Dear Dominik,

I would like to submit the paper “NALPS19: Sub-orbital scale climate variability recorded in Northern Alpine speleothems during the last glacial period” with the final corrections to Climate of the Past. We would like to thank the reviewers who provided especially constructive comments throughout the review process.

Comments of Reviewer 1

Page 10, line 27. With the current presentation, I don’t think that the link made between ice 618O from Greenland and calcite 618O is appropriate. While both are likely controlled (at least partly) by temperature, this is not the same “temperature” that is considered. For Greenland, Johnsen et al. (2001) refer to local temperature (i.e. at the Greenland drilling site), which is different from the temperature controlling precipitation 618O in the northern and central Alps. The authors have to revise their statement and be more cautious and specific.

AC: agreed this has been revised and the reference to Greenland removed.

Page 13, line 17: This sentence should be removed as I do not think the comparison of these short events with glacial terminations is appropriate. Glacial terminations are primarily forced by orbital forcing, hence the climate background conditions are fundamentally different from the short-lived events and the time-scales are also obviously completely different.

AC: we do not agree that the sentence should be removed because it is an important summary statement. We have changed “termination” to “stadial-interstadial transition” so that the correct terminology is used.

-Page 4, Figure 4 extremely difficult to read. I appreciate that the authors modified the previous version unfortunately, I find this one even harder to interpret and currently of no added values considering the presence of Table 3. A clear caption explaining the different symbols is missing and the authors have to think of a better and clearer representation of those transitions (and consider using different colors?). As said and suggested in my first review a y axis scale is missing (or at least an explanation for what is done), and it should probably also show the reference curves in the background the reference curves on which they have performed the analysis. Uncertainties are overlapping quite largely for the transitions displayed on GICC05modelext, AICC2012 and AICC2012 (extier) which prevent a clear reading of the figure, a different representation should hence be used. Also, it is unclear what is the error bar presented: is it the error bar (95% confidence interval) provided for any transition or is it the error bar associated to the chronologies? Or are the authors providing an error based on the combination of the two sources of uncertainties I mention below? At the moment, it is very unclear from what is written in the caption of the figure.

AC: What this figure does is provide an easy and simple visual representation of the results of the ramp fitting, something that table 3 does not. It is therefore important to keep it. The different symbols have now been added to the caption as well as a clear statement that they relate to the start, middle and end of the transitions as defined by the ramp-fitting. This information has also been added to the y-axis. The transitions are also separately by colours though each transition is anyhow clearly labelled across the top. The caption already refers the reader to the reference curves “Each ramp-fit relative to its reference curve is given in SI Fig. 7”. These are too many and numerous and superfluous information, thus they are in the supplementary information. Caps have been removed from most error bars so that they do not physically touch, but are kept for the NALPS section because they are so small and would otherwise be lost at this scale. An explanation of the error bars is also added to the caption.

-Figure 5. I have a similar comment for Figure 5. The authors need to provide a caption right next to the graph, so it is easier to figure out what the different symbols are representing, as well as the lines between the symbols. The authors should also explain the difference between panel b and panel c?

AC: Similarly this is an important visualisation of the data presented in Table 3 enabling a quick assessment of offsets and durations that is not possible with table 3. As requested a legend is now provided with the graph. An explanation of the lines has been added. Panel c is at a different scale to panel b. We consider this obvious and therefore it does not need to be stated in the caption. The durations of transitions between stadials and

1
interstadial and vice versa is a very important topic, thus this visual representation of this data is important and should stay.

- In general, the resolution of the figures is of quite poor quality (at least looking at the pdf provided). High-resolution figures have to be provided for the published version of the paper.

Minor comments:
- Page 1, line 22: “...with the exception of Stadial-20”. I would suggest to simply write the following: “Ramp-fitting analysis further reveals that, except for one abrupt change, the timing of d18O transitions occurred...”. This will also avoid introduce a new notation such as “stadial-20”.

AC: done

- Page 1, line 24: To remove “large” since the scale of the uncertainties are already quantified with “millennial-scale”.

AC: done

- Page 1, line 31: To be a bit more specific regarding the “ramp-fitting” as this might not be obvious to all readers what you mean e.g. “using a ramp-fitting analysis to objectively identify the onset and the end of the abrupt transitions, we show that...”;

AC: done

- Page 1, line 40: The acronym GS has to be defined.

AC: done

- Page 3, line 4: To write “In the vicinity OF ...”.

AC: done

- Page 6, lines 21-22: To write “six” instead of 6 and “three” instead of 3 in the next line.

AC: done

- Page 7, lines 27-29: To replace “accurate” by “objective” and to remove “which is often no so ambiguous”.

AC: replacing accurate with objective would be grammatically incorrect given the remainder of the sentence. The sentence has instead been revised to

Such an approach enables a consistent approach to chronological quantification of climate transitions (Mudelsee, 2000), unlike the more subjective approach of taking the first data-point that deviates from the baseline of the previous climate state (e.g. Capron et al., 2010a; Moseley et al., 2014; Rasmussen et al., 2014).

AC: done

- Page 8, line 41: Add a space between “the” and “AICC2012”.

AC: done

- Page 9, line 7: “Interestingly, with the exception of GI-23.1, the duration of transitions in the Asian monsoon are considerably longer (on multi-centennial timescales) than for the North Atlantic–sourced NALPS19 and Greenland chronologies (on multi-decadal timescales) (Table3, Fig. 5).” Could it partly be due to a lower resolution of the speleothem records? The authors should address this.

AC: there are multiple data points within the transitions of the Asian monsoon records. It is not a product of resolution therefore we do not consider it to need particular attention.

- Page 9, line 31: The formulation “a longer-duration GS-22 - GI-21.2 - GS-21.2 period” is very awkward, please reformulate.

AC: reformulated to “The speleothem δ18Ocalc records from both the Alps and China therefore support a longer-duration for the period between the cooling into GS-22 to the warming into GI-21.1e, which is in line with the NGRIP-EDML chronology (Capron et al., 2010b; Vallelonga et al., 2012).”

AC: done

- Page 10, line 4: Replace “an” by “a”.

AC: this would be incorrect grammar because the use of a and an is based on the sound of the first letter, not just the first letter itself. Therefore MIS sounds em-ee-ess, which means it begins with a vowel sounds and should therefore be ‘an MIS’

AC: done

- Page 10, line 18: The sentence does not seem to be finished and there is a missing reference at the end.

AC: done
- Page 10, line 41: “as IT would be expected…”
  AC: disagree, incorrect grammatically

- Page 12, line 30: “Such cold reversals ARE thought…”
  AC: done

- Page 13, line 1: Add a space between (2012) and (Fig. 8).
  AC: done

- Page 13, line 7: “δ18O planktic”
  AC: done but as planktic δ18O

- Page 12, line 35: I believe this is the first time the authors refer to the H events, they should be briefly defined.
  AC: we consider this unnecessary in a journal about Climate of the Past. Readers should already be familiar with Heinrich events. The reviewer does not request definitions for other events or components of the climate system such as AMOC, Preboreal Oscillation, Younger Dryas etc.

- Figure 2.c. Please do not introduce a new notation for stadial and interstadial events. Quite a few are circulating in the literature and this is quite confusing already. Hence, please remove the I-X and S-X. I do not think the numbering of events is necessary in this context here anyway.
  AC: done

- Table 3. Write “…for NALPS δ18O (this study), NGRIP δ18O on ….”
  AC: done

- Table 4. Remove “various” or “different” to the caption, but don’t keep both.
  AC: done

Yours faithfully,

Gina Moseley, Email. gina.moseley@uibk.ac.at
NALPS19: Sub-orbital scale climate variability recorded in Northern Alpine speleothems during the last glacial period

Gina E. Moseley¹, Christoph Spötl¹, Susanne Brandstätter¹, Tobias Erhardt², Marc Luetscher¹, R. Lawrence Edwards³

¹Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
²Climate and Environmental Physics and Oeschger Center for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
³School of Earth Sciences, University of Minnesota, John T. Tate Hall, Room 150, 116 Church Street SE, Minneapolis, MN 55455-0149, USA
⁴Swiss Institute for Speleology and Karst Studies (SISKA), 2301 La Chaux-de-Fonds, Switzerland

Correspondence to: Gina E. Moseley (gina.moseley@uibk.ac.at)

Abstract. Sub-orbital-scale climate variability of the last glacial period provides important insights into the rates that the climate can change state, the mechanisms that drive such changes, and the leads, lags and synchronicity occurring across different climate zones. Such short-term climate variability has previously been investigated using δ¹⁸O from speleothems (δ¹⁸Oₛₘ) that grew along the northern rim of the Alps (NALPS), enabling direct chronological comparisons with δ¹⁸O records from Greenland ice cores (δ¹⁸Oᵢₑ). In this study, we present NALPS19, which includes a revision of the last glacial NALPS δ¹⁸Oₑ chronology over the interval 118.3 to 63.7 ka using eleven, newly-available, clean, precisely-dated stalagmites from five caves. Using only the most reliable and precisely dated records, this period is now 90% complete and is comprised of 16 stalagmites from seven caves. Where speleothems grew synchronously, the timing of major transitional events in δ¹⁸Oₑ between stadials and interstadials (and vice versa) are all in agreement on multi-decadal timescales. Ramp-fitting analysis further reveals that, except for one abrupt change, the timing of δ¹⁸O transitions occurred synchronously within centennial-scale dating uncertainties between the NALPS19 δ¹⁸Oₑ record and the Asian Monsoon composite speleothem δ¹⁸Oₑ record. Due to the millennial-scale uncertainties in the ice-core chronologies, a comprehensive comparison with the NALPS19 chronology is difficult. Generally, however, we find that the absolute timing of transitions in the Greenland Ice Core Chronology (GICC) δ¹⁸Oₑ and Antarctic Ice Core Chronology (AICC) 2012 are in agreement on centennial-scales. The exception to this is during the interval 100 to 115 ka, where transitions in the AICC2012 chronology occurred up to 3,000 years later than in NALPS19. In such instances, the transitions in the revised AICC2012 chronology of Extier et al. (2018) are in agreement with NALPS19 on centennial scales, supporting the hypothesis that AICC2012 appears to be considerably too young between 100 to 115 ka. Using a ramp-fitting function to objectively identify the onset and the end of abrupt transitions, we show that δ¹⁸O shifts took place on multi-decadal timescales in the North Atlantic-sourced regions (N. Alps and Greenland), whereas shifts in the monsoon were on multi-centennial timescales. Given the near-complete record of δ¹⁸Oₑ variability during the last glacial period in the northern Alps, we also offer preliminary considerations regarding the controls on mean δ¹⁸Oₑ for given stadials and interstadials. We find that as expected, δ¹⁸Oₑ values became increasingly lighter with distance from the oceanic source regions, and increasingly lighter with increasing altitude. Exceptions were found for some high-elevation sites that locally display δ¹⁸Oₑ values that are heavier-than-expected in comparison to lower-elevation sites, possibly caused by a summer bias in the recorded signal of the high-elevation site, or a winter bias in the low-elevation site. Finally, we propose a new mechanism for the centennial-scale stadial-level depletions in δ¹⁸O such as ‘precursor’ events.

Greenland Stadial (GS)-16.2, GS-17.2, GS-21.2, and GS-23.2, as well as the ‘within-interstadial’ GS-24.2
cooling event. Our new high-precision chronology shows that each of these δ18O depletions occurred in the decades and centuries following rapid rises in sea level associated with increased ice-rafted debris and southward shifts of the Intertropical Convergence Zone, suggesting that influxes of meltwater from moderately-sized ice sheets may have been responsible for the cold reversals causing the Atlantic Meridional Overturning Circulation to slow down similar to the Preboreal Oscillation and Older Dryas deglacial events.

I Introduction

Speleothems from the northern rim and central European Alps have provided a number of important, high-resolution, precisely 230Th-dated records of both orbital- and millennial-scale climate variability during the last glacial and interglacial periods (Spötl and Mangini, 2002; Spötl et al., 2006; Boch et al., 2011; Moseley et al., 2014; Laetscher et al., 2015; Moseley et al., 2015; Häuselmann et al., 2015). The oxygen isotopic signature of such records (herein referred to as δ18Ocalc) has helped improve fundamental understanding of the effect that changes in atmospheric (Laetscher et al., 2015) and North Atlantic circulation (Moseley et al., 2015) have on European climate, whilst the robust chronologies have provided important information about the timescales upon which the climate can change in this well-populated region (Boch et al., 2011; Moseley et al., 2014). Furthermore, the pattern and timing of excursions in δ18Ocalc of northern Alpine speleothems during the last glacial cycle have been shown to be synchronous within dating uncertainties (Boch et al., 2011; Moseley et al., 2014) with the sawtooth-pattern of changes in the δ18O of Greenland ice cores (herein referred to as δ18Oice) (known as Dansgaard-Oeschger cycles; Johnsen et al., 1992; Dansgaard et al., 1993), thus reflecting the shared North Atlantic moisture source and integrated climate system (Boch et al., 2011). The sawtooth pattern of δ18O is generally interpreted in both Greenland and the northern Alps as being caused by a rapid increase in temperature and humidity leading into a mild climate state (interstadial), followed by a gradual cooling leading into a cold and dry glacial state (stadial). In total, 25 such cycles of rapid warming and gradual cooling, as well as many other smaller centennial- and decadal-scale events, are recognised as having occurred during the last glacial period (Dansgaard et al., 1993; NGRIP Project members, 2004; Capron et al., 2010a). This has resulted in a new stratigraphic framework (INTIMATE event stratigraphy) for abrupt climate changes in Greenland, in which shorter-scale events that occur within the 25 main stadials and interstadials are designated “a to e” (Rasmussen et al., 2014). This nomenclature will be used in the remainder of this article.

When considering the timing of the transitions in δ18O between stadial and interstadial states, the largest offsets between the northern Alps speleothem chronology (NALPS) and Greenland Ice Core Chronology (layer-counted GICC05, 0 to 60 ka; Svensson et al., 2008 and modelled GICC05modet, 60 to 122 ka; Wolff et al., 2010) are 767 years in Marine Isotope Stage (MIS) 3 (Moseley et al., 2014) and 1,060 years in MIS 5 (Boch et al., 2011). The former is associated with the warming transition into Greenland Interstadial-16.1c (GI-16.1c), and the latter with the cooling transition into Greenland Stadial-22 (GS-22; Rasmussen et al., 2014). The timing for both of these transitions in the NALPS chronology was constrained from speleothems high in detrital thorium (Boch et al., 2011; Moseley et al., 2014). Since one of the prerequisites for reliable 230Th dating is that minimal 230Th is incorporated into the calcite at the time of deposition (Ivanovich and Harmon, 1992; Dorale et al., 2004), it is reasonable to question the accuracy of the age of these two transitions. In the case of the MIS 3 sample (Moseley et al., 2014), the correction for the initial incorporation of daughter nuclides was well constrained by isochron methods (Ludwig and Titterington, 1994; Dorale et al., 2004), however, in the case of the MIS 5 sample (Boch et
al., 2011), the detrital Th was corrected for using an a priori assumption that the contaminant phase had the same composition of the silicate bulk earth (Wedepohl, 1995). Furthermore, the accuracy of the GICC05_revised chronology is questionable in the vicinity of GI-22 to 21 (Capron et al., 2010b; Vallelonga et al., 2012). Specifically, the duration of GS-22 appears to be underestimated, probably as a result of an overestimation of the annual layer thickness by the ss09sea06m ice flow model (Johnsen et al., 2001) upon which GICC05_revised is based in the portion of the record older than 60 ka (Wolff et al., 2010; Vallelonga et al., 2012). Vallelonga et al. (2012) thus revised the duration of GS-22 from 2,620 years to 2,894 ± 99 years using annual layer-counting of seasonal cycles in the chemical impurities in the ice. Given the uncertainties in the chronologies for both the NALPS speleothems and NGRIP ice core during GI-22 to GI-21, it is thus difficult to determine the reliability and extent of the leads, lags and synchronicity at this time. In addition to the complexities around GS-22, the chronology of events between GI-25 to 23 are also poorly constrained. This is visible when comparing the GICC05_revised chronology (Wolff et al., 2010) with the Antarctic Ice Core Chronology (AICC)2012 chronology (Veres et al., 2013), which differ by up to 2,700 years, and also when comparing the pattern of the δ¹⁸O shifts during GS-24 in NALPS and NGRIP (Boch et al., 2011).

Here, we revisit the NALPS speleothem chronology over the interval 63.7 to 118.3 thousand years ago (ka) (Boch et al., 2011) using new samples that are low in detrital thorium and/or have a more pronounced δ¹⁸O,at signal, with the aim of improving the chronology such that better informed conclusions about leads/lags and synchronicity in the climate system may be made. The original record was discontinuous, with coverage of 76 % of the 54.6 ka interval. Gaps in the record were present between 111.6 and 110.0, 94.5 and 89.7, 84.7 and 83.0, 77.5 and 76.0, 75.5 and 72.0 ka (Boch et al., 2011). With the addition of new speleothems, we extend the coverage to 90 %, improve the accuracy and precision of some climate transitions, and designate the revised chronology “NALPS19”.

2 Regional Climate

The European Alps, situated between 44 and 48 °N, are a 950 km-long mountain range running ENE-WSW located close to the southern fringe of the European mainland. The highest peaks, reaching over 4,000 m in elevation, are situated in the Western Alps of France and Switzerland, whilst the Eastern Alps, located in Austria, are on average 1,000 m lower. Across the whole of the Alps, the average elevation is c. 2,500 m above sea level (a.s.l.), thus this mountain range forms a major topographic barrier between the North Atlantic and Mediterranean climate zones (Wanner et al., 1997). Today, the Alps are located to the south of the extra-tropical westerlies, which bring precipitation sourced from the North Atlantic to the northern and western flanks, particularly during winter and spring (Wanner et al., 1997; Sodemann and Zuber, 2010). Lagrangian back-trajectory studies have shown that for the period 1995-2002, the North Atlantic contributed c. 40% of the annual mean moisture to the Alps, whilst the Mediterranean contributed 23%, the Arctic, Nordic and Baltic seas 16%, and the European land masses 21% (Sodemann and Zuber, 2010). Contributions to the northern versus southern side of the Alps, however, displayed considerable seasonal differences. Throughout the year, the North Atlantic contributes more moisture to the northern Alps as compared to the Southern Alps, and this is especially pronounced in winter and spring (Sodemann and Zuber, 2010). During summer, Central European land masses are the dominant moisture source across the entire Alps, though the North Atlantic still makes some contribution to the northern flanks, and the Mediterranean to the southern flanks. In autumn, the northern Alps receive
comparable quantities of moisture from both the North Atlantic and Mediterranean, whilst the Southern Alps are
dominated by moisture from the Mediterranean (Sodemann and Zuber, 2010). On longer, multi-decadal
timescales, moisture sources and trajectories to the Alps have been shown to be highly variable. In particular, the
phase of the North Atlantic Oscillation (NAO), which is especially pronounced in winter (Wanner et al., 1997),
exhibits one of the strongest controls. During the positive phase, when positive sea-surface temperature and air-pressure anomalies build up in the southwestern North Atlantic, and negative ones in the north, the associated
temperature gradient across the western North Atlantic is high. This leads to an intensification of the North
Atlantic polar front jet stream, which creates a high pressure zone over the Alps and Mediterranean causing
higher temperatures and less precipitation (Wanner et al., 1997). Conversely, during a negative NAO phase the
air pressure decreases over the Alps and Mediterranean leading to lower air temperatures and higher
precipitation.

3 Methods
3.1 Cave Sites and Speleothems
Previous NALPS studies include MIS 2 in Luetscher et al. (2015) (though this was not branded as ‘NALPS’),
MIS 3 in Moseley et al. (2014), and MIS 4 to MIS 5 in Boch et al. (2011). The MIS 4/ MIS 5 chronology (which
is the part revised here), was constructed from seven speleothems from four cave sites including St. Beatus
caves, Große Baschg cave (Baschg cave for short), Klaus-Cramer cave and Schneckenloch (Boch et al., 2011).
In this study, two additional samples from Baschg cave and one from Schneckenloch were analysed, plus one
sample from Holloch im Mahdtal (Holloch cave for short), one from Grete-Ruth- Shaft, and six from Gassel
Tropfsteinhöhle (Gassel cave for short). All cave sites are located on the northern rim of the European Alps
(FIG. 20) and have small catchments of less than a few km². The distance between the most westerly and easterly caves
is c. 475 km. Details of the speleothems analysed in this study and their respective caves are given in Table 1
whereas images of the respective samples are given in SI Fig. 1.

3.2 Analytical Methodology
The eleven stalagmites were cut in half along their growth axis and polished by a professional stone mason. Pilot
dating studies guided the sample size that was needed for high precision ages. Sub-samples of between 20 to 150
mg were hand-drilled using a handheld-drill fitted with carbide burr-tipped drill bits of diameter 0.5 to 0.8 mm in
a laminar-flow hood. The cleanest, densest growth layers were targeted for sampling.
Chemical procedures and aliquot measurements were undertaken in the Trace Metal Isotope Geochemistry
Laboratory at the University of Minnesota. Separation and purification of U and Th aliquots from the sub-
samples was undertaken using standard methods (Edwards et al., 1987) in a clean air environment. Samples were
spiked with a dilute mixed 229Th,231U,234U tracer to allow for correction of instrumental fractionation and
calculation of U and Th concentrations and ratios. Procedural chemistry blanks were on the order of 5 – 83 ag for
229Th, 2 – 523 fg for 232Th, 73 to 171 ag for 234U, and 0.2 to 1.6 pg for 238U. Aliquots of U and Th were analysed
on a ThermoFisher Neptune multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) in
peak-jumping mode on the secondary electron multiplier (Shen et al., 2012)
Stable isotopes (δ¹⁸Ocalc and δ¹³Ccalc) were typically micro-milled at a spatial resolution of 250 µm (with the
exception of GAS22=200 µm and BA7=500 µm) from the central axis of each sample (SI Fig. 2). In total 5,000
new measurements were made for this study at the University of Innsbruck on a ThermoFisher Delta^{18}XL isotope ratio mass spectrometer linked to a Gasbench II. Analytical precisions are 0.08‰ and 0.06‰ for δ^{18}O_{calc} and δ^{13}C_{calc}, respectively (1σ) (Spötl, 2011). All isotope results are reported relative to the Vienna PeeDee Belemnite standard. In addition to the main isotope track along the central axis, Hendy tests (Hendy, 1971) were also prepared for each sample as a first-order assessment of whether the respective stalagmite was deposited under conditions of isotopic equilibrium, though the preferred approach in recent years has been to reproduce the data in a second stalagmite (Dorale and Liu, 2009). Under the ‘Hendy test’ criteria, δ^{18}O_{calc} values should remain constant along a single growth layer, and there should be no correlation between δ^{18}O_{calc} and δ^{13}C_{calc} that might otherwise indicate kinetic fractionation. Bayesian age models were constructed for all eleven samples using OxCal version 4.2 for Poisson-process depositional models (‘p sequence’) and a variable ‘k parameter’ of 0.001 to 10 mm a-l (Bronk Ramsey, 2008; Bronk Ramsey and Lee, 2013).

4 Results

The results of the U-Th MC-ICPMS measurements and associated age calculations can be found in SI Table 1. Age modelling results including growth rates can be seen in SI Fig. 3. The correlation between δ^{18}O_{calc} and δ^{13}C_{calc} is shown in SI Fig. 4, whereas the results of Hendy tests are shown in SI Table 2. The key features of all of these results are summarised in Table 2 and will be discussed briefly here. Generally, all speleothems have 230Th concentrations of c. 250 to 1,500 ng g⁻¹, which are values typical of common alpine dripstones. The cleanest samples, as indicated by high 230Th/232Th ratios, are from Grete-Ruth Shaft (HUN14) and Gassel cave (GAS12, 13, 22, 25, 27, 29). Correction of final ages for detrital Th contamination in these samples is therefore negligible (SI Table 1). The samples from Baschg, Schneckenloch, and Hölloch caves are all variably contaminated with detrital Th. In the case of BA5, this results in corrections to younger ages of 57-135 years, which are within the levels of dating uncertainty (c. 300 to 400 years) (SI Table 1). BA-7 is the ‘dirtiest’ of the samples analysed here. Of the 16 U-Th ages used in the age model, nine are shifted less than 1,000 years to younger ages (SI Table 1). SCH6 has varying levels of detrital Th contamination, being very clean in the older part between c. 75.9 to 77.9 ka, but moderately dirty in the younger section between 74.4 to 75.5 ka (SI Table 1). The majority of the age models is thus constructed from clean samples. The internal morphology of HOL19 is variable and contains sections of clean calcite, dirty calcite, and calcified loam layers (SI Fig. 1). The youngest part of the stalagmite dates to the late Holocene and the late glacial (SI Table 1) and thus is outside the time frame for this study. Between c.95 mm and c.160 mm from the top, the stalagmite is rich in calcified loam layers and thus is not suitable for dating. Below 160 mm there are a number of sections of clean and dirty calcite. Here we have concentrated on the cleanest part between 187.25 and 226.75 mm from the top. Correction of these ages for detrital Th results in a shift to younger ages of 64 to 213 years, which is within the c. 300-400 years range of dating uncertainty (SI Table 1). Linear regression analysis between δ^{18}O_{calc} and δ^{13}C_{calc}, which is used as a test for isotopic equilibrium (Hendy, 1971; Dorale and Liu, 2009), yields extremely low R^2 values below 0.3 for the majority of samples (Table 2) suggesting that kinetic fractionation did not occur. Only GAS22 has an R^2 of 0.4 and GAS27 an R^2 of 0.6 indicating a minor correlation. Variation in δ^{18}O_{calc} across single growth layers is also generally low, with the exception of one out of five tests in GAS27 yielding a range of 0.8 ‰ (Table 2).
5 Discussion

5.1 Coherence and updates to NALPS19 versus NALPS

The new records produced in this study (Fig. 2b) comprise 5,000 δ¹⁸O values, measurements dated by 145 precise U-Th ages (SI Fig. 3, SI Table 1), which add to the NALPS chronology of Boch et al. (2011)(Fig. 2a) that comprised 7,141 δ¹⁸O values, measurements and 154 U-Th ages. Combined, the two chronologies cover the period 118.3 to 63.7 ka. Within this interval, the record is now 90 % complete, compared to 76 % in Boch et al. (2011).

Where speleothems grew synchronously, major transitional events between stadials and interstadials (and vice versa) are all in agreement within uncertainty, which can be very clearly seen in SI Fig. 5. In the interest of completeness and transparency, we present all δ¹⁸O values here, however, some samples are cleaner than others as discussed in section 3 (i.e. low in detrital Th as indicated by a higher ²³⁰Th/²³²Th ratio) and thus deemed to be more reliably dated. The NALPS19 chronology is therefore constructed from only the most reliably dated records from this study and Boch et al. (2011) (Fig. 2c). Considering the construction of NALPS19 further and generally working from youngest to oldest: samples KC1 and HOL1 are included on the basis that they are the only records available that cover the transitions into stadials 19 and 20. The transition into interstadial 20 is present in both SCH6 (this study) and BA1b (Boch et al., 2011). Both samples have comparable levels of detrital Th, and the dating precision of the transition in both samples is c. 200 to 250 years. Given the comparative cleanliness and dating precision, as well as the reproducibility of the timing of the transition to within c. 50 to 85 years (SI Fig. 5), both samples are included in NALPS19. Samples covering the transition into stadial 21 include GAS12 and 13 (this study) and BA1b (Boch et al., 2011). Samples from GAS12 and GAS13 are extremely clean with dating precisions of 250 to 300 years (Table 2), whereas those from BA1b are generally moderate to very clean. Critically though, GAS12 contains six ages and over 60 δ¹⁸O values measurements within the transition, and GAS13, three ages and over 130 δ¹⁸O values measurements (SI Fig. 2). On the other hand, BA1b has only three δ¹⁸O values measurements in the transition, and one age which is quite dirty resulting in an age corrected to younger values by 760 years and a dating precision of 580 years (Boch et al., 2011). Based on the higher resolution and higher precision provided by GAS12 and GAS13, as well as the fact they are reproducible during the transition on sub- and decadal timescales, we therefore include GAS12 and GAS13 in NALPS19 and omit BA1b. EXC4 is then included for the interstadial 21 portion on the basis that it is clean. However, for this section it only contains the interstadial and no transitions, therefore it is excluded from the discussion on transition timing (Section 4.2). The transition into interstadial 21 is captured in BA1 (Boch et al., 2011), BA7 and GAS25 (this study). As discussed above, GAS25 is extremely clean, thus correction for detrital Th is negligible and the dating precision is on the order of 300 to 400 years (SI Table 2). In contrast, BA7 is the dirtiest of the samples with large corrections for detrital Th (SI Table 2), whereas BA1 is moderately dirty resulting in comparable shifts to younger ages (Boch et al., 2011). Ideally, the complete transition would be constrained only in GAS25 since this sample is the most reliable and best dated, but unfortunately this record is limited to growth mainly during and just after the transition. We therefore include GAS25 where it is applicable and omit BA1 and BA7, but then keep BA1 and BA7 for the parts of the record where there is no alternative available. The transition into stadial 22 is present in GAS25, BA5 (this study), and BA2 (Boch et al., 2011). The situation here is similar to the transition into interstadial 21, where GAS25 is the superior sample with higher dating quality. GAS25 therefore takes priority, whereas BA5 is included to complete the stadial part of the record. BA2 is completely omitted from NALPS19 on the basis that correcting for detrital Th causes shifts in ages of centuries (Boch et al., 2011) as
compared to decades in GAS25 (Table 2). The section of the record encompassing interstadial-23, stadial-24, and interstadial-24 is fully covered by GAS22, GAS27, GAS29 and HUN14, which are all extremely clean, well-dated records with typical dating precisions of 300 to 400 years (Table 2). Furthermore, the timing of the transition into interstadial-23 is reproducible to within 60 to 100 years between GAS27 and HUN14. The timing of the transition into stadial-24 is in agreement on the order of 40 to 60 years in GAS22, GAS29 and HUN14. Furthermore, the pattern of $\delta^{18}O_{\text{calc}}$ shifts across the whole interstadial 24 to 23 period is remarkably similar in the new speleothem samples here to the pattern of events in NGRIP $\delta^{18}O_{\text{ice}}$ across the same period. This suggests the new speleothem samples are capturing a bigger-scale climate signal, unlike EXC3 and EXC4 from St. Beatus cave (Boch et al., 2011), which show a distinctly different pattern in $\delta^{18}O_{\text{calc}}$ across this time period. The reason for the difference is unknown, and is likely due to some local influence or control at the cave site. We acknowledge that there is still value in the St. Beatus records, but they are not ideal for investigations into leads, lags, and synchronicity when more comparable records exist, thus they are not included in NALPS19. Finally, the new record from HUN14 is used to complete the gap that existed previously at stadial-25.

In summary, important updates in the NALPS19 chronology (Figs. 2 and 3, SI Fig. 6) therefore include: (1) the addition of the cooling into GS-20; (2) a revision of the GI-20c/GS-21.1/ GI-21.1a period using multiple cleaner samples; (3) revision of the warming into GI-21.1e and cooling into GS-22, also using a cleaner sample; and (4), revision of the interval GI-23.1 to GI-25c, which includes the addition of the previously absent GI-25a and b and a more distinctive 'shape' to GS-24 in-line with NGRIP.

5.2 Chronological implications

Fig. 3 (split into 20,000 year time slices in SI Fig. 6) shows the NALPS19 $\delta^{18}O_{\text{calc}}$ record in comparison to other well-dated $\delta^{18}O$ records from distant Northern Hemisphere regions over the interval 60 to 120 ka. Comparison of NGRIP and NALPS19 shows that the broad-scale pattern of shifts in $\delta^{18}O$ was remarkably similar during this period, including down to centennial-scale events. Differences do, however, arise when considering the timing and duration of events, which we investigate further by applying the ramp-fitting function of Erhardt et al. (2019). The ramp-fitting function is similar to the one used by Mudelsee (2000), but instead uses probabilistic inference to define a transition via a linear ramp between two constant levels. Such an approach enables a consistent approach to chronological quantification of climate transitions (Mudelsee, 2000), unlike the more subjective approach of taking the first data-point that deviates from the baseline of the previous climate state (e.g. Capron et al., 2010a; Moseley et al., 2014; Rasmussen et al., 2014). Adolphi et al. (2018) applied such a ramp-fitting method to the younger, late glacial portion of the NGRIP $\delta^{18}O_{\text{calc}}$ record (Adolphi et al., 2018), whereas Steffensen et al. (2008) applied another ramp-fitting method through the last deglacial. For this study, ramp fitting was applied to: (1) $\delta^{18}O_{\text{calc}}$ of the new NALPS19 record (this study); (2) $\delta^{18}O_{\text{calc}}$ of the Asian monsoon composite speleothem record (Cheng et al., 2016); (3) NGRIP $\delta^{18}O_{\text{calc}}$ on the GICC05modelecl climatology, which is comprised of a composite layer-counted chronology to 60 ka (Svensson et al., 2008) followed by splicing of the stal09sea-modelled chronology (Johnsen et al., 2001) between 60 to 122 ka onto the younger annual-layer counted chronology (Wolff et al., 2010); (4) NGRIP $\delta^{18}O_{\text{calc}}$ on the AICC2012 chronology, which is constructed using glaciological inputs, relative and absolute gas and ice stratigraphic markers, and Bayesian modelling (Veres et al., 2013); and; (5) NGRIP $\delta^{18}O_{\text{calc}}$ on the AICC2012 chronology updated by aligning $\delta^{18}O$ of the atmosphere as measured in EPICA Dome C with $\delta^{18}O_{\text{calc}}$ of Chinese speleothems (Extier et al., 2018).
Results of the ramp-fitting are shown in Table 3, Figs. 4 and 5, and SI Fig. 7. Unfortunately, results are not available for some transitions because their shape is incompatible with the transition model, which requires stable periods before and after the transitions. Where multiple NALPS19 speleothems grew synchronously, excellent agreement is found in the absolute timing of transitions, which show differences from as low as 10 years between GAS12 and GAS13 during the endpoint of the transition into GS-21.1, up to a maximum of only 163 years difference between GAS22 and HUN14 during the endpoint of the transition into GS-24.1 (i.e., within the 318 years uncertainty of GAS22 at this point) (Table 3, Fig. 4). Similarly, for the NGRIP δ¹⁸O core record on the GICC05modelext chronology, we find that the timing of the start of the respective transitions are in excellent agreement (2 to 119 years) between the ramp-fitting used in this study and the INTIMATE event stratigraphy scheme (Rasmussen et al., 2014) (Table 3). Comparison between the timing of the ramp-fitted transitions in NALPS19 and the Asian monsoon speleothem records also show excellent agreement within centennial-scale uncertainties, with the exception of GS-20, which is older in NALPS19 by c. 900 years (Table 3, Figs. 4 and 5). The NALPS19 age for GS-20 is, however, in very good agreement on a multi-decadal scale with the GICC05modelext chronology (details below). It should be noted that a comprehensive comparison of the timing of transitions between NALPS19 and NGRIP on the three ice-core chronologies is made difficult because of the large uncertainties associated with AICC2012 (c. 3,000 – 3,200 years; Veres et al., 2013) and even the absence of uncertainties associated with GICC05modelext (Wolff et al., 2010). To deal with the absence of uncertainties in GICC05modelext, we take the approach of Abbott et al. (2012) and extrapolate the linear trend in ratio between age and uncertainty from the layer-counted 0-60 ka GICC05 chronology (Svensson et al., 2008), which yields an uncertainty of c. 4.5 % by 120 ka (Table 3, Fig. 4). In reality, the uncertainty is likely to be considerably less since well-dated markers exist in some places (e.g. Guillou et al., 2019). Nevertheless, if only the central age is considered (where + indicates the respective chronology is earlier=older than NALPS19, and – is vice versa), excellent agreement in the absolute timing of the transition is displayed between NALPS19 and GICC05modelext for GS-20, which is offset by c.+45 years, and GI-21.1, which is offset by c.+20 to +80 years (Table 3, Figs. 4 and 5). Depending on the speleothem to which the comparison is made, the transition into GI-23.1 is offset by c.+230 to +290 years (HUN14) or c.+340 to +390 years (GAS27). The other transitions into GI-20 (+560 to +650 years), GS-21.1 (+490 to +570 years), GS-24.1 (-440 to -460 years), and GI-24.2 (c.-550 years) display the largest of the offsets (Table 3, Fig. 4 & 5). Comparison between NALPS19 and NGRIP on AICC2012 shows good agreement in the timing of GS-21.1 (c.+8 to -40 years) and GI-20 (+50 to +140 years). The timing for GS-21.1 is further supported in this instance by the close agreement also of the Asian monsoon composite chronology (-70 to -150 years) (Fig. 5). Elsewhere, the transitions in the NALPS19 chronology are consistently earlier than their counterparts in the AICC2012 chronology i.e. GS-20 (c.-400 years), GI-21.1 (c.-500 years), GI-23.1 (c.-1,900 years), GS-24.1 (c.-2,700 years), and GI-24.2 (c.-2,960 years) suggesting that some revision of the AICC2012 chronology may be needed. Extier et al. (2018) have also proposed such a revision for the period 100 to 120 ka, which is the interval in which there is the greatest discrepancy between AICC2012 and NALPS19. Application of the ramp-fitting to the Extier et al. (2018) revised AICC2012 chronology (AICC2012ext) shows that there is much better agreement with NALPS19 during the 100 to 120 ka interval than existed for AICC2012 (Figs. 4 and 5). Specifically, the offset for GI-23.1 is c.+350 years, GS-24.1 is c.-400 years, and GI-24.1 is c.-700 years.

The ramp-fitted transitions have also enabled an assessment of the duration of δ¹⁸O transitions in the respective chronologies (Table 3, Fig. 5). The quickest shift of 21 years is displayed for the AICC2012ext transition into
GI-20, whereas the longest shift of 489 years is present in NALPS19 for the transition into GS-19.2. Consistency in the duration of transitions between NALPS19 and the Greenland chronologies is displayed in particular for GS-20 (211 to 236 years), GS-21.1 (204 to 243 years), GS-24.1 (73 to 96 years), and GI-24.2 (32 to 47 years) (Table 3, Fig. 5). The difference in durations for GI-21.1 (54 to 107 years) and GI-23.1 (68 to 138 years) is slightly larger but still comparable on multi-decadal timescales. The duration of GI-23.1 in the Asian monsoon is also comparable at 81 years. The greatest difference between NALPS19 and the Greenland chronologies is displayed for GI-20, which varies between 21 to 114 years. Interestingly, with the exception of GI-23.1, the duration of transitions in the Asian monsoon are considerably longer (on multi-centennial timescales) than for the North Atlantic–sourced NALPS19 and Greenland chronologies (on multi-decadal timescales) (Table 3, Fig. 5).

The NALPS19 chronology also enables a new consideration of the duration of GS-22, which previously has been the subject of debate given the various different timescales presented in the literature (Boch et al., 2011; Vallelonga et al., 2012). Here, we use the same strategy as for the previous studies and define the duration of GS-22 as being from the mid-point of the δ¹⁸O transition into GS-22 until the start of the δ¹⁸O transition into GI-21.2 (Capron et al., 2010a; Vallelonga et al., 2012). The ‘precursor event’ is defined as the start of the δ¹⁸O transition into GI-21.2 until the midpoint of the δ¹⁸O transition into GI-21.1e. All uncertainties are at the 95% confidence interval. Based on multi-proxy annual layer-counting, Vallelonga et al. (2012) proposed the duration of GS-22 in the NGRIP ice to be 2,894 ± 198 years and the ‘precursor event’ to be 350 ± 19 years (together 3,244 ± 199 years, two sigma error; Table 4). The Vallelonga et al. (2012) layer-counted chronology thus indicated a longer duration for GS-22 than the GICC05sndltc chronology (2,620 years) and a shorter duration for the precursor event (300 years) (together 2,920 years; Table 4) (Wolff et al., 2010). The ramp fitting function was not able to constrain the transition into the precursor event (GI-21.2), thus we consider here the duration of the full period from the cooling into GS-22 to the warming into GI-21.1e, which in the NALPS19 chronology is 3,993 ± 155 years (Table 4). This finding is in agreement with the duration from the previous NALPS chronology of 3,660 ± 526 years (Table 4), but is c. 1,000 years longer than in GICC05sndltc and 750 years longer than in the layer-counted chronology (395 years if the uncertainties are considered). In contrast, a relatively long duration of 4,122 ± 650 years has been proposed for NGRIP on the EPICA Dronning Maud Land (EDML) Antarctic ice core chronology (Capron et al., 2010b; Vallelonga et al., 2012), which is in agreement with the duration from NALPS19. Additionally, the duration of the same period as estimated from the Asian monsoon composite record is 4,489 ± 960 years. The speleothem δ¹⁸Orec records from both the Alps and China therefore support a longer-duration for the period between the cooling into GS-22 to the warming into GI-21.1e, which is in line with the NGRIP-EDML chronology (Capron et al., 2010b; Vallelonga et al., 2012).

5.3 NALPS δ¹⁸O variability during the last glacial period (15-120 ka)

Speleothem deposits from the northern rim of the Alps now provide a near-complete record of δ¹⁸Orec variability during the last glacial period (Fig. 6; Boch et al., 2011; Moseley et al., 2014; Luetscher et al., 2015), which is remarkably similar to δ¹⁸O variability recorded in the NGRIP Greenland ice core during the same period. It is hypothesised that the moisture source for both regions during the last glacial period was the North Atlantic, with the primary control on the δ¹⁸O of precipitation in both Greenland and the Alps being temperature (Boch et al., 2011). Changes to the transport pathway have, however, been proposed for the northern Alpine speleothem record of the Last Glacial Maximum (LGM) between 26.5 and 23.5 ka induced by a southward shift in the North
Atlantic storm track (Luetscher et al., 2015). The change to the transport pathway is, however, only considered to affect the LGM and not the remainder of the glacial (Luetscher et al., 2015).

We now consider the full glacial Alpine speleothem δ¹⁸O_d record in further detail. In addition to the NALPS records of Boch et al. (2011), Moseley et al. (2014) and NALPS19 (this study), we also consider an MIS 5 record from Siebenhengste (SI Fig. 9), a large cave system located on the northern rim of the Alps of Switzerland (Fig. 1), and a record from Kleegruben cave (Spöl et al., 2006), which is located in the Central Alps of Austria to the north of the main Alpine crest (Fig. 1). A thorough investigation of the controls on the δ¹⁸O of precipitation would require a sophisticated modelling approach, which is beyond the scope of this paper, thus here we appreciate that our investigation is a first consideration only. Furthermore, given the many different factors that can influence the δ¹⁸O of precipitation (Dansgaard, 1964; Rozanski et al., 1993; Clark and Fritz, 1997), it would be advantageous to have stable isotope information from fluid inclusions. Unfortunately, the speleothems presented here are largely devoid of fluid inclusions (Brandstätter, unpubl. data).

Today, temperature has been shown to have the most dominant control on the δ¹⁸O of precipitation along the northern rim of the Austrian Alps (Kaiser et al., 2002; Hager and Foelsche, 2015), though other factors such as a changing moisture source, rain-out along the different transport pathways (continental effect), altitude (altitude effect), the North Atlantic Oscillation, and locally also the amount of rain (amount effect) all have some additional control (Ambach et al., 1968; Dray et al., 1998; Kaiser et al., 2002; Hager and Foelsche, 2015; Deininger et al., 2016). To consider the effects of these controls on the δ¹⁸O of precipitation during the last glacial period, we have first removed from the speleothem records the variability in mean ocean δ¹⁸O caused by fluctuations in ice volume (Fig. 5) using a rate of 0.012 ‰ m⁻¹ (Rohling, 2013) and the sea-level curve of Grant et al. (2012).

Mean speleothem δ¹⁸O_d values for individual stadials and interstadials in the ice-volume corrected record have been calculated for each sample (Fig. 7a, SI Fig. 8, SI Table 3). Excluding the samples associated with the LGM because of the different transport pathway (Luetscher et al., 2015), the δ¹⁸O_d range in mean interstadial values is 5.0 ‰ (Klaus Cramer (-7.9 ‰) and Siebenhengste (-7.9 ‰) to Kleegruben (-12.9 ‰)), whilst the range in mean δ¹⁸O_d, stadial values is slightly larger (but comparable) at 5.4 ‰ (Siebenhengste (-9.5 ‰) to Kleegruben (-14.9 ‰)) (Fig. 7a). We now consider the controls on δ¹⁸O_d during periods when more than one speleothem was deposited, specifically GI-23.1, GS-23.2, GI-24.1, and GS-24.1. Generally it is considered that the dominant control on the δ¹⁸O of precipitation in the northern and central Alps during the last glacial period was temperature, and the dominant moisture source was the North Atlantic (as both are today). The correlation between both temperature and distance from the North Atlantic as compared to mean δ¹⁸O_d, was investigated to identify potential continental and rainout effects. In all instances, mean δ¹⁸O_d became increasingly lighter with increasing distance from the North Atlantic; a medium correlation is displayed for GI-23.1 (r²=0.64, n=4), GS-23.2 (r²=0.63, n=3), GS-24.1 (r²=0.57, n=4, two samples for Gassel), and a lower correlation during GI-24.1 (r²=0.16, n=3). This trend of lighter mean δ¹⁸O_d with increasing distance from the source would be expected with progressive rainout and is consistent with present day observations.

Today, spatial variability of the δ¹⁸O of precipitation in the Austrian Alps is highly dependent on altitude (Hager and Foelsche, 2015). We find that medium to strong correlations between catchment elevation and mean δ¹⁸O_d existed during GI-23.1 (r²=0.49, n=4), GI-24.1 (r²=0.67, n=3), GS-23.2 (r²=0.79 n=3), and GS-24.1 (r²=0.74, n=4 (Gassel has 2 samples)) (Fig. 7c). For GI-24.1, the relationship shows that mean δ¹⁸O_d becomes increasingly lighter with increasing elevation (as would be expected for altitudinal controls on δ¹⁸O of
precipitation). In contrast, the other examined time periods show an inverse relationship to what would be expected for altitudinal control, with mean δ¹⁸Ocalc becoming heavier with increasing elevation (Fig. 7c). Since GI-24.1 is the only event that does not contain the high-elevation Siebenhengste site, the mean δ¹⁸Ocalc of 7H-12 was removed from the linear regression analysis for the three time periods showing an inverse relationship (Fig. 7d). This resulted in a switch to increasingly lighter mean δ¹⁸Ocalc with increasing elevation for GI-23.1, GS-23.2 and GS-24.1 (Fig. 7d) (i.e. in line with an altitudinal control on δ¹⁸O of precipitation).

Given that there is such limited availability of multiple speleothem δ¹⁸O records covering the same time periods, it is difficult to make firm conclusions on the controls of δ¹⁸Ocalc. Here though we offer some hypotheses based on the available data. We have shown that for a given time period δ¹⁸Ocalc trends towards lighter values with increasing distance from the North Atlantic (Fig. 7b). Despite this, there is some variability overprinted on top of this trend. For instance, even though Grete-Ruth is closer to the North Atlantic than Gassel cave, mean δ¹⁸Ocalc values for Grete-Ruth are consistently lighter than for Gassel (Fig. 7b). Since Grete-Ruth is located at a higher elevation than Gassel cave (Fig. 7c), the lighter mean δ¹⁸Ocalc values are likely a product of the altitude effect and associated cooler temperatures. In comparison, St. Beatus and Siebenhengste caves are located within 10 km of one another, and are the closest caves to the North Atlantic of all the caves investigated here. As expected, mean δ¹⁸Ocalc values are heavier for St. Beatus and Siebenhengste than for Grete-Ruth or Gassel caves (Fig. 7b). Closer investigation, however, shows that during GI-23.1, mean δ¹⁸Ocalc of the low elevation St. Beatus is lighter than the high-elevation Siebenhengste (Fig. 7b). Given the close proximity of the two caves, the condensation level (and therefore condensation temperature) would have been approximately the same, thus one must consider the reason for the difference in mean δ¹⁸Ocalc for these two caves. Since the three caves at lower elevation (St. Beatus, Gassel, Grete-Ruth) follow the expected altitude-induced trend of lighter mean δ¹⁸Ocalc with increasing elevation (Fig. 7d), it seems the anomaly lies with the high-elevation 7H-12 stalagmite from Siebenhengste. One reason for the heavier-than-expected mean δ¹⁸Ocalc at Siebenhengste could be that the full annual signal is better preserved at high-elevation sites that are less exposed to evapotranspiration effects during the summer season than in more vegetated catchments. Alternatively, a summer bias towards isotopically heavier δ¹⁸Ocalc at the high-elevation site could for instance be caused by wind erosion resulting in relocation of the isotopically-light winter snow, a process that has been well-documented at various Alpine sites (Ambach et al., 1968; Bohleber et al., 2013; Hürkamp et al., 2019). Eventually, if firn developed above Siebenhengste during GI-23.1, then this would also limit the input of isotopically-light precipitation causing a summer bias in the recorded signal. At present there is, however, no evidence to either support or reject the hypothesis of firn above Siebenhengste during MIS 5.

In summary, speleothems from the northern rim of the European Alps provide δ¹⁸Ocalc records for the majority of the last glacial period. As expected, the limited data set shows that mean δ¹⁸Ocalc for specific stadials and interstadials generally trends towards lighter values with increasing distance from the coast and with increasing altitude. An exception is the high-elevation 7H-12 stalagmite from Siebenhengste, which appears to record a stronger summer signal. Further investigation of the controls on δ¹⁸Ocalc in the northern Alps requires a more sophisticated modelling approach.

5.4 Stadal-level centennial-scale cold events

The recognition of centennial- to millennial-scale climate events, such as 'precursors' to interstadials and within-interstadial depletions in δ¹⁸Ocalc (Capron et al., 2010a), led to the designation of the INTIMATE event
stratigraphy for the Greenland ice cores over the last glacial period (Rasmussen et al., 2014). Typically, a ‘precursor-event’ is a feature of a stadial-interstadial transition; this includes GS-16.2, 17.2, 21.2 and 23.2. This feature is associated with a stadial transition, and the transition is thought to be triggered by meltwater events. In the case of the GS-24.2 cold event, which occurred at 14 ka (GI-8.2 ka), the δ18O event is thought to be triggered by meltwater events including the Older Dryas at 14 ka (GI-Id, Rasmussen et al., 2014), the Preboreal Oscillation at 11.4 ka (e.g., Johnsen et al., 1992; Björck et al. 1996; Fischer et al., 2002), the 9.3 ka event (Fleitmann et al., 2008; Yu et al., 2010), and the 8.2 ka event (Alley et al., 1997). In contrast to the GS-24.2 cold event, the event is associated with a stadial-interstadial transition. At present, the 107.5 ka-event (GS-24.2) is the only centennial-scale δ18O event of such extreme amplitude occurring during an interstadial that is recognised in both Greenland and northern Alpine records. Because of this, it has been likened to the 8.2 ka cold event that occurred in the early Holocene (Alley et al., 1997; Capron et al., 2010a). The δ18O event did not reach near-stadial values in NGRIP as GS-24.2 did, thus highlighting some differences between these two warm-interrupting cold reversals. In addition, Rasmussen et al. (2014) liken the ‘within-interstadial’ GS-24.2 cold perturbation to stadial-interstadial transition events GS-16.2 and GS-17.2. Both the similarities and differences between GS-24.2 and the 8.2 ka event, as well as with GS-16.2 and GS-17.2, suggest that such abrupt climate variability is not critically influenced by the size of the Greenland ice sheet (Capron et al., 2010a; Rasmussen et al., 2014).

During the deglacial and early Holocene, large-scale meltwater events are widely suggested as being responsible for causing some short-term climate reversals through the weakening of Atlantic meridional overturning circulation (AMOC) (e.g., Broecker et al., 1994; Tell et al., 2002; Clark et al., 2001, 2004). Such cold reversals are thought to be triggered by meltwater events including the Older Dryas at 14 ka (GI-Id, Rasmussen et al., 2014), the Preboreal Oscillation at 11.4 ka (e.g., Johnsen et al., 1992; Björck et al. 1996; Fischer et al., 2002), the 9.3 ka event (Fleitmann et al., 2008; Yu et al., 2010), and the 8.2 ka event (Alley et al., 1997). In contrast to the GS-24.2 cold event, not all freshwater injections led to cold events, and not all cold events were caused by freshwater injections (Stanford et al., 2006). For instance, both the Younger Dryas and Heinrich events occurred during times of already-colder sea surface temperatures and weakened AMOC, indicating that the input of freshwater from the iceberg armadas was not the initial cause of the AMOC slowdown (e.g., Hall et al., 2006; Henry et al., 2016). In the case of the centennial-scale cold reversals of GS-16.2, GS-17.2, GS-21.2, GS-23.2 and GS-24.2 (Fig. 8), a possible mechanism for each of these events could be similar to the meltwater-triggered cold reversals of the deglacial. This hypothesis is supported when considering that events GS-17.2, GS-21.2, and GS-24.2 occurred shortly following episodes of rapid sea-level rise, which were in excess of 12 m ka−1 in the high-resolution record
of Grant et al. (2012) (Fig. 8). Such rapid sea-level rise does not appear to have occurred prior to GS-23.2, though closer inspection of the sea-level curve shows that following the rise prior to GS-24.2, sea levels had remained elevated and underwent a series of rapid oscillations that are smoothed out in the rate-of-change curve (Fig. 8). Likewise, GS-16.2 did not occur coincident with an episode of sea-level rise, but did occur shortly after the rise associated with GS-17.2 (Fig. 8). Additionally, the rapid rises in sea level each began at times of increased ice-rafted debris (IRD) in the North Atlantic (McManus et al., 1999, on U-Th timescale), weakened AMOC and increased ice volume as indicated by high benthic δ¹³C and planktic δ¹⁸O values, respectively, as well as pluvial periods in Brazil caused by a southward shift of the intertropical convergence zone (ITCZ) (Wang et al., 2004) (Fig. 8). In the late glacial, such episodes are associated with Heinrich events (Wang et al., 2004).

Furthermore during glacial terminations, the sequence of events has been shown to include a Heinrich event, followed by short-lived warming, then a millennial-scale return to cold conditions, and finally the transition to the interglacial (Cheng et al., 2009). Though on shorter timescales, the pattern of events during these specific stadial-interstadial transitions is similar to the pattern of events during glacial terminations. The oscillations of GS-16.2, GS-17.2, GS-21.2 and GS-23.2 at stadial-interstadial transitions can therefore be considered as being akin to the meltwater-triggered Preboreal Oscillation, which occurred shortly following the warming at the end of the Younger Dryas stadial during a time when considerable volumes of ice still existed, similar to the early glacial. These reversals at stadial-interstadial transitions during the early glacial period are therefore not so much warming events that punctuate cold periods (Capron et al., 2010a), but rather more stadial-interstadial transitions that failed due to freshwater influx. On the other hand, GS-24.2, which occurred nearly 1,000 years after warming occurred, is more similar to the Older Dryas in which a cold event punctuated a warm interval.

6 Conclusions

In this paper, we present the most recent chronology, named NALPS19, for δ³⁴O,δ¹⁸O variability as recorded in speleothems that grew during the last glacial period between c. 15 and 120 ka along the northern rim of the Alps. In particular, we have updated the record between 63.7 to 118.3 ka, using eleven cleaner, more accurately and precisely dated samples from five caves. Over the 63.7 to 118.3 ka interval, the record is now 90% complete. Ramp-fitting analysis of the transitions between stadials and interstadials shows that δ³⁴O shifts in the North Atlantic realm occurred on multi-decadal timescales, whereas transitions in the Asian monsoon occurred on multi-centennial timescales. Further, the absolute timing of shifts show good agreement between NALPS19 and Greenland ice core chronologies within the multi-millennial-scale ice core uncertainties, though absolute offsets are often on multi-decadal to multi-centennial scales. Major differences do, however, arise when comparing NALPS to NGRIP on AICC2012 between 100 to 120 ka, suggesting that the AICC2012 chronology is too young by c. 3,000 years in this time period. Additionally, we propose that the duration of the highly-debated GS-22 - GI-21.2 - GS-21.2 interval was 3,993 ± 155 years, which is in closer agreement to the duration of 4,122 ± 650 years in NGRIP-EDML (Capron et al., 2010b) and the 4,489 ± 960 years of the Asian monsoon composite record (Kelly et al., 2006; Kelly, 2010; Cheng et al., 2016). Preliminary investigation of the trends in mean δ³⁴O,δ¹⁸O as recorded in the NALPS speleothems for different interstadials and stadials reveals that for a given time period, as expected, δ³⁴O,δ¹⁸O becomes lighter with increasing distance from the source and increasing elevation. Exceptions are found at one high-elevation site, which appears to record a stronger summer signal. Finally, our accurate and precise chronology enables a deeper investigation of centennial-scale cold reversals.
that occurred either as ‘precursor events’ (i.e., GS-16.2, GS-17.2, GS-21.2, GS-23.2; Capron et al., 2010a) or during interstadials (i.e. GS-24.2). Each of these events occurred in the decades and centuries following rapid rises in sea level of over 12 m kyr⁻¹ (Grant et al., 2012) that occurred coincident with IRD events (McManus et al., 1999) and shifts in the ITCZ causing speleothem growth in Brazil (Wang et al., 2004). We therefore propose that these centennial-scale cold reversals are products of freshwater discharge into the North Atlantic during times of moderate ice sheet size, which caused a slowdown of the AMOC and associated atmospheric cooling, similar to deglacial events such as the Preboreal Oscillation or Older Dryas.

Data availability

The stable isotope data both on distance along growth axis and OxCal age models are available at both SISAL and the US National Oceanic and Atmospheric Administration (NOAA) data center for paleoclimate (speleothem site) at the following address: TBC

Author contribution

GM undertook the majority of the U-Th analyses, interpreted the data, and wrote the manuscript. CS conceived the project and carried out field work together with GM and partly SB. SB undertook additional U-Th analyses, prepared and ran Hendy tests and stable-isotope samples. TE developed and ran ramp-fitting models. ML provided data. RLE provided analytical U-Th facilities. All authors directly contributed to the manuscript through discussion or writing.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This work was funded primarily by FWF grant P222780 to CS, with a smaller contribution from FWF grant T710-NBL to GM. TE acknowledges the long-term financial support of ice-core research by the Swiss National Science Foundation (SNSF) and the Oeschger Center for Climate Change Research. We thank J. Nissen, A. Berry and A. Min for analysis of U-Th aliquots; Y. Lu, P. Zhang, and X. Li for laboratory management; M. Wimmer for her assistance in the stable isotope lab, and J. Degenfelder for production of Fig. 1. We also thank PHC Amadeus 2018 Project 37910VD for supporting workshops where useful discussions were held that contributed to the interpretation of this manuscript.

References


Figure 2: NALPS $\delta^{18}O$ speleothem records. a. Original NALPS record of Boch et al. (2011); b. new records from this study; c. the most reliable records of Boch et al. (2011) and this study combined to form NALPS19.

*Deleted:* Grey numbers in c indicate the stadial (S) and interstadial (I) nomenclature.
Figure 3: NALPS19 δ¹⁸O record versus other well-dated δ¹⁸O records. (a) Chinese speleothem δ¹⁸O records from Sanbao (Wang et al., 2004) and Sanxing caves (Jiang et al., 2016). (b) 2σ range of U-Th ages used to produce (a) are colour-coded the same as (a). (c) Asian monsoon composite record (Cheng et al., 2016) as well as the original data from which it was constructed (revised Hulu record; Cheng et al., 2016; Dongge; Kelly et al., 2006; Kelly, 2010). In Cheng et al., (2016), the Dongge and Hulu δ¹⁸O values are reduced by 1.6 ‰ in the composite record to match the Sanbao record of Wang et al., (2008). (d) 2σ range of U-Th ages used to produce (c) are colour-coded the same as (c). (e) NALPS19 record (this study). (f) 2σ range of U-Th ages used to produce (e) are colour-coded the same as (e). (g) NGRIP records on the GICC05modelext chronology (Svensson et al., 2008; Wolff et al, 2010), AICC2012 chronology (Veres et al., 2013), and AICC2012 revised according to Exzier et al. (2018). To see this graph split into 20,000 year slices and with the INTIMATE event stratigraphy scheme (Rasmussen et al., 2014), see SI Fig. 6.
Figure 4: The timing of transitions as defined by the ramp-fitting model of Erhardt et al. (2019). The symbols relate to the age of the start, middle and end of the transitions as defined by the ramp-fitting, whereas the uncertainty bars related to the original chronologies. (a) NALPS19 δ¹⁸O_i record (closed circles, this study); (b) Asian monsoon composite speleothem δ¹⁸O_i record (open circles, Kelly et al., 2006; Kelly, 2010; Cheng et al., 2016); (c) NGRIP δ¹⁸O_i record on GICC05modelext chronology (closed upward triangles, Wolff et al., 2010); (d) NGRIP δ¹⁸O_i record on AICCC2012 chronology (open down triangles, Veres et al., 2013); (e) NGRIP δ¹⁸O_i record on the Extier et al. (2018) revised AICCC2012 chronology (closed down triangles). Each ramp-fit relative to its reference curve is given in SI Fig. 7. The GICC05modelext chronology does not contain uncertainties in this time period (Wolff et al., 2010) thus these errors are based on the maximum counting error of Svensson et al. (2008). Extier et al. (2018) quote an uncertainty of 2,440 years (2 sigma) in MIS 5. Uncertainties are not given outside of MIS5.
Figure 5: (a) (b) (c) Offsets in absolute chronology relative to NALPS19 of transitions into stadials and interstadials as defined by the ramp fitting applied in this study. (+) values indicate the timing in the respective chronology is older=earlier than in NALPS19. (-) values indicate the timing in the respective chronology is younger=later than in NALPS19. Lines are used to indicate the same transition (d) Duration of transitions. NALPS19 (red circles, this study); NGRIP on GICC05modelext chronology (blue diamonds, Wolff et al., 2010); NGRIP on AICC2012 chronology (green triangles, Veres et al., 2013); NGRIP on Extier et al (2018) revised AICC2012 chronology (open green triangles); Asian monsoon composite speleothem (black crosses, Kelly et al., 2006; Kelly, 2010; Cheng et al., 2016).
Figure 6: Speleothem \( \delta^{18}O \) records from the northern rim and central European Alps. (a) Original records: pink (Luetscher et al., 2015), green (Moseley et al., 2014), red and dark blue (Spötl et al., 2006), dark red (Boch et al., 2011 contained in NALPS19), medium blue (new record in this study), orange (Luetscher see SI Table 4 and SI Fig, 10). (b) \( \delta^{18}O \) records corrected for \( \delta^{18}O \) variability as a result of changing ice volume. Colour codes the same as in (a).
Figure 7: (a) Mean $\delta^{18}O_{calc}$ for individual caves during specific stadials (triangles) and interstadials (circles). (b) Mean $\delta^{18}O_{calc}$ values for specific time periods plotted relative to longitude. (c) Mean $\delta^{18}O_{calc}$ values for specific time periods plotted relative to catchment elevation. (d) Same as (c) minus the data for Siebenhengste.
Figure 8: (a) NGRIP $\delta^{18}$O at GICC05 modelext (Wolff et al., 2010). (b) NALPS19 $\delta^{18}$O, uncorrected for variability in ocean $\delta^{18}$O (grey), corrected for variability in ocean $\delta^{18}$O (black). (c) Growth periods in Brazilian speleothem (Dark blue) (Wang et al., 2004). Centennial-scale cold reversals of 16.2, 17.2, 21.2, 23.2 and 24.2 are highlighted as vertical dashed yellow bars. (d) Sea-level variability (Grant et al., 2012). Relative sea-level data (grey crosses). Maximum-probability relative sea-level (grey line). Rate of sea-level change (blue line). Rate of 12 m kyr $^{-1}$ indicated by horizontal red line. Peaks of sea-level change in excess of 12 m kyr $^{-1}$ indicated by yellow bars. (e) Ice-rafted debris (dark blue), benthic $\delta^{13}$C (green), and planktic $\delta^{18}$O (orange) from ODP980 on Hulu U-Th age scale (McManus et al., 1999; Barker et al., 2011).
<table>
<thead>
<tr>
<th>Cave</th>
<th>Location</th>
<th>Entrance Elevation (m a.s.l.)</th>
<th>Entrance (m)</th>
<th>Cave length (m)</th>
<th>Cave air temperature (°C)</th>
<th>Mean annual precipitation (mm)</th>
<th>δ¹⁸O range (‰)</th>
<th>Sample</th>
<th>Sample length (mm)</th>
<th>Sample Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großer Baschg</td>
<td>47.2501 N 9.6667 E</td>
<td>785</td>
<td>300</td>
<td>10</td>
<td>1.360&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-6.3 (Jul) to -15.8 (Nov)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>BA5</td>
<td>70</td>
<td></td>
<td>Honey-brown coloured stalagmite. Collected from the rear of the cave, c. 180 m from entrance. Buried in loam above streamway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BA7</td>
<td>Honey-brown coloured stalagmite. Collected from the rear of the cave, c. 180 m from entrance, broken above streamway.</td>
</tr>
<tr>
<td>Schneckenloch</td>
<td>47.3745 N 10.0060 E</td>
<td>1.285&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3,500</td>
<td>6.0</td>
<td>2.073&lt;sup&gt;d&lt;/sup&gt;</td>
<td>-6.9 (Jul) to -15.0 (Feb)&lt;sup&gt;d&lt;/sup&gt;</td>
<td>SCH6</td>
<td>235</td>
<td></td>
<td>Modern stalagmite and stalagmite deposition occurs in cave. SCH-6 is a honey-brown coloured stalagmite. Collected at the end of a small, well-decorated side passage. 350 m from the entrance.</td>
</tr>
<tr>
<td>Hölloch im Mahdتل</td>
<td>47.3779 N 10.1505 E</td>
<td>1,240 &amp; 1,438&lt;sup&gt;e&lt;/sup&gt;</td>
<td>10,900</td>
<td>56 ± 0.2&lt;sup&gt;e&lt;/sup&gt;</td>
<td>2.073&lt;sup&gt;d&lt;/sup&gt;</td>
<td>-6.9 (Jul) to -15.0 (Feb)&lt;sup&gt;d&lt;/sup&gt;</td>
<td>HÖL19</td>
<td>415</td>
<td></td>
<td>The cave is located 10 km east of Schneckenloch. HÖL-19 was collected c. 800 m from the northwestern entrance and 600 m from the southern entrance. It has a variable internal structure alternating between dark brown calcite, opaque white calcite, and cemented loam layers. Only opaque white layers, which have a lower detrital Th content were analysed in this study.</td>
</tr>
<tr>
<td>Grete-Ruth</td>
<td>47.5429 N 12.0272 E</td>
<td>1.435&lt;sup&gt;f&lt;/sup&gt;</td>
<td>142</td>
<td>4.5</td>
<td>1.327&lt;sup&gt;f&lt;/sup&gt;</td>
<td>-6.7 (Jul) to -14.7 (Nov)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>HUN14</td>
<td>215</td>
<td></td>
<td>Honey-brown coloured stalagmite. 60 mm in diameter. Collected from the most northerly part of the system in a sheltered alcove at the base of the entrance shaft.</td>
</tr>
<tr>
<td>Gassel</td>
<td>47.8228 N 13.8428 E</td>
<td>1.225</td>
<td>5,000</td>
<td>5.2 ± 0.1</td>
<td>2.015&lt;sup&gt;f&lt;/sup&gt;</td>
<td>-3.0 (Jul) to -21.5 (Dec)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>GAS12</td>
<td>530</td>
<td></td>
<td>Translucent white/greyish calcite stalagmites. All inactive at the time of collection from a chamber approximately 250 m from the entrance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAS13</td>
<td>180</td>
<td></td>
<td>Same as for other Gassel samples except already broken in three parts. Here only the middle section is presented (135 mm long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAS22</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAS25</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAS27</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAS29</td>
<td>740</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup>recorded at the Feldkirch meteorological station located c. 5 km WNW from the cave at 438 m a.s.l. between 1981-2010 (ZAMG, 2018)
<sup>b</sup>c-recorded at the Schoppernau meteorological station located c. 7 km SW from the cave at 839 m a.s.l. (ZAMG, 2018)
<sup>c</sup>recorded at the Kufstein meteorological station located c. 12 km ENE from the cave at 492 m a.s.l. (ZAMG, 2018)
<sup>d</sup>d-recorded at the Feuerkogel meteorological station located c. 10 km west from the cave at 1,618 m a.s.l. (ZAMG, 2018)
<sup>e</sup>e-nearest GNIP station is located 20 km SW at Sevelen (IAEA, 2018)
<sup>f</sup>f-nearest GNIP station is located 50 km WNW at St. Gallen (IAEA, 2018)
<sup>g</sup>g-nearest GNIP stations are located c. 57 km WNW at St. Gallen (6.9 (Jul) to -15.0 (Feb) ‰) and 70 km ENE at Garmisch-Partenkirchen (6.7 (Jul) to -14.7 (Nov) ‰) (IAEA, 2018)
<sup>h</sup>h-nearest GNIP station is located 73 km WSW at Garmisch-Partenkirchen (IAEA, 2018)
The nearest GNIP station is located 10 km W at Feuerkogel (IAEA, 2018).

α Klampl et al., (2017)
β Wolf (2006)
γ Spötl et al., (2011)
§ Rittig (2012)
<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{238}$U [ng g$^{-1}$]</th>
<th>$^{238}$U/$^{232}$Th (atomic x10$^{-6}$)</th>
<th>U-Th ages in age model</th>
<th>Stable isotopes in age model</th>
<th>Age model coverage (ka)</th>
<th>Growth rate (mm ka$^{-1}$), average in parentheses</th>
<th>$\delta^{18}$O range (%)</th>
<th>$\delta^{18}$O to $\delta^{13}$C correlation ($r^2$)</th>
<th>Range of $\delta^{18}$O across single growth layers (%)</th>
<th>Range $\delta^{13}$C across single growth layers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA5</td>
<td>300 to 1,100</td>
<td>2,000 to 4,500</td>
<td>7</td>
<td>279</td>
<td>90.3 ± 0.3 to 85.0 ± 0.3</td>
<td>13 - 24 (19)</td>
<td>10 - 20 (14)</td>
<td>-7.9 to -12.2</td>
<td>0.004</td>
<td>0 to 0.4</td>
</tr>
<tr>
<td>BA7</td>
<td>400 to 1,500</td>
<td>80 to 3,500</td>
<td>16</td>
<td>407</td>
<td>80.9 ± 0.3 to 80.9 ± 0.3</td>
<td>11 - 24 (15)</td>
<td>21 - 45 (34)</td>
<td>-7.3 to -11.6</td>
<td>0.3</td>
<td>0.3 to 0.4</td>
</tr>
<tr>
<td>SCH6</td>
<td>100 to 300</td>
<td>500 to 15,000</td>
<td>7</td>
<td>349</td>
<td>78.1 ± 0.4 to 75.9 ± 0.7</td>
<td>6 - 22 (9)</td>
<td>11 - 44 (32)</td>
<td>-8.1 to -10.2</td>
<td>0.0007</td>
<td>0.2 to 0.7</td>
</tr>
<tr>
<td>HÖL19</td>
<td>500 to 850</td>
<td>1,000 to 3,000</td>
<td>8</td>
<td>159</td>
<td>74.4 ± 0.2 to 73.6 ± 0.3</td>
<td>4 - 5 (5)</td>
<td>46 - 68 (53)</td>
<td>-8.3 to -10.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>HUN14</td>
<td>400 to 900</td>
<td>3,000 to 110,000</td>
<td>34</td>
<td>707</td>
<td>111.3 ± 0.3 to 102.9 ± 0.2</td>
<td>4 - 24 (10)</td>
<td>11 - 57 (35)</td>
<td>-8.4 to -11.7</td>
<td>0.2</td>
<td>0.2 to 0.4</td>
</tr>
<tr>
<td>GAS12</td>
<td>200 to 500</td>
<td>10,000 to 400,000</td>
<td>12</td>
<td>751</td>
<td>81.9 ± 0.2 to 77.0 ± 0.1</td>
<td>4 - 17 (7)</td>
<td>26 - 61 (40)</td>
<td>-8.0 to -10.3</td>
<td>0.13</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>GAS13</td>
<td>100 to 500</td>
<td>7,000 to 230,000</td>
<td>13</td>
<td>692</td>
<td>80.3 ± 0.2 to 76.9 ± 0.1</td>
<td>3 - 7 (5)</td>
<td>34 - 81 (54)</td>
<td>-8.5 to -10.2</td>
<td>0.06</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>GAS22</td>
<td>200 to 400</td>
<td>25,000 to 420,000</td>
<td>16</td>
<td>530</td>
<td>108.0 ± 0.2 to 105.3 ± 0.1</td>
<td>2 - 16 (5)</td>
<td>13 - 100 (45)</td>
<td>-8.3 to -11.0</td>
<td>0.4</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>GAS25</td>
<td>250 to 450</td>
<td>6,000 to 420,000</td>
<td>17</td>
<td>630</td>
<td>91.4 ± 0.2 to 88.2 ± 0.00</td>
<td>4 - 8 (6)</td>
<td>30 - 61 (40)</td>
<td>-7.5 to -10.2</td>
<td>0.24</td>
<td>0.2 to 0.6</td>
</tr>
<tr>
<td>GAS27</td>
<td>250 to 600</td>
<td>50,000 to 560,000</td>
<td>9</td>
<td>240</td>
<td>104.9 ± 0.2 to 103.1 ± 0.2</td>
<td>6 - 9 (7)</td>
<td>29 - 39 (34)</td>
<td>-8.1 to -11.0</td>
<td>0.6</td>
<td>0.3 to 0.8</td>
</tr>
<tr>
<td>GAS29</td>
<td>250 to 350</td>
<td>13,000 to 240,000</td>
<td>6</td>
<td>256</td>
<td>106.6 ± 0.2 to 104.6 ± 0.1</td>
<td>7 - 9 (8)</td>
<td>28 - 36 (32)</td>
<td>-8.7 to -11.0</td>
<td>0.2</td>
<td>0.2 to 0.7</td>
</tr>
</tbody>
</table>

Table 2. Summary of the key features of the U-Th measurements, age modelling, and tests for isotopic equilibrium as presented in SI Tables 1 and 2, and SI Figs. 3 and 4.

5 Offenbecher (2004)
Table 3. Results of the ramp-fitting model runs for NALPS 19 $\delta^{18}O$ (this study), NGRIP $\delta^{18}O$ on GICC05muted (Wolff et al., 2010), AICC2012 $\delta^{18}O$ (Veres et al., 2013), AICC2012 $\delta^{18}O$ revised by Extier et al. (2018), and the Asian monsoon composite $\delta^{18}O$ (Kelly et al., 2006; Kelly, 2010; Cheng et al., 2016). All ages are reported relative to 1950 A.D. Uncertainties given are modelling uncertainties as marginal posterior standard deviations. Uncertainties in parentheses are associated uncertainties from the original chronologies.

<table>
<thead>
<tr>
<th>Year</th>
<th>GS-19</th>
<th>GS-20</th>
<th>GS-21</th>
<th>GS-22</th>
<th>GS-23</th>
<th>GS-24</th>
<th>GS-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>71.044</td>
<td>73.262</td>
<td>75.852</td>
<td>78.596</td>
<td>79.180</td>
<td>78.732</td>
<td>73.261</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>54.230</td>
<td>58.138</td>
<td>61.058</td>
<td>63.165</td>
<td>64.118</td>
<td>63.165</td>
<td>59.966</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>GS-19</th>
<th>GS-20</th>
<th>GS-21</th>
<th>GS-22</th>
<th>GS-23</th>
<th>GS-24</th>
<th>GS-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>74.100</td>
<td>76.440</td>
<td>77.720</td>
<td>79.470</td>
<td>80.110</td>
<td>79.780</td>
<td>80.440</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>55.820</td>
<td>58.151</td>
<td>59.482</td>
<td>60.813</td>
<td>61.152</td>
<td>60.813</td>
<td>61.152</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>GS-19</th>
<th>GS-20</th>
<th>GS-21</th>
<th>GS-22</th>
<th>GS-23</th>
<th>GS-24</th>
<th>GS-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>73.480</td>
<td>75.845</td>
<td>77.329</td>
<td>78.985</td>
<td>80.118</td>
<td>79.780</td>
<td>80.440</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>55.343</td>
<td>58.096</td>
<td>59.383</td>
<td>60.715</td>
<td>61.054</td>
<td>60.715</td>
<td>61.054</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>73222</td>
<td>77053</td>
<td>88367</td>
<td>103653</td>
<td>108217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>±20 (240)</td>
<td>±41 (440)</td>
<td>±39 (750)</td>
<td>±150 (800)</td>
<td>±51 (900)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>166 ± 399</td>
<td>173 ± 1061</td>
<td>81 ± 1131</td>
<td>321 ± 1273</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Difference in the respective timing between SCH6 and BA1b
1 Difference in the respective timing between GAS12 and GAS13
2 Difference in the respective timing between HUN14 and GAS27
3 Largest difference in the respective timing between HUN14, GAS22, and GAS29
5 Difference in the respective timing for the start of transitions in GICC05modelext as defined by the INTIMATE event stratigraphy (Rasmussen et al., 2014) scheme and ramp-fitting (this study)

1 This study
2 Wolff et al., (2010)
3 Veres et al., (2013)
4 Extier et al., (2018)
5 Cheng et al., (2016)
Table 4. The duration of GS-22 and the precursor event (GI-21.2) in various chronologies. All ages given relative to 1950 A.D. and with two sigma uncertainty.

<table>
<thead>
<tr>
<th>Chronology</th>
<th>GI-21.1e midpoint</th>
<th>GI-21.2 onset</th>
<th>GI-21.2 midpoint</th>
<th>Duration GI-21.2 onset to GS-22 midpoint</th>
<th>Duration GI-21.2 onset to GI-21.1e midpoint</th>
<th>Duration GI-21.1e midpoint to GS-22 midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual layer counting</td>
<td>84,710</td>
<td>85,010</td>
<td>87,630</td>
<td>2,894 ± 198</td>
<td>350 ± 19</td>
<td>3,244 ± 199</td>
</tr>
<tr>
<td>GICC05modelext</td>
<td>83,654 ± 460</td>
<td>84,131 ± 460</td>
<td>87,756 ± 460</td>
<td>3,625 ± 650</td>
<td>496</td>
<td>4,122 ± 650</td>
</tr>
<tr>
<td>NGRIP-EDML</td>
<td>85,030 ± 410</td>
<td>85,440 ± 410</td>
<td>88,690 ± 330</td>
<td>3,250 ± 526</td>
<td>410</td>
<td>3,660 ± 526</td>
</tr>
<tr>
<td>NALPS</td>
<td>84,671 ± 100</td>
<td>88,664 ± 118</td>
<td>88,454 ± 750</td>
<td>705</td>
<td></td>
<td>3,993 ± 155</td>
</tr>
<tr>
<td>Asian Monsoon Composite</td>
<td>84,965 ± 600</td>
<td>88,454 ± 750</td>
<td></td>
<td></td>
<td></td>
<td>4,489 ± 960</td>
</tr>
</tbody>
</table>

*aVallelonga et al., 2012*  
*bWolff et al., 2012*  
*cCapron et al., 2010b; Vallelonga et al., 2012*  
*dBoch et al., 2011*  
*eCheng et al., 2016 with ramp fitting from this study. Italics indicates where a transition could not be ramp-fitted and is therefore manually assessed.