TEX86 against incubation 129 

temperature (up to 40ºC in the case of Schouten et al., 2007) based on strains that were enriched from 130 

surface seawater collected from the North Sea and Indian Ocean respectively. Like Qin et al. (2015), we 131 

note the non-linear nature of the individual experiments in Wuchter et al. (see Fig. 5 in Wuchter et al. 204). 132 

Moreover, the relatively lower Cren’ in these studies yield a very different intercept and slope compared to 133 

core-top calibrations (e.g. Kim et al. 2010) making direct comparisons problematic.  134 

 135 
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More recently, Elling et al. (2015) studied three different strains (N. maritimus, NAOA6, NAOA2) isolated 136 

from open ocean surface waters (South Atlantic) whilst Qin et al., (2015) studied a culture of N. maritimus  137 

and three N. maritimus-like strains isolated from Puget Sound. All strains are of marine, mesophilic, 138 

Thaumarchaeota within Marine Group 1  (equivalent to Crenarchaeota Group 1). Both of these papers 139 

clearly demonstrate distinctly different responses of membrane lipid composition to temperature in these 140 

strains, whilst Qin et al. (2015) additionally show that oxygen concentration is at least as important as 141 

temperature in controlling TEX86 values in culture. The impact of Thaumarchaeota community change on 142 

TEX86 in palaeoclimate studies is further suggested by the downcore study of Polik et al (2019). All of these 143 

culture studies, made on marine, mesophilic archaea demonstrate how community composition may have 144 

a significant impact on measured environmental TEX86 signatures. In these cases (e.g., Zhang et al. 2015; 145 

Qin et al., 2015; Elling et al., 2015) cultured strains of Thaumarcheota were obtained from surface waters 146 

which overlie the epi-continental or continental shelf regions of the North Sea, Indian Ocean, South Atlantic 147 

and North Pacific - in addition to the pure culture strain N. maritimus in Qin et al. (2015) and Elling et al. 148 

(2015). As such, these are collectively more representative of the community production contributing to 149 

samples in the global core-top TEX86 calibrations of Kim et al., (2010) and BAYSPAR (Tierney & Tingley, 150 

2014), which predominantly sample continental margin environments, rather than deep ocean / pelagic 151 

environments. 152 

 153 

It is clear from the above discussion that there is evidence for more complex responses in GDGT-production 154 

to growth temperature in some instances, and across distinct strains of archaea (Elling et al., 2015). More 155 

fundamentally, in natural systems, it is likely that aggregated GDGT abundance variations in response to 156 

growth temperatures result from changing compositions of archaeal populations as well as the physiological 157 

response of individual strains to growth temperature (Elling et al. 2015). For instance, a multiproxy study 158 

of Mediterranean Pliocene-Pleistocene sapropels indicates that specific distributions of archaeal lipids 159 

might be reflective of temporal changes in thaumarchaeael communities rather than temperature alone 160 

(Polik et al., 2018). Indeed, the potential influence of community switching on GDGT composition can be 161 

seen in mesocosm studies, with different species preferentially thriving at different growth temperatures 162 

(e.g., Schouten et al., 2007). To use the responses of single, selected archaeal strains in culture to validate 163 

a particular model of community-level responses to growth temperature is problematic even in the modern 164 

system (Elling et al., 2015). For deep time applications it is even more difficult, where there is no 165 

independent constraint on the archaeal strains dominating production or their evolution through time (Elling 166 

et al. 2015). What is notable, however, is that the Ring Index (RI) - calculated using all commonly measured 167 

GDGTs (Zhang et al., 2016) – has a more robust relationship with culture temperature between archaeal 168 

strains than TEX86, indicating a potential loss of information within the TEX86 index (Elling et al. 2015). 169 
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 170 

Finally, the original uses of the TEX86 proxy had a relatively poor representation of the true uncertainty 171 

associated with palaeotemperature estimates, as they included no assessment of non-analogue behavior 172 

relative to the modern core-top data. Instead, uncertainty was typically based on the residuals on the modern 173 

calibration, with no reference to the relationship between GDGT distributions of an ancient sample and the 174 

modern calibration data. An improved Bayesian uncertainty model “BAYSPAR” is now in widespread use 175 

for SST estimation, which models TEX86 to SSTs regression parameters, and associated uncertainty, as 176 

spatially varying functions (Tierney and Tingley, 2015). The Bayesian approach, as with all approaches 177 

based on the TEX86 index, however, still does not include an uncertainty that reflects how well modelled 178 

ancient GDGT assemblages are by the modern calibration – i.e. the degree to which they are non-analogue 179 

- as it still functions on one-dimensional TEX86 index values. 180 

 181 

All empirical calibrations of GDGT-based proxies assume that mean annual SST is the master variable on 182 

GDGT assemblages both today and in the past. Mean annual SST, however, is strongly correlated with 183 

many other environmental variables (e.g., seasonality, pH, mixed layer depth, and productivity). In the 184 

modern calibration dataset, mean annual SST shows the strongest correlation with TEX86 index (Schouten 185 

et al., 2002), but this does not preclude an important (but undetectable) influence of these other 186 

environmental variables. The use of empirical GDGT calibrations to infer ancient sea surface temperatures 187 

thus implicitly assumes that the relationships between mean annual SST and all other GDGT-influencing 188 

variables are invariant through time. This assumption is inescapable until, and unless, a more complete 189 

biological mechanistic model of GDGT production emerges.  190 

 191 

Here, we return to the primary modern core-top GDGT assemblage data (Tierney and Tingley, 2015), and 192 

systematically explore the relationships between the modern GDGT distributions and surface ocean 193 

temperatures using powerful mathematical tools. These tools can investigate correlations without prior 194 

assumptions on the best form of relationship or a priori selection of GDGT compounds to be used. This 195 

analysis is then extended through the exploration of the relationships between the modern core top GDGT 196 

distributions and two compilations of ancient GDGT datasets, one from the Eocene (Inglis et al. 2015) and 197 

one from the Cretaceous (O’Brien et al. 2017). We explore simple metrics to answer the fundamental 198 

question – are modern core-top GDGT distributions good analogues for ancient distributions? We propose 199 

the first robust methodology to answer this question, and so screen for significantly non-analogue palaeo-200 

assemblages. From this, we go on to derive a new machine learning approach ‘OPTiMAL’ (Optimised 201 

Palaeothermometry from Tetraethers via MAchine Learning) for reconstructing SSTs from GDGT 202 
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datasets, which outperforms previous GDGT palaeothermometers and includes robust error estimates that, 203 

for the first time, accounts for model uncertainty.   204 

 205 

2. Models for GDGT-based Temperature Reconstruction 206 

 207 

Our new analyses use the modern core-top data compilation, and satellite-derived estimates of SSTs, of 208 

Tierney and Tingley (2015) as well as compilations of Eocene (Inglis et al. 2015) and Cretaceous (O’Brien 209 

et al. 2017) GDGT assemblages. Within these fossil assemblages, only data points with full characterisation 210 

of individual GDGT relative abundances were used. We also note that, in the first instance, all available 211 

fossil assemblage data were included, although later comparisons between BAYSPAR and our new 212 

temperature predictor excludes fossil data that was regarded as unreliable based on standard pre-screening 213 

indices, as noted within the original compilations (Inglis et al. 2015; O’Brien et al. 2017). All data used in 214 

this study are tabulated in the supplementary information.  215 

 216 

In order to enable meaningful comparison between new and existing temperature predictors, we use the 217 

following consistent procedure for evaluating all predictors throughout this paper.  We divide the modern 218 

core-top data set of 854 data points into 85 validation data points (chosen randomly) and 769 calibration 219 

points (as we require fractional abundances for all 6 commonly measured GDGTs, we excluded those data 220 

points for which these values were not reported).  We calibrate the predictor on the calibration points, and 221 

then judge its performance on the validation points using the root mean square error: 222 

 223 

=! =	?
1

AB − 1
	D(!F(GH) − !(GH))1
JK

HL3

 224 

           (Eq. 5) 225 

 226 

where the sum is taken over each of Nv = 85 validation points, T  is the known measured temperature (which 227 

we refer to as the true temperature) and !F is the predicted temperature.  For conciseness, we refer to =! as 228 

the predictor standard error.  It is useful to compare the accuracy of the predictor to the standard deviation 229 

of all temperatures in the data set M!, which corresponds to using the mean temperature as the predictor in 230 

Equation 1; for the modern data set, M!= 10.0 ºC.  The coefficient of determination, R2, provides a measure 231 

of the fraction of the fluctuation in the temperature explained by the predictor.  To facilitate performance 232 

comparisons between different methods of predicting temperature, we use the same subset of validation 233 
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points for all analyses. To avoid sensitivity to the choice of validation points, we repeat the calibration-234 

validation procedure for 10 random choices from the validation dataset.  235 

 236 

2.1 Nearest neighbours 237 

 238 

We begin with an agnostic approach to using some combination of the proportions of each of the six 239 

observables - GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol and cren’, which we will jointly refer 240 

to as GDGTs - to predict sea surface temperatures. Whatever functional form the predictor might take, it 241 

can only provide accurate temperature predictions if nearby points in the six-dimensional observable space 242 

- i.e. the distribution of all of the six commonly reported GDGTs - can be translated to nearby points in 243 

temperature space. Conversely, if nearby points in the observable space correspond to vastly different 244 

temperatures, then no predictor, regardless of which combination of GDGTs are used, will be able to 245 

provide a useful temperature estimate. In other words, the structuring of GDGT distributions within multi-246 

dimensional space, must have some correspondence to the temperatures of formation (or rather the mean 247 

annual SSTs used for standard calibrations).  248 

 249 

We therefore consider the prediction offered by the temperature at the nearest point in the GDGT parameter 250 

space. Of course, nearness depends on the choice of the distance metric. For example, it may be that sea 251 

surface temperatures are very sensitive to a particular GDGT, so even a small change in that GDGT 252 

corresponds to a significant distance, and rather insensitive to another, meaning that even with a large 253 

difference in the nominal value of that GDGT the distance is insignificant. In the first instance, we use a 254 

very simple Euclidian distance estimate Dx,y where the distance along each GDGT is normalised by the total 255 

spread in that GDGT across the entire data set.  This normalisation ensures that a dimensionless distance 256 

estimate can be produced even when observables have very different dynamical ranges, or even different 257 

units.  Thus, the normalised distance D between parameter data points x and y is 258 

 259 

NO,Q	1 	≡D
(SNS!T(G) − SNS!T(U))1

VWX(SNS!T)

Y

TLZ

	260 

           (Eq. 7) 261 

 262 
We show the distribution of nearest distances of points in the modern data set, excluding the sample itself, 263 
in (Fig. 1).  264 
 265 
The nearest-sample temperature predictor is !Fnearest (x) = T(y) where y is the nearest point to x over the 266 

calibration data set, i.e., one that minimises Dx,y.  Fig. 2 shows the scatter in the predicted temperature when 267 
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using the temperature of the nearest data point to make the prediction.  Overall, the failure of the nearest-268 

neighbour predictor to provide accurate temperature estimates even when the normalised distance to the 269 

nearest point is small, Dx,y  ≤ 0.5, casts doubt on the possibility of designing an accurate predictor for 270 

temperature based on GDGT observations.  This is most likely due to additional environmental controls on 271 

GDGT abundance distributions in natural systems, in particular the water depth (Zhang and Liu, 2018), 272 

nutrient availability (Hurley et al., 2016; Polik et al., 2018; Park et al., 2018), seasonality, growth rate 273 

(Elling et al., 2014; Hurley et al., 2016) and ecosystem composition (Polik et al., 2018), that obscure a 274 

predominant relationship to mean annual SSTs.  275 

 276 

On the other hand, the standard error for the nearest-neighbour temperature predictor is =!nearest = 4.5 ºC.  277 

This is less than half of the standard deviation M! in the temperature values across the modern data set. 278 

Thus, the temperatures corresponding to nearby points in GDGT observable space also cluster in 279 

temperature space.  Consequently, there is hope that we can make some useful, if imperfect, temperature 280 

predictions.  The value of =!nearest will also serve as a useful benchmark in this design: while we may hope 281 

to do better by, say, suitably averaging over multiple nearby calibration points rather than adopting the 282 

temperature at one nearest point as a predictor, any method that performs worse than the nearest-neighbour 283 

predictor is clearly suboptimal.  284 

 285 

2.2 TEX86 and Bayesian applications 286 

 287 

The TEX86 index reduces the six-dimensional observable GDGT space to a single number.  While this has 288 

the advantage of convenience for manipulation and the derivation of simple analytic formulae for 289 

predictors, as illustrated below, this approach has one critical disadvantage: it wastes significant information 290 

embedded in the hard-earned GDGT distribution data.  Fig. 3 illustrates both the advantage and 291 

disadvantage of TEX86.  On the one hand, there is a clear correlation between TEX86 and temperature (top 292 

panel of Fig. 3), with a correlation coefficient of 0.81 corresponding to an overwhelming statistical 293 

significance of 10-198.  On the other hand, very similar TEX86 values can correspond to very different 294 

temperatures.  We can apply the nearest-neighbour temperature prediction approach to the TEX86 value 295 

alone rather than the full GDGT parameter space; this predictor yields a large standard error of =!nearestTEX86 296 

= 8.0 ºC (bottom panel of Fig. 3).  While smaller than σT, this is significantly larger than =!nearest (Fig. 2), 297 

consistent with the loss of information in TEX86. We therefore do not expect other predictors based on 298 

TEX86 to perform as well as those based on the full available data set. 299 

 300 
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Indeed, this is what we find when we consider predictors of the form !F	1/TEX = a + b/TEX86 and !FTEXH = c 301 

+ d logTEX86 (Liu et al., 2009; Kim et al., 2010), i.e., the established relationships between GDGT 302 

distributions and SST. We fit the free parameters a, b, c, and d by minimising the sum of squares of the 303 

residuals over the calibration data sets (least squares regression).  We find that δT1/TEX = 6.1 ºC (note that 304 

this is slightly better than using the fixed values of a and b from (Kim et al., 2010), which yield δT1/TEX = 305 

6.2 ºC).  We note that the corresponding R2 value associated with these TEX86  based predictors is 0.64, 306 

which is lower than the R2 values in Kim et al. (2010). We attribute this to the fact that we are using a larger 307 

dataset based on Tierney and Tingley (2015), including data from the Red Sea (Kim et al. 2010).  308 

 309 

Tierney and Tingley (2014) proposed a more sophisticated approach to obtaining the transfer function from 310 

TEX86 to temperature, continuing to use simple linear regression, but with the addition of Gaussian 311 

processes to model spatial variability in the temperature-TEX86 relationship and working with a forward 312 

model which is subsequently inverted to produce temperature predictions. This forward model 313 

‘BAYSPAR’ is capable of generating an infinite number of calibration curves relating TEX86 to sea surface 314 

temperatures (Tierney and Tingley, 2014). In order to derive a calibration for a specific dataset, the user 315 

edits a range of parameters which vary depending on whether the dataset in question is from the relatively 316 

recent past or deep time (Tierney and Tingley, 2014). For deep time applications, the authors propose a 317 

modern analogue-type approach, in which they search the modern data for 20º x 20º grid boxes containing 318 

`nearby' TEX86  measurements and subsequently apply linear regression models calibrated on the analogous 319 

samples for making predictions. 320 

 321 

However, along with the simpler TEX86-based models described above, this approach still suffers from the 322 

reduction of a six-dimensional data set to a single number.  Therefore, it is not surprising that even the 323 

simplest nearest-neighbour predictor (such as the one described above) that makes use of the full six-324 

dimensional dataset outperforms single-dimensional forward modelling approaches. Additionally, 325 

uncertainty estimates do not account for the fact that TEX86 is, fundamentally, an empirical proxy, and so 326 

its validity outside the range of the modern calibration is not guaranteed. This is a fundamental issue for 327 

attempts to reconstruct surface temperatures during Greenhouse climate states, when tropical and sub-328 

tropical SSTs were likely hotter than those observed in the modern oceans. 329 

 330 

2.3 Machine learning Approaches – Random Forests 331 

 332 

There are a number of options to improve on nearest-neighbour predictions using machine learning 333 

techniques such as artificial neural networks and random forests. These flexible, non-parametric models 334 
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would ideally be based on the underlying processes driving the GDGT response to temperature, but since 335 

these processes remain unconstrained at present, we choose to deploy models which can reasonably reflect 336 

predictive uncertainty and will be sufficiently adaptable in future (as new information regarding controls 337 

on GDGTs emerge). These machine learning approaches are all based on the idea of training a predictor by 338 

fitting a set of coefficients in a sufficiently complex multi-layer model in order to minimise residuals on 339 

the calibration data set.  As an example of the power of this approach, we train a random forest of decision 340 

trees with 100 learning cycles using a least-squares boosting to fit the regression ensemble.  Figure 4 shows 341 

the prediction accuracy for this random forest implementation.  This machine learning predictor yields δT 342 

= 4.1 ºC degrees, outperforming the naive nearest-neighbour predictor by effectively applying a suitable 343 

weighted average over multiple near neighbours.  This corresponds to a very respectable R2 = 0.83, meaning 344 

that 83% of the variation in the observed temperature is successfully explained by our GDGT-based model. 345 

 346 

2.4 Gaussian Process Regression 347 

 348 

One downside of the random forest predictor is the difficulty of accurately estimating the uncertainty on 349 

the prediction (Mentch and Hooker, 2016), although this is possible with, e.g., a bootstrapping approach 350 

(Coulston et al., 2016).  Fortunately, Gaussian process (GP) regression provides a robust alternative. For 351 

full details on GP regression refer to Williams and Rasmussen (2006) and  Rasmussen and Nickisch (2010). 352 

Loosely, the objective here is to search among a large space of smoothly varying functions of GDGT 353 

compositions for those functions which adequately describe temperature variability. This, essentially, is a 354 

way of combining information from all calibration data points, not just the nearest neighbours, assigning 355 

different weights to different calibration points depending on their utility in predicting the temperature at 356 

the input of interest. The trained Gaussian process learns the best choice of weights to fit the data. Typically, 357 

the GP will give greater weight to closer points, but, as we discuss below, it will learn the appropriate 358 

distance metric on the multi-dimensional GDGT input space.  359 

 360 

The weighting coefficients learned by the GP emulator represent a covariance matrix on the GDGT 361 

parameter space.  We can use this as a distance metric to provide meaningfully normalised distances 362 

between points, removing the arbitrariness from the nearest neighbour distance (Dx,y) definition used earlier, 363 

and this is the basis of the Dnearest metric described below.  If the temperature is insensitive to a particular 364 

GDGT input coordinate (i.e., the value of that input has a minimal effect on the temperature) then points 365 

within GDGT space that have large differences in absolute input values in that coordinate are still near.  We 366 

find that Cren has very limited predictive power, and so points with large Cren differences are close in term 367 

of the normalised distance.   Conversely, if the temperature is sensitive to small changes in a particular 368 
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GDGT variant, then points with relatively nearby absolute input values in that coordinate are still distant. 369 

We find that most GDGT parameters other than Cren are comparably useful in predicting temperature, with 370 

GDGT-0 and GDGT-3 marginally the most informative. We considered whether interdependency of 371 

percentage GDGT data could influence our calculations. Our analysis suggests that there are only five free 372 

parameters. Machine learning tools should be able to pick up this correlation and effectively ignore one of 373 

the parameters (or one parameter combination). For example, we do find that the GP emulator has a very 374 

broad kernel in at least one dimension, signaling this. In principle, we could have considered only five of 375 

six parameters. The smaller scale of some of the parameters is automatically accounted for by the trained 376 

kernel size in GP regression, or by normalising to the appropriate dynamical range in our initial 377 

investigation. In short, the accuracy of Gaussian process regression is not adversely affected by correlations 378 

between inputs (Rasmussen & Williams, 2006). Significantly correlated inputs that do not bring in new 379 

predictive power are appropriately down-weighted. 380 

 381 

We use a Gaussian process model with a squared exponential kernel with automatic relevance 382 

determination (ARD) to allow for a separate length scale for each GDGT predictor. We fit the GP 383 

parameters with an optimiser based on quasi-Newton approximation to the Hessian. Prediction accuracy is 384 

shown in Figure 5, and we find that δT = 3.72 ºC, which is a substantial improvement over the existing 385 

indices, at least on the modern data. As mentioned, the GP framework provides a natural quantification of 386 

predictive uncertainty, which includes uncertainty about the learned function. This is in contrast to, for 387 

example, the TEX86 proxy, whereby the uncertainty associated with the selection of the particular functional 388 

form used for predictions is ignored. While Tierney & Tingley (2014) also use Gaussian processes to model 389 

uncertainty, they model spatial variability in the TEX86-temperature relationship with a Gaussian process 390 

prior. While this is a valuable approach to understand regional effects in the TEX86-temperature 391 

relationship, it does not deal with the `non-analogue’ situations we are concerned with in this paper.  392 

 393 

2.5 Data Structure 394 

 395 

The random forest (Section 2.3) and GPR approaches (Section 2.4) are agnostic about any underlying bio-396 

physical model that might impart the observed temperature-dependence on GDGT relative abundances 397 

produced by archaea.  They are essentially optimized interpolation tools for mapping correlations between 398 

temperature and GDGT abundances within the range of the modern calibration data set; they can make no 399 

sensible inference about the behavior of this relationship outside of the range of this training data.  To move 400 

from interpolation within, to extrapolation beyond, the modern calibration requires an understanding of, 401 

and model for, the temperature-dependence of GDGT production.  To explore these relationships and the 402 
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extent to which the ancient and modern data reside in a coherent relationship within GDGT space, we 403 

employed two forms of dimensionality reduction to enable visualisation of the data in two or three 404 

dimensions. The fundamental point is that if temperature is the dominant control, all of the data should lie 405 

approximately on a one-dimensional curve in GDGT space, and the arclength along this curve should 406 

correspond to temperature; we will revisit this point below.  407 

 408 

We first employed a version of principal component analysis (PCA) tailored to compositional data 409 

(Aitcheson, 1982, 1983; Aitcheston and Greenacre, 2002; Filzmoser et al., 2009a; Filzmoser et al., 2009b; 410 

Filzmoser et al., 2012). Taking into account the compositional nature of the data is important because the 411 

sum-to-one constraint induces correlations between variables which are not accounted for by classical PCA. 412 

Furthermore, apparently nonlinear structure in Euclidean space often corresponds to linearity in the simplex 413 

(i.e. the restricted space in which all elements sum to one) (Egozcue et al., 2003). Figure 6 shows the 414 

modern, Eocene and Cretaceous data projected onto the first two principal components. Aside from the 415 

obvious outlying cluster of Cretaceous data, characterised by GDGT-3 fractions above 0.6, the bulk of the 416 

data occupy a two-dimensional point cloud with a small amount of curvature. The large majority of the 417 

Cretaceous data has more positive PC1 values relative to the modern data. 418 

 419 

We also explored the data using diffusion maps (Coifman et al., 2005; Haghverdi et al., 2015), a nonlinear 420 

dimensionality reduction tool designed to extract the dominant modes of variability in the data. Such 421 

diffusion maps have been successfully used to infer latent variables that can explain patterns of gene 422 

expression. In the case of biological organisms, this latent variable is commonly developmental age (called 423 

pseudo-time) (Haghverdi et al., 2016). In our case, the assumption would be that this latent variable 424 

corresponds to temperature. Inspection of the eigenvalues of the diffusion map transition matrix suggests 425 

that four diffusion components are adequate to represent the data; we plot the second, third and fourth of 426 

these components in Figure 7 for the modern and ancient data. The separate clusters marked `A' are the 427 

outlying Cretaceous points with high GDGT-3 values. The bulk of the modern data lies on the branch 428 

marked `B', while the bulk of the Cretaceous data lies on the branch marked `C'. Notably, the majority of 429 

the modern points lying on branch C are from the Red Sea, which suggests that the Red Sea data is essential 430 

for understanding ancient climates (particularly Cretaceous climates). 431 

 432 

The relationship between the first diffusion component and TEX86 for all data is shown in Figure 8. There 433 

is a clear correlation, despite the presence of some outlying Cretaceous points, some of which are not shown 434 

because they lie so far outside the majority data range within this projection. This suggests that TEX86 is, 435 

in one sense, a natural one-dimensional representation of the data. We also plot the first diffusion 436 
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component for the modern data as a function of temperature (Figure 9). We see a similar pattern emerging 437 

to that displayed by TEX86 - there is little sensitivity to temperature below 15 ºC, and between ~20 and 25 438 

ºC. An interesting avenue for future research might be to explore the temperature-GDGT system from a 439 

dynamical systems perspective, i.e. use simple mechanistic mathematical models to explore the 440 

temperature-dependence of steady-state GDGT distributions. It may be that such models suggest that only 441 

a few steady-states exist, and that temperature is a bifurcation parameter, i.e. it controls the switch between 442 

the steady states. Note also the downward slope in the residual pattern in Figure 4 between 0 and 15-17 443 

degrees celsius, and again at higher temperatures. This pattern is consistent with predictions that are biased 444 

towards the centre of each `cluster', i.e. a system which is not very sensitive to temperature, but can 445 

distinguish between high and low temperatures reasonably well. This observation also links to recent culture 446 

studies (Elling et al., 2015) and Pliocene-Pleistocene sapropel data (Polik et al., 2018), which support the 447 

existence of discrete populations with unique GDGT-temperature relationships and that temporal changes 448 

in population over time can drive changes in TEX86. 449 

 450 

2.6 Forward Modelling 451 

 452 

Based on the analysis of the combined modern and ancient data structure outlined above, there appears to 453 

be some consistency to underlying trends in the overall variance of GDGT relative abundances. These 454 

trends provide some hope that models of this variance, and its relationship to sea surface temperature, within 455 

the modern dataset could be developed to predict ancient SSTs. TEX86 and BAYSPAR are such models, 456 

but they are limited by, first, the reduction of six-dimensional GDGT space to a one-dimensional index; 457 

and second, by an ad hoc model choice – linear, exponential – that does not account for uncertainty in 458 

model fit to the modern calibration data, and the resultant uncertainty in the estimation of ancient SSTs 459 

relating to model choice. To overcome these issues, we develop a forward model based on a multi-output 460 

Gaussian Process (Alvarez et al., 2012), which models GDGT compositions as functions of temperature, 461 

accounting for correlations between GDGT measurements. This model is then inverted to obtain 462 

temperatures which are compatible with a measured GDGT composition. In simple terms, we posit that a 463 

measured GDGT composition is generated by some unknown function of temperature and corrupted by 464 

noise, which may be due to measurement error or some unmodelled particularity of the environment in 465 

which the sample was generated. We proceed by defining a large (in this case infinite) set of functions of 466 

temperature to explore and compare them to the available data, throwing away those functions which do 467 

not adequately fit the data. This means, of course, that the behaviour of the functions we accept is allowed 468 

to vary more widely outside the range of the modern data than within it. With no mechanistic underpinning, 469 
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choosing only one function (such as the inverse of TEX86) based on how well it fits the modern data grossly 470 

underestimates our uncertainty about temperature where no modern analogue is available. 471 

 472 

The forward modelling approach is similar to that of Haslett et al. (2006), who argue that it is preferable to 473 

model measured compositions as functions of climate, before probabilistically inverting the model to infer 474 

plausible climates given a composition. The cost of modelling the data in this more natural way is the loss 475 

of degrees of freedom -- we are now attempting to fit a one-dimensional line through a multidimensional 476 

point cloud rather than fit a multidimensional surface to the GDGT data, which means that the predictive 477 

power of the model suffers, at least on the modern data. The existing BAYSPAR calibration also specifies 478 

the model in the forward direction, however while BAYSPAR does model spatial variability it assumes a 479 

monotonic relationship between TEX and SST, only accounting for uncertainties on the parameters within 480 

the model, rather than any systematic uncertainty in the model itself. As with all GP models, the choice of 481 

kernel has a substantial impact on predictions (and their associated uncertainty) outside the range of the 482 

modern data, where predictions revert to the prior implied by the kernel. Given that we have no mechanistic 483 

model for the data generating process, we recommend the use of kernels which do not impose strong prior 484 

assumptions on the form of the GDGT-temperature relationship (e.g. kernels with a linear component) and 485 

thus reasonably represent model uncertainty outside the range of the modern data. We choose a zero-mean 486 

Matern 3/2 kernel for the applications below. Note, however, that since we are working in ilr-transformed 487 

coordinates, this corresponds to a prior assumption of uniform compositions at all temperatures, i.e. all 488 

components are equally abundant.  489 

 490 

The residuals for the forward model are shown in Figure 10. The clear pattern in the residuals does not 491 

necessarily indicate model misspecification, since no explicit noise model is specified for temperatures. 492 

Predictive distributions are to be interpreted in the Bayesian sense, in that they represent a 'degree of belief' 493 

in temperatures given the model and the modern data. The residual pattern is similar to that of the random 494 

forest (Figure 4) with two clear downward slopes, suggesting again that the data are clustered into 495 

temperatures above and below 16-17 ºC, and that predictions tend towards temperatures at the centres of 496 

these clusters. 497 

 498 

An advantage of the forward modelling approach is that the inversion can incorporate substantive prior 499 

information about temperatures for individual data points. In particular, other proxy systems can be used to 500 

elicit prior distributions over temperatures to constrain GDGT-based predictions, particularly when 501 

attempting to reconstruct ancient climates with no modern analogue in GDGT-space. We emphasise that 502 

outside the range of the modern data, the utility of the models is almost solely due to the prior information 503 
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included in the reconstruction. At present, the only priors being used in the forward model prescribe a 504 

reasonable upper limit and lower limit on temperatures (see Supplementary Information). The only way to 505 

improve these reconstructions will be for future iterations to incorporate prior information from other 506 

proxies. It is worth noting that the predictive uncertainty, while reasonably well-described by the standard 507 

deviation in cases where ancient data lie quite close to the modern data in GDGT space, can be highly 508 

multimodal (Fig. 11). This is the case when estimates are significantly outside of the modern calibration 509 

dataset, such as low latitude data in the Cretaceous, or where there is considerable scatter in the modern 510 

calibration data, for example in the low temperature range (<5 ºC). 511 

 512 

3. Non-analogue behavior and Extrapolation 513 

 514 

In principle, the predictors described above can be applied directly to ancient data, such as data from the 515 

Eocene or Cretaceous (Inglis et al., 2015; O’Brien et al., 2017).  In practice, one should be careful with 516 

using models outside their domain of applicability.  The machine learning tools described above, which are 517 

ultimately based on the analysis of nearby calibration data in GDGT space, are fundamentally designed for 518 

interpolation.  To the extent that ancient data occupy a very different region in GDGT space, extrapolation 519 

is required, which the models do not adequately account for. The divergence between modern calibration 520 

data and ancient data is evident from Fig. 12, which shows histograms of minimum normalised distances 521 

between ‘high quality’ Eocene/Cretaceous data points (those that passed the screening tests applied by 522 

O’Brien et al., 2017 and Inglis et al., 2015) and the nearest point in the full modern data set.  We strongly 523 

recommend the use of the weighted distance metric (Dnearest) as a screening method to determine whether 524 

the modern core top GDGT assemblage data is an appropriate basis for ancient SST estimation on a case-525 

by-case basis. Note that this distance measure is weighted by the scale length of the relevant parameter as 526 

estimated by the Gaussian process emulator in order to quantify the relative position of ancient GDGT 527 

assemblages to the modern core-top data.  By using the GP-estimated covariance as the distance metric, we 528 

account for the sensitivity of different GDGT components to temperature. Our inference is that samples 529 

with Dnearest >0.5, regardless of the calibration model or approach applied, are unlikely to generate 530 

temperature estimates that are much better than informed guesswork. In these instances, in both our GPR 531 

and Fwd models, the constraints provided by the modern calibration data set are so weak that estimates of 532 

temperature have large uncertainty bands that are dictated by model priors; i.e. are unconstrained by the 533 

calibration data (e.g., Figure 13 and Figure 14). This uncertainty is not apparent from estimates generated 534 

by BAYSPAR or !"#$%'  models, although the underlying and fundamental lack of constraints are the same. 535 

While 93% of validation data points in the modern data have Dnearest <0.5, this is the case for only 33% of 536 

Eocene samples and 3% for Cretaceous samples.  537 
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 538 

Where ancient GDGT distributions lie far from the modern calibration data set (Dnearest >0.5), we argue that 539 

there is no suitable set of modern analogue GDGT distributions from which to infer growth temperatures 540 

for this ancient GDGT distribution.  Both the GPR and Fwd models revert to imposed priors once the 541 

distance from the modern calibration dataset increases.  We propose that this is more rigorous and justified 542 

model behavior than extrapolation of TEX86 or BAYSPAR predictors to non-analogue samples far from 543 

the modern calibration data.  As a result, the predictive models can only be applied to a subset of the Eocene 544 

and Cretaceous data. We also note that there are two broad, non-mutually-exclusive categories of samples 545 

that lie far from the modern calibration dataset (Dnearest >0.5), the first are samples that seem to lie ‘beyond’ 546 

the temperature-GDGT calibration relationship, likely with (unconstrained) GDGT formation temperatures 547 

higher than the modern core-top calibrations; the second are samples with anomalous GDGT distributions 548 

lying on the margins of, or far away from the main GDGT clustering in 6-dimensional space (see outliers 549 

in Fig. 8). 550 

 551 

Given the (current) limit on natural mean annual surface ocean temperatures of ~30 ºC, extending the 552 

GDGT-temperature calibration might be possible through, 1) integration of full GDGT abundance 553 

distributions produced in high temperature culture, mesocosm or artificially warmed sea surface 554 

conditions into the models; followed by, 2) validation through robust inter-comparisons of any new 555 

GDGT palaeothermometer for high temperatures conditions with other temperature proxies from past 556 

warm climate states. As discussed in the introduction, the first approach is limited by the ability of culture 557 

or mesocosm experiments to accurately represent the true diversity and growth environments and 558 

dynamics of natural microbial populations. Such studies clearly indicate a more complex, community-559 

scale control on changing GDGT relative abundances to growth temperatures (e.g., Elling et al., 2015). 560 

Community-scale temperature dependency can be modelled relatively well with analyses of natural 561 

production preserved in core-top sediments, especially with more sophisticated model fitting, including 562 

the GPR and Fwd model presented here. Above ~30ºC, however, the behavior of even single strains of 563 

mesophilic archaea are not well-constrained by culture experiments, and the natural community-level 564 

responses above this temperature are, so far, completely unknown. While there is evidence for the 565 

temperature-sensitivity of GDGT production by thermophilic and acidophilic archaea in older papers (de 566 

Rosa et al., 1980; Gliozzi et al., 1983), recent work, characterised by more precise phylogenetic and 567 

culturing techniques show a more complex relationship between GDGT production and temperature. 568 

Elling et al., (2017) highlight that there is no correlation between TEX86 and growth temperature in a 569 

range of phylogenetically different thaumarchaeal cultures - including thermophilic species. Bale et al. 570 

(2019) recently cultured Candidatus nitrosotenuis uzonensis from the moderately thermophilic order 571 
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Nitrosopumilales (that contains many mesophilic marine strains). They found no correlation between 572 

TEX86 calibrations (either the Kim et al., core-top or Wuchter et al. 2004 and Schouten et al., 2008 573 

mesocosm calibrations) with membrane lipid composition at different growth temperatures (37°C, 46°C, 574 

and 50°C) and found that phylogeny generally seems to have a stronger influence on GDGT distribution 575 

than temperature. In view of these existing data, we see no robust justification at present for the 576 

extrapolation of modern core-top calibration data sets into the unknown above 30 ºC, although the 577 

coherent patterns apparent across GDGT space, between modern, Eocene and Cretaceous data (Figure 7), 578 

do provide some grounds for hope that the extension of GDGT palaeothermometry beyond 30ºC might be 579 

possible in future.  580 

 581 

4. OPTiMAL and Dnearest: A more robust method for GDGT-based paleothermometry 582 

 583 

A more robust framework for GDGT-based palaeothermometry, could be achieved with a flexible 584 

predictive model that uses the full range of six GDGT relative abundances, and has transparent and robust 585 

estimates of the prediction uncertainty. In this context, the Gaussian Process Regression model (GPR; 586 

Section 2.4) outperforms the Forward model (Fwd; Section 2.6) within the modern calibration dataset and 587 

we recommend standard use of the GPR model, henceforth called OPTiMAL, over the Fwd model. Model 588 

code for the calculation of Dnearest values and OPTiMAL SST estimates (Matlab script) and the Fwd Model 589 

SST estimates (R script) are archived in the GITHUB repository, 590 

https://github.com/carbonatefan/OPTiMAL.  591 

 592 

Following Tierney and Tingley (2014) we use a reduced calibration data set, with the exclusion of Arctic 593 

data with observed SSTs less than 3ºC (“NoNorth / TT13” of Tierney and Tingley (2014)) but with the 594 

inclusion of additional core top data from Seki et al. (2014). Full details of this calibration dataset are 595 

provided in the Supplementary Information; to distinguish from the original OPTiMAL calibration data, 596 

which included the Arctic data <3ºC, we refer to the original data as “Op1” and the new calibration dataset 597 

as “Op3”. An “Op2” is also available, which is the same as Op1 except that it excludes the Seki et al. (2014) 598 

data. In sensitivity tests to a range of applications across Quaternary and deep-time datasets, calibration 599 

Op1 and Op2 performed in almost identical fashion. The performance of Op1 and Op3 were very similar 600 

in most applications, except in applications to the paleo-Arctic (see below), where the inclusion of modern 601 

Arctic calibration data (Op1) provided closer calibration constraints to the paleo-data. Although 602 

superficially this may be regarded as beneficial, in these instances the paleo-data have previously been 603 

rejected because of a potential bias by non-marine inputs indicated by high BIT indices (Sluijs et al. 2020).  604 

In this case, either the modern Arctic calibration data is impacted by similar non-thermal processes, 605 
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generating unusual GDGT abundance patterns, which are not appropriate to use for SST calibration, or, 606 

there could be some consistency between the modern and ancient GDGT production by marine archaea in 607 

the Arctic which may help in the understanding of GDGT-based paleothermometry in this unusual 608 

environment (Sluijs et al. 2020). The Dnearest methodology may prove useful in quantifying analogue and 609 

non-analogue behavior through time in such conditions. For the purposes of this study, however, we take 610 

the conservative approach, and one that maintains a more consistent calibration basis with BAYSPAR, by 611 

using OPTiMAL calibration Op3 in the remainder of this discussion, and recommend its use in future 612 

applications of OPTiMAL. 613 

 614 

To investigate the behaviour of the new OPTiMAL model, we compare temperature predictions including 615 

uncertainties for the Eocene and Cretaceous datasets, made by OPTiMAL and the BAYSPAR methodology 616 

of Tierney and Tingley (2014) (Figures 13 and 14), using the default priors specified in the model code for 617 

the BAYSPAR estimation. The OPTiMAL model systematically estimates slightly cooler temperatures 618 

than BAYSPAR, with the biggest offsets below ~15 ºC (Figure 13). Fossil GDGT assemblages that fail the 619 

Dnearest test are shown in grey, which clearly illustrate the regression to the mean in the OPTiMAL model, 620 

whereas BAYSPAR continues to make SST predictions up to and exceeding 40 ºC for these “non-analogue” 621 

samples due to the fact that BAYSPAR assumes that higher TEX86 values equate to higher temperatures as 622 

part of the functional form of the model, whereas the GPR model is agnostic on this. A comparison of error 623 

estimation between OPTiMAL and BAYSPAR is shown in Figure 14.  For most of the predictive range 624 

below the Dnearest cut-off of 0.5, OPTiMAL has smaller predicted uncertainties than BAYSPAR, especially 625 

in the lower temperature range. As Dnearest increases, i.e. as the fossil GDGT assemblage moves further from 626 

the constraints of the modern calibration dataset, the error on OPTiMAL increases, until it reaches the 627 

standard deviation of the modern calibration dataset (i.e., is completely unconstrained). In other words, 628 

OPTiMAL generates maximum likelihood SSTs with robust confidence intervals, which appropriately 629 

reflect the relative position of an ancient sample used for SST estimation and the structure of the modern 630 

calibration data set. Where there are strong constraints from near analogues in the modern data, 631 

uncertainties will be small, where there are weak constraints, uncertainty increases. In contrast, while 632 

uncertainty bounds do increase when BAYSPAR is used to extrapolate beyond the modern calibration, they 633 

are not as large as Optimal because BAYSPAR assumes a linear increase in SST at higher TEX values. 634 

 635 

We also provide an initial assessment of the inter-relationship between standard screening indices and 636 

Dnearest, for the Eocene and Cretaceous compilations where the data are available to calculate these measures 637 

(Figure 15).  For ease of comparison between Eocene and Cretaceous datasets and visualization of the 638 

majority of the data, extreme outliers (Dnearest  > 4.0) are not shown. The metrics include the BIT index 639 
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(Hopmans et al., 2004; Weijers et al., 2006), the Methane Index (MI; Zhang et al., 2011), the deviation 640 

between TEX86 and the Ring Index (DRI; Zhang et al., 2016) and the %GDGT-0 (Blaga et al., 2009; 641 

Sinninghe Damsté et al., 2012). The standard screening levels for each of these metrics, as used in previous 642 

paleo-compilations (O’Brien et al. 2017), are shown in the blue shaded areas on Figure 15 (BIT > 0.5; MI 643 

> 0.5; DRI > 0.3; %GDGT-0 > 67%) – data points within these areas fail the standard screening. Also shown 644 

on Figure 15 is the region where data pass our Dnearest screening requirement (grey shaded vertical region). 645 

In nearly all cases GDGT assemblages that fail these traditional screening tests also have Dnearest values that 646 

exceed 0.5 – i.e. “abnormal” GDGT assemblages are well screened Dnearest. The main exception to this is 647 

the BIT index in the Eocene data set, where 15 samples have high BIT values (>0.5) but have GDGT 648 

assemblages that are close to modern analogues in the calibration dataset (Dnearest <0.5). Of these samples, 649 

9 are from the Arctic Ocean between the PETM and ETM2, an interval noted for its relatively high BIT 650 

index values (Sluijs et al. 2020), 3 are from the Eocene-Oligocene transition of ODP Site 1218 (eastern 651 

Equatorial Pacific) (Liu et al. 2009), 2 are from the middle Eocene of Seymour Island (Douglas et al. 2014), 652 

and 1 is from the late Eocene of DSDP Site 511, which has been already noted as an individual sample with 653 

anomalous high BIT in this dataset (Liu et al. 2009; Inglis et al. 2015). Although high BIT at ODP Site 654 

1218 has been inferred to represent “relatively high terrestrial input” (Inglis et al. 2015) this seems unusual 655 

for a fully pelagic site situated on oceanic crust >3000 km away from the nearest continental landmass. 656 

Interpreting high BIT values as exclusively caused by terrestrial organic components appears problematic 657 

in this instance, especially as Dnearest <0.5 give some assurance that these GDGT assemblages from ODP 658 

Site 1218 are well-modelled by the modern calibration dataset. GDGT assemblages from Seymour Island 659 

associated with high BIT values (>0.4) appear to have an impact on the TEX86
H SST proxy (Inglis et al. 660 

2015), but the 2 samples that fail BIT (>0.5) but pass Dnearest (<0.5) give OPTiMAL SSTs consistent (5-661 

6ºC) with the SSTs from samples that pass all other screening and Dnearest (~4-7ºC). In summary, the 662 

relationship between Dnearest and BIT suggests that BIT is not always closely coupled to GDGT assemblages 663 

that are strongly divergent from the modern calibration dataset. 664 

 665 

With respect to the other screening indices there are clear indications that increased distance from the 666 

modern calibration (increased Dnearest) is associated with a trend towards the “thresholds of failure” in the 667 

screening indices. This pattern is most clear with the DRI in both the Cretaceous and the Eocene data, as 668 

increasing numbers of samples fail DRI as Dnearest increases. This supports DRI as a robust methodology for 669 

identifying samples that strongly diverge from the expected temperature-dependence of GDGT 670 

assemblages as modelled by TEX86 in the modern calibration dataset. There are, however, samples that pass 671 

Dnearest <0.5 but fail DRI in both the Eocene and Cretaceous datasets – these must have “near neighbours” 672 

in the modern calibration data, but yet have a temperature-sensitivity that is less well-modelled by TEX86 673 
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(divergence between RI and TEX86). Conversely there are many Eocene and Cretaceous data points with 674 

DRI < 0.3, but which fail Dnearest (>0.5). These data most likely represent GDGT assemblages formed at 675 

high temperatures, beyond the range of the modern calibration data. 676 

  677 

 678 

These plots show little relationship between the BIT and MI screening indices and Dnearest values. Whilst in 679 

the Eocene, samples with the highest Dnearest values (>3) also show very elevated BIT values (>0.8), in the 680 

Cretaceous the exceptionally anomalous assemblages (Dnearest values >100) are not anomalous in either BIT 681 

or MI. Conversely, in the Eocene there are many samples with relatively high BIT (>0.3) that are below the 682 

Dnearest threshold of 0.5. The behaviour of these systems needs to be examined in detail in future studies, but 683 

a conservative approach would be to apply all three screening indices (BIT, MI and Dnearest) to have the 684 

most confidence in resulting temperature estimates.  685 

 686 

To investigate these behaviours requires the publication of the full range GDGT abundance data. Whilst 687 

key compilations of Eocene and Cretaceous GDGT data have strongly encouraged the release of such 688 

datasets (Lunt et al. 2012; Dunkley Jones et al. 2013; Inglis et al. 2015; O’Brien et al. 2017), most Neogene 689 

studies only publish TEX86 values. Without full GDGT assemblage data neither OPTiMAL nor other 690 

detailed assessments of GDGT behaviour and type can be made, and we would strongly encourage authors, 691 

reviewers and editors to ensure the publication of full GDGT assemblages in future. 692 

 693 

Finally, to test the behavior of OPTiMAL within established SST time series, we provide three examples 694 

two from the late Pleistocene to Holocene (Figure 16) and one from the Eocene (Figures 17 and 18). , where 695 

full GDGT assemblage data were made available, and there are comparison alkenone-based Uk’
37 data from 696 

the same sampling location – ODP 806 and ODP 850, respectively in the West and Eastern Equatorial 697 

Pacific (Figure 16; Zhang et al. 2014). For the Pleistocene to Holocene examples OPTiMAL SSTs are 698 

shown against estimates from BAYSPAR and the alkenone-based Uk’
37 temperature proxy. The first of 699 

these timeseries is from GeoB 7702-3 in the Eastern Mediterranean and spans the last 26 kyr, including 700 

data spanning Termination I (Castañeda et al., 2010). The second is from ODP Site 1146 in the South China 701 

Sea and spans the last 350 kyr (Thomas et al. 2014).  In both records the long-term dynamics are consistent 702 

between the independent Uk’
37 SST proxy and both BAYSPAR and OPTiMAL. In the Eastern 703 

Mediterranean OPTiMAL SSTs are slightly cooler in the glacial and warmer in the Holocene than the other 704 

proxies. In the South China Sea, OPTiMAL is again cooler than BAYSPAR during glacial intervals, but at 705 

this location is in closer agreement than BAYSPAR with the Uk’
37 SST proxy through most of the record. 706 
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In both these examples, we show the 5th and 95th percentiles for OPTiMAL and those reported by the 707 

BAYSPAR methodology. 708 

 709 

The final example is from the latest Paleocene to early Eocene of IODP Expedition 302 Hole 4A on 710 

Lomonosov Ridge (Sluijs et al. 2006; Sluijs et al. 2009; Sluijs et al. 2020). This site is useful as it has been 711 

the focus of detailed reassessment and reanalysis, using most of the available screening methodologies to 712 

detect aberrant GDGT assemblages (Sluijs et al. 2020). Here we use this recently published data to compare 713 

the new Dnearest screening metric against multiple other screening protocols (Figure 17). We also show both 714 

Dnearest values and OPTiMAL SST estimates for two models – one with modern Arctic data with SST < 3ºC 715 

included in the calibration (OPTiMALArctic; equivalent to calibration dataset Op1 first present by Eley et al. 716 

2019) and one with this data excluded (OPTiMALnoArctic; equivalent to the new calibration dataset Op3). It 717 

is clear from the pattern of Dnearest for these two options, that the inclusion of modern Arctic data provides 718 

more calibration data that are closer to the Eocene paleo-Arctic, to the extent that substantially more 719 

samples pass the Dnearest < 0.5 constraint, especially in pre-ETM2 interval from ~372 to 376 mcd. This 720 

interval contains, however, samples with the highest BIT values of the succession (> 0.4), and elevated DRI 721 

(> 0.3). With these other “warning signs” concerning the reliability of GDGT assemblages for SST 722 

estimation in this interval, the relatively low Dnearest values are most likely to represent some similarity in 723 

the non-thermal controls on GDGT assemblages between the modern and paleo-Arctic. More work needs 724 

to be done to constrain the reliability of temperature-dependence and archaeal GDGT production in these 725 

modern high latitude systems before we can have confidence in their inclusion in calibration datasets for 726 

paleo-SST estimation. It is on the basis that we recommend users of OPTiMAL use the the “noArctic” 727 

(Op3) calibration for the time being. The OPTiMAL methodology does, however, offer a simple means to 728 

integrate new robust calibration data, and a method to explore the distance relationships between modern 729 

and ancient GDGT production.  730 

 731 

Considering the “noArctic” Dnearest and OPTiMAL SSTs for Exp. 302 Hole 4A, it is clear that of all the 732 

screening methods, Dnearest shows the strongest similarity to DRI – with high (“failure”) values in the pre-733 

PETM and then again between ~371 and 376 mcd, and even picking up the same short-lived “failure” 734 

intervals, or spikes, between 368 and 371 mcd. SST estimates based on OPTiMAL show broadly similar 735 

trends to TEX86
H and BAYSPAR, with a warm PETM, cooling post-PETM and then warming again into 736 

ETM2. It should be noted, however, that peak temperatures for OPTiMAL are ~5ºC cooler than TEX86
H 737 

and BAYSPAR (e.g. PETM SSTs <20ºC for OPTiMAL and > 25ºC for TEX86
H and BAYSPAR), and show 738 

more cooling post-PETM, with SST estimates of ~10ºC (OPTiMALnoArctic) as opposed to ~20ºC for TEX86
H 739 

and BAYSPAR. 740 
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 741 

are not at the limit of alkenone saturation in ODP 806, OPTiMAL and Uk’
37 agree well in the Plio-742 

Pleistocene. In ODP 850, there is a strong agreement in the reproduction of a long-term late Miocene to 743 

Recent cooling trend in both Uk’
37 and OPTiMAL of ~5ºC. There is, however a consistent ~2º offset between 744 

cooler OPTiMAL and warmer Uk’
37 temperatures at this location. This offset is very similar in magnitude 745 

and direction as that between TEX86
H and Uk’

37 used in the original study. and is more likely due to an 746 

inherent feature (seasonality or depth) of archaeal versus eukaryotic production at this site (Zhang et al. 747 

2014). 748 

 749 

5. Conclusions 750 

 751 

Although the fundamental issue of non-analogue behaviour is a key problem for GDGT-temperature 752 

estimation, it has an undue impact on the community’s general confidence in this method. In part, this is 753 

because these issues have not been clearly stated and circumscribed - rather they have been allowed to erode 754 

confidence in the GDGT-based methodology through the use of GDGT-based palaeothermometry far 755 

outside the modern constraints on the behavior of this system. The use of GDGT abundances to estimate 756 

temperatures in clearly non-analogue conditions is, at present, problematic on the basis of the available 757 

calibration constraints or a good understanding of underlying biophysical models. We hope that this study 758 

prompts further investigations that will improve these constraints for the use of GDGTs in deep-time 759 

paleoclimate studies, where they clearly have substantial potential as temperature proxies. Temperature 760 

estimates based on fossil GDGT assemblages that are within range of, or similar to, modern GDGT 761 

calibration data, do, however, rest on a strong, underlying temperature-dependence observed in the 762 

empirical data. With no effective means of separating the “good from the bad” can lead to either false 763 

confidence and inappropriate inferences in non-analogue conditions, or a false pessimism when ancient 764 

samples are actually well constrained by modern core-top assemblages. 765 

 766 

In this study, we apply modern machine-learning tools, including Gaussian Process Emulators and forward 767 

modelling, to improve temperature estimation and the representation of uncertainty in GDGT-based SST 768 

reconstructions. Using our new nearest neighbour test, we demonstrate that >60% of Eocene, and >90% of 769 

Cretaceous, fossil GDGT distribution patterns differ so significantly from modern as to call into question 770 

SSTs derived from these assemblages. For data that does show sufficient similarity to modern, we present 771 

OPTiMAL, a new multi-dimensional Gaussian Process Regression tool which uses all six GDGTs (GDGT-772 

0, -1, -2, -3, Cren and Cren’) to generate an SST estimate with associated uncertainty. The key advantages 773 

of the OPTiMAL approach are: 1) that these uncertainty estimates are intrinsically linked to the strength of 774 
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the relationship between the fossil GDGT distributions and the modern calibration data set, and 2) by 775 

considering all GDGT compounds in a multi-dimensional regression model it avoids the dimensionality 776 

reduction and loss of information that takes place when calibrating single parameters (TEX86) to 777 

temperature. The methods presented above make very few assumptions about the data. We argue that such 778 

methods are appropriate with the current absence of any reasonable mechanistic model for the data 779 

generating process, in that they reflect model uncertainty in a natural way. Finally, we note the potential 780 

for multi-proxy machine learning approaches, synthesising data from other palaeothermeters with 781 

independent uncertainties and biases, to improve calibration of ancient GDGT-derived SST reconstructions.  782 

 783 
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Figure Captions: 798 

 799 

Figure 1. A histogram of the normalised distance to the nearest neighbour in GDGT space (Dx,yt) for all 800 

samples in the modern calibration dataset of Tierney and Tingley (2015). 801 

 802 

Figure 2. The error of the nearest-neighbour temperature (Dx,y) predictor, for modern core-top data, as a 803 

function of the distance to the nearest calibration sample.  804 

 805 

Figure 3. Top: The temperature of the modern data set as a function of the TEX86 value, showing a clear 806 

linear correlation between the two, but also significant scatter.  Bottom: the error of the predictor based on 807 

the nearest TEX86 calibration point. 808 

 809 

Figure 4. The error of a random forest predictor as a function of the true temperature.  810 
 811 



 25 

Figure 5. The error of the GPR (Gaussian Process regression) predictor as a function of the true 812 

temperature. 813 

 814 

Figure 6. Modern and ancient data projected onto the first two compositional principal components. Black: 815 

Modern; Blue: Eocene (Inglis et al., 2015); Red: Cretaceous (O’Brien et al., 2017). 816 

 817 

Figure 7. Diffusion map projection of the modern and ancient data. Black: Modern; Blue: Eocene (Inglis 818 

et al., 2015); Red: Cretaceous (O’Brien et al., 2017). Separate clusters marked `A' are the outlying 819 

Cretaceous points with high GDGT-3 values. Branch ‘B’ is dominated by modern data points; branch ‘C’ 820 

by Cretaceous data. 821 

 822 

Figure 8. The first diffusion component as a function of TEX86 . Some outlying points have been excluded 823 

from the plot for the purposes of visualisation. Black: Modern; Blue: Eocene (Inglis et al., 2015); Red: 824 

Cretaceous (O’Brien et al., 2017). 825 

 826 

Figure 9. The first diffusion component as a function of temperature (modern data only). 827 

 828 

Figure 10. Temperature residuals for the forward model. 829 

 830 

Figure 11. The posterior distributions over temperature from the forward model for selected examples of 831 

high and low temperature, Eocene and Cretaceous, data points. The Gaussian error envelope from the GPR 832 

model is shown for comparison. 833 

 834 

Figure 12. A histogram of normalised distances to the nearest sample in the modern data set for Eocene 835 

and Cretaceous data, excluding samples that had been screened out in previous compilations using BIT, MI 836 

and RI following the approach of (Inglis et al., 2015; O’Brien et al., 2017). 837 

 838 

Figure 13. Comparison of temperature estimates for the BAYSPAR and the OPTiMAL GPR model, greyed 839 

out data fails the Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that 840 

pass. Note that outside of the constraints of the modern calibration (training) dataset, (Dnearest test >0.5) the 841 

GPR model temperature estimates revert to the mean value of the calibration dataset, with an uncertainty 842 

that reverts to the standard deviation of the training data.  843 

 844 
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Figure 14. Inter-comparison of temperature estimates and standard errors (y-axis) for compiled Eocene 845 

and Cretaceous data calculated using OPTiMAL (top) and BAYSPAR (bottom). Greyed out data fails the 846 

Dnearest test (>0.5), and the colour scaling reflects Dnearest values for those datapoints that pass. The black 847 

dashed line shows the Dnearest threshold (>0.5). 848 

 849 
Figure 15. Comparison of Dnearest against standard screening indices, BIT and MI index, DRI and 850 
%GDGT-O for the Eocene (Inglis et al., 2015) and Cretaceous (O’Brien et al., 2017) datasets. Blue 851 
shaded regions show the standard cut-off points for these indices (see text); grey shaded region highlights 852 
data that are below the Dnearest threshold of 0.5. The outlined black box is the region of data that fails 853 
traditional screening indices but passes Dnearest (<0.5). 854 
  855 
Figure 16. Late Pleistocene to Holocene GDGT-derived OPTiMAL palaeotemperatures compared to 856 

BAYSPAR and Uk’
37 SSTs. Shaded regions represent reported 5th and 95th percentile confidence intervals. 857 

Top panel - Eastern Mediterranaean data from core GeoB 7702-3 (Castaneda et al. 2010); bottom panel – 858 

South China Sea data from ODP Site 1146 (Thomas et al. 2014). 859 

 860 

Figure 17. Comparison of GDGT screening indices, TEX86
H, BAYSPAR and OPTiMAL SSTs from the 861 

Eocene Arctic Site IODP Expedition 302 Hole 4A. Data and figures modified from the most recent 862 

reassessment by Sluijs et al. (2020).  863 
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Figure 13
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Figure 14
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Figure 15 1134 
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Figure 16 1137 
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Figure 17 1141 
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