
 
Collated responses to reviews 
 
Reviewer 1 
 
Comment: clarification of data availability 
 
Response: As the reviewer points out, the pollen-based reconstructions and the climate model 
simulations underpinning our reconstruction are in the public domain, and the data assimilation 
methodology is described in detail in another publication. The general approach used for the 
CO2 corrections, which the reviewer describes as a significant contribution, was published in 
Prentice et al. (2017) – although we provide the equations for the implementation of this 
approach in the current paper in Appendix 1. Therefore, the new results in this paper are indeed 
the global maps of reconstructed climate variables. These data are archived and will be made 
publicly available – however, we realise that it may not have been obvious that the citation to 
Cleator et al. (2019b) represented the reconstruction data set. We have modified the last 
sentence of the abstract to make it clear that the reconstruction data are available as follows: 

Thus, the new reconstructions provides a benchmark created using clear and defined 
mathematical procedures that can be used for evaluation of the PMIP4/CMIP6 entry-card LGM 
simulations and are available at DOI:10.17864/1947.229  

We have included a Data Availability section in the revised paper: 
 
Data availability. The gridded data for the LGM reconstructions are available from 
http://dx.doi.org/10.17864/1947.229; the code used to generate these reconstructions is 
available from (10.5281/zenodo.3445166).  
 

Comment: Varying definitions of the LGM 

Response: The reviewer indicates that the definition of the LGM used in our paper (21±1 ka) 
differs from the interval used by Annan and Hargreaves of 21±2ka, and there is recent work on 
sea level (Ishiwa et al. 2019) which suggests the ‘real’ LGM was 19.1-19.7 ka, with a plateau 
prior to this from 20.4-25.9ka. Our choice of this time interval reflects the fact that the LGM 
is conventionally defined in PMIP at 21 ka and most of the pollen-based reconstructions of this 
interval included in the Bartlein et al data set are from the 21±1 ka. We are aware that there is 
still controversy over the timing of the LGM, with both younger and older ages mooted for the 
actual maximum ice volume/sea-level lowering (see e.g. Peltier and Fairbanks, 2006; Clark et 
al., 2009; Lambeck et al., 2014). Even the recent work by Ishiwa et al. (2019) points out that 
the sea level drop after 19.7 ka was only 10m and that there was a long plateau with stable low 
sea level prior to this and encompassing the 21 ka interval. Since our aim is to produce a data 
set for benchmarking new PMIP LGM simulations, which will be run with boundary conditions 
for 21 ka (Kageyama et al., 2017), the exact date of the LGM is therefore not an issue.  
However, we agree that there is a difference between the true definition of the LGM and the 
convention used for modelling purposes, and that this is not clear from our introductory text, 
so we have expanded our definition (line 55 onwards) as follows: 

At the Last Glacial Maximum (LGM, conventionally defined for modelling purposes as 21 000 
years ago), insolation was quite similar  to the present, but global ice volume was at a 



maximum, eustatic sea level was close to a minimum, long-lived greenhouse gas 
concentrations were lower and atmospheric aerosol loadings higher than today, and land 
surface characteristics (including vegetation distribution) were also substantially different from 
today.  

Comment: Consider how to use new studies published after Bartlein et al. 

Response: The reviewer points out that we refer to several new studies since the Bartlein paper 
on which the analysis is based, and there are more, and that it would be nice to think these 
could be assimilated into a future dataset to maybe close some of the large ‘no data’ holes in 
the results. We thoroughly agree that it would be good to plug the gaps, and this will be an 
effort for the future. The three papers that we cite at lines 361-363 (Flantua et al., 2015; Herbert 
and Harrison, 2016; Harrison et al., 2016) demonstrate that there are pollen records available 
that would plug the gaps, but alas do not provide quantitative reconstructions at these sites. The 
Izumi and Bartlein (2016) paper provides an inversion-based reconstruction for North 
American – this region is already relatively well covered in the Bartlein et al data set. Similarly 
Mauri et al. (2015) provide a new gridded reconstruction for Europe – again a region that is 
well covered in the Bartlein et al data set. However, we are aware of new pollen-based 
quantitative reconstructions embracing the LGM for individual sites (e.g. in Africa, China, 
Russia, southern Europe) and compiling these reconstructions would certainly be a worthwhile 
effort in the future. Our method also lends itself to combining pollen-based reconstructions 
with other quantitative estimates of terrestrial palaeoclimate, and again this should be 
something that is done in the future. We have revised the paragraph describing future 
possibilities to expand the current data set to spell out some of these opportunities more clearly 
(lines 304-309), as follows: 

Some areas are still poorly covered by quantitative pollen-based reconstructions of LGM 
climate, most notably South America. More pollen-based climate reconstructions would 
provide one solution to this problem – and there are many pollen records that could be used for 
this purpose (Flantua et al., 2015; Herbert and Harrison, 2016; Harrison et al., 2016). There are 
also quantitative reconstructions of climate available from individual sites (e.g. Lebamba et al., 
2012; Wang et al., 2014; Loomis et al., 2017; Camuera et al., 2019) that should be incorporated 
into future data syntheses.  It would also be possible to incorporate other sources of quantitative 
information, such as chironomid-based reconstructions (e.g. Chang et al., 2015) within the 
variational data assimilation framework.  

Additional references 
Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Toney, J.L., 

Anderson, R.S., Jiménez-Espejo, F., Bright, J., Webster, C., Yanes, Y., José S. 
Carrión, J.S., 2019. Vegetation and climate changes during the last two glacial-
interglacial cycles in the western Mediterranean: A new long pollen record from 
Padul (southern Iberian Peninsula), Quaternary Science Reviews, 205, 86-105, 
https://doi.org/10.1016/j.quascirev.2018.12.013. 

Chang, J.C., Shulmeister, J., Woodward, C., Steinberger, L., Tibby, J., Cameron Barr, C., 
2015. A chironomid-inferred summer temperature reconstruction from subtropical 
Australia during the last glacial maximum (LGM) and the last deglaciation, 
Quaternary Science Reviews, 122, 282-292, 
https://doi.org/10.1016/j.quascirev.2015.06.006. 



Lebamba, J., Vincens, A., and Maley, J.: Pollen, vegetation change and climate at Lake 
Barombi Mbo (Cameroon) during the last ca. 33 000 cal yr BP: a numerical approach, 
Clim. Past, 8, 59-78, https://doi.org/10.5194/cp-8-59-2012, 2012. 

Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G., Sinninghe Damsté, J. 
S., … Kelly, M. A. (2017). The tropical lapse rate steepened during the Last Glacial 
Maximum. Science advances, 3(1), e1600815. doi:10.1126/sciadv.1600815 

Wang, Y., Herzschuh, U., Shumilovskikh, L. S., Mischke, S., Birks, H. J. B., Wischnewski, 
J., Böhner, J., Schlütz, F., Lehmkuhl, F., Diekmann, B., Wünnemann, B., and Zhang, 
C.: Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau 
since the Last Glacial Maximum – extending the concept of pollen source area to 
pollen-based climate reconstructions from large lakes, Clim. Past, 10, 21-39, 
https://doi.org/10.5194/cp-10-21-2014, 2014. 

 
Comment: L59: change to ‘lower, atmospheric aerosol. . .’  
Response: We have made this change. 
 
Comment: L321: comma after ‘however’  
Response: We have made this change (now line 274). 

 

Response to Review 2 

Comment: Mathematical details of the technique applied in this study are available in Cleator 
et al., 2019a. This is an arXiv preprint. It is not clear whether the latter is intended for a peer-
reviewed journal or whether it was part of a thesis examination.  

Response: This article is now accepted for publication in the Journal of Advances in Modeling 
Earth Systems. As a result of the review process for JAMES, it was pointed out that the 
Gaussian correlation function we used did not yield a full rank matrix; we have therefore moved 
to using a modified Bessel function that closely matches the behaviour of the original Gaussian 
function and yields a correlation matrix that is full rank and positive. We have checked that 
this change does not make a substantial difference to the global reconstructions presented here 
(although it changes some numbers slightly, and we have amended the text to reflect this) and 
does not change the conclusions of our paper. The revised method paper is available from arXiv 
(arXiv:1902.04973v2, https://arxiv.org/abs/1902.04973v2) and will soon be available in 
JAMES. We have updated the figures and the text here to reflect the use of the revised function.  

Comment: There are a number of points in this approach which deserve discussion. For this 
reason it would have been better to see these method details in the Climate of the Past paper, 
so that the paper, the review, and possible responses constitute a self-contained contribution.  

Response: We wanted to focus the discussion here on the results (i.e. the reconstructions of 
LGM climate) rather on the mathematical details of the method. These details will shortly be 
available in JAMES and are given in the pre-print article. However, we agree that it would be 
worth expanding the section on the application of the data assimilation method and the choice 
of length scales (section 2.4) to provide more details. We have modified this section as follows:  

Variational data assimilation techniques provide a way of combining observations and model 
outputs to produce climate reconstructions that are not exclusively constrained to one source 



of information or the other (Nichols, 2010). We use the 3D-variational method, described in 
Cleator et al. (2019a) to find the maximum a posteriori estimate (or analytical reconstruction) 
of the palaeoclimate given the site-based reconstructions and the model-based prior. The 
method constructs a cost function, which describes how well a particular climate matches both 
the site-based reconstructions and the prior, by assuming the reconstructions and prior have a 
Gaussian distribution. To avoid sharp changes in time and/or space in the analytical 
reconstructions, the method assumes that the prior temporal and spatial covariance correlations 
are derived from a modified Bessel function, in order to create a climate anomaly field that is 
smooth both from month to month and from grid cell to grid cell. The degree of correlation is 
controlled through two length scales: a spatial length scale that determines how correlated the 
covariance in the prior is between different geographical areas, and a temporal length scale that 
determines how correlated it is through the seasonal cycle. The site-based reconstructions are 
assumed to have negligible correlations at these space and time scales. The maximum a 
posteriori estimate is found by using the limited memory Broyden- Fletcher-Goldfarb-Shanno 
method (Liu and Nocedal 1989) to determine the climate that minimises the cost function. A 
first order estimate of the analysis uncertainty covariance is also computed.  

An observation operator based on calculations of the direct impact of [CO2] on water-use 
efficiency (section 2.3) is used in making the analytical reconstructions. The prior is 
constructed as the average of eight LGM climate simulations (section 2.2). We use an ensemble 
of different model responses to the same forcing to provide a series of physically consistent 
possible states, which can be viewed as perturbed responses and provide the variance around 
the climatology provided by the ensemble average. The prior uncertainty correlations are based 
on a temporal length scale (Lt) of 1 month and a spatial length scale (Ls) of 400km. Cleator et 
al., (2019a) have shown that a temporal length scale of 1 month provides an adequately smooth 
solution for the seasonal cycle, both using single sites and over multiple grid cells, as shown 
by the sensitivity of the resolution matrix (Menke, 2012; Delahaies et al., 2017) to changes in 
the temporal length scale. Consideration of the spatial spread of variance in the analytical 
reconstruction shows that a spatial length scale of 400km also provides a reasonable reflection 
of the large-scale coherence of regional climate change.  

Additional references:  

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale 
optimization. Mathematical Programming, 45 (1), 503–528. doi: 10.1007/BF01589116  

Delahaies, S., Roulstone, I., & Nichols, N. (2017). Constraining DALECv2 using multiple 
data streams and ecological constraints: analysis and application. Geoscientific Model 
Development (Online), 10 (7). doi: 10.5194/gmd-10-2635- 2017  

Menke, W. (2012). Geophysical data analysis: Discrete inverse theory (Matlab 3rd ed.). 
Cambridge, Massachusetts: Academic Press.  

Comment: Unlike what (roughly) obtains when using time series of a numerical weather 
prediction system, there is a priori no guarantee that the covariance matrix of a multi-model 
ensemble produces modes which satisfy “physical consistency”. Why would we expect that 
the inter-model differences provide knowledge about how different variables should co-vary?  

Response: Our argument here is that the average response of all the models gives a measure of 
climatology. Numerical weather prediction uses ensembles of perturbed responses to provide 



a series of physically-consistent possible states, although there are examples of using multiple 
models to form an ensemble (see e.g. Johnson and Swinbank, 2009 - 
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.383). Here we use an ensemble of 
different model responses to the same forcing, which can be viewed as producing perturbed 
responses to the general climatology. We have added a sentence in the method text (given 
above) to make this argument clearer.  

Comment: In principle, a “prior” encodes what we a priori believe the climate could be. The 
authors have then chosen to mask regions with little update by observations, and leave visible 
the grid points where the observations have seriously shifted the prior. This seems at first sight 
reasonable because the idea is to focus on the pollen reconstructions and not on the PMIP3 
output. Yet, at face value, this approach is inconsistent with a Bayesian interpretation. Grid 
points of strong update are associated, in the Bayesian interpretation, with a very small 
marginal likelihood (a wrong prior means a wrong model).  

Response: We are starting from the assumption that the pollen-based reconstructions are more 
likely to be correct than the model simulations; but that the model simulations provide us with 
physically-consistent relationships in space and time (which cannot be obtained from the 
pollen). This comment is partly due to a misunderstanding about the masking, which is in fact 
determined by the variance rather than the absolute change. Only areas with an improved 
variance are shown (i.e. left unmasked). This means that the likelihood that these 
reconstructions represent the true climate is significantly improved from the prior. This only 
happens if the variance in the observations is small and the variance in the prior is big. By using 
both local and global measures of the variance in the prior, we avoid a situation where the 
variance in the prior is small but shows a different signal from the pollen-based reconstructions. 
We will expand the text to make this clearer (lines 265-271) as follows:  

The reliability of the analytical reconstructions was assessed by comparing these composite 
covariances with the uncertainties in the prior. We masked out cells where the inclusion of site-
based reconstructions does not produce an improvement of > 5% from the prior. Since this 
assessment is based on a change in the variance, rather than absolute values, this masking 
removes regions where there are no pollen-based reconstructions or the pollen-based 
reconstructions have very large uncertainties.  

Comment: To what extent should we be concerned that the posterior variance remains 
influenced by the prior variance? Indeed, mathematically, the posterior variance is bounded 
by the prior variance, which if we admit the models are really off, is meaningless.  

Response: The posterior variance is influenced (though not bounded or limited by) by the prior 
variance. However, since areas that have a small change to prior covariance are masked out, 
only areas with pollen-based reconstructions with low variance are used in the reconstruction. 
Hence, the prior variance only influences the posterior variance in areas that are well 
constrained by observations. Furthermore, since the prior variance is based partly on the global 
variance for each variable, the only way to have a large prior variance affecting the posterior 
variance is for all models to agree well globally and locally and the observation to have a low 
variance such that the posterior variance has improved upon the prior variance change by over 
the 5% cutoff. We agree that the choice of the cutoff is somewhat arbitrary (as we state in the 
discussion section, (lines 406-412), though guided by examination of the impact of this cutoff 
on the reconstructions, and that it would be useful to develop an objective way of determining 



an appropriate limit. We have expanded the discussion to suggest ways forward here (lines 
406-412) as follows:  

We have used a <5% reduction in the analytical uncertainty compared to prior uncertainty to 
identify regions where the incorporation of site-based data has a negligible effect on the prior 
as a way of masking out regions for which the observations have effectively no impact on the 
analytical reconstructions. The choice of a 5% cut-off is arbitrary, but little would be gained 
by imposing a more stringent cut-off at the LGM given that many regions are represented by 
few observations. A more stringent cut-off could be applied for other time intervals with more 
data. We avoid the use of a criterion based on the analytical reconstruction showing any 
improvement on the prior because this could be affected by numerical noise in the computation. 
Alternative criteria for the choice of cut-off could be based on whether the analytical 
reconstruction had a reduced uncertainty compared to the pollen-based reconstructions or could 
be derived by a consideration of the condition number used to select appropriate length scales.  

Comment: To what extent the prior covariance (link between different variables) may still be 
trusted at all if the models are so wrong? This remark strengthens the original concern about 
the physical meaning of the covariance matrix, even when the prior is only mildly up-dated. 
What is the advantage of this approach over a mere Gaussian interpolation (flat climate 
prior), which in this case might turn out to be more reliable and free of the dubious claim of 
“physical consistency”?  

Response: We acknowledge that the climate models may not be correct, for example because 
the LGM simulations do not include all of the necessary forcings or show weak responses to 
these forcings. However, analyses of the PMIP simulations indicate that while the models show 
differences of both magnitude and sign in some regions, the overall LGM to present change is 
broadly consistent with what we know from observations. It is worth pointing out that many of 
these regional problems are associated with model dynamics rather than thermodynamics, 
which suggests that the models can be used to ensure physical consistency between surface 
variables. We try to overcome the problem of “all models being consistent but wrong” at a 
regional scale by combining global and local uncertainties to produce the uncertainty on the 
prior. In revising the section describing the variational approach (see above), we have tried to 
make our logic clearer here.  

Comment: Were the length scales tested by some form of cross-validation (e.g. leave-one-
out), or were they merely chosen because they are a priori reasonable?  

Response: We did not use cross-validation to evaluate the choice of length scales, but instead 
we based the choice of length scales on sensitivity experiments (as described in the arXiv pre-
print). Effectively we ran a series of tests to see how different choices affect the resolution 
matrices and the condition number. We selected a spatial length scale that provided a 
reasonable reflection of the large-scale coherence of regional climate change and also ensured 
that the covariance matrix was well-conditioned for inversion, and a temporal length scale that 
limited overlap between successive months. The selected length scales seem reasonable; for 
example, the spatial scale corresponds to a situation where there is little overlap between data 
points assuming an average catchment size for the pollen records on which the original 
reconstructions were based. Similarly, the selected temporal length scale produces plausible-
looking seasonal cycles of temperature. We have expanded the text describing the application 
of the variational method (see above) to clarify how the length scales were chosen based on 
these sensitivity tests and a post-hoc evaluation of plausibility.  



Comment: The arXiv paper provides the definition of the moisture index. It should be 
repeated here (moisture index is currently introduced l. 297 without definition)  

Response: The MI was defined at line 155. In the present context the reference to MI is 
inappropriate because the text refers to a generic control by moisture availability rather than a 
specific index. We also note there was a crucial comma missing in this sentence! We have 
altered the text here to read:  

which is generally taken into account by process-based ecosystem models, but not by statistical 
models, using projected changes in vapour pressure deficit or some measure of plant-available 
water  

Comment: The authors should consider providing a link to supporting code. The maps are 
currently provided as University of Reading dataset (with a doi) but its lifecycle is detached 
from the present contribution. A dataset consistent with the current Climate of the Past 
submission, reflecting a possible response to concerns of the reviewers, might best be included 
as supplementary information. Have we lodged code somewhere?  

Response: The data used to generate the maps are lodged at the University of Reading 
repository, with a DOI. This allows external users to generate their own maps and their own 
analyses using the reconstructions. A revised version of these data, reflecting minor changes 
in the data as a consequence of using a Bessel function, has now been lodged at the repository. 
The two data sets are linked, so that external users are directed to the updated version of the 
data set. We do not envisage any changes to the data set as a result of review of this CoP 
submission, but if there are further changes to the data set then the current data set can be 
updated and again linked. Thus, the data provided in the repository are indeed constantly linked 
to the lifecycle of the product. The code used to generate the reconstructions has been lodged 
at Zenodo, and we have provided the DOI for this code in the revised ms. We have added a 
data availability section to the ms as follows:  

Data availability: The gridded data for the LGM reconstructions are available from 
http://dx.doi.org/10.17864/1947.229; the code used to generate these reconstructions is 
available from (10.5281/zenodo.3445166).  

Comment: It is important to distinguish the notion of variance from the notion of uncertainty. 
They are not synonymous. Variance describes the second momentum of a distribution; un- 
certainty is a reference to an identified lack of knowledge. Only when the distribution is 
assumed reflects our knowledge of a given quantity is it legitimate to identify both.  

Response: We agree that the use of terminology here is inaccurate and we need to be more 
precise. However, uncertainty is not simply an identified lack of knowledge! It is also used to 
refer to the limits on the precision of knowledge (as in the case where we talk about the 
uncertainties attached to a pollen-based climate reconstruction, which are partly a function of 
our ability to define precise relationships with existing training data sets). We have corrected 
the ms throughout to ensure that we use variance and uncertainty appropriately. We have made 
the following specific changes: l.34 error changed to uncertainty l.134 error changed to 
uncertainty l.268 error changed to variances l.269 error changes to covariances l.272-278 error 
changed to variance l.282 error changed to variances l.283 error changed to variances (We have 
also changed this for Figure 3 in the caption list section) l.147 uncertainty change to variances 



Figure 2 caption, uncertainty changed to variances Figure 3 caption, uncertainty changed to 
variances l.406 uncertainty changed to variance  

Comment: Multi-model ensembles, in general, cannot be said to capture our knowledge of 
the state of climate at a given time. For this reason, I would argue not to call the PMIP3 
covariance a “background uncertainty”.  

Response: We agree that models are not the only source of information about the state of the 
climate at a given time, and indeed our approach makes the assumption that the pollen-based 
reconstructions are more likely to represent the true state of the climate. We agree that the 
models may be wrong because they do not include all the appropriate forcings, because the 
response to these forcings is too weak, or because of inappropriate treatment of key feedbacks. 
We also agree that not all models are equally good (or bad) and that in an ideal world a prior 
should be reconstructed based only on an ensemble of well-validated models. However, the 
point of using climate models here is to provide a way of deriving physically consistent 
relationships between climate variables, given that we do not have reconstructions of all of the 
seasonal variables everywhere. Furthermore, there are comparatively few LGM simulations 
available and using a more limited number of “more likely to be correct” simulations to create 
the prior (and estimate its variance) does not seem to be a good option. In the future, it might 
be possible to combine PMIP3 and PMIP4 simulations to create a more robust/plausible prior, 
but this is currently not possible.  

Comment: The legend of Figure 2 clearly identifies “uncertainties” with “standard deviation 
of the non-dimensionalised multi-model ensemble” but this seems inadequate to me. Adding 
to the confusion, different qualifiers occur throughout the text: “explicit uncertainty” (l. 97), 
“analytical uncertainty” (l. 406), and, on Figure 3, “grid-based errors in the prior” and “global 
uncertainty”.  

Response: We have not been consistent about the terminology, and particularly the use of terms 
such as uncertainty, error and variance. We have revised the manuscript so that we are 
consistent about the terminology, and have clarified what we mean by explicit uncertainty and 
analytical uncertainty. The changes made are listed in response to the earlier comment about 
the confusion between uncertainty and variance.  

Comment: As the uncertainty quantification seems to be a selling point of the present article, 
the assessment should be more open and transparent about sources of uncertainty, and discuss 
which of theses sources can be quantified and how. For example, little is said about 
uncertainties introduced by the CO2 physiological correction. Is it guaranteed to be accurate?  

Response: There are three basic sources of uncertainty: the pollen-based reconstructions, the 
construction of the prior, and the uncertainties associated with our implementation of the 
method. We addressed the uncertainties associated with the first two, but the methodological 
uncertainties were not as well addressed in this paper (although they are discussed in the 
Prentice et al., 2017 paper from which we derived the CO2 correction approach, and in the 
arXiv pre-print). The expanded description of the variational method (see above) is now more 
explicit about potential uncertainties associated e.g. with choice of length scales and cut-offs. 
For the CO2 correction, we made a series of sensitivity analyses in the Prentice et al. (2017) 
paper to determine the impact of uncertainties (or errors) in the input parameters. These 
sensitivity tests showed that the magnitude of the correction was insensitive to the re- 
constructed temperature, the reconstructed change in temperature relative to the modern 



reference, or the reconstructed moisture level. The magnitude of the correction is highly 
sensitive to the level of CO2 specified, but this is well-constrained from the ice-core records. 
We have expanded the text in the discussion of the CO2 effect to make this clearer (lines 378-
385), as follows:  

. . .. differences in water use efficiency of different PFTs can be almost entirely accounted for 
by a single equation, as proposed here. Sensitivity analyses show that the numerical value of 
the corrected moisture variables (MI, MAP) is dependent on the reconstructed values of these 
variables but is insensitive to uncertainties in the temperature and moisture inputs (Prentice et 
al., 2017). The strength of the correction is primarily sensitive to [CO2], but the LGM [CO2] 
value is well constrained from ice-core records. The response of plants to changes in [CO2] is 
non-linear (Harrison and Bartlein, 2012), and the effect of the change between recent and pre-
industrial or mid-Holocene conditions is less than that between pre-industrial and glacial condi- 
tions. Nevertheless, it would be worth taking the [CO2] effect on water-use efficiency into 
account in making reconstructions of interglacial time periods as well.  

Comment: The strategy for identifying grid points with little posterior update explained l. 406 
is not quite clear. Why not consider a Kullback-Leibler divergence? At the risk of repeating 
myself, I am concerned about the (meaningless) residual influence of the prior variance and 
covariance in cases where the prior is effectively discarded by the observations.  

Response: As we have explained above in response to the question about masking (and will 
clarify in the text, lines 277-278), for each variable in each grid cell, we calculate the percentage 
change of variance between the prior and posterior. We then mask away variables where there 
is a less than 5% increase in variance. We do not use the Kullback-Leibler divergence approach 
because this requires the calculation of covariance. However, the two approaches will likely 
not yield results that are very dissimilar.  

Comment. … the comparison with Goosse et al. 2006 is perhaps slightly misleading. The 
Goosse et al. purpose was dynamic reconstruction, while the purpose of the present 
contribution is to provide a diagnostic reconstruction. In passing, Goosse (2006) did not use a 
“Kalman particle filter” (whatever it means). Goosse et al. used what they called an “optimal 
realisation” iteration, which can be interpretated as a highly degenerate form of particle filter. 
Dubinkina et al. 2011, doi 10.1142/S0218127411030763, adopted a more standard particle 
filter.  

Response: The reference to the Kalman filter is somewhat misleading, although the approach 
used by Goosse et al. (2006) can be considered a form of particle filter. Our point here is that 
filters that select from model output are inherently constrained by the model output, whereas 
variational approaches can go beyond the values produced by the model. We have changed the 
wording of the text (line 420-422) to make this clearer:  

Particle filter approaches (e.g. Goosse et al., 2006; Dubinkina et al., 2011) produce dynamic 
estimates of palaeoclimate, but particle filters cannot produce estimates of climate outside the 
realm of the model simulations.  

Comment: This said, the argument that the variational approach produces maps outside the 
realm of climate simulations is a double-edged sword. The variational approach assumes 
Gaussian distributions, and is mathematically equivalent to a Laplace approximation of 
arbitrary distributions. This is this approximation which allows generating posterior 



distributions far from the prior. But, in this case, sound Bayesian interpretation should lead us 
to treat such posterior as utterly suspicious.  

Response: It is not clear why a posterior distribution that is far from the model-based prior is 
utterly suspicious, if being far from the prior reflects the fact that the observational 
constraints are strong. We are not pretending that there should be equal weight given to the 
model-based prior and the pollen-based reconstructions, only combining the two and drawing 
on their individual strengths produces a more reliable estimate of the “true” climate state. Our 
approach is specifically designed to permit analytical reconstructions that are far from the 
model-based prior, if this is consistent with the observations and those observations have low 
variance.  

Comment: line 384 : It is said that it “would be worth taking [changes in length scales] into 
account.” I would advise either deleting this sentence, or giving more substance to the claim. 
For example, have you already performed some sensitivity experiments.  

Response: The cited text is not talking about changes in length scales, but rather about the 
necessity to take the CO2 correction into account in making reconstructions of interglacial 
climates. We have amended this sentence to make this clear, as follows:  

Nevertheless, it would be worth taking the [CO2] effect on water-use efficiency into account 
in making reconstructions of interglacial time periods as well.  

Comment: Is the very first paragraph really necessary?  

Response: Strictly speaking, it should not be necessary, especially for a palaeoclimate 
audience. However, this does seem to be a point which is largely ignored by many climate 
modelling centres worldwide, and is therefore worth repeating.  

Comment: There is room for improving wording accuracy. In what sense is the benchmark 
“ro- bust” (l. 37) ? l. 97: You write: “explicit uncertainties attached to it”. Did you mean 
“uncertainties explicitly attached” ? Avoid, where possible, the phrase “in terms of” or 
“means that” (ll. 321 - 326, in particular, need rewording). What is meant by a “statistical 
reconstruction method” l. 370 (the present exercise is a statistical reconstruction isnt’it ?).  

Response: We have been through the manuscript and tightened up the wording. With respect 
to the specific sentences above, we have made the following changes:  

L 37: Thus, the new reconstructions provides a benchmark created using clear and defined 
mathematical procedures that can be used for evaluation of the PMIP4/CMIP6 entry-card 
LGM simulations …  

L. 97: However, there has so far been no attempt to produce a physically consistent, multi-
variable reconstruction which provides the associated uncertainties explicitly.  

L 321 et seq.: There are systematic differences, however, between the analytical re- 
constructions and the pollen-based reconstructions of moisture-related variables (MAP, MI) 
because the analytical reconstructions take account of the direct influence of [CO2] on plant 
growth. The physiological impact of [CO2] leads to analytical reconstructions indicating wetter 
than present conditions in many regions (Figure 5a, Figure 5b), for example in southern Africa 



where several of the original pollen-based reconstructions show no change in MAP or MI 
compared to present, but the analytical reconstruction shows wetter conditions than present. In 
some regions, incorporating the impact of [CO2] reverses the sign of the reconstructed changes. 
Part of northern Eurasia is reconstructed as being wetter than present, despite pollen-based 
reconstructions indicating conditions drier than present (both in terms of MAP and MI), as 
shown by SI Figure 3. The relative changes in MAP and MI are similar across all sites (Figure 
5c), implying that the analytically reconstructed changes are driven by changes in precipitation 
rather than temperature.  

L 370: Statistical reconstruction methods that use modern relationships between pollen 
assemblages and climate under modern conditions (i.e. modern analogues, transfer functions, 
response surfaces: see Bartlein et al., 2011 for discussion) cannot account for such effects.  

Comment: Figure 5: Shouldn’t “pre-industrial reference” be preferred over the vague 
wording “original” as x-axis label?  

Response: The axis labels on this Figure are not clear. These plots contrast the original pollen-
based reconstructions of MI and MAP with analytical re-constructions before (circles) and after 
(crosses) the CO2 effect is taken into account. We have changed the axis labels to read: Pollen-
based MI and Pollen-based MAP. We have expanded the caption to make this clearer, as 
follows:  

Figure 5: Impact of CO2 on reconstructions of moisture-related variables. The individual plots 
show (a) the change in moisture index (MI) and (b) the change in mean annual precipitation 
(MAP) compared to the original pollen-based reconstructions for the LGM when the 
physiological impacts of [CO2] on water-use efficiency are taken into account. The third plot 
(c) shows the relative difference in MI and MAP as a result of [CO2], shown as the percentage 
difference between the no-[CO2] and [CO2] calculations.  

 

Response to review 3 

Comment: The paper is quite short and lacks any detailed evaluation of the resultant product. 
The. community’s use of this new data product would in my opinion be aided by a more in-
depth evaluation of the properties of the reconstruction. It’s not clear how important 
thechoices around the assimilation formulation are for the final reconstruction. Specifically 
the section around lines 268-278 should in my opinion be spelled out and the sensitivity to 
these choices evaluated. 

Response: It is unclear what kind of evaluation of the product the reviewer envisages,given 
that there is no global ground-truth data set other than the pollen-based reconstructions 
themselves. We have already pointed out (lines 317-321) that the analytical reconstructions of 
temperature are close to the Bartlein et al. (2011) data set, both in terms of magnitudes and 
spatial patterns. The differences between the analytical reconstructions and the Bartlein et al. 
(2011) reconstructions of moisture variables are a consequence of the fact that statistical 
techniques based on modern pollen-climate relationships cannot account for CO2-induced 
changes in water-use efficiency. In terms of the impact of methodological choices, the major 
issue here is the choice of length scales. We have made sensitivity analyses to examine the 
implications of the choice of length scales, and this was discussed in the arXiv preprint. In 



expanding the description of the application of variational techniques here (see text in response 
to Michel Crucifix’s review) we have commented further on this. 

Commeent: The statistical methodology that forms the basis of this study is also not 
described here but in a arXiv article. I’d like to see more of this brought into the present 
manuscript to make it self-contained. 

Response: This is a point raised by Michel Crucifix in his review. We have now modified the 
text describing the application of the variational method to include a fuller description of our 
approach. The full details of the method are now in press in JAMES and we have made the 
post-review version of this paper available on arXiv. 

Comment: Line 127: define MI here. 

Response: The reference to MI is inappropriate in the present context because the text refers to 
a generic control by moisture availability rather than a specific index. We also note there was 
a crucial comma missing in this sentence! In response to Michel Crucifix’s review, we have 
modified this text to read: 

which is generally taken into account by process-based ecosystem models, but not by statistical 
models, using projected changes in vapour pressure deficit or some measure of plant-available 
water 

 

Comment: Line 209: modelsfor -> models for 
Response: We have corrected this. 

Comment: Line 252-253: I think it might be appropriate to bring some/all of this 
methodology into the present text, as discussed above.  

Response: We have modified the text here to provide more detail about the method. Please see 
proposed revised text given in the response to Michel Crucifix’s review. 

Comment: One question that arises from briefly reading the methodology paper, relates to 
figure 1 in the arXiv article. Here the assimilation appears not satisfy the pollen-inferred 
MTCO.  Is this because the prior (from the models) is relatively consistent, and so doesn’t 
allow the assimilation to get that cold? Does this happen when applied to the pollen data 
here? 

Response: Figure 1 in the arXiv pre-print does not show a real situation but was designed to 
illustrate the procedure. In general, the pollen-based reconstructions of MTCO are further away 
from the model-based prior then summer temperature measures. If the variance in the pollen-
based MTCO reconstructions. is small, then the analytical reconstructions will be close to the 
pollen-inferred MTCO. If there is high uncertainty in the pollen-based reconstructions, then 
the analytical reconstructions are not strongly constrained by these reconstructions and will be 
further away. This makes intuitive sense because we do not want to rely on pollen-based 
reconstructions if there is large uncertainty. Thus, it is possible for the assimilation to produce 
cold results but only if there is tight agreement between the observations about the magnitude 
of the cooling. 



Comment: How do we interpret these choices, given that the climate models themselves 
could feasibly be systematically biased, e.g. through not including aerosols, or using modern 
vegetation distributions? How have you addressed the possible systematic bias in the models 
and hence in your prior? 

Response: It is possible that the models show a systematic bias because they do not include all 
of the appropriate forcings for the LGM climate. We assume that such a systematic bias would 
primarily influence the magnitude of changes rather than the physical relationship between 
variables or across space. The presence of a systematic bias is therefore not important because 
the pollen-based reconstructions effectively correct for any systematic biases in the model-
based prior, providing the pollen-based reconstructions have low uncertainty. One of the 
reasons that we discuss in the paper for adopting a variational technique, rather than some kind 
of filtering, is that this approach means that the analytical reconstructions can go beyond the 
range of the simulated climate. 

Comment: Line 268-276: This section seems crucial to me, but is not clearly described. 
Please include the mathematical formulation used and a justification for choices made. 

Response: We have expanded the text describing the application of the variational method, 
including a description of the composite errors. Please see revised text included in the 
response to Michel Crucifix’s review. 

Comment Lines 276-278: Do you mean that if the data is too uncertain you mask it based on 
a 5% criteria? Please could you re-phrase to clarify. 

Response: When the change in the variance between the analytical reconstruction and the prior 
is less than 5%, it does indeed mean that the climate is not well constrained by observations 
(i.e. that there is high uncertainty in the observations). We have modified this text (and the 
discussion of the choice of cutoff in the Discussion) to clarify this point. Please see revised text 
in response to Michel Crucifix’s review. 

Comment Lines 288: How does your product compare with the original Bartlein et al 2011, 
and the GCM-based prior? Could you show this? 

Response: The GCM-based prior is shown in SI Figure 1 and the original pollen-based 
reconstructions (from Bartlein et al, 2011 and from Prentice et al., 2017) are shown in SI Figure 
3. Comparison of these figures with the analytical reconstructions shown in the paper in Figure 
4 shows the difference with our product. We could add a new set of figures to the 
Supplementary showing difference maps, if necessary. 

Comment: How well is the seasonality captured and how does it differ from the simulated 
seasonality in the GCM prior? 

Response: We have no independent measure of seasonality that can be used to assess the 
analytical reconstructions. The analytical reconstructions of MTCO and MTWA, the difference 
between which is the measure of the strength of temperature seasonality, are only shown when 
the pollen-based reconstructions contain sufficient information to modify the model-based 
prior and thus when the uncertainty in the pollen-based reconstructions is small. We could 
produce maps showing the temperature seasonality from the analytical reconstructions and the 



model ensemble (and the difference between them) but these would not add anything to the 
manuscript beyond what is shown by the MTCO and MTWA reconstructions. 
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Abstract. We present a new global reconstruction of seasonal climates at the Last 17	
Glacial Maximum (LGM, 21,000 yr BP) made using 3-D variational data assimilation 18	
with pollen-based site reconstructions of six climate variables and the ensemble 19	
average of the PMIP3/CMIP5 simulations as a prior. We assume that the correlation 20	
matrix of the uncertainties of the prior both spatially and temporally is Gaussian, in 21	
order to produce a climate reconstruction that is smoothed both from month to month 22	
and from grid cell to grid cell. The pollen-based reconstructions include mean annual 23	
temperature (MAT), mean temperature of the coldest month (MTCO), mean 24	
temperature of the warmest month (MTWA), growing season warmth as measured by 25	
growing degree days above a baseline of 5°C (GDD5), mean annual precipitation 26	
(MAP) and a moisture index (MI), which is the ratio of MAP to mean annual potential 27	
evapotranspiration. Different variables are reconstructed at different sites, but our 28	
approach both preserves seasonal relationships and allows a more complete set of 29	
seasonal climate variables to be derived at each location. We further account for the 30	
ecophysiological effects of low atmospheric carbon dioxide concentration on 31	
vegetation in making reconstructions of MAP and MI. This adjustment results in the 32	
reconstruction of wetter climates than might otherwise be inferred by the vegetation 33	
composition. Finally, by comparing the uncertainty contribution to the final 34	
reconstruction, we provide confidence intervals on these reconstructions and delimit 35	
geographical regions for which the palaeodata provide no information to constrain the 36	
climate reconstructions. The new reconstructions will provide a benchmark created 37	
using clear and defined mathematical procedures that can be used for evaluation of 38	
the PMIP4/CMIP6 entry-card LGM simulations and	 are	 available	 at	39	
DOI:10.17864/1947.229. 40	
 41	
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1 Introduction	45	

Models that perform equally well for present-day climate nevertheless produce very 46	
different responses to anthropogenic forcing scenarios through the 21st century. 47	
Although internal variability contributes to these differences, the largest source of 48	
uncertainty in model projections in the first three to four decades of the 21st century 49	
stems from differences in the response of individual models to the same forcing 50	
(Kirtman et al., 2013). Thus, the evaluation of models based on modern observations 51	
is not a good guide to their future performance, largely because the observations used 52	
to assess model performance for present-day climate encompass too limited a range of 53	
climate variability to provide a robust test of the ability to simulate climate changes. 54	
Although past climate states do not provide analogues for the future, past climate 55	
changes provide a unique opportunity for out-of-sample evaluation of climate model 56	
performance (Harrison et al., 2015).	57	
 58	
At the Last Glacial Maximum (LGM, conventionally	 defined	 for	 modelling	59	
purposes	 as 21 000 years ago), insolation was quite similar to the present, but global 60	
ice volume was at a maximum, eustatic sea level was close to a minimum, long-lived 61	
greenhouse gas concentrations were lower, and atmospheric aerosol loadings higher 62	
than today, and land surface characteristics (including vegetation distribution) were 63	
also substantially different from today. These changes gave rise to a climate radically 64	
different from that of today; indeed the magnitude of the change in radiative forcing 65	
between LGM and pre-industrial climate is comparable to high-emissions projections 66	
of climate change between now and the end of the 21st century (Braconnot et al., 67	
2012).  The LGM has been a focus for model evaluation in the Paleoclimate 68	
Modelling Intercomparison Project (PMIP) since its inception (Joussaume and Taylor, 69	
1995; Braconnot et al., 2007; Braconnot et al., 2012). The LGM is one of the two 70	
“entry card” palaeoclimate simulations included in the current phase of the Coupled 71	
Model Intercomparison Project (CMIP6) (Kageyama et al., 2018). The evaluation of 72	
previous generations of palaeoclimate simulations has shown that the large-scale 73	
thermodynamic responses seen in 21st century and LGM climates, including enhanced 74	
land–sea temperature contrast, latitudinal amplification, and scaling of precipitation 75	
with temperature, are likely to be realistic (Izumi et al., 2013; Li et al., 2013; Lunt et 76	
al, 2013; Hill et al., 2014; Izumi et al., 2014; Harrison et al., 2015). However, 77	
evaluation against palaeodata shows that even when the sign of large-scale climate 78	
changes is correctly predicted, the patterns of change at a regional scale are often 79	
inaccurate and the magnitudes of change often underestimated (Brewer et al., 2007; 80	
Mauri et al., 2014; Perez Sanz et al., 2014; Bartlein et al., 2017). The current focus on 81	
understanding what causes mismatches between reconstructed and simulated climates 82	
is a primary motivation for developing benchmark data sets that represent regional 83	
climate changes comprehensively enough to allow a critical evaluation of model 84	
deficiencies. 85	
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 86	
Many sources of information can be used to reconstruct past climates. Pollen-based 87	
reconstructions are the most widespread, and pollen-based data were the basis for the 88	
current standard LGM benchmark data set by Bartlein et al. (2011). In common with 89	
other data sources, the pollen-based reconstructions were generated for individual 90	
sites. Geological preservation issues mean that the number of sites available 91	
inevitably decreases through time (Bradley, 2014). Since pollen is only preserved for 92	
a long time in anoxic sediments, the geographic distribution of potential sites is biased 93	
towards climates that are relatively wet today. Furthermore, the actual sampling of 94	
potential sites is highly non-uniform, so there are large geographic gaps in data 95	
coverage (Harrison et al., 2016). The lack of continuous climate fields is not ideal for 96	
model evaluation, and so attempts have been made to generalize the site-based data 97	
either through gridding, interpolation, or some form of multiple regression (see e.g. 98	
Bartlein et al., 2011; Annan and Hargreaves, 2013). However, there has so far been no 99	
attempt to produce a physically consistent, multi-variable reconstruction which 100	
provides the associated uncertainties explicitly.	101	
 102	
A further characteristic of the LGM that creates problems for quantitative 103	
reconstructions based on pollen data is the much lower atmospheric carbon dioxide 104	
concentration, [CO2], compared to the pre-industrial Holocene. [CO2] has a direct 105	
effect on plant physiological processes. Low [CO2] as experienced by plants at the 106	
LGM is expected to have led to reduced water-use efficiency – the ratio of carbon 107	
assimilation to the water lost through transpiration (Bramley et al., 2013). Most 108	
reconstructions of moisture variables from pollen data, including most of the 109	
reconstructions used by Bartlein et al. (2011), do not take [CO2] effects into account. 110	
Yet several modelling studies have shown that the impact of low [CO2] around the 111	
LGM on plant growth and distribution was large (e.g. Jolly and Haxeltine, 1997; 112	
Cowling and Sykes, 1999; Harrison and Prentice, 2003; Bragg et al., 2013; Martin 113	
Calvo et al., 2014; Martin Calvo and Prentice, 2015). A few reconstructions of LGM 114	
climate based on the inversion of process-based biogeography models have also 115	
shown large effects of low [CO2] on reconstructed LGM palaeoclimates (e.g. Guiot et 116	
al., 2000; Wu et al., 2007). The reconstructions of moisture variables in the Bartlein et 117	
al. (2011) data set are thus probably not reliable, and likely to be biased low.  118	

Prentice et al. (2017) demonstrated an approach to correct reconstructions of moisture 119	
variables for the effect of [CO2], but this correction has not been applied globally. A 120	
key side effect of applying this [CO2] correction is to reconcile semi-quantitative 121	
hydrological evidence for wet conditions at the LGM with the apparent dryness 122	
suggested by the vegetation assemblages (Prentice et al., 2017). Similar 123	
considerations apply to the interpretation of future climate changes in terms of 124	
vegetational effects. Projections of future aridity (based on declining indices of 125	
moisture availability) linked to warming are unrealistic, in a global perspective, 126	
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because of the counteracting effect of increased water use efficiency due to rising 130	
[CO2] – which is generally taken into account by process-based ecosystem models, 131	
but not by statistical models, using projected changes in vapour pressure deficit or 132	
some measure of plant-available water (Keenan et al., 2011; Roderick et al., 2015; 133	
Greve et al., 2017). 134	
 135	
In this paper, we use variational data assimilation based on both pollen-based climate 136	
reconstructions and climate model outputs to arrive at a best-estimate analytical 137	
reconstruction of LGM climate, explicitly taking account of the impact of [CO2]. 138	
Variational techniques provide a way of combining observations and model outputs to 139	
produce climate reconstructions that are not exclusively constrained to one source of 140	
information or the other (Nichols, 2010). We use the uncertainty contributions to the 141	
analytical reconstruction to provide confidence intervals for these reconstructions and 142	
also to delimit geographical regions for which the palaeodata provide no constraint on 143	
the reconstructions. The resulting data set is expected provide a well-founded multi-144	
variable LGM climate dataset for palaeoclimate model benchmarking in CMIP6.	145	
 146	
 147	
2 Methods 148	

2.1 Pollen-based climate reconstructions 149	
  150	
Bartlein et al. (2011) provided a global synthesis of pollen-based quantitative climate 151	
reconstructions for the LGM. The Bartlein et al. (2011) data set includes 152	
reconstructions of climate anomalies (differences between LGM and recent climates) 153	
for six variables (and their uncertainties), specifically mean annual temperature 154	
(MAT), mean temperature of the coldest month (MTCO), mean temperature of the 155	
warmest month (MTWA), growing degree days above a baseline of above 5°C 156	
(GDD5), mean annual precipitation (MAP), and an index of plant-available moisture 157	
(the ratio of actual to equilibrium evapotranspiration, or α).  There are a small number 158	
of LGM sites (94) in the Bartlein et al. (2011) data set where model inversion was 159	
used to make the reconstructions of α and MAP;. no	 [CO2]	 correction	 is	 applied	 to	160	
these	 reconstructions. There are no data from Australia in the Bartlein et al. (2011) 161	
data set, and we therefore use quantitative reconstructions of MAT and another 162	
moisture index (MI), the ratio of MAP to potential evapotranspiration, from Prentice 163	
et al. (2017). Prentice et al. (2017) provide values of MI both before and after 164	
correction for [CO2]; we use the uncorrected values in order to apply the correction 165	
for [CO2] within our assimilation framework. For consistency between the two data 166	
sets, we re-expressed reconstructions of α in terms of MI via the Fu-Zhang 167	
formulation of the Budyko relationship between actual evapotranspiration, potential 168	
evapotranspiration and precipitation (Zhang et al., 2004; Gallego-Sala et al., 2016).	169	
 170	
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The spatial coverage of the final data set is uneven (Figure 1). There are many more 175	
data points in Europe and North America than elsewhere. South America has the 176	
fewest (14 sites). The number of variables available at each site varies: although most 177	
sites (279) have reconstructions of at least three variables, some sites have 178	
reconstructions of only one variable (60). Nevertheless, in regions where there is 179	
adequate coverage, the reconstructed anomaly patterns are coherent, plausible and 180	
consistent among variables.	181	
 182	
 183	
For this application, we derived absolute LGM climate reconstructions by adding the 184	
reconstructed climate anomalies at each site to the modern climate values from the 185	
Climate Research Unit (CRU) historical climatology data set (CRU CL v2.0 dataset, 186	
New et al., 2002), which provides climatological averages of monthly temperature, 187	
precipitation and cloud cover fraction for the period 1961-1990 CE. Most of the 188	
climate variables (MTCO, MTWA, MAT, MAP) can be calculated directly from the 189	
CRU CL v2.0 dataset. GDD5 was calculated from pseudo-daily data derived by linear 190	
interpolation of the monthly temperatures. MI was calculated from the CRU climate 191	
variables using the radiation calculations in the SPLASH model (Davis et al., 2017). 192	
For numerical efficiency, we non-dimensionalised all of the absolute climate 193	
reconstructions (and their standard errors) before applying the variational techniques 194	
(for details, see Cleator et al., 2019a).  195	
 196	
 197	
2.2 Climate model simulations 198	

 Eight LGM climate simulations (Table 1) from the third phase of the 199	
Palaeoclimate Modelling Intercomparison Project (PMIP3: Braconnot et al., 2012) 200	
were used to create a prior. The PMIP LGM simulations were forced by known 201	
changes in incoming solar radiation, changes in land-sea geography and the extent 202	
and location of ice sheets, and a reduction in [CO2] to 185 ppm (see Braconnot et al., 203	
2012 for details of the modelling protocol). We used the last 100 years of each LGM 204	
simulation. We interpolated monthly precipitation, monthly temperature and monthly 205	
fraction of sunshine hours from each LGM simulation and its pre-industrial (PI) 206	
control to a common 2 x 2° grid. Simulated climate anomalies (LGM minus PI) for 207	
each grid cell were then added to modern climate values calculated from the CRU CL 208	
2.0 data set (New et al., 2002), as described for the pollen-based reconstructions, to 209	
derive absolute climate values. We calculated the multi-model mean and variance 210	
(Figure 2) across the models for each of the climate variables to produce the gridded 211	
map used as the prior.  212	
 213	
2.3 Water-use efficiency calculations 214	
 215	
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We applied the general approach developed by Prentice et al. (2017) to correct pollen-216	
based statistical reconstructions to account for [CO2] effects. The approach as 217	
implemented here is based on equations (Appendix 1) that link moisture index (MI) to 218	
transpiration and the ratio of leaf-internal to ambient CO2. The correction is based on 219	
the principle that the rate of water loss per unit carbon gain is inversely related to 220	
effective moisture availability as sensed by plants. The method involves solving a 221	
non-linear equation that relates rate of water loss per unit carbon gain to MI, 222	
temperature and CO2 concentration. The equation is derived from theory that predicts 223	
the response of the ratio of leaf-internal to ambient [CO2] to vapour pressure deficit 224	
and temperature (Prentice et al., 2014; Wang et al., 2014).	225	
 226	
2.4 Application of variational techniques 227	
 228	
Variational	 data	 assimilation	 techniques	 provide	 a	 way	 of	 combining	229	
observations	and	model	outputs	to	produce	climate	reconstructions	that	are	not	230	
exclusively	 constrained	 to	 one	 source	 of	 information	 or	 the	 other	 (Nichols,	231	
2010).	We	use	the	3D-variational	method,	described	in	Cleator	et	al.	(2019a)	to	232	
find	 the	 maximum	 a	 posteriori	 estimate	 (or	 analytical	 reconstruction)	 of	 the	233	
palaeoclimate	 given	 the	 site-based	 reconstructions	 and	 the	model-based	 prior.	234	
The	method	 constructs	 a	 cost	 function,	which	 describes	 how	well	 a	 particular	235	
climate	matches	both	the	site-based	reconstructions	and	the	prior,	by	assuming	236	
the	 reconstructions	 and	 prior	 have	 a	 Gaussian	 distribution.	 To	 avoid	 sharp	237	
changes	 in	 time	 and/or	 space	 in	 the	 analytical	 reconstructions,	 the	 method	238	
assumes	that	the	prior	temporal	and	spatial	covariance	correlations	are	derived	239	
from	a	modified	Bessel	function,	in	order	to	create	a	climate	anomaly	field	that	is	240	
smooth	both	from	month	to	month	and	from	grid	cell	to	grid	cell.	The	degree	of	241	
correlation	 is	 controlled	 through	 two	 length	 scales:	 a	 spatial	 length	 scale	 that	242	
determines	 how	 correlated	 the	 covariance	 in	 the	 prior	 is	 between	 different	243	
geographical	areas,	and	a	temporal	length	scale	that	determines	how	correlated	244	
it	 is	 through	 the	seasonal	 cycle.	The	site-based	reconstructions	are	assumed	 to	245	
have	 negligible	 correlations	 at	 these	 space	 and	 time	 scales.	 The	 maximum	 a	246	
posteriori	 estimate	 is	 found	 by	 using	 the	 limited	 memory	 Broyden-	 Fletcher-247	
Goldfarb-Shanno	method	(Liu	and	Nocedal	1989)	to	determine	the	climate	that	248	
minimises	 the	 cost	 function.	 A	 first	 order	 estimate	 of	 the	 analysis	 uncertainty	249	
covariance	is	also	computed.		250	
	251	
An	observation	operator	based	on	calculations	of	 the	direct	 impact	of	 [CO2]	on	252	
water-use	 efficiency	 (section	 2.3)	 is	 used	 in	 making	 the	 analytical	253	
reconstructions.	 The	 prior	 is	 constructed	 as	 the	 average	 of	 eight	 LGM	 climate	254	
simulations	 (section	2.2).	We	use	 an	 ensemble	of	 different	model	 responses	 to	255	
the	 same	 forcing	 to	 provide	 a	 series	 of	 physically	 consistent	 possible	 states,	256	
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which	 can	be	viewed	as	perturbed	 responses	and	provide	 the	variance	around	257	
the	 climatology	 provided	 by	 the	 ensemble	 average.	 The	 prior	 uncertainty	258	
correlations	are	based	on	a	temporal	 length	scale	(Lt)	of	1	month	and	a	spatial	259	
length	 scale	 (Ls)	of	400km.	Cleator	et	 al.,	 (2019a)	have	 shown	 that	 a	 temporal	260	
length	scale	of	1	month	provides	an	adequately	smooth	solution	for	the	seasonal	261	
cycle,	 both	 using	 single	 sites	 and	 over	 multiple	 grid	 cells,	 as	 shown	 by	 the	262	
sensitivity	 of	 the	 resolution	 matrix	 (Menke,	 2012;	 Delahaies	 et	 al.,	 2017)	 to	263	
changes	 in	 the	 temporal	 length	 scale.	 Consideration	 of	 the	 spatial	 spread	 of	264	
variance	 in	 the	 analytical	 reconstruction	 shows	 that	 a	 spatial	 length	 scale	 of	265	
400km	 also	 provides	 a	 reasonable	 reflection	 of	 the	 large-scale	 coherence	 of	266	
regional	climate	change.	267	
	268	
We	generated	composite	variances	on	 the	analytical	 reconstructions	 (Figure	3)	269	
by	combining	the	covariances	from	the	site-based	reconstructions	and	from	the	270	
prior.	There	are	 regions	where	all	 of	 the	models	 systematically	differ	 from	 the	271	
site-based	 reconstructions	 (Harrison	 et	 al.,	 2015)	 but	 nevertheless	 the	 inter-272	
model	 variability	 is	 low,	which	would	 lead	 to	 a	 very	 small	 contribution	 to	 the	273	
composite	uncertainties	from	the	prior.	We	therefore	calculated	the	uncertainty	274	
of	 the	 prior	 from	 an	 equal	 combination	 of	 the	 global	 uncertainty,	 the	 average	275	
variance	between	each	grid	cell,	and	local	uncertainty,	the	variance	between	the	276	
different	models.	The	reliability	of	the	analytical	reconstructions	was	assessed	by	277	
comparing	 these	composite	covariances	with	 the	uncertainties	 in	 the	prior.	We	278	
masked	 out	 cells	 where	 the	 inclusion	 of	 site-based	 reconstructions	 does	 not	279	
produce	an	improvement	of	>	5%	from	the	prior.	Since	this	assessment	is	based	280	
on	a	change	 in	the	variance,	rather	than	absolute	values,	 this	masking	removes	281	
regions	 where	 there	 are	 no	 pollen-based	 reconstructions	 or	 the	 pollen-based	282	
reconstructions	have	very	large	uncertainties.		283	
	284	
 285	
3 Results 286	
 287	
The analytical reconstructions (Figure 4) show an average year-round cooling of -5.6 288	
°C in the northern extratropics. The cooling is larger in winter (–7.6 °C) than in 289	
summer (–2.4 °C). A limited number of grid cells in central Eurasia show warmer-290	
than-present summers, and higher MAT. Temperature changes are more muted in the 291	
tropics, with an average change in MAT of –3.7 °C. The cooling is somewhat lower 292	
in summer than winter (–2.7 °C compared to –4.1 °C). Reconstructed temperature 293	
changes were slightly larger in the southern extratropics, with average changes in 294	
MAT of –5.0°C, largely driven by cooling in winter. 	295	
 296	
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Changes in moisture-related variables (MAP, MI) across the northern hemisphere are 305	
geographically more heterogeneous than temperature changes. Reconstructed MAP is 306	
greater than present in western North America (172 mm) but less than present (–29 307	
mm) in eastern North America. Most of Europe is reconstructed as drier than present 308	
(–305mm), the same for eastern Eurasia (-94 mm) and the Far East (–66 mm). The 309	
patterns in MI are not identical to those in MAP, because of the influence of 310	
temperature on MI, but regional changes are generally similar to those shown by 311	
MAP. Most of the tropics are shown as drier than present while the southern 312	
hemisphere extratropics are wetter than present, in terms of both MAP and MI. 	313	
 314	
The reconstructed temperature patterns are not fundamentally different from those 315	
shown by Bartlein et al. (2011) but the analytical dataset provides information for a 316	
much larger area (1153% increase) thanks to the method’s imposition of consistency 317	
among different climate variables, and smooth variations both in space and through 318	
the seasonal cycle. There are systematic differences, however, between the analytical 319	
reconstructions and the pollen-based reconstructions in terms of moisture-related 320	
variables (MAP, MI) because the analytical reconstructions take account of the direct 321	
influence of [CO2] on plant growth. The physiological impact of [CO2] leads to 322	
analytical reconstructions indicating wetter than present conditions in many regions 323	
(Figure 5a, Figure 5b), for example in southern Africa where several of the original 324	
pollen-based reconstructions show no change in MAP or MI compared to present, but 325	
the analytical reconstruction shows wetter conditions than present. In some regions, 326	
incorporating the impact of [CO2] reverses the sign of the reconstructed changes. Part 327	
of northern Eurasia is reconstructed as being wetter than present, despite pollen-based 328	
reconstructions indicating conditions drier than present (both in terms of MAP and 329	
MI), as shown by SI Figure 3. The relative changes in MAP and MI are similar across 330	
all sites (Figure 5c), implying that the analytically reconstructed changes are driven 331	
by changes in precipitation rather than temperature. 	332	
 333	
 334	
4 Discussion 335	
 336	
Variational data assimilation techniques provide a way of combining observations and 337	
model outputs, taking account the uncertainties in both, to produce a best-estimate 338	
analytical reconstruction of LGM climate. These reconstructions extend the 339	
information available from site-based reconstructions both spatially and through the 340	
seasonal cycle. Our new analytical data set characterizes the seasonal cycle across a 341	
much larger region of the globe than the data set that is currently being used for 342	
benchmarking of palaeoclimate model simulations. We therefore suggest that this data 343	
set (Cleator et al. 2019b) should be used for evaluating the CMIP6-PMIP4 LGM 344	
simulations.	345	
 346	
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Some areas are still poorly covered by quantitative pollen-based reconstructions of 360	
LGM climate, most notably South America. More pollen-based climate 361	
reconstructions would provide one solution to this problem – and there are many 362	
pollen records that could be used for this purpose (Flantua et al., 2015; Herbert and 363	
Harrison, 2016; Harrison et al., 2016). There are also quantitative reconstructions of 364	
climate available from individual sites (e.g. Lebamba et al., 2012; Wang et al., 2014; 365	
Loomis et al., 2017; Camuera et al., 2019) that should be incorporated into future data 366	
syntheses.  It would also be possible to incorporate other sources of quantitative 367	
information, such as chironomid-based reconstructions (e.g. Chang et al., 2015), 368	
within the variational data assimilation framework. 369	
 370	
One of the benefits of the analytical framework applied here is that it allows the 371	
influence of changes in [CO2] on the moisture reconstructions to be taken into 372	
account. Low [CO2] must have reduced plant water-use efficiency, because at low 373	
[CO2] plants need to keep stomata open for longer in order to capture sufficient CO2. 374	
Statistical reconstruction methods that use modern relationships between pollen 375	
assemblages and climate under modern conditions (i.e. modern analogues, transfer 376	
functions, response surfaces: see Bartlein et al., 2011 for discussion) cannot account 377	
for such effects. Climate reconstruction methods based on the inversion of process-378	
based ecosystem models can do so (see e.g. Guiot et al., 2000; Wu et al., 2007; Wu et 379	
al., 2009; Izumi and Bartlein, 2016) but are critically dependent on the reliability of 380	
the vegetation model used. Most of the palaeoclimate reconstructions have been made 381	
by inverting some version of the BIOME model (Kaplan et al., 2003), which makes 382	
use of bioclimatic thresholds to separate different plant functional types (PFTs). As a 383	
result, reconstructions made by inversion show “jumps” linked to shifts between 384	
vegetation types dominated my different PFTs whereas, as has been shown recently 385	
(Wang et al., 2017), differences in water use efficiency of different PFTs can be 386	
almost entirely accounted for by a single equation, as proposed here. Sensitivity 387	
analyses show that the numerical value of the corrected moisture variables (MI, MAP) 388	
is dependent on the reconstructed values of these variables but is insensitive to 389	
uncertainties in the temperature and moisture inputs (Prentice et al., 2017). The 390	
strength of the correction is primarily sensitive to [CO2], but the LGM [CO2] value is 391	
well constrained from ice-core records. The response of plants to changes in [CO2] is 392	
non-linear (Harrison and Bartlein, 2012), and the effect of the change between recent 393	
and pre-industrial or mid-Holocene conditions is less than that between pre-industrial 394	
and glacial conditions. Nevertheless, it would be worth taking the [CO2] effect on 395	
water-use efficiency into account in making reconstructions of interglacial time 396	
periods as well.  397	
 398	
The influence of individual pollen-based reconstructions on the analytical 399	
reconstruction of seasonal variability, or the geographic area influenced by an 400	
individual site, is crucially dependent on the choice of length scales. We have adopted 401	
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conservative length scales of 1 month and 400 km, based on sensitivity experiments 408	
made for southern Europe (Cleator et al., 2019a). These length scales produce 409	
numerically stable results for the LGM, and the paucity of data for many regions at 410	
the LGM means that using fixed, conservative length scales is likely to be the only 411	
practical approach. However, in so far as the spatial length scale is related to 412	
atmospheric circulation patterns, there is no reason to suppose that the optimal spatial 413	
length scale will be the same from region to region. The density and clustering of 414	
pollen-based reconstructions could also have a substantial effect on the optimal spatial 415	
length scale. A fixed 1-month temporal length scale is appropriate for climates that 416	
have a reasonably smooth and well-defined seasonal cycle, either in temperature or 417	
precipitation. However, in climates where the seasonal cycle is less well defined, for 418	
example in the wet tropics, or in situations where there is considerable variability on 419	
sub-monthly time scales, other choices might be more appropriate. For time periods 420	
such as the mid-Holocene, which have an order of magnitude more site-based data, it 421	
could be useful to explore the possibilities of variable length scales.   	422	
 423	
We have used a 5% reduction in the analytical uncertainty compared to prior 424	
uncertainty to identify regions where the incorporation of site-based data has a 425	
negligible effect on the prior as a way of masking out regions for which the 426	
observations have effectively no impact on the analytical reconstructions. The choice 427	
of a 5% cut-off is arbitrary, but little would be gained by imposing a more stringent 428	
cut-off at the LGM given that many regions are represented by few observations. A 429	
more stringent cut-off could be applied for other time intervals with more data. We 430	
avoid the use of a criterion based on the analytical reconstruction showing any 431	
improvement on the prior because this could be affected by numerical noise in the 432	
computation. Alternative criteria for the choice of cut-off could be based on whether 433	
the analytical reconstruction had a reduced uncertainty compared to the pollen-based 434	
reconstructions or could be derived by a consideration of the condition number used 435	
to select appropriate length scales. 436	
 437	
There have been a few previous attempts to use data assimilation techniques to 438	
generate spatially continuous palaeoclimate reconstructions. Annan and Hargreaves 439	
(2013) used a similar multi-model ensemble as the prior and the pollen-based 440	
reconstructions from Bartlein et al. (2011) to reconstruct MAT at the LGM. However, 441	
they made no attempt to reconstruct other seasonal variables, either independently, or 442	
through exploiting features of the simulations (as we have done here) to generate 443	
seasonal reconstructions. Particle filter approaches (e.g. Goosse et al., 2006; 444	
Dubinkina et al., 2011) produce dynamic estimates of palaeoclimate, but particle 445	
filters cannot produce estimates of climate outside the realm of the model simulations. 446	
Our 3-D variational data assimilation approach has the great merit of being able to 447	
produce seasonally coherent reconstructions generalized over space, while at the same 448	
time being capable of producing reconstructions that are outside those captured by the 449	
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climate model, because they are not constrained by a specific source (Nichols, 2010). 455	
This property is of particular importance if the resulting data set is to be used for 456	
climate model evaluation, as we propose. 457	
 458	
Data	availability.	The	 gridded	 data	 for	 the	 LGM	 reconstructions	 are	 available	459	
from	DOI:10.17864/1947.229;	 the	code	used	 to	generate	 these	reconstructions	460	
is	available	from	DOI:10.5281/zenodo.3445166.	461	
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Figures and Tables Captions 782	
 783	
Figure 1: The distribution of the site-based reconstructions of climatic variables at the 784	
Last Glacial Maximum. The individual plots show sites providing reconstructions of 785	
(a) moisture index (MI), (b) mean annual precipitation (MAP), (c) mean annual 786	
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean 787	
temperature of the warmest month (MTWA) and growing degree days above a 788	
baseline of 5◦ C (GDD5). The original reconstructions are from Bartlein et al. (2011) 789	
and Prentice et al. (2017). 790	
 791	
Figure 2: Uncertainties associated with the climate prior. The climate is derived from 792	
a multi-model mean of the ensemble of models from the Palaeoclimate Modelling 793	
Intercomparison Project (PMIP) and is shown in SI Figure 1. The uncertainties shown 794	
here are the standard deviation of the multi-model ensemble values. The individual 795	
plots show the variance for the simulated (a) moisture index (MI), (b) mean annual 796	
precipitation (MAP), (c) mean annual temperature (MAT), (d) mean temperature of 797	
the coldest month (MTCO), (e) mean temperature of the warmest month (MTWA) 798	
and growing degree days above a baseline of 5◦ C (GDD5).   799	
 800	
Figure 3: Uncertainties on the analytical reconstructions. These	 uncertainties	801	
represent	 a	 combination	 of	 the	 uncertainty	 on	 the	 site-based	 reconstructions,	802	
and	the	grid-based	variance	on	the	prior	and	the	global	variance	from	the	prior.  803	
 804	
Figure 4: Analytically reconstructed climate, where areas for which the site-based 805	
data provide no constraint on the prior have been masked out.  The individual plots 806	
show reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP), (c) 807	
mean annual temperature (MAT), (d) mean temperature of the coldest month 808	
(MTCO), (e) mean temperature of the warmest month (MTWA) and growing degree 809	
days above a baseline of 5◦ C (GDD5). 810	
 811	
Figure 5: Impact of CO2 on reconstructions of moisture-related variables. The 812	
individual plots show (a) the change in moisture index (MI) and (b) the change in 813	
mean annual precipitation (MAP) compared to the original pollen-based 814	
reconstructions for the LGM when the physiological impacts of [CO2] on water-use 815	
efficiency are taken into account. The third plot (c) shows the relative difference in 816	
MI and MAP as a result of [CO2], shown as the percentage difference between the no-817	
[CO2] and [CO2] calculations. 818	
 819	
Table 1: Details of the models from the Palaeoclimate Modelling Intercomparison 820	
Project (PMIP) that were used for the Last Glacial Maximum (LGM) simulations used 821	
to create the prior.  822	
 823	

Deleted: uncertainties 824	

Deleted: These uncertainties represent a combination of the 825	
errors on the site-based reconstructions, and the grid-based 826	
errors on the prior and the global uncertainty from the prior. 827	

Deleted: Impact of CO2 on reconstructions of moisture-828	
related variables. The individual plots show (a) the change in 829	
moisture index (MI) and (b) the change in mean annual 830	
precipitation (MAP) when the physiological impacts of [CO2] 831	
on water-use efficiency are taken into account. The third plot 832	
(c) shows the relative difference in MI and MAP as a result of 833	
[CO2], shown as the percentage difference between the no-834	
[CO2]  and [CO2] calculations.…835	
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Table	1:	Details	of	the	models	from	the	third	phase	of	the	Palaeoclimate	Modelling	836	
Intercomparison	 Project	 (PMIP3)	 that	 were	 used	 for	 the	 Last	 Glacial	 Maximum	837	
(LGM)	simulations	used	to	create	the	prior.	Coupled	ocean-atmosphere	models	are	838	
indicated	 as	 OA,	 which	 OAC	 models	 have	 a	 fully	 interactive	 carbon	 cycle.	 The	839	
resolution	 in	 the	 atmospheric,	 oceanic	 and	 sea	 ice	 components	 of	 the	 models	 is	840	
given	in	terms	of	numbers	of	grid	cells	in	latitude	and	longitude.	841	
	842	
Model	name	 Type	 Resolution	 Year	

length	
Reference	

Atmosphere Ocean Sea Ice   
CCSM4  OA	 192, 288  320, 384  320, 384  365  Gent et al. (2011)  
CNRM-CM5 OA  128, 256  292, 362  292, 362  365-

366  
Voldoire et al. 
(2012)  

MPI-ESM-P  OA  96, 192  220, 256  220, 256  365-
366  

Jungclaus	 et	 al.	
(2006)	

MRI-	
CGCM3  

OA  160, 320  360, 368  360, 368  365  Yukimoto et al. 
(2011)  

FGOALS-g2 OA 64, 128 64, 128 64, 128 365 Li	et	al.	(2013)	
COSMOS-ASO  
 

OAC  96, 48  120, 101  120, 101  360  Budich et al. 
(2010)  

IPSL-CM5A-LR  OAC  96, 96  149, 182  149, 182  365  Dufresne et al., 
2013 

MIROC-ESM  OAC  64, 128  192, 256  192, 256  365  Watanabe et al. 
(2011)  



	

Appendix 843	

We define e as the water lost by transpiration (E) per unit carbon gained by 844	
photosynthesis (A). This term, the inverse of the water use efficiency, is given by: 845	

e  =  E/A  =  1.6 D / ((1 – χ) ca)     (A1) 846	

where D is the leaf-to-air vapour pressure deficit (Pa), ca is the ambient CO2 partial 847	
pressure (Pa) and χ is the ratio of leaf-internal CO2 partial pressure (ci) to ca. An 848	
optimality-based model (Prentice et al. 2014), which accurately reproduces global 849	
patterns of χ and its environmental dependencies inferred from leaf δ13C 850	
measurements (Wang et al. 2017), predicts that: 851	

χ  =  (Γ*/ca) + (1 – Γ*/ca) ξ/(ξ + √D)     (A2a) 852	

and 853	

ξ  =  √(β(K + Γ*)/1.6 η*)      (A2b) 854	

where Γ* is the photorespiratory compensation point of C3 photosynthesis (Pa), β is a 855	
constant (estimated as 240 by Wang et al. 2017), K is the effective Michaelis-Menten 856	
coefficient of Rubisco (Pa), and η* is the ratio of the viscosity of water (Pa s) at 857	
ambient temperature to its value at 25˚C. Here K depends on the Michaelis-Menten 858	
coefficients of Rubisco for carboxylation (KC) and oxygenation (KO), and on the 859	
partial pressure of oxygen O (Farquhar et al. 1980): 860	

K  =  KC (1 + O/ΚO)       (A3) 861	

Standard values and temperature dependencies of ΚC, KO, Γ* and η* are assigned as 862	
in Wang et al. (2017). 863	

The moisture index MI is expressed as 864	

MI = P/Eq, Eq  = ∑n(Rn/λ) s/(s + γ)     (Α4) 865	

where P is annual precipitation, Rn is net radiation for month n, λ is the latent heat of 866	
vaporization of water, s is the derivative of the saturated vapour pressure of water 867	
with respect to temperature (obtained from a standard empirical formula also used by 868	
Wang et al. 2017), and γ is the psychrometer constant. We assume that values of MI 869	
reconstructed from fossil pollen assemblages, using contemporary pollen and climate 870	
data either in a statistical calibration method or in a modern-analogue search, need to 871	
be corrected in such a way as to preserve the contemporary relationship between MI 872	
and e, while taking into account the change in e that is caused by varying ca and 873	
temperature away from contemporary values. The sequence of calculations is as 874	
follows. (1) Estimate e and its derivative with respect to temperature (∂e/∂T) for the 875	
contemporary ca and climate, using equations (A1) – (A3) above. (2) Use the e and 876	
∂e/∂T to calculate ∂D/∂T given the palaeo ca (measured in ice-core data) and 877	
temperature (reconstructed from pollen data), via a series of analytical equations that 878	
relate ∂e/∂T to ∂D/∂T and hence to s. (3) Use the new ∂D/∂T and relative humidity 879	
(from the PMIP3 average) to derive a new value of s. (4) Re-calculate MI using a 880	
palaeo estimate of Rn (modelled as in Davis et al., 2017) and the new value of s. 881	


