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Abstract. We present a new global reconstruction of seasonal climates at the Last 17	
Glacial Maximum (LGM, 21,000 yr BP) made using 3-D variational data assimilation 18	
with pollen-based site reconstructions of six climate variables and the ensemble average 19	
of the PMIP3/CMIP5 simulations as a prior. We assume that the correlation matrix of 20	
the uncertainties of the prior both spatially and temporally is Gaussian, in order to 21	
produce a climate reconstruction that is smoothed both from month to month and from 22	
grid cell to grid cell. The pollen-based reconstructions include mean annual temperature 23	
(MAT), mean temperature of the coldest month (MTCO), mean temperature of the 24	
warmest month (MTWA), growing season warmth as measured by growing degree 25	
days above a baseline of 5°C (GDD5), mean annual precipitation (MAP) and a moisture 26	
index (MI), which is the ratio of MAP to mean annual potential evapotranspiration. 27	
Different variables are reconstructed at different sites, but our approach both preserves 28	
seasonal relationships and allows a more complete set of seasonal climate variables to 29	
be derived at each location. We further account for the ecophysiological effects of low 30	
atmospheric carbon dioxide concentration on vegetation in making reconstructions of 31	
MAP and MI. This adjustment results in the reconstruction of wetter climates than 32	
might otherwise be inferred by the vegetation composition. Finally, by comparing the 33	
uncertainty contribution to the final reconstruction, we provide confidence intervals on 34	
these reconstructions and delimit geographical regions for which the palaeodata provide 35	
no information to constrain the climate reconstructions. The new reconstructions will 36	
provide a benchmark created using clear and defined mathematical procedures that can 37	
be used for evaluation of the PMIP4/CMIP6 entry-card LGM simulations and	 are	38	
available	at	DOI:10.17864/1947.229. 39	
 40	
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1 Introduction	41	

Models that perform equally well for present-day climate nevertheless produce very 42	
different responses to anthropogenic forcing scenarios through the 21st century. 43	
Although internal variability contributes to these differences, the largest source of 44	
uncertainty in model projections in the first three to four decades of the 21st century 45	
stems from differences in the response of individual models to the same forcing 46	
(Kirtman et al., 2013). Thus, the evaluation of models based on modern observations is 47	
not a good guide to their future performance, largely because the observations used to 48	
assess model performance for present-day climate encompass too limited a range of 49	
climate variability to provide a robust test of the ability to simulate climate changes. 50	
Although past climate states do not provide analogues for the future, past climate 51	
changes provide a unique opportunity for out-of-sample evaluation of climate model 52	
performance (Harrison et al., 2015).	53	
 54	
At the Last Glacial Maximum (LGM, conventionally	 defined	 for	 modelling	55	
purposes	as 21 000 years ago), insolation was quite similar to the present, but global 56	
ice volume was at a maximum, eustatic sea level was close to a minimum, long-lived 57	
greenhouse gas concentrations were lower, and atmospheric aerosol loadings higher 58	
than today, and land surface characteristics (including vegetation distribution) were 59	
also substantially different from today. These changes gave rise to a climate radically 60	
different from that of today; indeed the magnitude of the change in radiative forcing 61	
between LGM and pre-industrial climate is comparable to high-emissions projections 62	
of climate change between now and the end of the 21st century (Braconnot et al., 2012).  63	
The LGM has been a focus for model evaluation in the Paleoclimate Modelling 64	
Intercomparison Project (PMIP) since its inception (Joussaume and Taylor, 1995; 65	
Braconnot et al., 2007; Braconnot et al., 2012). The LGM is one of the two “entry card” 66	
palaeoclimate simulations included in the current phase of the Coupled Model 67	
Intercomparison Project (CMIP6) (Kageyama et al., 2018). The evaluation of previous 68	
generations of palaeoclimate simulations has shown that the large-scale thermodynamic 69	
responses seen in 21st century and LGM climates, including enhanced land–sea 70	
temperature contrast, latitudinal amplification, and scaling of precipitation with 71	
temperature, are likely to be realistic (Izumi et al., 2013; Li et al., 2013; Lunt et al, 72	
2013; Hill et al., 2014; Izumi et al., 2014; Harrison et al., 2015). However, evaluation 73	
against palaeodata shows that even when the sign of large-scale climate changes is 74	
correctly predicted, the patterns of change at a regional scale are often inaccurate and 75	
the magnitudes of change often underestimated (Brewer et al., 2007; Mauri et al., 2014; 76	
Perez Sanz et al., 2014; Bartlein et al., 2017). The current focus on understanding what 77	
causes mismatches between reconstructed and simulated climates is a primary 78	
motivation for developing benchmark data sets that represent regional climate changes 79	
comprehensively enough to allow a critical evaluation of model deficiencies. 80	
 81	
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Many sources of information can be used to reconstruct past climates. Pollen-based 82	
reconstructions are the most widespread, and pollen-based data were the basis for the 83	
current standard LGM benchmark data set by Bartlein et al. (2011). In common with 84	
other data sources, the pollen-based reconstructions were generated for individual sites. 85	
Geological preservation issues mean that the number of sites available inevitably 86	
decreases through time (Bradley, 2014). Since pollen is only preserved for a long time 87	
in anoxic sediments, the geographic distribution of potential sites is biased towards 88	
climates that are relatively wet today. Furthermore, the actual sampling of potential 89	
sites is highly non-uniform, so there are large geographic gaps in data coverage 90	
(Harrison et al., 2016). The lack of continuous climate fields is not ideal for model 91	
evaluation, and so attempts have been made to generalize the site-based data either 92	
through gridding, interpolation, or some form of multiple regression (see e.g. Bartlein 93	
et al., 2011; Annan and Hargreaves, 2013). However, there has so far been no attempt 94	
to produce a physically consistent, multi-variable reconstruction which provides the 95	
associated uncertainties explicitly.	96	
 97	
A further characteristic of the LGM that creates problems for quantitative 98	
reconstructions based on pollen data is the much lower atmospheric carbon dioxide 99	
concentration, [CO2], compared to the pre-industrial Holocene. [CO2] has a direct effect 100	
on plant physiological processes. Low [CO2] as experienced by plants at the LGM is 101	
expected to have led to reduced water-use efficiency – the ratio of carbon assimilation 102	
to the water lost through transpiration (Bramley et al., 2013). Most reconstructions of 103	
moisture variables from pollen data, including most of the reconstructions used by 104	
Bartlein et al. (2011), do not take [CO2] effects into account. Yet several modelling 105	
studies have shown that the impact of low [CO2] around the LGM on plant growth and 106	
distribution was large (e.g. Jolly and Haxeltine, 1997; Cowling and Sykes, 1999; 107	
Harrison and Prentice, 2003; Bragg et al., 2013; Martin Calvo et al., 2014; Martin Calvo 108	
and Prentice, 2015). A few reconstructions of LGM climate based on the inversion of 109	
process-based biogeography models have also shown large effects of low [CO2] on 110	
reconstructed LGM palaeoclimates (e.g. Guiot et al., 2000; Wu et al., 2007). The 111	
reconstructions of moisture variables in the Bartlein et al. (2011) data set are thus 112	
probably not reliable, and likely to be biased low.  113	

Prentice et al. (2017) demonstrated an approach to correct reconstructions of moisture 114	
variables for the effect of [CO2], but this correction has not been applied globally. A 115	
key side effect of applying this [CO2] correction is to reconcile semi-quantitative 116	
hydrological evidence for wet conditions at the LGM with the apparent dryness 117	
suggested by the vegetation assemblages (Prentice et al., 2017). Similar considerations 118	
apply to the interpretation of future climate changes in terms of vegetational effects. 119	
Projections of future aridity (based on declining indices of moisture availability) linked 120	
to warming are unrealistic, in a global perspective, because of the counteracting effect 121	
of increased water use efficiency due to rising [CO2] – which is generally taken into 122	
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account by process-based ecosystem models, but not by statistical models, using 123	
projected changes in vapour pressure deficit or some measure of plant-available water 124	
(Keenan et al., 2011; Roderick et al., 2015; Greve et al., 2017). 125	
 126	
In this paper, we use variational data assimilation based on both pollen-based climate 127	
reconstructions and climate model outputs to arrive at a best-estimate analytical 128	
reconstruction of LGM climate, explicitly taking account of the impact of [CO2]. 129	
Variational techniques provide a way of combining observations and model outputs to 130	
produce climate reconstructions that are not exclusively constrained to one source of 131	
information or the other (Nichols, 2010). We use the uncertainty contributions to the 132	
analytical reconstruction to provide confidence intervals for these reconstructions and 133	
also to delimit geographical regions for which the palaeodata provide no constraint on 134	
the reconstructions. The resulting data set is expected provide a well-founded multi-135	
variable LGM climate dataset for palaeoclimate model benchmarking in CMIP6.	136	
 137	
 138	
2 Methods 139	

2.1 Pollen-based climate reconstructions 140	
  141	
Bartlein et al. (2011) provided a global synthesis of pollen-based quantitative climate 142	
reconstructions for the LGM. The Bartlein et al. (2011) data set includes reconstructions 143	
of climate anomalies (differences between LGM and recent climates) for six variables 144	
(and their uncertainties), specifically mean annual temperature (MAT), mean 145	
temperature of the coldest month (MTCO), mean temperature of the warmest month 146	
(MTWA), growing degree days above a baseline of above 5°C (GDD5), mean annual 147	
precipitation (MAP), and an index of plant-available moisture (the ratio of actual to 148	
equilibrium evapotranspiration, or α).  There are a small number of LGM sites (94) in 149	
the Bartlein et al. (2011) data set where model inversion was used to make the 150	
reconstructions of α and MAP;. no	 [CO2]	 correction	 is	 applied	 to	 these	151	
reconstructions. There are no data from Australia in the Bartlein et al. (2011) data set, 152	
and we therefore use quantitative reconstructions of MAT and another moisture index 153	
(MI), the ratio of MAP to potential evapotranspiration, from Prentice et al. (2017). 154	
Prentice et al. (2017) provide values of MI both before and after correction for [CO2]; 155	
we use the uncorrected values in order to apply the correction for [CO2] within our 156	
assimilation framework. For consistency between the two data sets, we re-expressed 157	
reconstructions of α in terms of MI via the Fu-Zhang formulation of the Budyko 158	
relationship between actual evapotranspiration, potential evapotranspiration and 159	
precipitation (Zhang et al., 2004; Gallego-Sala et al., 2016).	160	
 161	
The spatial coverage of the final data set is uneven (Figure 1). There are many more 162	
data points in Europe and North America than elsewhere. South America has the fewest 163	
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(14 sites). The number of variables available at each site varies: although most sites 164	
(279) have reconstructions of at least three variables, some sites have reconstructions 165	
of only one variable (60). Nevertheless, in regions where there is adequate coverage, 166	
the reconstructed anomaly patterns are coherent, plausible and consistent among 167	
variables.	168	
 169	

 170	
Figure 1: The distribution of the site-based reconstructions of climatic variables at the 171	
Last Glacial Maximum. The individual plots show sites providing reconstructions of 172	
(a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean annual 173	
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean 174	
temperature of the warmest month (MTWA) and growing degree days above a baseline 175	
of 5◦ C (GDD5). The original reconstructions are from Bartlein et al. (2011) and 176	
Prentice et al. (2017). 177	
 178	
For this application, we derived absolute LGM climate reconstructions by adding the 179	
reconstructed climate anomalies at each site to the modern climate values from the 180	
Climate Research Unit (CRU) historical climatology data set (CRU CL v2.0 dataset, 181	
New et al., 2002), which provides climatological averages of monthly temperature, 182	
precipitation and cloud cover fraction for the period 1961-1990 CE. Most of the climate 183	
variables (MTCO, MTWA, MAT, MAP) can be calculated directly from the CRU CL 184	
v2.0 dataset. GDD5 was calculated from pseudo-daily data derived by linear 185	
interpolation of the monthly temperatures. MI was calculated from the CRU climate 186	
variables using the radiation calculations in the SPLASH model (Davis et al., 2017). 187	
For numerical efficiency, we non-dimensionalised all of the absolute climate 188	
reconstructions (and their standard errors) before applying the variational techniques 189	
(for details, see Cleator et al., 2019a).  190	
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 191	
 192	
2.2 Climate model simulations 193	

 Eight LGM climate simulations (Table 1) from the third phase of the 194	
Palaeoclimate Modelling Intercomparison Project (PMIP3: Braconnot et al., 2012) 195	
were used to create a prior. The PMIP LGM simulations were forced by known changes 196	
in incoming solar radiation, changes in land-sea geography and the extent and location 197	
of ice sheets, and a reduction in [CO2] to 185 ppm (see Braconnot et al., 2012 for details 198	
of the modelling protocol). We used the last 100 years of each LGM simulation. We 199	
interpolated monthly precipitation, monthly temperature and monthly fraction of 200	
sunshine hours from each LGM simulation and its pre-industrial (PI) control to a 201	
common 2 x 2° grid. Simulated climate anomalies (LGM minus PI) for each grid cell 202	
were then added to modern climate values calculated from the CRU CL 2.0 data set 203	
(New et al., 2002), as described for the pollen-based reconstructions, to derive absolute 204	
climate values. We calculated the multi-model mean and variance (Figure 2) across the 205	
models for each of the climate variables to produce the gridded map used as the prior.  206	
 207	

 208	
Figure 2: Uncertainties associated with the climate prior. The climate is derived from a 209	
multi-model mean of the ensemble of models from the Palaeoclimate Modelling 210	
Intercomparison Project (PMIP) and is shown in SI Figure 1. The uncertainties shown 211	
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here are the standard deviation of the multi-model ensemble values. The individual 212	
plots show the variance for the simulated (a) moisture index (MI), (b) mean annual 213	
precipitation (MAP), (c) mean annual temperature (MAT), (d) mean temperature of the 214	
coldest month (MTCO), (e) mean temperature of the warmest month (MTWA) and 215	
growing degree days above a baseline of 5◦ C (GDD5). 216	
 217	
2.3 Water-use efficiency calculations 218	
 219	
We applied the general approach developed by Prentice et al. (2017) to correct pollen-220	
based statistical reconstructions to account for [CO2] effects. The approach as 221	
implemented here is based on equations (Appendix 1) that link moisture index (MI) to 222	
transpiration and the ratio of leaf-internal to ambient CO2. The correction is based on 223	
the principle that the rate of water loss per unit carbon gain is inversely related to 224	
effective moisture availability as sensed by plants. The method involves solving a non-225	
linear equation that relates rate of water loss per unit carbon gain to MI, temperature 226	
and CO2 concentration. The equation is derived from theory that predicts the response 227	
of the ratio of leaf-internal to ambient [CO2] to vapour pressure deficit and temperature 228	
(Prentice et al., 2014; Wang et al., 2014).	229	
 230	
2.4 Application of variational techniques 231	
 232	
Variational	data	assimilation	techniques	provide	a	way	of	combining	observations	233	
and	model	 outputs	 to	produce	 climate	 reconstructions	 that	 are	not	 exclusively	234	
constrained	to	one	source	of	information	or	the	other	(Nichols,	2010).	We	use	the	235	
3D-variational	method,	described	in	Cleator	et	al.	(2019a)	to	find	the	maximum	a	236	
posteriori	estimate	(or	analytical	reconstruction)	of	the	palaeoclimate	given	the	237	
site-based	reconstructions	and	the	model-based	prior.	The	method	constructs	a	238	
cost	function,	which	describes	how	well	a	particular	climate	matches	both	the	site-239	
based	reconstructions	and	the	prior,	by	assuming	the	reconstructions	and	prior	240	
have	a	Gaussian	distribution.	To	avoid	sharp	changes	in	time	and/or	space	in	the	241	
analytical	 reconstructions,	 the	 method	 assumes	 that	 the	 prior	 temporal	 and	242	
spatial	 covariance	 correlations	 are	 derived	 from	a	modified	Bessel	 function,	 in	243	
order	to	create	a	climate	anomaly	field	that	is	smooth	both	from	month	to	month	244	
and	from	grid	cell	to	grid	cell.	The	degree	of	correlation	is	controlled	through	two	245	
length	scales:	a	spatial	length	scale	that	determines	how	correlated	the	covariance	246	
in	the	prior	is	between	different	geographical	areas,	and	a	temporal	length	scale	247	
that	determines	how	correlated	 it	 is	 through	the	seasonal	cycle.	The	site-based	248	
reconstructions	are	assumed	 to	have	negligible	correlations	at	 these	space	and	249	
time	 scales.	 The	maximum	 a	 posteriori	 estimate	 is	 found	 by	 using	 the	 limited	250	
memory	Broyden-	Fletcher-Goldfarb-Shanno	method	(Liu	and	Nocedal	1989)	to	251	
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determine	the	climate	that	minimises	the	cost	function.	A	first	order	estimate	of	252	
the	analysis	uncertainty	covariance	is	also	computed.		253	
	254	
An	observation	operator	based	on	calculations	of	 the	direct	 impact	of	 [CO2]	on	255	
water-use	efficiency	(section	2.3)	is	used	in	making	the	analytical	reconstructions.	256	
The	prior	is	constructed	as	the	average	of	eight	LGM	climate	simulations	(section	257	
2.2).	We	 use	 an	 ensemble	 of	 different	model	 responses	 to	 the	 same	 forcing	 to	258	
provide	a	series	of	physically	consistent	possible	states,	which	can	be	viewed	as	259	
perturbed	responses	and	provide	the	variance	around	the	climatology	provided	260	
by	 the	 ensemble	 average.	 The	 prior	 uncertainty	 correlations	 are	 based	 on	 a	261	
temporal	 length	scale	(Lt)	of	1	month	and	a	spatial	 length	scale	(Ls)	of	400km.	262	
Cleator	 et	 al.,	 (2019a)	 have	 shown	 that	 a	 temporal	 length	 scale	 of	 1	 month	263	
provides	an	adequately	smooth	solution	for	the	seasonal	cycle,	both	using	single	264	
sites	 and	over	multiple	 grid	 cells,	 as	 shown	by	 the	 sensitivity	of	 the	 resolution	265	
matrix	 (Menke,	2012;	Delahaies	et	al.,	2017)	 to	changes	 in	 the	 temporal	 length	266	
scale.	 Consideration	 of	 the	 spatial	 spread	 of	 variance	 in	 the	 analytical	267	
reconstruction	 shows	 that	 a	 spatial	 length	 scale	 of	 400km	 also	 provides	 a	268	
reasonable	reflection	of	the	large-scale	coherence	of	regional	climate	change.	269	
	270	
We	generated	composite	variances	on	the	analytical	reconstructions	(Figure	3)	by	271	
combining	 the	 covariances	 from	 the	 site-based	 reconstructions	 and	 from	 the	272	
prior.	There	are	regions	where	all	of	the	models	systematically	differ	from	the	site-273	
based	 reconstructions	 (Harrison	 et	 al.,	 2015)	 but	 nevertheless	 the	 inter-model	274	
variability	is	low,	which	would	lead	to	a	very	small	contribution	to	the	composite	275	
uncertainties	from	the	prior.	We	therefore	calculated	the	uncertainty	of	the	prior	276	
from	 an	 equal	 combination	 of	 the	 global	 uncertainty,	 the	 average	 variance	277	
between	each	grid	cell,	and	local	uncertainty,	the	variance	between	the	different	278	
models.	 The	 reliability	 of	 the	 analytical	 reconstructions	 was	 assessed	 by	279	
comparing	 these	composite	covariances	with	 the	uncertainties	 in	 the	prior.	We	280	
masked	 out	 cells	 where	 the	 inclusion	 of	 site-based	 reconstructions	 does	 not	281	
produce	an	improvement	of	>	5%	from	the	prior.	Since	this	assessment	is	based	282	
on	a	change	 in	the	variance,	rather	than	absolute	values,	 this	masking	removes	283	
regions	 where	 there	 are	 no	 pollen-based	 reconstructions	 or	 the	 pollen-based	284	
reconstructions	have	very	large	uncertainties.		285	
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	286	
Figure 3: Uncertainties on the analytical reconstructions. These uncertainties represent 287	
a combination of the uncertainty on the site-based reconstructions, and the grid-based 288	
variance on the prior and the global variance from the prior.  289	
 290	
3 Results 291	
 292	
The analytical reconstructions (Figure 4) show an average year-round cooling of –5.6 293	
°C in the northern extratropics. The cooling is larger in winter (–7.6 °C) than in summer 294	
(–2.4 °C). A limited number of grid cells in central Eurasia show warmer-than-present 295	
summers, and higher MAT. Temperature changes are more muted in the tropics, with 296	
an average change in MAT of –3.7 °C. The cooling is somewhat lower in summer than 297	
winter (–2.7 °C compared to –4.1 °C). Reconstructed temperature changes were slightly 298	
larger in the southern extratropics, with average changes in MAT of –5.0°C, largely 299	
driven by cooling in winter.  300	
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	301	
Figure 4: Analytically reconstructed climate, where areas for which the site-based data 302	
provide no constraint on the prior have been masked out.  The individual plots show 303	
reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean 304	
annual temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) 305	
mean temperature of the warmest month (MTWA) and growing degree days above a 306	
baseline of 5◦ C (GDD5). The anomalies are expressed relative to the long term average 307	
(1960-1990) values from the Climate Research Unit (CRU) historical climatology data 308	
set (CRU CL v2.0 dataset, New et al., 2002). 309	
 310	
Changes in moisture-related variables (MAP, MI) across the northern hemisphere are 311	
geographically more heterogeneous than temperature changes. Reconstructed MAP is 312	
greater than present in western North America (172 mm) but less than present (–29 313	
mm) in eastern North America. Most of Europe is reconstructed as drier than present 314	
(–305mm), the same for eastern Eurasia (-94 mm) and the Far East (–66 mm). The 315	
patterns in MI are not identical to those in MAP, because of the influence of temperature 316	
on MI, but regional changes are generally similar to those shown by MAP. Most of the 317	
tropics are shown as drier than present while the southern hemisphere extratropics are 318	
wetter than present, in terms of both MAP and MI. 	319	
 320	
The reconstructed temperature patterns are not fundamentally different from those 321	
shown by Bartlein et al. (2011) but the analytical dataset provides information for a 322	
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much larger area (1153% increase) thanks to the method’s imposition of consistency 323	
among different climate variables, and smooth variations both in space and through the 324	
seasonal cycle. There are systematic differences, however, between the analytical 325	
reconstructions and the pollen-based reconstructions in terms of moisture-related 326	
variables (MAP, MI) because the analytical reconstructions take account of the direct 327	
influence of [CO2] on plant growth. The physiological impact of [CO2] leads to 328	
analytical reconstructions indicating wetter than present conditions in many regions 329	
(Figure 5a, Figure 5b), for example in southern Africa where several of the original 330	
pollen-based reconstructions show no change in MAP or MI compared to present, but 331	
the analytical reconstruction shows wetter conditions than present. In some regions, 332	
incorporating the impact of [CO2] reverses the sign of the reconstructed changes. Part 333	
of northern Eurasia is reconstructed as being wetter than present, despite pollen-based 334	
reconstructions indicating conditions drier than present (both in terms of MAP and MI), 335	
as shown by SI Figure 3. The relative changes in MAP and MI are similar across all 336	
sites (Figure 5c), implying that the analytically reconstructed changes are driven by 337	
changes in precipitation rather than temperature. 	338	

 339	
Figure 5: Impact of CO2 on reconstructions of moisture-related variables. The 340	
individual plots show (a) the change in moisture index (MI) and (b) the change in mean 341	
annual precipitation (MAP) compared to the original pollen-based reconstructions for 342	
the LGM before (circles) and after (crosses) the physiological impacts of [CO2] on 343	
water-use efficiency are taken into account. The third plot (c) shows the relative 344	
difference in MI and MAP as a result of [CO2], shown as the percentage difference 345	
between the no-[CO2] and [CO2] calculations. 346	
 347	
4 Discussion 348	
 349	
Variational data assimilation techniques provide a way of combining observations and 350	
model outputs, taking account the uncertainties in both, to produce a best-estimate 351	
analytical reconstruction of LGM climate. These reconstructions extend the 352	
information available from site-based reconstructions both spatially and through the 353	
seasonal cycle. Our new analytical data set characterizes the seasonal cycle across a 354	
much larger region of the globe than the data set that is currently being used for 355	
benchmarking of palaeoclimate model simulations. We therefore suggest that this data 356	
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set (Cleator et al. 2019b) should be used for evaluating the CMIP6-PMIP4 LGM 357	
simulations.	358	
 359	
Some areas are still poorly covered by quantitative pollen-based reconstructions of 360	
LGM climate, most notably South America. More pollen-based climate reconstructions 361	
would provide one solution to this problem – and there are many pollen records that 362	
could be used for this purpose (Flantua et al., 2015; Herbert and Harrison, 2016; 363	
Harrison et al., 2016). There are also quantitative reconstructions of climate available 364	
from individual sites (e.g. Lebamba et al., 2012; Wang et al., 2014; Loomis et al., 2017; 365	
Camuera et al., 2019) that should be incorporated into future data syntheses.  It would 366	
also be possible to incorporate other sources of quantitative information, such as 367	
chironomid-based reconstructions (e.g. Chang et al., 2015), within the variational data 368	
assimilation framework. 369	
 370	
One of the benefits of the analytical framework applied here is that it allows the 371	
influence of changes in [CO2] on the moisture reconstructions to be taken into account. 372	
Low [CO2] must have reduced plant water-use efficiency, because at low [CO2] plants 373	
need to keep stomata open for longer in order to capture sufficient CO2. Statistical 374	
reconstruction methods that use modern relationships between pollen assemblages and 375	
climate under modern conditions (i.e. modern analogues, transfer functions, response 376	
surfaces: see Bartlein et al., 2011 for discussion) cannot account for such effects. 377	
Climate reconstruction methods based on the inversion of process-based ecosystem 378	
models can do so (see e.g. Guiot et al., 2000; Wu et al., 2007; Wu et al., 2009; Izumi 379	
and Bartlein, 2016) but are critically dependent on the reliability of the vegetation 380	
model used. Most of the palaeoclimate reconstructions have been made by inverting 381	
some version of the BIOME model (Kaplan et al., 2003), which makes use of 382	
bioclimatic thresholds to separate different plant functional types (PFTs). As a result, 383	
reconstructions made by inversion show “jumps” linked to shifts between vegetation 384	
types dominated my different PFTs whereas, as has been shown recently (Wang et al., 385	
2017), differences in water use efficiency of different PFTs can be almost entirely 386	
accounted for by a single equation, as proposed here. Sensitivity analyses show that the 387	
numerical value of the corrected moisture variables (MI, MAP) is dependent on the 388	
reconstructed values of these variables but is insensitive to uncertainties in the 389	
temperature and moisture inputs (Prentice et al., 2017). The strength of the correction 390	
is primarily sensitive to [CO2], but the LGM [CO2] value is well constrained from ice-391	
core records. The response of plants to changes in [CO2] is non-linear (Harrison and 392	
Bartlein, 2012), and the effect of the change between recent and pre-industrial or mid-393	
Holocene conditions is less than that between pre-industrial and glacial conditions. 394	
Nevertheless, it would be worth taking the [CO2] effect on water-use efficiency into 395	
account in making reconstructions of interglacial time periods as well.  396	
 397	
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The influence of individual pollen-based reconstructions on the analytical 398	
reconstruction of seasonal variability, or the geographic area influenced by an 399	
individual site, is crucially dependent on the choice of length scales. We have adopted 400	
conservative length scales of 1 month and 400 km, based on sensitivity experiments 401	
made for southern Europe (Cleator et al., 2019a). These length scales produce 402	
numerically stable results for the LGM, and the paucity of data for many regions at the 403	
LGM means that using fixed, conservative length scales is likely to be the only practical 404	
approach. However, in so far as the spatial length scale is related to atmospheric 405	
circulation patterns, there is no reason to suppose that the optimal spatial length scale 406	
will be the same from region to region. The density and clustering of pollen-based 407	
reconstructions could also have a substantial effect on the optimal spatial length scale. 408	
A fixed 1-month temporal length scale is appropriate for climates that have a reasonably 409	
smooth and well-defined seasonal cycle, either in temperature or precipitation. 410	
However, in climates where the seasonal cycle is less well defined, for example in the 411	
wet tropics, or in situations where there is considerable variability on sub-monthly time 412	
scales, other choices might be more appropriate. For time periods such as the mid-413	
Holocene, which have an order of magnitude more site-based data, it could be useful to 414	
explore the possibilities of variable length scales.   	415	
 416	
We have used a 5% reduction in the analytical uncertainty compared to prior 417	
uncertainty to identify regions where the incorporation of site-based data has a 418	
negligible effect on the prior as a way of masking out regions for which the observations 419	
have effectively no impact on the analytical reconstructions. The choice of a 5% cut-420	
off is arbitrary, but little would be gained by imposing a more stringent cut-off at the 421	
LGM given that many regions are represented by few observations. A more stringent 422	
cut-off could be applied for other time intervals with more data. We avoid the use of a 423	
criterion based on the analytical reconstruction showing any improvement on the prior 424	
because this could be affected by numerical noise in the computation. Alternative 425	
criteria for the choice of cut-off could be based on whether the analytical reconstruction 426	
had a reduced uncertainty compared to the pollen-based reconstructions or could be 427	
derived by a consideration of the condition number used to select appropriate length 428	
scales. 429	
 430	
There have been a few previous attempts to use data assimilation techniques to generate 431	
spatially continuous palaeoclimate reconstructions. Annan and Hargreaves (2013) used 432	
a similar multi-model ensemble as the prior and the pollen-based reconstructions from 433	
Bartlein et al. (2011) to reconstruct MAT at the LGM. However, they made no attempt 434	
to reconstruct other seasonal variables, either independently, or through exploiting 435	
features of the simulations (as we have done here) to generate seasonal reconstructions. 436	
Particle filter approaches (e.g. Goosse et al., 2006; Dubinkina et al., 2011) produce 437	
dynamic estimates of palaeoclimate, but particle filters cannot produce estimates of 438	
climate outside the realm of the model simulations. Our 3-D variational data 439	
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assimilation approach has the great merit of being able to produce seasonally coherent 440	
reconstructions generalized over space, while at the same time being capable of 441	
producing reconstructions that are outside those captured by the climate model, because 442	
they are not constrained by a specific source (Nichols, 2010). This property is of 443	
particular importance if the resulting data set is to be used for climate model evaluation, 444	
as we propose. 445	
 446	
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Figures and Tables Captions 772	
 773	
Figure 1: The distribution of the site-based reconstructions of climatic variables at the 774	
Last Glacial Maximum. The individual plots show sites providing reconstructions of 775	
(a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean annual 776	
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean 777	
temperature of the warmest month (MTWA) and growing degree days above a baseline 778	
of 5◦ C (GDD5). The original reconstructions are from Bartlein et al. (2011) and 779	
Prentice et al. (2017). 780	
 781	
Figure 2: Uncertainties associated with the climate prior. The climate is derived from a 782	
multi-model mean of the ensemble of models from the Palaeoclimate Modelling 783	
Intercomparison Project (PMIP) and is shown in SI Figure 1. The uncertainties shown 784	
here are the standard deviation of the multi-model ensemble values. The individual 785	
plots show the variance for the simulated (a) moisture index (MI), (b) mean annual 786	
precipitation (MAP), (c) mean annual temperature (MAT), (d) mean temperature of the 787	
coldest month (MTCO), (e) mean temperature of the warmest month (MTWA) and 788	
growing degree days above a baseline of 5◦ C (GDD5).   789	
 790	
Figure 3: Uncertainties on the analytical reconstructions. These	 uncertainties	791	
represent	a	combination	of	the	uncertainty	on	the	site-based	reconstructions,	and	792	
the	grid-based	variance	on	the	prior	and	the	global	variance	from	the	prior.  793	
 794	
Figure 4: Analytically reconstructed climate, where areas for which the site-based data 795	
provide no constraint on the prior have been masked out.  The individual plots show 796	
reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean 797	
annual temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) 798	
mean temperature of the warmest month (MTWA) and growing degree days above a 799	
baseline of 5◦ C (GDD5). The anomalies are expressed relative to the long term average 800	
(1960-1990) values from the Climate Research Unit (CRU) historical climatology data 801	
set (CRU CL v2.0 dataset, New et al., 2002). 802	
 803	
 804	
Figure 5: Impact of CO2 on reconstructions of moisture-related variables. The 805	
individual plots show (a) the change in moisture index (MI) and (b) the change in mean 806	
annual precipitation (MAP) compared to the original pollen-based reconstructions for 807	
the LGM before (circles) and after (crosses) the physiological impacts of [CO2] on 808	
water-use efficiency are taken into account. The third plot (c) shows the relative 809	
difference in MI and MAP as a result of [CO2], shown as the percentage difference 810	
between the no-[CO2] and [CO2] calculations. 811	
 812	
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Table 1: Details of the models from the Palaeoclimate Modelling Intercomparison 813	
Project (PMIP) that were used for the Last Glacial Maximum (LGM) simulations used 814	
to create the prior.  815	
 816	
Table	1:	Details	of	the	models	from	the	third	phase	of	the	Palaeoclimate	Modelling	817	
Intercomparison	 Project	 (PMIP3)	 that	 were	 used	 for	 the	 Last	 Glacial	 Maximum	818	
(LGM)	simulations	used	to	create	the	prior.	Coupled	ocean-atmosphere	models	are	819	
indicated	 as	 OA,	 which	 OAC	 models	 have	 a	 fully	 interactive	 carbon	 cycle.	 The	820	
resolution	in	the	atmospheric,	oceanic	and	sea	ice	components	of	the	models	is	given	821	
in	terms	of	numbers	of	grid	cells	in	latitude	and	longitude.	822	
	823	
Model	name	 Type	 Resolution	 Year	

length	
Reference	

Atmosphere Ocean Sea Ice   
CCSM4  OA	 192, 288  320, 384  320, 384  365  Gent et al. (2011)  
CNRM-CM5 OA  128, 256  292, 362  292, 362  365-

366  
Voldoire et al. 
(2012)  

MPI-ESM-P  OA  96, 192  220, 256  220, 256  365-
366  

Jungclaus	 et	 al.	
(2006)	

MRI-	
CGCM3  

OA  160, 320  360, 368  360, 368  365  Yukimoto et al. 
(2011)  

FGOALS-g2 OA 64, 128 64, 128 64, 128 365 Li	et	al.	(2013)	
COSMOS-ASO  
 

OAC  96, 48  120, 101  120, 101  360  Budich et al. 
(2010)  

IPSL-CM5A-LR  OAC  96, 96  149, 182  149, 182  365  Dufresne et al., 
2013 

MIROC-ESM  OAC  64, 128  192, 256  192, 256  365  Watanabe et al. 
(2011)  

824	



	

Appendix 825	

We define e as the water lost by transpiration (E) per unit carbon gained by 826	
photosynthesis (A). This term, the inverse of the water use efficiency, is given by: 827	

e  =  E/A  =  1.6 D / ((1 – χ) ca)     (A1) 828	

where D is the leaf-to-air vapour pressure deficit (Pa), ca is the ambient CO2 partial 829	
pressure (Pa) and χ is the ratio of leaf-internal CO2 partial pressure (ci) to ca. An 830	
optimality-based model (Prentice et al. 2014), which accurately reproduces global 831	
patterns of χ and its environmental dependencies inferred from leaf δ13C measurements 832	
(Wang et al. 2017), predicts that: 833	

χ  =  (Γ*/ca) + (1 – Γ*/ca) ξ/(ξ + √D)     (A2a) 834	

and 835	

ξ  =  √(β(K + Γ*)/1.6 η*)      (A2b) 836	

where Γ* is the photorespiratory compensation point of C3 photosynthesis (Pa), β is a 837	
constant (estimated as 240 by Wang et al. 2017), K is the effective Michaelis-Menten 838	
coefficient of Rubisco (Pa), and η* is the ratio of the viscosity of water (Pa s) at ambient 839	
temperature to its value at 25˚C. Here K depends on the Michaelis-Menten coefficients 840	
of Rubisco for carboxylation (KC) and oxygenation (KO), and on the partial pressure of 841	
oxygen O (Farquhar et al. 1980): 842	

K  =  KC (1 + O/ΚO)       (A3) 843	

Standard values and temperature dependencies of ΚC, KO, Γ* and η* are assigned as in 844	
Wang et al. (2017). 845	

The moisture index MI is expressed as 846	

MI = P/Eq, Eq  = ∑n(Rn/λ) s/(s + γ)     (Α4) 847	

where P is annual precipitation, Rn is net radiation for month n, λ is the latent heat of 848	
vaporization of water, s is the derivative of the saturated vapour pressure of water with 849	
respect to temperature (obtained from a standard empirical formula also used by Wang 850	
et al. 2017), and γ is the psychrometer constant. We assume that values of MI 851	
reconstructed from fossil pollen assemblages, using contemporary pollen and climate 852	
data either in a statistical calibration method or in a modern-analogue search, need to 853	
be corrected in such a way as to preserve the contemporary relationship between MI 854	
and e, while taking into account the change in e that is caused by varying ca and 855	
temperature away from contemporary values. The sequence of calculations is as 856	
follows. (1) Estimate e and its derivative with respect to temperature (∂e/∂T) for the 857	
contemporary ca and climate, using equations (A1) – (A3) above. (2) Use the e and 858	
∂e/∂T to calculate ∂D/∂T given the palaeo ca (measured in ice-core data) and 859	
temperature (reconstructed from pollen data), via a series of analytical equations that 860	
relate ∂e/∂T to ∂D/∂T and hence to s. (3) Use the new ∂D/∂T and relative humidity (from 861	
the PMIP3 average) to derive a new value of s. (4) Re-calculate MI using a palaeo 862	
estimate of Rn (modelled as in Davis et al., 2017) and the new value of s. 863	


