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I think TEX86 is wickedly charming. We all have heard about the misdeed of TEX86, but also 
realized that often times TEX86 is the only thing that could help us to learn about the ocean 
temperatures, especially in the greenhouse climates.  

This proxy has probably already passed its pessimism stage, and currently in the realism 
phase. Eley et al is a timely contribution to help us better understand this important proxy. 
They applied the cutting-edge machine-learning tools to improve the SST estimates using 
GDGTs, with the concept of identifying nearest neighbors in the global core-top dataset. 
This is innovative, but I do have some concerns detailed below.  

We thank Yige Zhang for his comments and agree that GDGT proxies are heading into a ‘realism 
phase’, and hope that our submission provides new analytical approaches for improving the 
robustness of GDGT-based paleothermometry.  

 

I suggest moderate revision of the MS before it can be accepted by CP.  

Although this was not explicitly explained in the MS, I assume the authors used the 
percentage of each individual GDGT, when [GDGT-0]+[GDGT-1]+[GDGT-
2]+[GDGT3]+[Cren]+[Cren’]=100%. If this is the case, these 6 variables are not independent 
from each other. Instead, they are often dominated by the variations of [GDGT-0] and [Cren], 
the two major GDGTs. To show this, I did a simple calculation of the T&T15 global core-top 
dataset, which yielded an average [GDGT-0]+[Cren] of 88% of all GDGTs. This means that 
the variability of [GDGT-1], [GDGT-2], [GDGT-3] or [Cren’] that you see might be largely 
explained by the changes of [GDGT-0] or [Cren]. This is one of the reasons that TEX86 only 
considers the minor GDGTs, and uses a ratio. Ratios are good, as demonstrated by 
numerous cases in geochemistry.  

With that being said, I agree with the authors that by using a subset of GDGTs like the 
TEX86, we are losing some information. We also discussed this in the Rind Index paper of 
Zhang et al., 2016. We realized that Ring Index values are dominated by [GDGT-0] and 
[Cren], as illustrated in Fig. 2. So the real difference between OPTIMAL and TEX86 (and any 
TEX86 calibrations, BAYSPAR, Kim or Liu) is not 6 dimensions vs. 1.  



If the authors would like to, they can try something like use 2 subgroups of GDGTs - major 
and minor ones, with the total of each equals 100%; or some other forms of 6 ratios, 
normalizing GDGTs to one in the major, and one in the minor category. There’s still going 
to be some dependency between the 6 variables, but they are closer to the 6 dimensions 
than the original treatment.  

If they decide not to pursue these alternatives, I’d like to see that at least they acknowledge 
the interdependency of GDGT% data.  

We will amended the text in the final submission to make it explicit that we are using the percentage 
of each individual GDGT. Regarding the issue of dependency, our analysis suggests there are 
only five free parameters. Machine learning tools should be able to pick up on this correlation and 
effectively ignore one of the parameters (or one parameter combination). For example, we do find 
that the GP emulator has a very broad kernel in at least one dimension, signaling this. In principle, 
we could have considered only five of six parameters. The smaller scale of some of the parameters 
is automatically accounted for by the trained kernel size in GP regression, or by normalising to the 
appropriate dynamical range in our initial investigation.  

 

Another issue is the extrapolating from the modern calibration data set. Nobody likes 
extrapolations. But there are these mesocosm studies from NIOZ that demonstrated the 
response of GDGTs to ∼40ºC temperatures. The archaea found in hot spring continues to 
increase their ring numbers until ∼100ºC.  

We refer back to the extensive responses to Tierney, concerning the nature of the constraints on 
the form of the temperature dependence of GDGT assemblages - that although there is evidence 
that ring number increases with temperature, the form of this relationship is characterised by 
empirical model fitting where we have modern environmental sampling (Kim et al. 2010; Tierney 
& Tingley et al. 2014; Zhang et al., 2016; OPTiMAL), but that extrapolation of these models beyond 
the calibration data is problematic, in the absence of other quantified constraints on the behaviour 
of this system.  

 

I agree that we might not know the absolute temperature above ∼30ºC very well, but I 
wouldn’t call them “inappropriate use” that “impacts the confidence”.  

This is a matter of judgement. If the lack of understanding of the nature of GDGT temperature 
dependency above 30ºC results in paleo-SST estimates that we do “not know ...very well”, that is 
grounds for a reduced confidence. In this context, as argued above, using such high temperature 
estimates to generate global mean surface temperature and climate sensitivity estimates (Zhu et 
al. 2019), in our judgment, is not appropriate without substantial caveats. We recognise however 
that the word ‘inappropriate’ may imply a subtle subtext of something being done in bad faith, and 
we have therefore amended this in the revised manuscript, replacing it with the words “provides 
absolute temperature reconstructions and uncertainty estimates that are relatively unconstrainted 
and therefore speculative”.  

 



In fact, the beauty of TEX86 is that it works in greenhouse climates and tropics when Uk’37 
maxes out, carbonates are diagenetically C2 altered and seawater Mg/Ca is difficult to 
constrain.  

As noted above: we do not wish to stop people using GDGT-based thermometry for the 
reconstruction of greenhouse climate states. We simply wish to urge caution in the application of 
this method when the fossil GDGT assemblages, from any time period, are strongly non-analogous 
to the modern calibration data on which this proxy rests. As we demonstrate this appears to be an 
increasing problem with increasing sample age, but it does not preclude the use of this proxy in 
greenhouse climate states where the fossil data are well-constrained by the modern calibration.  

There is clearly an issue with the applicability of GDGT-based paleothermometry to high 
temperature conditions (>30ºC), but it is appropriate to end with a clear statement of our position: 
we would be truly delighted to secure a sound basis for the form of GDGT temperature dependency 
above 30ºC. As we, and all comments / reviewers note, applying GDGT paleothemometry at high 
temperatures would be extremely valuable for paleoclimate studies. Wishing for something, 
however, does not make it so. Instead, as a community we need to think and work creatively to 
address this problem, through culture or other manipulation studies, or through robust proxy-proxy 
inter-comparisons from ancient samples. Rather than the promotion of any single fix-all solution 
as the answer, we believe that advances will come by paying attention to the difficult questions. 
Amidst the complexities of nature, we should beware hubris.  
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