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Abstract: Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled 

model simulations, currently no consensus exists regarding the most appropriate methodology through which 

to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the 

framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different 20 
approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-

distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis 

(SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled 

atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of 

isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-25 
derived isotope variability into the past. However, the discontinuous nature of many speleothem records 

complicates procuring large numbers of records if data-model comparisons are made using the traditional 

approach of comparing anomalies between a control period and a given palaeoclimate experiment. To 

circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period 

could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment 30 
of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem 

isotopic data for model evaluation, including screening the observations to take into account the impact of 

speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the 

selection of an appropriate time-window for creating means of the isotope data for palaeo time slices. 

1 Introduction 35 

Earth System Models (ESMs) are routinely used to project the consequences of current and future 

anthropogenic forcing of climate, and the impacts of these projected changes on environmental 

services (e.g., Christensen et al., 2013; Collins et al., 2013; Kirtman et al., 2013; Field, 2014). ESMs are 

routinely evaluated using modern and historical climate data. However, the range of climate variability 
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experienced during the period for which we have reliable historic climate observations is small, much 40 

smaller than the amplitude of changes projected for the 21st century. Radically different climate states 

in the geologic past provide an opportunity to test the performance of ESMs in response to very large 

changes in forcing, changes that in some cases are as large as the expected change in forcing at the 

end of the 21st century (Braconnot et al., 2012). The use of “out-of-sample” testing (Schmidt et al., 

2014) is now part of the evaluation procedure of the Coupled Model Intercomparison Project (CMIP). 45 

Several palaeoclimate simulations are being run by the Palaeoclimate Modelling Intercomparison 

Project (PMIP) as part of the sixth phase of CMIP (CMIP6-PMIP4), including simulations of the Last 

Millennium (LM, 850–1850 CE, past1000), mid-Holocene (MH, ca. 6,000 yrs BP, midHolocene) Last 

Glacial Maximum (LGM, ca. 21,000 yrs BP, lgm), the Last Interglacial (LIG, ca. 127,000 yrs BP, lig127k) 

and the mid-Pliocene Warm Period (mPWP, ca. 3.2 M yrs BP, midPliocene-eoi400) (Kageyama et al., 50 

2017). 

Although these CMIP6-PMIP4 time periods were selected because they represent a range of different 

climate states, the choice also reflects the fact that global syntheses of palaeoenvironmental and 

palaeoclimate observations exist across them, thereby providing the opportunity for model 

benchmarking (Kageyama et al., 2017). However, both the geographic and temporal coverage of the 55 

different types of data is uneven. Ice core records are confined to polar and high-altitude regions and 

provide regionally to globally integrated signals of forcings and climatic responses. Marine records 

provide a relatively comprehensive coverage of the ocean state for the LGM, but low rates of 

sedimentation mean they are less informative about the more recent past (Hessler et al., 2014). Lake 

records provide qualitative information of terrestrial hydroclimate, but the most comprehensive 60 

source of quantitative climate information over the continents is based on statistical calibration of 

pollen records (see e.g., Bartlein et al., 2011). However, pollen preservation requires the long-term 

accumulation of sediments under anoxic conditions and is consequently limited in semi-arid, arid and 

highly dynamic wet regions such as in the tropics. 

Oxygen isotopic records (δ18O) from speleothems, secondary carbonate deposits that form in caves 65 

from water that percolates through carbonate bedrock (Hendy and Wilson, 1968; Atkinson et al., 

1978; Fairchild and Baker, 2012), provide an alternative source of information about past terrestrial 

climates. Although there are hydroclimatic limits on the growth of speleothems, their distribution is 

largely constrained by the existence of suitable geological formations and they are found growing 

under a wide range of climate conditions, from extremely cold climates in Siberia (Vaks et al., 2013) 70 

to arid regions of Australia (Treble et al., 2017). Therefore, speleothems have the potential to provide 

information about past terrestrial climates in regions for which we do not have (and are unlikely to 
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have) information from pollen. As is the case with pollen, where quantitative climate reconstructions 

must be obtained through statistical or forward modelling approaches (Bartlein et al., 2011), the 

interpretation of speleothem isotope records in terms of climate variables is in some cases not 75 

straightforward (Lachniet, 2009; Fairchild and Baker, 2012). However, some ESMs now use water 

isotopes as tracers for the diagnosis of hydroclimate (Schmidt et al., 2007; Tindall et al., 2009; Werner 

et al., 2016), and this opens up the possibility of using speleothem isotopic measurements directly for 

comparison with model outputs. At least six modelling groups are planning isotope-enabled 

palaeoclimate simulations as part of CMIP6-PMIP4.  80 

As with other model evaluation studies, much of the diagnosis of isotope-enabled ESMs has focused 

on modern day conditions (e.g., Joussaume et al., 1984; Hoffmann et al., 1998; Hoffmann et al., 2000; 

Jouzel et al., 2000; Noone and Simmonds, 2002; Schmidt et al., 2007; Roche, 2013; Xi, 2014; Risi et al., 

2016; Hu et al., 2018). However, isotope-enabled models have also been used in a palaeoclimate 

context (e.g., Schmidt et al., 2007; LeGrande and Schmidt, 2008; LeGrande and Schmidt, 2009; 85 

Langebroek et al., 2011; Caley and Roche, 2013; Caley et al., 2014; Jasechko et al., 2015; Werner et 

al., 2016; Zhu et al., 2017). The evaluation of these simulations has often focused on isotope records 

from polar ice cores and from marine environments. Where use has been made of speleothem 

records, the comparison has generally been based on a relatively small number of the available 

records. Furthermore, all of the comparisons make use of an empirically-derived correction for the 90 

temperature-dependence fractionation of calcite δ18O at the time of speleothem formation that is 

based on synthetic carbonates (Kim and O'Neil, 1997). This fractionation is generally poorly 

constrained (McDermott, 2004; Fairchild and Baker, 2012), does not account for any non-equilibrium 

of kinetic fractionation at the time of deposition and is not suitable for aragonite samples. Thus, using 

a single standard correction and not screening records for mineralogy introduces uncertainty into the 95 

data-model comparisons.  

SISAL (Speleothem Isotopes Synthesis and Analysis), an international working group under the 

auspices of the Past Global Changes (PAGES) project (http://pastglobalchanges.org/sisal), is an 

initiative to provide a reliable, well-documented and comprehensive synthesis of isotopic records 

from speleothems worldwide (Comas-Bru and Harrison, 2019). The first version of the SISAL database 100 

(SISALv1: Atsawawaranunt et al., 2018a; Atsawawaranunt et al., 2018b) included 381 speleothem-

based isotope records and metadata to facilitate quality control and record selection. A major 

motivation for the SISAL database was to provide a tool for benchmarking of palaeoclimate 

simulations using isotope-enabled models.  

http://pastglobalchanges.org/sisal
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In this paper, we examine a number of issues that need to be addressed in order to use speleothem 105 

data, specifically data from the SISAL database, for model evaluation in the palaeoclimate context and 

make recommendations about robust approaches that should be used for model evaluation in CMIP6-

PMIP4. We focus particularly on interpretation issues that could be overlooked in using speleothem 

records and we show the strengths and limitations of different comparison techniques. We use the 

MH and LGM time periods, partly because the midHolocene and lgm experiments are the “entry cards” 110 

for the CMIP6-PMIP4 simulations and partly because these are the PMIP time periods with the best 

coverage of speleothem records. We use an updated version of the SISAL database (SISALv1b: 

Atsawawaranunt et al., 2019) and simulations made with the ECHAM5-wiso isotope-enabled 

atmospheric circulation model (Werner et al., 2011) to explore the various issues in making data-

model comparisons. Our goal is not to evaluate the ECHAM5-wiso simulations but rather to use them 115 

to illustrate generic issues in data-model comparison with speleothem isotopic data. 

Section 2 introduces the data and the methods used in this study. Section 2.1 introduces the isotope-

enabled model simulations for the modern (1958–2013), the midHolocene and the lgm experiments, 

explains the methods used to calculate weighted simulated δ18O values, and provides information 

about the construction of time-slices. Section 2.2 presents the modern observed δ18O in precipitation 120 

(δ18Op) used. Section 2.3 introduces the speleothem isotopic data from the SISAL database and 

explains the rationale for screening records. Section 3 describes the results of the analyses, specifically 

the spatio-temporal coverage of the SISAL records (Section 3.1), the representation of modern 

conditions (Section 3.2), anomaly-mode time-slice comparisons (Section 3.3), and the comparison of 

δ18O gradients in absolute values along spatial transects to test whether the model accurately records 125 

latitudinal variations in δ18O across time periods (Section 3.4). Section 4 provides a protocol for using 

speleothem isotopic records for data-model comparisons and section 5 summarises our main 

conclusions. 

2 Methods 

2.2 Model simulations  130 

ECHAM5-wiso (Werner et al., 2011; Werner, 2019) is the isotope-enabled version of the ECHAM5 

Atmosphere Global Circulation Model (Roeckner et al., 2003; Hagemann et al., 2006; Roeckner et al., 

2006). The water cycle in ECHAM5 contains formulations for evapotranspiration of terrestrial water, 

evaporation of ocean water, and the formation of large-scale and convective clouds. Vapour, liquid, 

and frozen water are transported independently within the atmospheric advection scheme. The stable 135 
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water isotope module in ECHAM5 computes the isotopic signal of different water masses through the 

entire water cycle, including in precipitation and soil water.  

ECHAM5-wiso was run for 1958–2013 using an implicit nudging technique to constrain simulated fields 

of surface pressure, temperature, divergence and vorticity to the corresponding ERA-40 and ERA-

Interim reanalysis fields (Butzin et al., 2014). The midHolocene simulation (Wackerbarth et al., 2012) 140 

was forced by orbital parameters and greenhouse gas concentrations appropriate to 6 ka following 

the PMIP3 protocol (https://pmip3.lsce.ipsl.fr). The control simulation has modern values for the 

orbital parameters and greenhouse gas (GHG) concentrations (Wackerbarth et al., 2012). The change 

in sea surface temperatures (SST) and sea ice cover between 6 ka and the pre-industrial period were 

calculated from 50-year averages from each interval extracted from a transient Holocene simulation 145 

performed with the fully coupled ocean-atmosphere Community Climate System Model (CCSM3; 

Collins et al., 2006). The anomalies were then added to the observed modern SST and sea ice cover 

data to force the midHolocene simulation (Wackerbarth et al., 2012). For the lgm experiment (Werner 

et al., 2018), orbital parameters, GHG concentrations, land-sea distribution, and ice sheet height and 

extent followed the PMIP3 guidelines. Climatological monthly sea ice coverage and SST changes were 150 

prescribed from the GLAMAP dataset (Paul and Schäfer-Neth, 2003). A uniform glacial enrichment of 

sea surface water and sea ice of +1‰ (δ18O) and +8‰ (δD) on top of the present-day isotopic 

composition of surface seawater was applied. For the ocean surface state of the corresponding control 

simulation, monthly climatological SST and sea ice cover for the period 1979-1999 were prescribed. 

All the ECHAM5-wiso simulations were run at T106 horizontal grid resolution (approx. 1.1°x1.1°) with 155 

31 vertical levels. The midHolocene and lgm experiments were run for 12 and 22 years, respectively, 

and the last 10 (midHolocene) and 20 (lgm) years were used to construct the anomalies. Model 

anomalies for the MH and the LGM were calculated as the differences between the averaged 

midHolocene/lgm simulations and their corresponding control. We also calculated the anomaly 

between lgm and midHolocene, taking account of the difference between their control simulations in 160 

the following way: (lgm - lgmPI) -  (midHolocene - midHolocenePI). 

At best, the speleothem isotopic signal will be an average of the precipitation δ18O (δ18Op) signals 

weighted towards those months when precipitation is greatest (Yonge et al., 1985). However, the 

signal is transmitted via the karst system, and is therefore modulated by storage in the soil, recharge 

rates, mixing in the subsurface, and varying residence times - ranging from hours to years (e.g., 165 

Breitenbach et al., 2015; Riechelmann et al., 2017). These factors could all exacerbate differences 

between observations and simulations. We investigated whether weighting the simulated δ18O signals 

by soil moisture or recharge amount provided a better global comparison than weighting by 

https://pmip3.lsce.ipsl.fr/
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precipitation amount by calculating three indices: (i) δ18Op weighted according to monthly 

precipitation amount (wδ18Op); (ii) δ18Op weighted according to the potential recharge amount 170 

calculated as precipitation minus evaporation (P-E) for months where P-E > 0 (wδ18Orecharge); and (iii) 

soil water δ18O weighted according to soil moisture amount (wδ18Osw). To investigate the impact of 

transit time on the comparisons, we smoothed the simulated wδ18O using a range of smoothing from 

1–16 years. Finally, we investigated whether differences in elevation between the model grid and 

speleothem records had an influence on the quality of the data-model comparisons by applying an 175 

elevational correction of -2.5‰/km (Lachniet, 2009) to the simulated wδ18O. 

2.2 Modern observations 

We use two sources of modern isotope data for assessment purposes: (i) δ18Op measurements from 

the Global Network of Isotopes in Precipitation (GNIP) database (IAEA/WMO, 2018) and (ii) a gridded 

dataset of global water isotopes from the Online Isotopes in Precipitation Calculator (OIPC: Bowen 180 

and Revenaugh, 2003; Bowen, 2018). 

The GNIP database (IAEA/WMO, 2018) provides raw monthly δ18Op values for some part of the interval 

03/1960 to 08/2017 for 977 stations. Individual stations have data for different periods of time and 

there are gaps in most individual records; only two stations have continuous data for over 50 years 

and both are in Europe (Valentia Observatory, Ireland, and Vienna Hohe-Warte, Austria).  Most GNIP 185 

stations are more than 0.5° away from the SISAL cave sites, precluding a direct global comparison 

between GNIP and SISAL records. However, the GNIP data can be used to examine simulated 

interannual variability. Annual wδ18O averages were calculated from GNIP stations with enough 

months of data to account for more than 80% of the annual precipitation and 5 or more years of data. 

Annual wδ18Op data was extracted from the ECHAM5-wiso simulations at the location of the GNIP 190 

stations for the years for which GNIP data is available at each station. We exclude GNIP stations from 

coastal locations that are not land in the ECHAM5-wiso simulation. This dual screening results in only 

450 of the 977 GNIP stations being used for comparisons. Boxplots are calculated with the standard 

deviation of annual wδ18Op data. 

The OIPC dataset provides a gridded long-term (1960–2017) global record of modern wδ18Op, based 195 

on combining data from 348 GNIP stations covering part or all the period 1960–2014 (IAEA/WMO, 

2017) and other wδ18Op records from the Water Isotopes Database (Waterisotopes Database, 2017). 

The OIPC data can be used to evaluate modern spatial patterns in both the SISAL records and the 

simulations.  

  200 
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2.3 Speleothem isotope data 

We use an updated SISAL database (SISALv1b: Atsawawaranunt et al., 2019), which provides revised 

versions of 45 records from SISALv1 and includes 60 new records (Table 1). SISALv1b has isotope 

records from 455 speleothems from 211 cave sites distributed worldwide. Because the isotopic 

fractionation between water and CaCO3 differs between calcite and aragonite, we use calcite 205 

speleothems, aragonite speleothems where the correction to calcite values was made by the original 

authors, and speleothems with uncorrected aragonite mineralogy. We exclude speleothems where 

some samples are calcite and some aragonite (mixed mineralogy speleothems) and speleothems with 

unknown mineralogy. As a result of this screening, we use 407 speleothem records from 193 cave sites 

for comparisons. However, the number of speleothem records covering specific periods (i.e., modern, 210 

MH, LGM) is considerably lower. 

Recent data suggests that many calcite speleothems are precipitated out of isotopic equilibrium with 

waters (Daëron et al., 2019). Therefore, we have converted speleothem calcite data to its drip-water 

equivalent using an empirical speleothem-based fractionation factor that accounts for any kinetic 

fractionation that may arise in the precipitation of calcite speleothems in caves (Tremaine et al., 2011): 215 

δ18O𝑑𝑟𝑖𝑝𝑤_𝑆𝑀𝑂𝑊 = δ18O𝑐𝑎𝑙𝑐𝑖𝑡𝑒_𝑆𝑀𝑂𝑊 − ((
16.1·1000

𝑇
) − 24.6)   (T in K) 

We use the fractionation factor from Grossman and Ku (1986) as formulated in Lachniet (2015) to 

convert aragonite speleothems to their drip-water equivalent: 

δ18O𝑑𝑟𝑖𝑝𝑤_𝑆𝑀𝑂𝑊 = δ18O𝑐𝑎𝑙𝑐𝑖𝑡𝑒_𝑆𝑀𝑂𝑊 − ((
18.34·1000

𝑇
) − 31.954)  (T in K) 

We use the V-PDB to V-SMOW conversion from Coplen et al. (1983) as in Sharp (2007): 220 

δ18O𝑐𝑎𝑙𝑐𝑖𝑡𝑒_𝑆𝑀𝑂𝑊 = 1.03092x δ18O𝑐𝑎𝑙𝑐𝑖𝑡𝑒_𝑃𝐷𝐵 + 30.92  

We have used mean annual surface air temperature from CRU-TS4.01 (Harris et al., 2014) for the OIPC 

comparison and ECHAM5-wiso simulated mean annual temperature for the SISAL-model comparison 

as a surrogate for modern and past cave air temperature (Moore and Sullivan, 1997). There are 

uncertainties in this conversion because several factors are unknown, e.g., cave temperature and pCO2 225 

of soil.  

We compare the modern temporal variability in the SISAL records with ECHAM5-wiso by extracting 

simulated wδ18Op at the cave site location for all the years for which there are speleothem isotope 
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samples within the period 1958-2013. The speleothem isotope ages were rounded to exact calendar 

years for this comparison.  230 

Data-model comparisons are generally made by comparing (1) anomalies between a palaeoclimate 

simulation and a control period with (2) data anomalies with respect to a modern baseline. There is 

no agreed standard defining the interval used as a modern baseline for palaeoclimate reconstructions. 

Some studies have used modern observational datasets which cover a specific and limited period of 

time and some use the late 20th century as a reference. We investigate the appropriate choice of 235 

modern baseline for the speleothem records by comparing the interval centred on 1850 CE with 

alternative intervals covering the late 20th century, specifically 1961-1990 and 1850–1990 CE, and we 

assess the impact of these choices on both mean δ18O values and the number of records available for 

comparison. The MH time slice was defined as 6,000 ±500 yrs BP (where present is 1950 CE) and the 

LGM time slice as 21,000 ±1,000 yrs BP, following the conventional definitions of these intervals used 240 

in the construction of other benchmark palaeoclimate datasets (e.g., MARGO project members, 2009; 

Bartlein et al., 2011). However, we also examined the impact of using shorter intervals for each time 

slice.  

We use the published age-depth models for each speleothem record. There is no information about 

the temporal uncertainties on individual isotope samples for most of the records in SISALv1b. This 245 

precludes a general assessment of the impact of temporal uncertainties on data-model comparisons. 

Nevertheless, we assess these impacts for the LGM for two records (entity BT-2 from Botuverá cave: 

Cruz et al., 2005;  and entity SSC01 from Gunung-buda cave: Partin et al., 2007) for which new age-

depth models have been prepared using COPRA (Breitenbach et al., 2012). We created 1,000-member 

ensembles of the age-depth relationship using the original author's choice of radiometric dates and 250 

pchip (piecewise cubic hermite interpolating polynomial) interpolation. Isotope ratio means were 

calculated using time windows of increasing width (±100 to ±1,500 years) around 21 kyrs BP for the 

original age-depth model, the COPRA median age model, and all ensemble members. All COPRA-based 

uncertainties have been projected to the chronological axes. 

To explore the use of absolute isotopic data for model evaluation, we extracted absolute data for two 255 

transects illustrating key features of the geographic isotopic patterns during the modern, MH and LGM 

periods. Each transect follows the great circle line between two locations. The span of each regional 

transect varies to maximise the number of SISAL records included. We extracted model outputs for 

the same transects at 1.12° steps to match the model grid size and using the model land/sea mask to 

remove ocean grid cells. Comparisons are made between the SISAL mean 18O value and the simulated 260 

wδ18Op values averaged within the latitudinal or longitudinal range defined for each transect.  
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The presence/absence of speleothems in the temperate zone has long been interpreted as a direct 

indication of interstadial/stadial climate state (Gordon et al., 1989; Kashiwaya et al., 1991; Baker et 

al., 1993), while in dry regions speleothem growth indicates a pluvial climate (Vaks et al., 2006) and in 

episodically cold regions responds to the absence of permafrost (Atkinson et al., 1978; Vaks et al., 265 

2013). Speleothem distribution through time approximates an exponential curve in many regions 

around the world (e.g., Ayliffe et al., 1998; Jo et al., 2014; Scroxton et al., 2016). This relationship 

suggests that the natural attrition of stalagmites is independent of the age of the specimens and 

approximately constant through time, despite potential complications from erosion, climatic changes 

and sampling bias. The underlying exponential curve can, therefore, be thought of as a prediction of 270 

the number of expected stalagmites given the existing population. Intervals when climate conditions 

were more/less favourable to speleothem growth can then be identified from changes in the 

population size by subtracting this underlying exponential curve (Scroxton et al., 2016). We apply this 

approach at a global level to the unscreened SISAL data by counting the number of individual caves 

with stalagmite growth during every 1,000-yr period from 500 kyrs BP to the present. Growth was 275 

indicated by a stable isotope sample at any point in each 1,000-year bin, giving 3,866 data points 

distributed in 500 bins. We use cave numbers, rather than the number of individual speleothems, to 

minimise the risk of over-sampled caves influencing the results. Random resampling (100,000) of the 

3,866 data points was used to derive 95% and 5% confidence intervals. The number of speleothems 

cannot be reliably predicted by a continuous distribution when numbers are low, so we do not 280 

consider intervals prior to 266 kyrs BP – the most recent interval with less than four records.  

3 Results 

3.1 Spatio-temporal coverage of speleothem records  

There are many regions of the world where the absence of carbonate lithologies means that there will 

never be speleothem records (Fig. 1a). Nevertheless, SISALv1b represents a substantial improvement 285 

in spatial coverage compared to SISALv1, particularly for Australasia and Central and North America 

(Fig. 1a, Table 1), and the sampling for regions such as Europe and China is quite dense. Thus, SISALv1b 

provides a sufficient coverage to allow the data to be used for model evaluation. The temporal 

distribution of records is uneven, with only ca. 40 at 21 kyrs increasing to > 100 records at 6 kyrs and 

> 110 for the last 1,000 yrs (Fig. 1b). A pronounced regional bias exists towards Europe during the 290 

Holocene. Regional coverage is relatively even during the LGM, except for Africa which is under-

represented throughout (< 4% of total). Nevertheless, there is enough coverage to facilitate data-

model comparisons for the MH and LGM for most regions of the world. 
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The global occurrence of speleothems through time approximates an exponential distribution (Fig. 2 

a). Anomalously high numbers of speleothems are found in the last 12 kyrs, between 128–112 kyrs BP 295 

and during interglacials MIS 1 and 5e (and the early glacial MIS 5d). There are fewer than expected 

speleothems between 73–63 kyrs BP and during MIS 2 (Fig. 2 b). These deviations could arise from 

sampling biases, but it is unlikely that such biases would lead to differences between the tropics and 

temperate regions. Differences between curves constructed for both tropical and temperate regions 

(Fig. 2 c) suggest that, at least for the last 130 ka, deviations from expected stalagmite growth in the 300 

extra-tropics correspond to variability on glacial/interglacial scales. Thus, the speleothem data 

indicate similar climatic sensitivity, even at a global level, to that demonstrated for sub-continental 

and regional scales by earlier authors, despite their use of much smaller numbers and far less precise 

age data than in the SISAL dataset. 

3.2 How well do the speleothem records represent modern δ18O in precipitation? 305 

The first-order spatial patterns shown by the SISAL speleothem records during the modern period 

(1960–2017; n = 87) are in overall agreement with the OIPC dataset of interpolated wδ18Op (R2 = 0.76), 

with more negative values at higher latitudes and in more continental climates (Fig. 3a). The fact that 

the speleothem records reflect the δ18O patterns in modern precipitation confirms at a global scale 

the findings of McDermott et al. (2011) for the continental scale in Europe. There are no systematic 310 

biases between OIPC and SISAL data at different latitudes (Fig. 3b). However, low latitude sites tend 

to show more positive δ18O values than simulated wδ18Op, whereas sites from mid to high latitudes 

tend to be more negative (Fig. 3 c, d). The discrepancies between the SISAL data and the observations 

or simulations may be due to cave specific factors (such as a preferred seasonality of recharge (e.g., 

Bar-Matthews et al., 1996), non-equilibrium fractionation processes during speleothem deposition 315 

(e.g., Ersek et al., 2018)), by complex soil-atmosphere interactions affecting evapotranspiration (e.g., 

Denniston et al., 1999) and thus the isotopic signal of the effective recharge (Baker et al., 2019), or 

uncertainties in the isotope fractionation factors with respect to temperature (Figure S1) amongst 

others (e.g., Hartmann and Baker, 2017). However, the overall level of agreement suggests that the 

SISAL data provide a good representation of the impacts of modern hydroclimatic processes. 320 

Comparison of the SISAL records with δ18Op weighted according to the potential recharge amount or 

with δ18Osw weighted to the moisture amount does not significantly improve the data-model 

comparison (Fig. S2). The best relationship is obtained with soil water δ18O weighted according to soil 

moisture amount (wδ18Osw; R2 = 0.76). However, smoothing the simulated wδ18O records on a sample-

to-sample basis to account for multi-year transit times in the karst environment produces a slightly 325 
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better geographic agreement with the SISAL records (Fig. S3). Accounting for differences between the 

model grid cell and cave elevations does not yield any overall improvement in the global correlations. 

Simulated inter-annual variability is less than shown in the GNIP data (Fig. 4). Although there are 

missing values for the GNIP station data, we have also removed these intervals from the simulations, 

so incomplete sampling is unlikely to explain the difference between the observed and simulated 330 

inter-annual variability. Our results are consistent with the general tendency of climate models to 

underestimate the sensitivity of extreme precipitation to temperature variability or trends (Flato et 

al., 2014). ECHAM5 is known to underestimate inter-annual variability in regions where precipitation 

is dominantly convective (i.e., the tropics), as well as in summer in extra-tropical regions (e.g., in 

southern Europe) because convective precipitation operates on small spatial scales and has a large 335 

random component, even for a given large-scale atmospheric state (Eden et al., 2012). The inter-

annual variability of the modern speleothem records is lower than both the simulated and the GNIP 

data, reflecting the impact of karst and in-cave processes that effectively act as a low-pass filter on 

the signal recorded during speleothem growth (Baker et al., 2013). Thus, smoothing the simulated 

δ18Op signal produces a better match to the SISAL records:  application of a smoothing window of > 6 340 

yrs to simulated wδ18Op produces a good match (95% confidence) with the inter-annual variability 

shown by the speleothems (Fig. 4). This result indicates that global data-model comparisons using 

speleothem records should focus on quasi-decadal or longer timescales. However, the temporal 

smoothing caused by karst processes varies from site to site; where transmission from the surface to 

the cave can be shown to be rapid, individual speleothems may preserve annual or even sub-annual 345 

signals. 

3.3 Anomaly-mode time-slice comparisons 

The selection of a modern or pre-industrial base period is a first step in reconstructing speleothem 

δ18O anomalies for comparisons with simulated changes in specific model experiments. There are 76 

speleothem records from 62 sites that cover the pre-industrial interval 1850±15 CE, commonly used 350 

as a reference in model experiments. However, using this short interval as the base period for 

comparisons with MH or LGM simulations would result in the reconstruction of anomalies for only 21 

records for the MH and only 7 records for the LGM - which are the number of speleothem records 

with isotopic samples in both the base period and either the MH or LGM (Table 2). There is no 

significant difference in the mean δ18O values for this pre-industrial period and the modern δ18O values 355 

(R2 = 0.96; Fig. S4). Using an extended modern baseline (1850–1990 CE) increases the data 

uncertainties by only ±0.5‰ but raises the number of MH records for which MH-modern anomalies 

can be calculated to 36 entities from 32 sites around the world. There is also an improvement in the 
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number of LGM sites for which it is possible to calculate anomalies, from 7 to 13 entities at 12 sites. 

Although longer base periods have been used for data-model comparisons, for example the last 1,000 360 

years (e.g., Werner et al., 2016), this would increase the uncertainties in the observations without 

substantially increasing the number of records for which it would be possible to calculate anomalies, 

particularly for the LGM (Table 2). We, therefore, recommend the use of the interval 1850–1990 CE 

as the baseline for calculation of δ18O anomalies from the speleothem records. 

A relatively good agreement exists between the sign of the simulated and observed δ18O changes at 365 

the MH and LGM: 94% of the MH entities and 84% of the LGM entities show changes in the same 

direction after allowing for an uncertainty of ±0.5‰ (Fig. 5 a, b). However, the magnitude of the 

changes is larger in the SISAL records than the simulations. The MH-modern speleothem anomalies 

range from -3.60 to 1.29‰ (mean±std: -0.50±1.01‰), but the simulated anomalies only range from -

0.49 to 0.28‰ (mean±std: 0.00±0.32‰). Observed anomalies are 4–20 times larger than simulated 370 

anomalies in the Asian monsoon region, and in individual sites in North and South America and 

Uzbekistan (Fig. 5 a). The data-model mismatch is smallest in Europe, with a mean data-model offset 

of -0.13±0.42‰ (n = 9 entities from 7 sites). A two-tailed Student t-test shows that most of the 

simulated MH values are not significantly different from present (at 95% confidence). This may reflect 

the fact that the midHolocene simulation was only run for 10 years but is also consistent with previous 375 

studies which show that climate models substantially underestimate the magnitude of MH changes 

(Harrison et al., 2014), particularly in monsoon regions (e.g., Perez-Sanz et al., 2014). 

The simulated changes in δ18O at the LGM are much larger than those simulated for the MH and are 

significant (at 95% confidence) over much of the globe. There is no regionally coherent pattern in the 

observed LGM anomalies because of the limited number of speleothems that grew continuously from 380 

the LGM to present. However, the sign of the observed changes is coherent with the simulated change 

in δ18O for 11 of the 13 records (Fig. 5 b). The magnitude of the LGM anomalies differs by less than 

1‰ between model and data in two thirds of the locations. A strong offset is found in the two records 

from Sofular Cave, which are ca. 5.5‰ more negative than the simulated δ18O. This offset may be 

related to the glacial changes in the Black Sea region, which are not well represented in the lgm 385 

simulation. Thus, although overall the comparison with the speleothem records suggests that the 

simulated changes in hydroclimate are reasonable, the simulated changes in the Middle East differ 

from observations. 

An alternative approach to examine the realism of simulated changes is to compare the LGM and MH 

periods directly, which improves the number of records for which anomalies can be calculated (Fig. 5 390 

c; n = 22). However, the pattern of change is similar to the LGM-modern anomalies. The simulated 
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and observed direction of change is coherent at 86% of the locations with an offset smaller than 1‰ 

occurring in 12 sites and again the largest discrepancy is Sofular Cave. Thus, in this particular example, 

a direct comparison of the LGM-MH anomalies does not provide additional insight to the comparison 

of LGM-modern anomalies. Nevertheless, such an approach might be useful for other time periods 395 

(e.g., comparison of early versus mid-Holocene) when there are likely to be many more speleothem 

records available. 

Age uncertainties inherent to the speleothem samples representing the LGM could partially explain 

the LGM data-model mismatches. A global assessment of the impact of time-window width on the 

MH and LGM anomalies shows that reducing the window width from ±500 to ±200 years in the MH 400 

has little impact on the average values (Fig. S5) but reduces the inter-sample variability and produces 

a better match to the simulated anomalies. A similar analysis for the LGM (Fig. S6) suggests that a 

window width of ±500 years (rather than ±1,000 years) would be the most appropriate choice for 

comparisons of this interval. The number of SISAL sites available for such comparisons is not affected. 

However, analyses of the relative error of the isotope anomalies calculated at individual sites for 405 

different LGM window widths (Fig. 6) show a clear increase in all relative error components as window 

size decreases for BT-2 (Botuverá cave; Fig. 6a; Cruz et al., 2005) but no clear changes in the relative 

error terms for SSC01 (Gunung-buda cave; Fig. 6b; Partin et al., 2007). These results suggest that, with 

an LGM window width of ±1,000 years, the relative contribution of age uncertainty to the anomaly 

uncertainty is small (Fig. 6). Thus, although it is clear that it would be useful to propagate age 410 

uncertainties for individual sites, changing the conventional definitions of the MH and LGM time slices 

in deriving speleothem anomalies does not seem warranted at this stage.  

3.4 Analysis of spatial gradients 

The number of sites available in SISALv1b means that quantitative data-model comparisons using the 

traditional anomaly approach are limited in scope. Approaches based on comparing trends in absolute 415 

δ18O values could provide a way of increasing the number of observations and an alternative way to 

evaluate the simulations. Comparison of trends places less weight on anomalous sites and allows 

large-scale systematic similarities and dissimilarities between model and observations to be revealed. 

We illustrate this approach using spatial gradients across Asia and across Europe and showing how 

they differ between the modern, MH and LGM periods, although such an approach could also be used 420 

for temporal trends.  

The first-order spatial gradient in observed δ18O during the modern period is broadly captured by the 

model in both examples (Figs. 7, 8), with the largest offsets found mainly for high altitude sites. There 
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is a fundamental change in the latitudinal gradient across Asia during the MH (Fig. 7). In this period, 

the gradient observed in the data is clearly not reproduced by the model, which systematically 425 

simulates higher wδ18Op values between 20 and 35⁰N, suggesting that the model underestimates the 

insolation-driven intensification of the hydrological cycle in monsoon regions during this period. The 

limited number of speleothem records available between 25 and 35 ⁰N for the LGM agree with the 

simulated δ18O gradient. The longitudinal gradient across Europe (Fig. 8) does not change substantially 

in the MH compared to modern. However, the model simulates wδ18Op values ~2‰ lower than 430 

observed in low-altitude sites in south central Europe between 0 and 15⁰E during the MH. This 

suggests that model may be underestimating the role of atmospheric circulation (i.e., weaker 

westerlies) during this period, an aspect of the climate system that models have difficulty to simulate 

(Mauri et al., 2014). The large latitudinal variability of simulated values eastwards of ~ 5⁰E during the 

LGM is consistent with a larger spread in the observations, albeit the limited number of data available. 435 

These examples show the potential to use trends in absolute values for model evaluation and 

diagnosis. 

4 Protocol for data-model comparison using speleothem data 

Our analyses illustrate a number of possible approaches for using speleothem isotopic data for model 

evaluation. The discontinuous nature of most speleothem records means that the number of sites 440 

available for conventional anomaly-mode comparisons is potentially limited. To some extent this is 

mitigated by the fact that differences between the modern and pre-industrial isotope values are small, 

permitting the calculation of anomalies using a longer baseline interval (1850–1990 CE). The use of 

smaller intervals of time in calculating MH or LGM anomalies (Fig. S5 and 6) does not have a significant 

impact either on the mean values or the number of records provided the interval is > ±300 yrs for the 445 

MH and > ±500 yrs for the LGM. Although the use of shorter intervals is possible, we recommend using 

the conventional definitions of each time slice to facilitate comparison with other benchmark 

datasets. Although patterns in the isotopic anomalies can provide a qualitative assessment of model 

performance, site-specific factors could lead to large differences from the simulations at individual 

locations. Improved spatial coverage would allow such sites to be identified and screened out before 450 

making quantitative comparisons of observed and simulated anomalies. Although there are only a 

limited number of records that cover both the modern baseline period and the MH (or the modern 

baseline period and the LGM), there are many more records that provide information about one or 

other of these periods. The examination of spatial gradients in absolute δ18O provides one way of 

exploiting this larger data coverage. Even when an offset between the observed and simulated δ18O 455 
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exists, comparing the trends along such gradients is possible. Thus, both absolute values and 

anomalies of the isotope data for data-model comparison are useful. 

Screening of published speleothem isotopic data is essential to produce meaningful data-model 

comparisons. The SISAL database facilitates screening for mineralogy, which has a substantial effect 

on isotopic values because of differences in water-carbonate fractionation factors for aragonite or 460 

calcite that are more pronounced at lower temperatures (Fig. S1). We recommend the use of the 

empirical speleothem-based fractionation factor of Tremaine et al. (2011) for isotope values on calcite 

stalagmites, or on aragonite specimens that have been corrected to their calcite equivalent in the 

original publications, and the equilibrium fractionation equation of Grossman and Ku (1986) for 

aragonite samples to ensure consistency across records.  465 

Based on the limited number of records available at the LGM, speleothem age uncertainties have only 

a limited impact on mean isotopic values, propagation of such uncertainties as well as any model 

uncertainties would nevertheless substantially improve the robustness of data-model comparisons.  

Based on our analyses, we therefore recommend that model evaluation using speleothem records 

should: 470 

1. Filter speleothem records with respect to their mineralogy and use the appropriate equilibrium 

fractionation factor: Tremaine et al. (2011) for converting isotopic data from either calcite or 

aragonite-corrected-to-calcite samples to their drip water equivalent; and Grossman and Ku 

(1986) as reformulated by Lachniet (2015) for converting isotopic data from aragonite samples; 

2. Use the interval between 1850 and 1990 as the reference period for speleothem isotope records; 475 

3. Use speleothem isotopic data averaged for the intervals 6,000 ±500 yrs (21,000 ±1,000 yrs) for 

comparability with other MH (LGM) palaeoclimate benchmark datasets; 

4. Use speleothem isotopic data averaged for the interval 6,000 ±200 yrs or 21,000 ±500 yrs for 

best approximation of midHolocene and lgm experiments; 

5. Use absolute values only to assess data-model first order spatial patterns;  480 

6. Focus on multi-decadal to millennial timescales if using transient simulations for data-model 

comparisons. 

5 Conclusions 

Speleothem records show the same first-order spatial patterns as available in the Global Network of 

Isotopes in Precipitation (GNIP) data and are therefore a good reflection of the 18O patterns in 485 

modern precipitation. This observation suggests that stalagmites are a rich source of information for 
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model evaluation. However, the inter-annual variability in the modern speleothem records is 

considerably reduced compared to the simulations, which in turn show less inter-annual variability 

than the GNIP observations. The low variability shown by the SISAL records – most likely from the low-

pass filter effectively applied to the speleothem record by the karst system – precludes the use of this 490 

database for global studies focused on time scales shorter than quasi-decadal.  

Using the traditional anomaly approach to data-model comparisons, there is consistency between the 

sign of observed and simulated changes in both the MH and the LGM. However, the ECHAM5-wiso 

model underestimates the changes in δ18O between time periods compared to the speleothem 

records (i.e., the amplitude of modelled δ18O changes is lower). Thus, these kinds of comparisons 495 

should only focus on the large-scale spatial patterns. Based on the available SISAL data, the use of 

smaller time windows than the conventional definitions for each time slice does not have a strong 

impact on the mean values and could be used to reduce the uncertainties associated with the 

palaeodata. However, this would preclude comparisons with existing benchmark datasets that use the 

conventional windows for the MH and LGM time slices. 500 

Only a limited number of speleothem records are continuous over long periods of time and the need 

to convert these to anomalies with respect to modern is a drawback. The limited number of records 

covering the LGM make the comparisons for this period particularly challenging. Nevertheless, 

continued expansion of SISAL database will increase its usefulness for model evaluation in future. 

Furthermore, we have shown that alternative approaches using absolute values could help examine 505 

spatial trends and diagnose systematic offsets.  

Mismatches between simulations and observations can reflect the issues with the experimental 

design, problems with the model or uncertainties in the observations (Harrison et al., 2015). The 

failure to include changes in atmospheric dust loading, for example, has been put forward as an 

explanation of data-model mismatches in both the MH and the LGM (e.g., Hopcroft et al., 2015; 510 

Messori et al., 2019). Missing processes and feedbacks, such as climate-induced vegetation or land-

surface changes, could also contribute to mismatches (e.g., Yoshimori et al., 2009; Swann et al., 2014). 

Uncertainties caused by the specific structure of the model or assigned model parameter values could 

also contribute to data-model mismatches (Qian et al., 2016). Ultimately, there needs to be an 

assessment of the contribution of all these factors to data-model mismatches, but here we have only 515 

focused on potential uncertainties associated with the speleothem data. Our initial analyses suggest 

age uncertainty contributes little to the uncertainties in the estimates of LGM speleothem isotopic 

values. However, it is still important to propagate dating uncertainties for data-model comparison.  

Site-specific controls may have a much larger effect on the δ18O record recorded by individual 
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speleothems and thus may contribute significantly to uncertainties in local or regional signals. We 520 

have not screened for regionally anomalous records that could be influencing the results of our 

analyses, but this should certainly be done. Despite these challenges, SISAL appears to be an extremely 

useful tool for describing past patterns of variability, highlighting its potential for evaluating CMIP6-

PMIP4 experiments. 

Comparisons with speleothem data can be seen as a complement to model evaluation using other 525 

types of palaeoenvironmental data and palaeoclimatic reconstructions (see e.g., MARGO project 

members, 2009; Harrison et al., 2014). They are particularly useful because they provide insights into 

how well state-of-the-art models reproduce the hydrological cycle and atmospheric circulation 

patterns. The ability to reproduce past observations provides additional confidence in the ability of 

climate models to simulate large climate changes, such as those expected by the end of the 21st 530 

century (Braconnot et al., 2012; Schmidt et al., 2014).  However, mismatches between model 

simulations and palaeo-observations are also useful because they can help to pinpoint issues that may 

need to be addressed in developing improved models or in better experimental protocols (Kageyama 

et al., 2018), providing that these mismatches do not arise because of misunderstanding or 

misinterpretation of the observations themselves. By providing a protocol for using speleothem data 535 

for data-model comparisons that accounts for uncertainties in the observations, we anticipate that at 

least such causes of data-model mismatches will be minimized. 

6 Data availability 

The SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) database version 1b is 

publicly available through the University of Reading repository at http://doi.org/10.17864/1947.189 540 

(Atsawawaranunt et al., 2019) and through the NOAA's National Centers for Environmental 

Information (NCEI) at https://www.ncdc.noaa.gov/paleo-search/study/24070. The ECHAM5-wiso 

model output  is available from https://doi.org/10.1594/PANGAEA.902347 (Werner, 2019). The OIPC 

mean annual precipitation δ18O data is available from the Water Isotopes Database at 

http://wateriso.utah.edu/waterisotopes/pages/data_access/ArcGrids.html (Bowen and Revenaugh, 545 

2003; IAEA/WMO, 2015; Bowen, 2018). The Global Network of Isotopes in Precipitation (GNIP; 

IAEA/WMO, 2018) data from the International Atomic Energy Agency (IAEA) and the World 

Meteorological Organization (WMO) is available at https://nucleus.iaea.org/wiser upon registration. 
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18 Figures 1160 

Figure 1: Spatio-temporal distribution of SISALv1b database. (a)  Spatial distribution of speleothem 

records. Filled circles are sites used in this study (SISALv1 in blue; SISALv1b in green). Triangles are 

SISAL sites that do not pass the screening described in section 2.3 and/or do not cover the time periods 

used here (modern, MH and LGM). The background carbonate lithology is that of the World Karst 

Aquifer Mapping (WOKAM) project (Chen et al., 2017). (b) Temporal distribution of speleothem 1165 

records according to regions. The non-overlapping bins span 1,000 years and start on 1950 CE. Regions 

have been defined as: Oceania (-60° < Lat < 0°; 90° < Lon < 180°); Asia (0° < Lat < 60°; 60° < Lon < 130°);  

Middle East (7.6° < Lat < 50°; 26° < Lon < 59°); Africa (-45° < Lat < 36.1°; -30° < Lon < 60°; with records 

in the Middle East region removed); Europe (36.7° < Lat < 75°; -30° < Lon < 30°; plus Gibraltar and 

Siberian sites); South America (-60° < Lat < 8°; -150° < Lon < -30°); North and Central America (8.1° < 1170 

Lat < 60°; -150° < Lon < -50°). 
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Figure 2: Distribution of the number of single caves with speleothem growth through time. (a) 

Number of single caves with growth over the last 500,000 yrs BP (where present is 1950 CE) in 1000-1175 

year bins (solid line), bootstrapped estimate of uncertainty (shading between 5 and 95% percentiles) 

and fitted exponential distribution (darker solid line). Horizontal bars denote previous interglacials. (b, 

c) same as a) but with the fitted exponential distribution subtracted to highlight anomalies from the 

expected number of caves over the last 300 kyrs BP. Horizontal bars indicate periods with significantly 

greater (dark grey) or fewer (light grey) number of caves with speleothem growth than expected. 1180 

Green indicates the full global dataset, blue and red indicate temperate and tropical subdivisions 

respectively.  
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Figure 3: Comparison of SISAL data with observational and simulated wδ18Op for the modern 1185 

period.  (a) Comparison between SISAL δ18O averages [‰; V-SMOW] for the period 1960–2017 CE 

with OIPC data [‰; V-SMOW]. (b) Scatterplot of SISAL modern δ18O averages as in (a) versus wδ18Op 

extracted from OIPC (i.e., background map in (a)) at the location of each cave site. (c) Same as (a) with 

simulated wδ18Op data for the period 1958–2013 in the background. (d) Scatterplot of SISAL modern 

δ18O as in (c) versus the simulated wδ18Op for the period 1958–2013 CE. Dashed lines in (b) and (d) 1190 

represent the 1:1 line.  All SISAL isotope data have been converted to their drip-water equivalent, 

following the approach described in section 3.2. Mean annual air surface temperature from CRU-

TS4.01 (Harris et al., 2014) and mean annual simulated ECHAM5-wiso air surface temperature were 

used as surrogates for cave temperatures in the OIPC and ECHAM5-wiso comparison, respectively. 

See section 2.3 for details on data extraction and conversion. 1195 
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Figure 4: Modern global inter-annual δ18O variability. Box plots show the variability of the standard 

deviation of global annual wδ18O using: (left) GNIP stations with enough months of data to account 

for >80% of the annual precipitation and at least 5 years of data (n = 450) and ECHAM5-wiso data 1200 

extracted at the location of each GNIP station for the years when this data is available; (right) SISAL 

records with at least 5 isotope samples for the period 1958–2013 and simulated wδ18Op extracted at 

each cave location for the same years for which speleothem data is available. Boxplots in shades of 

red are constructed after smoothing the simulated wδ18Op data for 1 to 16 years. On each box, the 

central mark indicates the median (q2; 50th percentile) and the bottom and top edges of the box 1205 

indicate the 25th (q1) and 75th (q3) percentiles, respectively. Outliers (black crosses) are locations with 

standard deviations greater than q3 + 1.5 × (q3 - q1) or less than q1 - 1.5 × (q3 - q1). This corresponds to 

approximately ±2.7σ or 99.3% coverage if the data are normally distributed. If the notches in the box 

plots do not overlap, you can conclude, with 95% confidence, that the true medians do differ. The grey 

horizontal band corresponds to the notch in SISAL for easy comparison. SISAL data were converted to 1210 

their drip-water δ18O equivalent as described in section 2.3. 
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Figure 5: ECHAM5-wiso weighted δ18Op anomalies ([‰; V-SMOW]; background map) and SISAL 

isotope anomalies ([‰; V-SMOW]; filled circles) for three time-slices: (a) MH-PI (SISAL records n = 36), 1215 

(b) LGM-PI (SISAL records n = 13) and (c) LGM-MH (SISAL records n = 22). For easy visualisation, when 

there are two speleothem records from the same cave site, one has been shifted 2⁰ towards the North 

and the East (shown here as triangles). Note the different colour bar axis in the colour bar of (a) 

compared to (b) and (c). Two-tailed student t-test has been applied to calculate the significance of the 

ECHAM5-wiso anomalies in (a) and (b) at a 95% confidence. No significance has been calculated for 1220 

(c), which compares two different simulations with their corresponding control periods. SISAL 

anomalies calculated with respect to 1850–1990 CE. Small black crosses indicate SISAL entities that do 

not have a modern equivalent. SISAL data has been converted to its drip water equivalent prior to 

calculating the anomalies as described in section 2.3. 

 

  1225 
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Figure 6: LGM period definitions and their impact on SISAL δ18O mean estimate uncertainty. The 

impact of the window definition and age uncertainty is explored for two entities (a) entity BT-2 from 

Botuverá cave (Cruz et al., 2005) and (b) entity SSC01 from Gunung-buda cave (Partin et al., 2007). 

The relative error is defined as 2 standard deviations for the original age model and the COPRA 

median; and the upper minus lower 95% quantiles for the COPRA median uncertainty as well as the 1230 

COPRA ensemble spread of standard deviations. Black solid lines give the relative error of the mean 

isotopic estimate for the LGM for the original age model and grey solid lines give the estimate based 

on the COPRA median age model. The pink dotted line shows the uncertainty of the COPRA median 

estimate, and the green dashed line the average relative error estimate across the 1,000-member 

COPRA ensemble. For both speleothems, relatively stable error estimates are found for window sizes 1235 

larger than ±750 years, whereas the relative error increases towards smaller window sizes. 
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Figure 7: Latitudinal isotopic transect for Asia during the (a) Modern (1958-2013), (b) Mid-Holocene 

(MH; 6 ±0.5 kyrs BP) and (c) Last Glacial Maximum (LGM; 20 ±1 kyrs BP) periods. Background maps at 

the top of each panel show the simulated wδ18Op from ECHAM5-wiso. Bottom plots in each panel 1240 

show the simulated wδ18Op data extracted for each transect: black circles and grey whiskers are mean 

±2 standard deviation of the data extracted along longitudinal sections in between the two great circle 

lines shown in solid black lines in the top maps. The red line is the median of the extracted data. All 

data were extracted at steps of 1.12⁰ to coincide with the average model grid-size.  These bottom 

panels also show SISAL δ18O: circles for low-elevation sites, < 1,000 masl; triangles for high-elevation 1245 

sites, > 1,000 masl. 
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Figure 8: Longitudinal isotopic transect for Europe during the (a) Modern (1958-2013), (b) Mid-

Holocene (MH; 6 ±0.5 kyrs BP) and (c) Last Glacial Maximum (LGM; 20 ±1 kyrs BP) periods. Details as 1250 

in caption of Fig. 7. 
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19 Tables 

Table 1: List of speleothem records that have been added to SISALv1 (Atsawawaranunt et al., 1255 

2018a; Atsawawaranunt et al., 2018b) to produce SISALv1b (Atsawawaranunt et al., 2019) sorted 

alphabetically by site name. Elevation is in metres above sea level (masl), latitude in degrees North 

and longitude in degrees East.  

Site name Elev. Lat. Lon. Entity name Reference (s) 

Arch cave 660 50.55 -127.07 DM05-01 Marshall et al. (2009) 

Beatus cave 875 46.38 7.49 EXC3, EXC4 Boch et al. (2011) 

Bribin cave 500 -8.05 110.633 JB2 Hartmann et al. (2013) 

Cesare Battisti cave 1880 46.08 11.02 CB25, CB39, 

CB47 

Johnston et al. (2018) 

Chan Hol cave -8.5 20.16 -87.57 CH-7 Stinnesbeck et al. (2017) 

Chen Ha cave 550 16.6769 -89.0925 CH04-02 Pollock et al. (2016) 

Cold Water cave 356 43.4678 -91.975 CWC-1s, CWC-

2ss, CWC-3l 

Denniston et al. (1999) 

Devil's Icebox cave 250 38.15 -92.05 DIB-1, DIB-2 Denniston et al. (2007b) 

Dongge cave 680 25.2833 108.0833 DA_2005, 

D4_2005 

Dykoski et al. (2005); Wang 

et al. (2005) 
 

Dos Anas cave 120 22.38 -83.97 CG Fensterer et al. (2010); 

Fensterer et al. (2012) 

El Condor cave 860 -5.93 -77.3 ELC_composite Cheng et al. (2013) 

Frasassi cave 

system - Grotta 

Grande del Vento 

257 43.4008 12.9619 FR16 Vanghi et al. (2018) 

Goshute cave 2000 40.0333 -114.783 GC_2, GC_3 Denniston et al. (2007a) 

Harrison's cave 300 13.2 -59.6 HC-1 Mangini et al. (2007); 

Mickler et al. (2004); Mickler 

et al. (2006) 

Hoti cave 800 23.0833 57.35 H14 Cheng et al. 

(2009);Fleitmann et al. 

(2003) 

Jaraguá cave 570 -21.083 -56.583 JAR4, JAR1, 

JAR_composite 

Novello et al. (2017); 

Novello et al. (2018) 

Karaca cave 1536 40.5443 39.4029 K1 Rowe et al. (2012) 

Klaus Cramer cave 1964 47.26 9.52 KC1 Boch et al. (2011) 
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KNI-51 cave 100 -15.18 128.37 KNI-51-A1, KNI-

51-P 

Denniston et al. (2013) 

Korallgrottan cave 570 64.88 14.15 K1 Sundqvist et al. (2007) 

Lianhua 455 29.48 109.53 A1 Cosford et al. (2008a) 

Lynds cave 300 -41.58 146.25 Lynds_BCD Xia et al. (2001) 

Mawmluh cave 1160 25.2622 91.8817 MAW-0201 Myers et al. (2015) 

McLean's cave 300 38.07 -120.42 ML2 Oster et al. (2014) 

Minnetonka cave 2347 56.5833 -119.65 MC08-1 Lundeen et al. (2013) 

Moondyne cave 100 -34.27 115.08 MND-S1 Treble et al. (2003); Treble 

et al. (2005); Fischer and 

Treble (2008); Nagra et al. 

(2017) 

Paraiso cave 60 -4.0667 -55.45 Paraiso 

composite 

Wang et al. (2017) 

Peqiin cave 650 32.58 35.19 PEK_composite, 

PEK 6, PEK 9, 

PEK 10 

Bar-Matthews et al. (2003) 

Piani Eterni karst 

system 

1893 46.16 11.99 MN1, GG1, IS1 Columbu et al. (2018) 

Poleva cave 390 44.7144 21.7469 PP10 Constantin et al. (2007) 

São Bernardo cave 631 -13.81 -46.35 SBE3 Novello et al. (2018) 

São Matheus cave 631 -13.81 -46.35 SMT5 Novello et al. (2018) 

Shatuca cave 1960 -5.7 -77.9 Sha-2, Sha-3, 

Sha-composite 

Bustamante et al. (2016) 

Sofular cave 440 41.42 31.93 So-17A, So-2 Badertscher et al. (2011) 

Fleitmann et al. (2009) 

Göktürk et al. (2011) 

Soylegrotta cave 280 66 14 SG93 Lauritzen and Lundberg 

(1999) 

Tangga cave 600 -0.36 100.76 TA12-2 Wurtzel et al. (2018) 

Uluu-Too cave 1490 40.4 72.35 Uluu2 Wolff et al. (2017) 

White moon cave 170 37 -122.183 WMC1 Oster et al. (2017) 

Xiangshui cave 380 25.25 110.92 X3 Cosford et al. (2008b) 

Xibalba cave 350 16.5 -89 GU-Xi-1 Winter et al. (2015) 

Yaoba Don cave 420 28.8 109.83 YB Cosford et al. (2008b) 
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Table 2: Number of SISALv1b speleothem records available for key time periods. Mid-Holocene (MH): 

6±0.5 kyrs BP; Last Glacial Maximum (LGM): 21±1 kyrs BP. “kyrs BP” refers to thousand years before 1260 

present, where present is 1950 CE. 

Time period Number of speleothems (entities) 

and cave sites in both periods 

Modern (1961–1990 CE) 73 entities (59 sites) 

PI (1835–1865 CE) 76 entities (62 sites) 

Extended PI (1850–1990 CE) 100 entities (81 sites) 

MH and PI  21 entities (20 sites) 

MH and extended PI  36 entities (32 sites) 

MH and Last Millennium (LM, 850–1850 CE) 51 entities (41 sites) 

LGM and PI  7 entities (7 sites) 

LGM and extended PI 13 entities (12 sites) 

LGM and Last Millennium (LM, 850–1850 CE) 14 entities (12 sites) 

LGM and MH 22 entities (18 sites) 

 


