
Response to Reviewer #1

We thank the reviewer for his/her evaluation of the manuscript and helpful comments. Below, we reply 
to all comments of the reviewer (red font color).

1. […] aim is to obtain mechanistic understanding of the DO cycles. This is not true in my opinion, 
since only statistical features are reported. These features can be used for benchmarking modelling 
studies testing different mechanisms, but this is not done in this paper.

We agree that this is not the best wording to describe the goal of the paper. We did not mean 
“mechanistic” in the sense of “physical mechanism”, but rather “empirical”, indicating how the 
properties of the cycles develop over time, as a function of previous cycles and forcings. We use the 
word “empricial” instead in the revised manuscript. 

2. […] remove the word “causal” [...]. Only statistical similarities are tested, and no conditioning
is performed to infer conditional dependencies. Also, no dynamical models are used, which could 
provide some hints at actual causality.

We agree that the word “causal” is problematic to use in our context and removed/replaced it 
throughout the manuscript.

3. I don’t think that previous work on the DO cycles is sufficiently recognized by the au-
thors. […] 

We agree that a paragraph summarizing previous hypotheses is helpful and included one at the 
beginning of the introduction.

4. […] ice volume […] strong influence on the interstadial durations; this
observation has, however, been made previously: Mitsui and Crucifix (Clim Dyn 2017) show from a 
statistical point of view that including this forcing is supported by the data, and Boers et al. (PNAS 
2018) use it explicitly to infer the interstadial cooling rate during interstadials.

We thank the reviewer for pointing this out. We are aware of these studies, but we don’t discuss them in
the manuscript, because we do not actually argue for a correlation of the interstadial durations and ice 
volume. Even though this is not discussed in the manuscript, we find that for the whole data set, the 
correlation is not significant at 95% (can be seen in Fig. 5), and the influence of ice volume on 
interstadial durations is mostly due to the long interstadials 23.1 and 21.1 occurring at low ice volume. 
This fact is then further obscured by the short 23.2 and 21.2 happening during the same period.

In the paper, we are presenting results on the cooling rates as a predictor of the interstadial durations, a 
connection of the cooling rates and forcings (such as ice volume), referring to earlier work (Schulz 
2002), and argue that CO2 is actually a better predictor than ice volume.

5. The ultimate goal of this study is to provide the statistical basis for discriminating between different 
mechanisms to explain the DO events, but comparison of different mechanisms is not performed. Do 
the statistical features you extract give some hints at which of the prominent hypotheses listed above 
(point 3) are more likely? It would be nice to include at least a discussion on this at the end, as it is 
somewhat promised in the beginning.



We agree that this is desirable and reworked large parts of the Discussions Section in order to establish 
a stronger connection of our work and leading hypotheses or model experiments concerning DO 
events. To test our results in more detail in future studies, more models, or at least more runs of existing
models, under different forcing scenarios are needed.

Response to Reviewer #2

We thank the reviewer for his/her careful evaluation of the manuscript, which helped to significantly 
improve the manuscript. Below, we reply to all comments of the reviewer (red font color), while 
splitting some longer comments into multiple paragraphs.

[…] after 31 pages of manuscript the reader has not really learned anything that was not already 
described in the literature. The authors confirm the 17-yr old result by Schulz (2002), briefly revisit the 
result by Buizert and Schmittner (2015), and confirm some of their own conclusions from Lohmann 
and Ditlevsen (2018) using a new method. 

It is obviously our duty to convey the novelty more clearly to the reader. We hope that this comes 
through better in the revised manuscript. We clarify this by a more precise interpretation of our results, 
as outlined in the following comments. 

We do not confirm all results by Schulz (2002), but on the contrary we critically examine Schulz’ 
results by first doing an actual statistical analysis of the relationship of cooling rates and interstadial 
durations. Secondly, we show the limitations in time of the ice volume forcing hypothesis, as well as 
statistical limitations relating to simple common linear trends. Furthermore, we derive that atmospheric
CO2 is a better predictor of the cooling rates. 
Similarly, we only recover the result by Buizert and Schmittner (2015) when discarding outliers. The 
outliers themselves require further interpretation, which relates to the comments further below.

One new element (the idea that cooling rates control interstadial duration, a variation on the Schulz 
argument) is based on the fallacy that correlation proves causation.

We believe this is a misunderstanding of language, which should now be clear in the revised 
manuscript. We do, of course, not imply that correlation proves causation. We simply observe that the 
interstadial durations are predictable to a reasonable degree after several hundreds of years. The 
physical climate process causing this cannot be identified within our data analysis and the cooling rates 
are solely an indicator allowing us to measure this process. (See also comments to 2))

We will clarify this in all corresponding parts of the manuscript.

Here is a brief summary of what is in our opinion the novelty:
• We develop a model for objective characterization of the DO events observed in ice core 

records as noisy saw-tooth “shapes”. 
• We classify the DO events based on their consistency with the saw-tooth shape.



• We extract a variety of features based on the model parameters obtained from the record, and 
look for relationships in between features and forcings. The analysis is more extensive than any 
previous efforts and may be used as a reference for future research. It is (partly) summarized in 
the heat map of figure S4. To highlight this better, we have moved it to the main text (Sec. 4).

• The interstadial durations can be predicted reasonably well a few hundred years after GI onset. 
This is due to the gradual cooling being sufficiently linear and consistent over time. → Thus, a 
noise-induced scenario is unlikely for the interstadial-stadial transitions.

• In the younger half of the glacial, atmospheric CO2 is a good predictor of the cooling rates, 
whereas we cannot establish a significant driver for the older half.

• Even though there is correlation with the stadial levels and insolation, the stadial durations 
cannot be predicted accurately. When removing forcing influences, the variability remains 
exponential.

• We extract warming durations from the record and analyze the distribution and temporal 
evolution (versus forcings). A comparison with the theory of reactive paths for stochastic multi-
stable system shows that this corroborates results from the stadial durations: The stadial-
interstadial transition is consistent with a noise-induced scenario.

• The DO warming amplitudes are weakly predictable from the stadial levels. However, they are 
not significantly correlated with external forcings, such as ice volume as has been suggested 
previously.

1) In deciding which events are stadials the authors rely completely on R14. [….], the authors inherit 
all the assumptions and historical numbering conventions that are in that study.

DO cycles come along a wide spectrum of shapes and timings, and deciding what is
a stadial […] vs. a cold sub-event […] is a very arbitrary choice.

We fully agree that the careful analysis and the classification made in R14 that could be debated. It is 
not the focus of our paper to challenge this classification, which we assume to be a reasonable basis for 
our analysis. 

More specifically, in R14 a threshold is needed to decide which events are sub-events and which not. 
However, in any conceivable scenario this would be necessary to pick events out of smaller-scale 
background variability. The R14 classification is based on three ice cores and two proxies and from the 
point of view of Greenland climate seems justified. As such, it is “Greenland-centric”, which is 
discussed in the comments further below.

We mention these assumptions in the revised manuscript, and acknowledge that some of our results 
depend on them (Changes document p3 l28 – p4 l2 and p29 l2-14).

This leads to some strange results from Lohmann and Ditlevsen, such as stadials that lasts only 20 
years (P18 L24). From a climatic perspective, such short cold periods are more likely to be cold sub-
events rather than true stadials.

The 20 years of GS-24.2 only refer to the time where the proxy is stable. The overall break in between  
adjacent interstadials (including cooling and warming) is about 170 years, and certainly more 
significant in amplitude than any sub-event in the Greenland records.



If driven by the AMOC changes, which our analysis does not assume a priori, the cycle of shutdown 
and resurgence would then be 170 years, which is close to the 250 years suggested by the reviewer. The
numerical value of 20 years is unlikely to be important since we mostly use rank statistics in our 
analysis.

The cause of the cold sub-events [...] is of course not well known, but most likely they represent 
outburst floods (e.g. from proglacial lakes) that temporarily increase N-Atlantic sea ice cover and cool 
Greenland, the 8.2 ka event is the posterchild for such events. They occur most frequently during 
periods of ice sheet decay (MIS4-MIS3 and MIS2-MIS1 transitions) supporting this interpretation. 
When is a cold period a sub-event and when a true stadial? R14 applies some criterion of
baseline separation; this makes GI-24.1b a “cold event” and GS24.2 a “stadial”, even though they 
appear nearly identical and GS24.2 may just be a larger cold event (bigger outburst flood?). In other 
"stadial" cases (GS 14, GS 23) baseline separation is not achieved and R14 calls them stadials only 
because they choose to adhere to historical DO numbering (based on older low-res cores). Many DO 
events have a clear warming period at their end (7a, 8a, 12a) – could DO 13 be one of those? The 
difference is arbitrary.

As above, this is more a discussion of the quality of the classification in R14, which we do not discuss, 
however, we have the following remarks: 

In terms of Greenland ice cores, GI-24.1b and GS-24.2 are not nearly identical. Estimated form the 
high-resolution NGRIP d18O record, GS-24.2 lasts 170 years (when including warming and cooling 
periods) at an amplitude of ~3.8 permil, whereas  GI-24.1b is 130 years at ~2.0 permil amplitude. 

We agree that the case of GS-14 and GS-23 (labeled quasi-stadials by R14) is more debatable. First, if 
one compares GI-13 and GI-22 with the other “rebound” type events, they are simply more pronounced
(longer, slightly larger amplitude). Second, we need to include them because only like this we can get a
satisfactory saw-tooth fit throughout the record, and representative features for each event.
This is very pronounced for the case of GS-23 (see picture below, where we merge GI-22 and GI-23.1 
in the fit), and to a lesser extent for GS-14.



We do not claim that our fit is a method to decide whether they should be considered individual events, 
but in order for our analysis to be meaningful, we require a reasonable fit.

While we admit that the choice of GS-14 and GS-23 might go one or the other way, since we do 
statistical robustness tests, our results do not rely on the presence or absence individual stadials. In fact,
we performed a semi-complete analysis for a fit without using GS-23 (not discussed in the manuscript),
yielding qualitatively unchanged results.

We appreciate the reviewers comment and discuss these issues in Section 2.1 of the revised manuscript 
(Changes document p3 l28 – p4 l2).

DO 24, 17, 16, 15 each consist of 2 DO events in the Greenland-centric R14, but in for example the 
Hulu speleothem record and the Iberian margin SST these events are recorded as single (and not 
double) events. Could these be single events from the perspective of the overturning circulation, but 
separated events in Greenland due to regional effects (like freshwater)?

These sub-events are always the outliers in the scatter plots (5a, 6a, 6b), making this an interesting 
point to consider. The authors note that “Buizert and Schmittner (2015) lump each of the interstadials 
24, 23, 21, 17, 16, 15 and 2 together into one event, even though they are comprised of two events.” 
But are they two events? If we put 100 paleoclimate researchers in one room, my guess is that less than
half would call GS 24.2 a true stadial (minimum requirement to support the claim that DO 24 is 
comprised of 2 events). The vote may be different for GS 15.2. I don’t want to claim here that they are 
1 or 2 events, just that this depends completely on arbitrary definitions, and that reasonable people can 
disagree on the number of “true” DO cycles give that the cold sub-events are ubiquitous and can have a
wide range of sizes. 

We agree that it is still unclear whether successions of shorter events found in the Greenland ice cores 
are complete reorganizations of the large-scale climate system (such as AMOC shutdown and 
resurgence), in the same way as longer events are.

While the Iberian margin SST record is not high-resolution enough to resolve the shortest events, Asian
monsoon speleothem records, including Hulu cave, now exist in sufficient resolution, and indeed 
resolve events such as GI-21.2, and the rapid successions of GI-17.2 to GI-15.1 (Cheng et al. 2016). 



The same goes for Alpine speleothem records, which have a very detailed similarity to the Greenland 
ice cores. The event succession of GI-15-17 is seen (Moseley et al. 2014) as full-amplitude DO events, 
suggesting that the centennial variability is not regional to Greenland. Similarly,
events 23.2 and 21.2 are identified (Boch et al. 2011). 

Additionally, the short events are well recorded in methane records from Greenland and Antarctica 
(WAIS Antarctic record: Rhodes et al. 2015, Rhodes et al. 2017; Greenland NEEM record: Chappellaz 
et al. 2013).

Of course, we cannot argue in this way that chosen events are indeed the most prominent globally.
However, this problem is very hard to address, and beyond the scope of this work. A more ‘global’ 
assessment of which centennial- to millennial-scale abrupt climate changes should be considered most 
important is difficult since different regions and proxies are sensitive to a different degree to the various
parts of the climate system undergoing change, and thus will most likely  highlight different events. For
example, Asian monsoon proxies are much more sensitive to Heinrich events, so it is difficult to use 
them to study the statistics of DO events. An assessment including different types of proxies in 
different regions will require a (subjective?) weighing of some kind to extract the type of abrupt 
climate change one wishes to study. Furthermore, dating issues will need to be overcome.

Since the Greenland ice cores are in a region that is very sensitive to the North Atlantic climate they are
ideally suited to study climate changes related to the AMOC.

Nevertheless, we agree with the reviewer that shorter events might be more specific to Greenland and 
could have a different trigger than longer events that are more clearly recorded in other archives. 
Simply due to their shortness it is not unlikely that they indeed do not represent global reorganization 
of the oceanic circulation or climate system.

Including the short events in the analysis is a way of identifying how they are different, in terms of 
their detailed features as well as in the context of forcing. Indeed, the fact that certain events show up 
as outliers might be because they are caused by something different than the majority of events.

We acknowledge the open problem of the cause and significance of the shorter DO events in the 
Discussion Section of the revised manuscript (Changes document p29 l2-14).

One could turn the question on its head, and argue that, based on the fact that the sub events of DO 24, 
23, 21, 17, 16, 15 consistently show up as outliers in scatter plots, and fit the climatic trends when 
lumped together, they are actually single (and not double) events from the perspective of the global 
climate system and oceanic overturning circulation.

We agree that the evolution of the properties of DO cycles over time and their relationship to external 
influences becomes clearer when certain shorter Greenland events are discarded. Still, we do not 
believe that if discarding outliers (or combining short events) the correlation with external forcings or 
climatic trends is strong enough to warrant such a reasoning.

One way to make the present paper more interesting is to try out different definitions of a stadial 
(beyond adopting R14), and see what definition may minimize scatter in the plots. What do other 
climate archives like speleothems suggest these events looked like? Would a duration threshold (e.g. 



cold period longer than 300 years) be a better way to define a stadial? There are probably good climatic
reasons why DO timescales are linked to global climate markers (as argued by e.g. Schulz 2002 and 
Buizert and Schmittner 2015), so an approach of finding an objective (multi-proxy?) stadial defini-
tion that minimizes scatter is justified in my view.

We do not believe that it is good to put a constraint of stadial durations, such as 300 years, within our 
framework. We treat the record without preconceived notions of the underlying driver, i.e., AMOC 
changes or hypothesized outburst floods for short events, which has both merits and shortcomings.

In terms of multiple hypothesis testing it is risky to try out many different definitions of stadials and 
correlate them with many different global climate markers, in order to find a match. We would 
furthermore need to decide which features would we like to be explained by the global climate 
markers, which is unclear a priori.

Finally, doing a full analysis as presented in the paper with many different stadial definitions is 
unfortunately beyond our present capacity and is left for future work.

I want to emphasize this is not a critique of R14 itself, which seeks to provide a consistent 
nomenclature for events and has succeeded in doing so. The problem arises when R14 is mistaken for 
an objective and meaningful decision on which events are “true” stadials – which was never the aim of 
that study. The author’s algorithm has the liberty to change the timing of transitions, but not the number
of events, and so does not challenge the R14 definitions.

To summarize an excessively long comment, the approach by the authors has a fundamental and 
tenuous assumptions that is neither acknowledged nor examined. They interpret the R14 beyond its 
intended use as a climatically meaningful distinction of which cold events are stadials and which are 
not. While the shape fitting is done with much mathematical rigor, these underlying assumptions will 
always limit the validity of their conclusions. Trying different definitions for stadials would be an 
interesting research direction, as well as different proxy archives.

In our judgment, solving the problem of unique classification of DO events will require a much better 
globally extended set of high resolution, well dated climate records, which we do not have today and 
probably also a realistic theory of their cause. We consider this as a fundamental problem, but 
somehow disconnected from our results, which will hopefully be a steppingstone towards solving the 
puzzle of the DO events. 

In the revised manuscripts, the assumption of a predefined set of DO events is acknowledged and 
discussed (Changes document p3 l28 – p4 l2 and p29 l2-14). An extension of our algorithm to also 
objectively detect events would be less powerful than the assessment of R14, because it is based on 3 
ice cores and 2 proxies, which is why we did not design the algorithm in such a way.

We agree that the use of other proxy archives is very promising. However, within the framework of our 
method these are difficult to incorporate, since they do not show a DO signal that is consistent enough, 
and has comparable resolution and age control.

2)
One of the main conclusions of the paper is that cooling rates “control” the interstadial durations (P14 
L13, P16 L21 and elsewhere). They are only correlated, which does not prove any kind of causation or 



control; both could be controlled by a third parameter such as AMOC strength, CO2 or SH temperature.
This correlation was discovered by Schulz (2002), who actually argues for an ice volume control.

The authors further suggest that the “interstadial duration is determined as soon as the rate is 
established” and that the duration is “determined” a few hundred years after the onset. However, if both
cooling rate and duration are controlled by a third parameter (like AMOC strength), this interpretation 
is strange. In my view, Fig. 5b simply reflects the amount of data needed to determine the slope in a 
noisy time series, and is not some time scale on which the interstadial duration is somehow 
“determined” by the coupled climate system. 

We have tried to clarify this misunderstanding in the manuscript. If we may be a little impertinent: If 
you are walking to a town 10 km away at a pace of five km/h, you’ll be there in two hours. I can 
predict that as soon as I know your pace. That may take me five minutes to do, but that implies neither 
that five minutes has any significance for the prediction (two hours), nor whether your speed and the 
distance to town are controlled by any third parameter. The only “control” is that the speed -kept 
constant- controls the arrival time.

Thus, the word “control” was meant in the context of our statistical analysis. As elaborated in the 
manuscript, each interstadial duration is defined by the cooling amplitude divided by the rate. If either 
the amplitudes or the rates have a clearly dominant variability they also effectively “control” the 
durations of the interstadials. We show that this is the case for the rates.
We rewrote parts of the manuscript to clarify this (Changes document p17 l24-29, p18 l11-12 and p27 
l1-8).

We agree with the reviewer that a mutual control by a third parameter is likely, which is also what we 
are investigating extensively in the paper. In fact, we think it is not only likely but necessarily the case.
The gradual cooling rate is merely an indicator of the global climate reorganizing on a specific 
timescale. The termination of the interstadial, and thus its observed duration, is the final consequence 
of it. Both durations and cooling rate are driven by the same process, even though the actual interstadial
termination might be governed by additional processes that influence the climatic threshold.
Our empirical finding is that this timescale seems to be consistently expressed via the linear cooling 
already early on in the glacial. As a result, the end of the interstadial is already anticipated and can be 
predicted.
We thus obtain the novel result that the interstadial-stadial transition is not purely noise-induced.

We agree with the reviewer that our result of the time elapsed until the durations can be predicted 
(150y-350y) is influenced by the amount of data needed to determine the slope. However, this time 
elapsed is only relevant because the cooling trend is actually “linear enough”, which is not obvious a 
priori and which is what we implicitly test for.

On a side note, I am uncomfortable with language of transitions being “determined” thousands of years
in advance. Interstadial terminations occur because at that time interactions between components of the
climate system are favorable for such a transition (including “noise” components). The climate system 
is not a decision-making entity that plans things centuries to millennia ahead. The word “predicted” 
seems more appropriate. So please revise.

We are unsure what is the basis for this argumentation. 
Concerning the climate system planning ahead: Some models would suggest that the DO cycles are 
self-sustained oscillations, with a period potentially slowly modulated by external forcing. In this case, 



interstadial terminations would indeed be determined centuries/millennia in advance due to the 
periodicity.
We do not argue that this scenario is the case, but only want to point out that it is conceivable that 
climate transitions are determined ahead due to slow, deterministic processes that may be measured a 
long time before the actual transition.

Our use of the word “determined” is simply based on the observation that 1) the gradual cooling is 
sufficiently linear and 2) the variability of the rates is larger than of the amplitudes. As a result, the 
interstadials are reasonably well determined already a few hundred years after interstadial onset. 

If the authors want to argue for their mechanism (cooling rate controls duration) they
will have to provide a meaningful climatic pathway for such control, which is currently
lacking. At the very least they have to clarify all the language suggesting causation.

As above, we hope we can clarify this with better terminology and language in the revised manuscript.
We do not aim to find a mechanism by which the cooling rates control the durations. It simply follows 
from our analysis that there is a time scale in the climate system, which manifests itself in the rate of 
the roughly linear interstadial cooling, which is established soon after interstadial onset, and which 
approximately predicts the duration of the interstadial.

We do look for an actual control among the external forcings and find that CO2 is the best predictor for
the younger half of the glacial. However, whether CO2 really acts as a forcing remains to be seen as it 
also shows millennial-scale variability in line with the (Antarctic) DO cycle, and is likely a response to 
it. The mechanism by which CO2 influences interstadials depends on what drives the DO cycles in the 
first place, which is not known a priori and is hard to establish from our analysis.

3) The discussion section is basically a lengthy summary of the preceding chapters, which is not the 
function of a discussions section. This will need to be rewritten. There are many caveats and 
assumptions that need to be addressed, and the work can be placed in a broader paleoclimatic context.

We agree and rewrote large parts of this section.

4) In earlier work, Ditlevsen suggested that the DO transitions are purely noise-driven – others have 
probably made that suggestion also (Ditlevsen et al., 2007; Ditlevsen et al., 2005). Given that event 
durations are clearly correlated to global climate parameters, is that still your view?

In this study, we regard the warming and cooling transitions separately. Our analysis shows that neither 
the stadial nor the interstadial durations can be clearly matched unambiguously with a climate forcing 
over the entire glacial. Only the general trends may be explained by forcing, an exception being 
evidence for good correlation of CO2 and the interstadial cooling rates in the younger half of the 
glacial.

Conceptually, evidence for a modulation of the occurrence frequency of events over time does not 
exclude that the individual transitions are purely noise-driven. The modulation only affects the 
expected value of the occurrence frequency.
Nevertheless, this study shows that the interstadial-stadial transition appears to be less consistent with a
noise-induced process, due to their predictability.



On the other hand, we provide new independent evidence for a noise-induced scenario for the stadial-
interstadial transition by comparing the DO warming durations to reactive trajectories. 
Of course, this is not the end of the story since new data/analysis could find evidence to the contrary. 

5) The referencing of published material is very minimal for a paper of this length on a topic that is so 
extensively written on. Much is in fact known about the DO cycle (despite the author’s claims to the 
contrary). Marine sediment data clearly show a link to the Atlantic ocean circulation (see e.g. review by
Lynch-Stieglitz, 2017), and climate modeling studies clearly implicate sea ice cover in the North-
Atlantic. Many remote teleconnections have been clearly described, and several drivers have been 
proposed. Also, many more papers have used similar statistical techniques on the DO cycle that
should be referenced.

We agree that a review of published hypotheses and model experiments is useful and added a paragraph
at the beginning of the introduction. If the reviewer is aware of more papers with similar techniques 
that are relevant to our results, we are happy to include them.

6) The authors ignore Heinrich events, while it is commonly believed that H-events lengthen the 
stadials in which they occur by putting freshwater into the North Atlantic. Please discuss this in the 
stadial duration section.

We thank the reviewer for pointing this out. Indeed, we omitted a discussion of Heinrich events, 
because it is difficult to find manifestations of them in the Greenland records, and due to difficulties of 
timing them relative to Greenland ice cores. Nevertheless we did some statistical tests and included the 
following as a new sub-section (4.2.3) in the manuscript:

“Besides DO events, Heinrich events are the other major mode of millennial-scale climate variability 
during the last glacial period. These events correspond to massive discharges of ice rafted debris found 
in ocean sediment cores (Heinrich, 1988), with large climatic impacts that are well-documented in 
numerous proxy records at various locations. While their duration and timing needs to be better 
constrained, we follow Seierstad et al. (2014) for the temporal link of Heinrich events and the
GICC05 chronology. This yields the set of Heinrich events H2, H3, H4, H5a, H5, H6, H7a, H7b and 
H8, which overlap with stadials 3, 5.2, 9, 13, 15.1, 18, 20, 21.1 and 22, respectively. Since some of 
these Heinrich events might be less established in the community, we also look at the reduced set of 
H2, H3, H4, H5 and H6.
We test whether these ’Heinrich stadials’ have significantly different properties than the remaining 
stadials, such as longer durations, by randomly sampling 9 stadials (5 for the reduced set) from the 
entire set without replacement and calculating the mean duration of this subset. We repeat many times 
until we can estimate the probability of trials yielding a higher mean duration than the actual set of 
’Heinrich stadials’. If this is less than 5% (corresponding to p=0.05) we reject the hypothesis that 
’Heinrich stadials’ have the same mean duration as the remaining stadials at 95% confidence. This test 
gives essentially the same results as a one-sided t-test.

For the full (reduced) set of Heinrich events we find p = 0.028 (p = 0.022). It is not obvious whether 
this should be considered significant in the sense of a hypothesis that Heinrich events prolong stadials. 
A better statistical test is needed, since if the events were to occurr randomly during the course of 
stadials they would naturally be found preferentially in longer stadials. We leave a resolution of this for
upcoming work. Based on the idea that ’Heinrich stadials’ are colder than normal, we perform a test on 



the stadial levels, yielding p = 0.052 (p = 0.047). Again, this is probably not significant since Heinrich 
events mostly occur in the younger glacial half with generally lower levels. We can reject the notion 
that DO events following Heinrich events are ’stronger’. A statistical test on the DO warming 
amplitudes yields p = 0.102 (p = 0.472), whereas a test on the interstadial durations yields p = 0.403 
(p = 0.583). This might depend on the precise timing of H3, which in our analysis precedes the 
especially weak GI-5.1.”

7) The paper is very long and could be shortened substantially.

We tried our best, but believe that most of the content needs to remain in order to support our results 
and demonstrate statistical significance.

8) There is no data availability statement.

Will do in the final version.

9) Are the d18O data corrected for mean ocean d18O? This would of course influence the cooling rates 
of long interstadials.

The data are not corrected for mean ocean d18O. We agree that doing so will in principle influence the 
cooling rates. However, the changes in mean ocean d18O during the longest interstadial (GI-23.1) are 
only about 0.2 permil (Shackleton 2000; Waelbroeck et al. 2002), which is an order of magnitude 
smaller than the Greenland isotopic changes, and thus negligible for our analysis.

10) The work mostly just confirms earlier work. I would encourage the authors to think about ways to 
broaden or improve the scope, to reward the reader with something new.

With our response comment (specifically the beginning and 1) and 2)) and corresponding revisions to 
the manuscript, we hope to convince the reviewer that our paper does not merely confirm earlier work, 
but instead critically assesses it, and furthermore provides a number of new results.

11) The uncertainties in the fitting parameters are carefully estimated. Could they be listed in table 2? I 
imagine that for the very short interstadials (<400 yrs) things like the gradual cooling slope are not well
constrained.

It is hard to list all uncertainties in this table, since we preferentially need two numbers to specify the 
uncertainties in terms of 1-sigma ranges. This would result in a very squeezed table. 

Regarding the cooling slopes of shorter interstadials: Uncertainty in the rates needs to be assesses with 
care. We propose to look at the ratio of the 1-sigma range to the best fit value.
We find that indeed the cooling rates of the shorter interstadials are more uncertain than those of the 
longer interstadials. There is a significant negative correlation (Spearman r = -0.74) of the relative 
uncertainty in the rates and the duration, as expected due to the smaller amount of data available to 
estimate the slope for shorter events. See the following plot of relative uncertainty in the slope vs. 
duration.



There are two events that we indeed could say are not well constrained: GI-17.2 and 15.2. We also 
exclude these from our analysis investigating the predictability of interstadials. (Sec 4.1.3)

In the manuscript, error bars for the logarithmic cooling rates can be seen in Fig. 6 c/d. Taking into 
account the many orders of magnitude of the cooling rates, we conclude that apart from the two outliers
(can be seen as largest error bars in the plot), the other cooling rates are well constrained, as can be 
seen by the error bars on the lgarithmic scale. Simply put, fast rates are fast even when taking into 
account the error, which in some cases can be more than 100% relative.

12) Why do you use a constant stadial level? Do the stadial levels resemble Antarctica, as suggested by 
(Barker and Knorr, 2007).

With few exceptions, the stadials do not show a clear trend, but rather fluctuate around a mean. For the 
purpose of estimating the stadial or interstadial onset times, using a constant stadial part works 
sufficiently good.
Looking into the finer details of trends within the stadials is certainly of interest, but was beyond the 
scope of our paper.

We have no reason to believe that the Greenland d18O stadials resemble the Antarctic record, as 
observed by Barker and Knorr for a detrended/dejumped Greenland dust record. The constant stadial 
levels do correlate with the Antarctic EDML record at stadial onset, however this is mostly due to 
common linear trend, as mentioned in Section 4.2.2. A more convincing correlation is found with 
insolation.

13) Have you tried including other records? The Ca record has much better signal to noise, allowing for
better timing determination. I think marine and speleothem records have much to add to the problem 
also.



We have not tried to include records other than Greenland d18O records. The Greenland Ca record has 
a more complicated shape that is not as well captured by a piecewise-linear fit throughout the whole 
glacial.
We agree that marine and speleothem records are important to answer further questions relating to DO 
events. However, as mentioned in our comments to 2), they do not have such a consistent DO signal 
(which there are probably good reasons for). Furthermore, they are less ideal in terms of resolution and 
timescale. The layer-counted Greenland ice core records provide excellent relative time constraints 
allowing for the determination of stadial, interstadial, and abrupt warming durations. 

P1L7: remove “mechanistic”. This is not attempted, in my view. Climate dynamics are
not discussed.

Ok, we use the word “empricial” instead.

P1L14: “largely unknown”: A lot is known, the gist of which could easily be summarized
in a few sentences.

We agree and added a new opening paragraph with some references to published hypotheses and 
modeling work.

P2L16: “we do not have to rely on any subjective choice of stadial and interstadial onset or levels”. 
This is a misrepresentation, in my view. The subjective choices were all made by R14. The algorithm 
does not have the ability to decide independently how many events there are, and whether individual 
cold periods are stadials or just cold sub-events.

We agree that the sentence as it is can be misleading.
It was meant to refer to choices of what constitutes an event, but to choices of a segmentation of the 
record if we would ramp-fit each event individually.
We reformulated and hope it is clearer now: “Thus, our results are not sensitive to subjective choices of
cutting the record at predefined times before and after a transition.”

P2L24: “In contrast. . .state” But the transitions are not purely noise-driven, since the
period durations are linked to global climate, no?

We indeed find some correlation of the stadial durations with insolation. However, since the correlation
is not very strong, we interpret this as a modulation in time of the expected residence time in the stadial
state, which does not mean that the transitions themselves are not noise driven. In the paper we present 
that even if one removes the trend due to forcing on the stadial durations, we still find an exponential 
distribution, as expected for noise-induced phenomena.

If one considers a slow modulation of the average residence time as part of the driver, then the term 
‘purely’ noise-driven might be problematic.

P3L13: Do the short cold events influence the fitting?



Although they might influence the fitting in some minor way, you can visually verify that they are 
mostly ‘ignored’ by the linear fit, and the fit just follows the linear slope of the remaining parts of the 
interstadial. (see e.g. GI-24.1, GI-17.1, GI-16.1, GI-14, GI-13)

P4L29: Instead, we use . . . basin-hopping. This means very little to much of your readership. Please 
elaborate or leave out.

We agree and omit the term here. Basin-hopping is explained in Appendix A, and a citation is given.

P5L8: “climate features” should be “d18O features”

Ok, we leave out ‘climate’.

P5L12: “mechanistic” I don’t think this is the right word. Climate dynamics are barely
discussed.

We agree and use the word ‘empirical’ instead.

P7L1: but you use 90% confidence, correct? How many false positives for 0.9?

Indeed we mostly consider correlations etc. at 90% for further testing, and at 90% there are 45 false 
positives, which we added in the revised manuscript. The p<0.1 mentioned in the manuscript is just a 
guideline of how we proceed with this large number of statistical tests. Note that we often also 
investigate correlations that are not significant 90% for the entire data set, as mentioned earlier in the 
manuscript.

P7 section 3: why is DO 1 omitted?

As mentioned in the manuscript, GS-2.1 is non-stationary and would influence both GI-2.1 and GI-1 in 
a way that many features, such as warming amplitude and durations, would need to be discarded as 
outliers for these events. The d18O values during this stadial rise higher for a long period of time than 
the maximum of the preceding GI-2.1.

Fig 2: can you comment on DO 23.1? You routine picks its termination 3 ka before R14
does.

From the NGRIP d18O and the notion of stadials being defined as roughly constant low values after a 
gradual cooling this seems justified. In NGRIP, GI-23.1 consists of roughly 10kyr of gradual cooling, 
followed by 3.5kyr of approximately constant values leading up to the warming of GI-22.
Since our analysis is only based on one ice core and proxy we however do not suggest that this is 
sufficient to argue for a definition of GI/GS-23.1, which is why we do not discuss this in the 
manuscript. Still, our analysis is unlikely to be sensitive to the precise parameters of a single event.

Section 4.1.1: Is there any conceivable mechanism by which cooling rates determine
interstadial duration? Correlation and causation are falsely equated here.

We refer the reviewer to our previous comments on 2).



Our analysis suggests that the cooling rates and their associated timescale are a manifestation of a 
deterministic climate process that pre-determines the interstadial durations. From our analysis we 
cannot establish the nature of this climate process.
We adjusted the wording in this paragraph to not give the impression we equate correlation and 
causation.

P13 L13: What is lambda? Wasn’t the cooling rate called s_2? Also specify whether
you’re talking about the gradual or fast cooling rate

We agree that this might cause confusion. It is a new definition that we added to make the notation 
more intuitive, along with D_I for the interstadial durations and A for the warming amplitudes.
For consistency, we added these definitions to Table 1 in the revised manuscript.

P14L3: fixed cooling rate. . . You mean all interstadials would have the same cooling
rate? We know this to be untrue. I do not understand this hypothetical scenario.

We are explaining the two limiting scenarios of either the amplitudes of the rates to be perfectly 
constant. Of course neither is true, but we test in the following which scenario is closer to the truth.

P14L8: “strong control”. Correlation is not causation

We rephrased to the following: “Thus, from the perspective of linear interstadial cooling, the 
interstadial durations over the entire glacial are indeed largely governed by the cooling rates, in 
agreement with...”

P14L22: log-normal: is this meaningful since you only fit the tail of the log-normal
distribution?

We are not only fitting the tail of the log-normal distribution. Maybe the reviewer refers to the AD test 
being tail-sensitive? In this case, we also use the Cramer-von Mises and Kolmogorov-Smirnov tests, 
which yield qualitatively unchanged results.
We mentioned this too far below in Section 4.3.1, but in the revised manuscript moved this to Section 
2.4, where it is more approriate.

P15L10: “determined” change wording. The climate system does not plan ahead mil-
lennia. If you want to argue for such a mechanism you should at least provide a dy-
namical pathway, even if speculative.

Changed sentence to: “If the rates govern the durations much more so than the cooling amplitudes, then
the durations can already be approximately predicted as soon as the rate is established, which might 
happen early in the interstadial.”

P16 L19: Not necessarily. Both duration and cooling rate are controlled by heat transport and 
interactions within the climate system, and appear to correlate to a third parameter like CO2, ice 
volume, or similar. Within a few hundred years you can detect the cooling trend within the noisy time 
series, and because of the correlation you can predict the interstadial duration with reasonable accuracy 
at that time. Nothing is “determined” a few hundred years into the event.

We refer the reviewer to our response to Comment 2) above. 



P16L21: rewrite.

“Given the previous result, we investigate...”

P18L16: see comments above. Whether these are one or two events depends on ones definition of a 
stadial. There is no widely accepted definition, and R14 provides nomenclature only and is not the final
authority on this matter. Other archives should also weigh in on this question, since Greenland may 
reflect regional effects.

We refer the reviewer to our previous comments above.
We now worded differently: “This disagreement comes from the fact that Buizert and Schmittner 
(2015) view each of the interstadials 24, 23, 21, 17, 16, 15 and 2 as one event, whereas we consider 
these as two events each, as suggested by the analysis of Rasmussen et al. (2014).”
 

P18L24: a 20yr stadial is probably not a stadial in most people’s definition. A time threshold (250 yrs?) 
may be of use in defining stadials. 250 yrs provides a rough timescale of Atlantic overturning (volume 
divided by rate), and makes some intuitive sense for that reason.

See our response to Comment 1)

P18L27: the data ARE consistent with. . . (data are plural).

Ok.

Fig 7a: all outliers are in MIS5. Is that relevant?

We agree that this might be relevant and it holds not only for Fig 7a, but for all models we use for the 
stadial durations, as mentioned in the manuscript.

Since the correlation of the remaining events is not very strong but “the models fit only the overall 
trend and leave unexplained variability on top of it”, we prefer not to interpret the fact that the outliers 
are in MIS5.

P19L6: common forcing makes most sense, right? Weak AMOC means low temps and
long stadials?

We agree that it makes intuitive sense for long stadials to be also the coldest. However, we don’t know 
whether this would be due to background forcing or as a result of the mechanism driving the climate 
transitions, such as AMOC changes, or both.
From the perspective of our study the drivers and (most relevant) forcings are not known a priori, 
which is why we are testing evidence for it.

Discussion: This is just a lengthy summary. Please discuss the strengths and short-
comings of your method, and place it in a broader context.

We agree and rewrote the Section.



P24L5: “cooling rates clearly determine” rewrite

We rewrote: “Because these durations are much more strongly governed by the cooling rates than by 
the cooling amplitudes they can be predicted to a good approximation as soon as the cooling rates have 
stabilized.”
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Abstract. The strongest mode of centennial to millennial climate variability in the paleoclimatic record are the Dansgaard-

Oeschger (DO) cycles. Despite decades of research their dynamics and physical mechanism remain poorly understood. Valu-

able insights can be obtained by studying high-resolution Greenland ice core proxies, such as the NGRIP δ18O record. However,

conventional statistical analysis is complicated by the high noise level, the cause of which is partly due to glaciological effects

unrelated to climate, and which is furthermore changing over time. We remove the high-frequency noise and extract the most5

robust features of the DO cycles, such as rapid warming and interstadial cooling rates, by fitting a consistent piecewise-linear

model to three Greenland ice core records. With statistical hypothesis tests we aim to obtain an empirical , mechanistic un-

derstanding of what controls the of amplitudes and durations of the DO cycles. To this end, we investigate distributions of

and causalities
::::::::::
correlations in between different features, as well as modulations of them in time by external climate factors,

such as CO2 and insolation. Our analysis suggests different mechanisms underlying warming and cooling transitions due to10

contrasting distributions and external influences of the stadial and interstadial durations, as well as the fact that the interstadial

durations can be predicted to some degree by the linear cooling rates already shortly after interstadial onset.

1 Introduction

The
:::::::
Different physical mechanism(s) and cause of the

:::::::::
underlying Dansgaard-Oeschger (DO) events are largely unknown and

debated. Modeling and simulations of the events are guided by the
:::
have

:::::
been

::::::::
proposed

::
in

:::
the

:::::::::
literature.

::::
Most

:::
of

:::::
these

:::
are15

:::::::::::
characterized

::
by

:::::::
changes

::
in

:::::::
between

:::::::
different

::::::
modes

::
of

::::::::
operation

::
of

:::
the

:::::::
Atlantic

:::::::::
Meridional

:::::::::::
Overturning

:::::::::
Circulation

::::::::
(AMOC)

:::
that

:::::::::
accompany

:::
the

:::::
warm

::::
and

:::
cold

::::::
phases

::
of

:
a
::::
DO

:::::
cycle.

::::
This

::
is

::::::::
supported

::
by

::::::
marine

::::::::
sediment

::::
data

:::::::
evidence

::::::
linking

:::
DO

::::::
cycles

:::
and

:::::::
changes

::
in

:::
the

:::::::
AMOC

:::::::::::::::::::::::::::::::::::
(Henry et al., 2016; Lynch-Stieglitz, 2017).

::::::::
Different

::::::
drivers

:::
for

::::
these

:::::::
AMOC

:::::::
changes

::::
have

:::::
been

:::::::
proposed

::::::::
including

:::::
North

:::::::
Atlantic

:::::::::
freshwater

::::::
forcing

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ganopolski and Rahmstorf, 2001; Timmermann et al., 2003; Kageyama et al., 2013),

::::::::
variations

::
in

:::
ice

::::
sheet

::::::::::
topography

::::::::::::::::::::
(Zhang et al., 2014) and

::::::::::
atmospheric

::::
CO2:::::::::::::::::

(Zhang et al., 2017).
:::
On

:::
the

::::
other

:::::
hand,

::::::::
unforced20

:::::::::::::
millennial-scale

:::::::::
oscillations

::::::::
involving

:::
the

::::::
AMOC

::::
have

:::::
been

:::::::
reported

::
in

::::::::::::
comprehensive

::::::
climate

::::::
models

::::::::::::::::::::::::::::::::::::::::::::
(Vettoretti and Peltier, 2016; Klockmann et al., 2018).

::
In

::::
these

::::::::::
oscillations,

:::
sea

:::
ice

:::::::::
variability

::
in

:::::
ocean

:::::::::
convection

:::::
areas

:::::
plays

::
an

::::::::
important

::::
role,

::::::
which

:::
has

::::
been

::::::::
proposed

:::::::::
previously

::::::::::::::::::::::::::::::::::::::::::::::::::
(Li et al., 2010; Dokken et al., 2013; Petersen et al., 2013) and

::
is

:::::::::
supported

:::
by

:::::
recent

::::::
proxy

:::::::
records

:::::::::::::::::::
(Sadatzki et al., 2019).

:::::::
Another

:::::::
scenario

:::::::::
underlying

:::
DO

::::::
cycles

:::::
might

:::
be

::::::::::
spontaneous

:::::::
climate

:::::::::
transitions

:::
due

::
to

::::::::
extremes

::
in

:::
the

::::::
chaotic

:::::::::::
atmospheric

::::::::
dynamics

::::::::::::::::::::::::::::::::::::
(Drijfhout et al., 2013; Kleppin et al., 2015).25
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::::::::
Modeling

::
of

:::
DO

::::::
events

::
is

::::::
guided

::
by

:
proxy records, among which the stable water isotope records from Greenland ice cores

are very prominent.
:::::::
DO-type

:::::::::
transitions

::
in

::::::
models

:::::
range

::
in
:::::

their
::::::::
dynamics

:::::
from

::::::::
stochastic

::
to
::::::::

excitable
::::
and

:::::::::
oscillatory,

::::
and

::
are

::::::::
sensitive

::
to

::::::::
different

:::::::
forcings.

::
A

::::::::
statistical

:::::::
analysis

:::
of

:::
the

:::
DO

::::::
cycles

::::::::
extracted

::::
from

:::::::::
Greenland

:::
ice

::::
core

::::::
records

::::
can

::::
thus

::
be

:::::
useful

:::
to

:::::::
evaluate

:::
the

::::::::
proposed

::::::
models.

:
The records are noisy, and since there are no established theories about how they

should evolve, there is no obvious filter to extract the large-scale climate signal. A common characteristic of the DO cycles5

seems to be an abrupt temperature increase from the cold stadial conditions to a maximum temperature in the warm interstadial

state followed by a gradual cooling until there is another abrupt jump back into the stadial state. This is referred to as the

saw-tooth shape of the events.

Due to the high noise level in the record it is however difficult to discern this specific structure in all of the events. Some

events do not seem to follow the generic shape. Furthermore, there are very short events where it is difficult to speak of a10

gradual cooling episode. Even other events are interrupted by shorter cooling episodes, referred to as sub-events (Capron et al.,

2010). As interpretation of noisy time series are often biased, subjective and one is prone to recognize patterns that can arise by

chance, we seek a quantitative evaluation of the record. Assuming the saw-tooth shape of the events, we develop an algorithm

for fitting the saw-tooth shape to the entire NGRIP δ18O record of the last glacial, similar to ramp-fitting a jump in a noisy

record.15

Firstly
::::
First, our method gives an objective basis of the validity of the generic saw-tooth description of the DO cycles and

identify
:::::::
identifies which individual cycles fall outside this description. Secondly, with a piecewise-linear fit, we obtain estimates

for the stadial and interstadial levels, the abruptness of the transitions and the gradual cooling rate in the interstadial periods.

By bootstrapping, we estimate the uncertainty in extracting these parameters from the noisy background. Finally, we perform

a
::::::::::::
comprehensive statistical analysis of the fit parameters across the DO events of the last glacial period

::
and

:::::
their

:::::::
relation

::
to20

::::::
external

:::::::
forcings, in order to obtain a mechanistic

::
an

::::::::
empirical understanding of what controls the evolution of amplitudes and

durations of the DO cycles. This can potentially be used for identifying or excluding proposed mechanisms and for bench-

marking model results.

Previous efforts to extract robust DO event features from the record were conducted on only part of the record and were

focused on single or very few features. In Schulz (2002), linear fits to the interstadials were used to infer the cooling rates25

starting with Greenland interstadial 14 (GI-14). Estimates for abruptness of warming transitions and durations of interstadials

have been derived by Rousseau et al. (2017), starting at GI-17.1. A comprehensive survey of onset times of all interstadial and

stadial periods is given in Rasmussen et al. (2014). Our work is different in that we derive all features that can be extracted

from a saw-tooth shaped fit to all events at once, by using a fit that is consistent and continuous throughout the record. We

thus do not have to rely on any subjective choice of stadial and interstadial onsets or levels
::::
Thus,

:::
our

::::::
results

:::
are

:::
not

::::::::
sensitive30

::
to

::::::::
subjective

:::::::
choices

::
of

::::::
cutting

::::
the

:::::
record

::
at
:::::::::

predefined
:::::

times
::::::

before
::::
and

::::
after

::
a

::::::::
transition. We do, however, not attempt to

define the DO events themselves from the
::::::
NGRIP

:::::
δ18O record, but instead use the fixed set of all previously classified events

(Rasmussen et al., 2014)
:
in

::::::::::::::::::::
Rasmussen et al. (2014),

::::::
which

::::
have

::::
been

:::::::
derived

::::
from

::::
three

:::
ice

:::::
cores

:::
and

::::
two

:::::
proxy

::::::
records

::::
each.

In this study, we show that a characteristic saw-tooth waveform can be fit to all DO cycles. However, almost half of the cycles

do not actually display a significant rapid cooling episode after the more gradual interstadial cooling. A subsequent statistical35
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analysis of the DO event features hints at different mechanisms underlying warming and cooling transitions. Specifically, we

find different
::::
First,

::::
this

:::::::
follows

::::
from

:::
the

:
distributions of the stadials and interstadial durations ,

:::::::
durations

:::
of

:::
the

::::::
stadials

:
as

well as different external factors that could influence them. Furthermore
::
the

:::::
rapid

:::
DO

:::::::::
warmings

::
on

:::
the

::::
one

:::::
hand,

:::
and

:::
of

:::
the

::::::::::
interstadials

::
on

:::
the

:::::
other

:::::
hand.

::::::::
Secondly,

:::
the

::::::::
influence

::
of

:::::::
external

::::::
forcing

::
is

::::::::::
contrasting,

::::
with

:::::::
stronger

:::::::
evidence

:::
for

:::::::::
insolation

:::::::
influence

:::
on

:::::::
stadials

:::
and

:::::
CO2 ::

or
:::
ice

:::::::
volume

::::::::
influence

:::
on

::::::::::
interstadials

:::::::
Thirdly, the interstadial durations can be predicted5

to some degree by the linear cooling rates within a few hundred years after interstadial onset. In contrast, the stadial and

rapid warming durations are consistent with the stadial-interstadial transitions as spontaneous, noise-induced escapes from a

metastable state.

The paper is structured in the following way: In Sec. 2 we introduce the data used in the study and its pre-processing, the

iterative fitting algorithm, the features we extract from the saw-tooth shape fit to the events and the statistical tools to analyze10

these features. In Sec. 3 we report the results of the fit. Section 3.1 discusses the appropriateness of the saw-tooth fit to the

events, and Sections 3.2 and 3.3 treat the uncertainty in estimating the fit parameters and the derived features. In Sec. 4 we

analyze in detail the features characterizing the stadial, interstadial and abrupt warming periods. The results of the fit and the

implications of the subsequent data analysis are discussed in Sec. 5. We conclude in Sec. 6.

2 Methods and Materials15

2.1 Data

The basis of our study is the δ18O Greenland ice core record of the last glacial period (120 - 12 kyr BP, kyr BP = one thousand

years before present). In the NGRIP ice core, δ18O has been measured in 5 cm samples (NGRIP Members, 2004; Gkinis

et al., 2014; Rasmussen et al., 2014). These raw depth measurements are transferred to the GICC05 time scale (Svensson

et al., 2006). This results in an unevenly spaced time series with a resolution of 3 years at the end to 10 or more years at the20

beginning of the last glacial period. Because it greatly simplifies our analysis, we transfer this to an evenly-spaced time series

by oversampling to 1 year resolution using nearest-neighbor interpolation. Thus, we do not alter the actually measured values,

adding or removing any variability. For subsequent comparison, the high-resolution δ18O record from the GRIP ice core on

the GICC05 time scale has been used (Johnsen et al., 1997; Rasmussen et al., 2014), and processed in the same way.

Our fit is performed on a previously classified set of events from Greenland, which has been reported by Rasmussen et al.25

(2014) together with the time stamps. These time stamps are used to initialize our iterative fitting procedure, and are subse-

quently refined during the process. We do not treat sub-events, which are small dips to colder conditions during a warm period,

as separate events, but instead fit them as part of the interstadial periods.
:::
On

:::
the

::::
other

:::::
hand,

:::
we

:::
do

::::::
include

:::
the

::::::::::
interstadials

:::
22

:::
and

:::
13,

:::::
which

::::::
follow

:::
the

:::::::
stadials

::::
23.1

:::
and

:::
14

:::::::
(denoted

:::::::::::::
’quasi-stadials’

:::
by

:::::::::::::::::::::
Rasmussen et al. (2014)).

:::::
These

::::::::::
interstadials

:::::
have

::::
some

:::::::::::
resemblance

::
to

:::
the

::::::::
so-called

:::::::
rebound

::::::
events

:::
of,

::::
e.g.,

::::::::::
interstadials

:::
12,

::
8
:::
and

:::
7.

::::::::
However,

::::
they

:::
are

::::::
longer

:::
and

::::::
larger

::
in30

::::::::
amplitude.

:::::
Even

::::::
though

:::
the

::::::
stadials

::::
23.1

::::
and

::
14

::
do

:::
not

:::::
fully

::::
reach

:::
the

::::
low

:::::
values

::
of

:::
the

:::::::
stadials

:::::
before

:::
and

:::::
after,

:
a
:::::::::
saw-tooth

::
fit

:::::
where

::::
these

:::
are

::::::::
included

::
in

:::
the

:::::::::
interstadial

::
is

:::
not

::::::::::
satisfactory

:::::::
because

:::
the

:::::::
resulting

:::::::
gradual

:::::
linear

::::::
cooling

::
is

:::
not

::::::::::::
representative
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::
of

:::
the

:::::
actual

::::::
trends.

:::
Our

::::::
choice

::
to

:::::::
consider

:::::
them

::
as

:::::::
separate

:::::
events

::
is

:::::::
difficult

::
to

:::::
justify

:::
on

:::
the

::::
basis

::
of

:::
the

::::::
NGRIP

:::::
δ18O

::::::
record

:::::
alone.

:::::::::::
Nevertheless,

::
it

::
is

:::::::
unlikely

::
to

::::::
change

:::
the

::::::::::
conclusions

::
of

:::
our

:::::::
analysis,

::::::
which

:::
are

:::::
based

::
on

::::::::
statistical

:::::::::
robustness

:::::
tests.

In our data analysis, we use several other data sets that are not derived from Greenland ice cores. These are loosely referred to

as external forcings, although not all are truly external to the climate system, but rather obtained from independent data sources.

As proxy for global ice volume, we use the LR04 ocean sediment stack (Raymo and Lisiecki, 2005). To represent Antarctic5

temperatures, we choose the δ18O record of the EDML ice core on the AICC12 time scale (EPICA Community Members,

2010). This data was processed by interpolation to an equidistant 20 year grid and subsequently smoothing by convolution

with a 600 year Hamming window. Greenhouse gas forcing is represented by a composite CO2 record from different Antarctic

ice cores on the AICC12 gas time scale (Bereiter et al., 2015). Furthermore, we consider changes in insolation due to orbital

variations. Firstly, we use incoming solar radiation at 65 degree North integrated over the summer (referred to as 65Nint10

hereafter), which we define as the annual sum of the radiation on days exceeding an average of 350 W/m2 (Huybers, 2006).

Secondly, we use incoming solar radiation at 65 degree North at summer solstice (referred to as 65Nss hereafter) (Laskar et al.,

2004). In addition, we also consider the raw orbital parameters of obliquity, eccentricity, and precession index (Laskar et al.,

2004).

2.2 Fitting routine15

A naive approach to obtain a piecewise-linear fit of the whole record could proceed in the following way: Considering the

stadials as constant, first cut the time series at a predefined beginning and end of two consecutive stadials. Then fit a saw-tooth

shape to the event within the two stadials. The end of the fit to this event then determines the start of the next stadial, used

to fit the following event. However, the point at which one initially cut the stadials influences the constant levels of the two

stadials that have been used to determine the fit to the event. For a consistent fit, the start and end points of a stadial must rather20

be determined by the fits to two neighboring events. In this way, the fit to each event depends on both its neighboring events

before and after, and we cannot fit the events sequentially. One solution is to fit the whole time series at once to a piecewise

linear model with 186 parameters, corresponding to 6 parameters for each of the 31 DO events. However, due to high noise

and abundance of sub-event features, such a fit will be difficult to achieve without invoking very complicated constraints.

Instead, we propose an iterative fitting routine that converges to a consistent fit, as detailed in the following. We start with a25

guess for the stadial onset and end times, which determine the constant stadial levels. Then we fit a saw-tooth shape individually

to each event. Thereafter, we update the stadial onset and end times according to the fit and repeat the procedure. When after

some iterations the onset and end times do not change significantly anymore the fit has converged and is consistent.

We start with an initial guess of the onsets and ends of the stadial periods, based on the timings reported by Rasmussen

et al. (2014), which are kept fixed throughout the iterations of our algorithm. The time series is divided in segments at these30

times. For each event i, we take a segment consisting of a stadial and interstadial period plus the following stadial period.

These segments are fitted individually to a piecewise-linear model, as shown in Fig. 1. The model starts with a constant line

at the beginning of the stadial. The constant is fixed to the mean level of the stadial lsi , where the stadial beginnings and ends

are determined by the initial guess, or the previous iteration. A first break point (parameter b1) of this constant is determined,
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followed by a linear up-slope (parameter s1). The slope ends at the second break point (parameter b2). After this break point

there is a linear down-slope (parameter s2), which ends at a break point (parameter b3). After this break point there is a steeper

down-slope until a last break point (parameter b4), which is at the level of the next stadial lsi+1 that is determined from the

previous iteration. After all events have been fit, the parameters b4 and b1 of each event update the beginnings and ends of

the stadials. The updated stadials yield a new segmentation of the time series and new stadial levels, which are then used as5

constant segments in the next iteration. The idea of this approach is that if the problem is well behaved, the beginnings and

ends of the stadials do not change significantly anymore after a certain number of iterations, meaning that a consistent fit of the

entire time series is obtained. An algorithm for this routine, along with details of the optimization procedure to fit each event,

is given in Appendix A.
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Figure 1. Piecewise-linear model fit to DO event 20, where the time series consists of GS-21.1, GI-20 and GS-20. The parameters of the

piecewise-linear model are the four break-points b1,2,3,4, the up-slope s1 and the down-slope s2. The constant levels lsi and lsi+1 of GS-

21.1 and GS-20 are constant during an iteration of the fitting routine, and are updated when after each iteration all breakpoints have been

determined.

The fitting procedure outlined above yields a single best fit that we hope to be close to the absolute global minimum of the10

optimization problem and furthermore as consistent as possible, meaning that the stadial sections that were used for the fit

in the last iteration are identical to the stadial sections defined by the resulting fit. Additionally to this best fit we assess the

uncertainty in each of the parameters that arise due to noise in the record. We cannot estimate this from the output of our fitting

procedure in a straightforward way. Instead, we use bootstrapping to repeatedly generate synthetic data for each transition

and optimize the parameterswith basin-hopping. Like this, we yield a distribution on each parameter. Due to computational15

demands, we do not combine this with our iterative procedure, but rather resample and fit every transition independently. Thus,

we neglect the co-variance structure of the errors in the parameters of neighboring transitions. However, we still consider it to

be a very good estimate of the uncertainty due to the noise in the record. The detailed procedure is given in Appendix C.
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2.3 DO event features

From the best fit parameters of each DO cycle a variety of features follow, which form the core of our analysis. For each rapid

warming period, gradual interstadial cooling period, as well as rapid cooling period at the end of an interstadial, we consider the

duration, rate of change and the amplitude. Furthermore, several absolute levels are of interest, including the constant stadial

levels, the interstadial levels after the abrupt warming and the interstadial level before the rapid cooling. As a level relative to5

each event, we consider the level before the rapid cooling above the previous stadial level, which is given by the rapid warming

amplitude minus the gradual cooling amplitude. Finally, the gradual cooling amplitude divided by the rapid warming amplitude

measures the position of the point of rapid cooling within the event amplitude. In total, we consider 15 interdependent climate

features, which are listed in Tab. 1.

10

Table 1. List of DO event features obtained from the fit that are analyzed in this study.

Feature Definition
Warming duration b2 − b1

Warming rate s1

Warming amplitude s1(b2 − b1)::::::::::::
A≡ s1(b2 − b1)

Gradual cooling dur. b3 − b2::::::::::
DI ≡ b3 − b2

Gradual cooling rate −s2 :::::::
λc ≡−s2

Gradual cooling ampl. s2(b2 − b3)

Fast cooling dur. b4 − b3

Fast cooling rate
s1(b2−b1)+s2(b3−b2)−(lsi+1−lsi )

(b4−b3)

Fast cooling ampl. s1(b2 − b1)+ s2(b3 − b2)− (lsi+1 − lsi )

Stadial duration b1

Stadial level ls

Interstadial level s2(b2 − b3)+ ls

Interstadial end level s1(b2 − b1)+ s2(b3 − b2)+ ls

Relative Int. end level s1(b2 − b1)+ s2(b3 − b2)

Cooling/warming ampl. s2(b2 − b3) · [s1(b2 − b1)]
−1

2.4 Data analysis

Our aim is to develop a mechanistic
::
an

::::::::
empirical

:
understanding of the evolution of the DO cycles. To this end, we em-

ploy several tools to search for relations between different features, as well as between features and external climate fac-

tors.
:::::::::::
Additionally,

:::
the

::::::::::
distributions

:::
of

:::
the

:::::::::
individual

:::::::
features

:::::::::
themselves

::::
hold

:::::::::
important

::::::::::
information,

:::::::::
especially

:::::
when

:::::
there

:
is
:::

no
::::::
strong

:::::::
external

::::::::::
modulation

::
in

:::::
time.

::::
We

:::
test

:::
the

:::::::::::
distributions

:::::
using

::::::::::::::::
Anderson-Darling

:::::
(AD),

::::::::::
Cramer-von

::::::
Mises

::::
and15

::::::::::::::::::
Kolmogorov-Smirnov

::::
tests.

::::::
Since

:::
the

:::
AD

::::
test

::
is

:::::::
typically

:::::
most

::::::::
powerful,

::::
and

:::
the

:::::
other

::::
tests

:::::
yield

::::::::::
qualitatively

::::::::::
unchanged

:::::
results

::
in

:::
all

::
of

:::
our

::::::::
analyses,

:::
we

::::
only

:::::
report

::::::
results

:::
for

:::
the

:::
AD

::::
test.
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Because of the large number of possible combinations of features, we first pre-select significant and potentially relevant

relationships and thereafter investigate in detail, whether the results are robust to outliers, among other things. In some cases

we also consider relationships of features and forcing that are not significant for the whole data set, but for a large subset. This

might highlight that there were qualitatively different periods within the last glacial, or that some DO events are of different

nature than most.5

We first consider Pearson and Spearman correlation coefficients of pairs of features and external climate factors. We pre-

select combinations with p-values p < 0.1, which are estimated by permutation tests that assume independent samples. For a

given number of data points in a sequence, the true p-values should often be higher due to autocorrelation. Along with other

potential artifacts, this is investigated individually for the pre-selected combinations.

Next, in order to find relations between more than two variables, we search for multiple linear regression models to explain10

selected features of the data. For this, we often use logarithmic quantities because with many features it is otherwise unlikely to

find linear relationships that are not dominated by outliers. Given a feature as response variable, we fit linear regression models

of combinations of two other features or forcings and pre-select models with the largest coefficients of determination, in order

to further analyze the fit.

Furthermore, in order to find subsets of events that have distinct properties or causal relations
::::::::::
relationships

:
that are only valid15

in part of the data, we perform a clustering analysis on the data, using two different algorithms (K-means and Agglomerative

Hierarchical Clustering). Given our sample size of 31 events, we search for clusterings with 2 or 3 clusters. Potentially relevant

clusterings are pre-selected by considering the mean Silhouette coefficient, which is a distance-based measure for the validity

of clusters. With the abovementioned tools, we perform an analysis on the entire set of features and forcings. From the results

obtained, we report selected findings, which are most robust and relevant, in Sec. 4 of this paper.20

It is important to be aware of the problem of multiple comparisons when interpreting the significance of such an analy-

sis. Tests for significant correlations of many pairs of features using, e.g., the Spearman correlation coefficient, yield a non-

negligible number of false positives when using confidence levels that are reasonable for our purposes. We consider both

features of the same and neighboring events, yielding 15·14
2 = 105 and 15 · 15 = 225 tests, respectively. Furthermore, we test

the correlation of all features and forcings, yielding another 15 · 8 = 120 tests. Assuming these are all independent tests, the25

total expected number of false positives is
::
45

::
at

:::::
90%, 22.5 at 95%confidence, while ,

::::
and

:::
4.5

:
at 99% it is 4.5

::::::::
confidence.

Since we derive 15 features from only 7 independent parameters (including stadial levels) for each DO cycle, many pairs of

features within the same DO cycle are related and thus we expect true positives for correlation tests. For instance, this is true

for warming amplitude and interstadial level, or relative interstadial level and gradual cooling amplitude. Similarly, due to the

constraints on the fit parameters, the rates and durations of fast and gradual cooling are correlated. These types of correlations30

are not relevant and thus this reduces the number of pairwise correlations to consider. For combinations of amplitude, duration

and rates of a given linear segment we also expect correlation, because they are trivially related: duration = amplitude · (rate)−1.

However, it is interesting to test whether the rates or the amplitudes more strongly determine the durations, which essentially

depends on which of the two has a larger variability. We investigate this for the different periods of the DO cycles below.
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There are sophisticated methods to control the multiple comparisons problem. These could be helpful to better detect false

positives from our analysis, but depend on being able to properly estimate the significance of individual correlations in between

features with autocorrelation and assess the statistical dependence of the hypothesis tests due to the dependence of some of the

features. For simplicity, we do not consider such an analysis, but consider individually significant correlations as suggestions

to be investigated further.5

3 Piecewise-linear fit of NGRIP record

The iterative fitting routine is performed for 40 iterations, so that the initial fluctuations in the parameters have died out and

converged to a consistent fit, as detailed in Appendix B. In Fig. 2, the resulting fit is superimposed onto the high-resolution

NGRIP time series. We fit 31 DO events in total, starting with DO 24.2 and ending at DO 2.2, excluding the two outermost

events of the last glacial, because they are very non-stationary in their stadial parts. Table 2 shows all parameters obtained from10

the fit. Instead of b1,2,3,4 for each transition, we show the corresponding times of stadial end, interstadial onset, interstadial end

and stadial onset.

3.1 Saw-tooth shape of DO events

In our fit, all transitions follow the characteristic saw-tooth shape. For a few events, this is because of the constraints we

use in the fitting algorithm. Typically, the constraints do not strictly bound the best fit parameters, but they force the fit into15

another local minimum that is consistent with the saw-tooth shape, which often yields parameters that are still clearly within

the constraints. There are, however, four events where the best fit parameters actually lie very close to the bounds set by

the constraints. This happens for GI-5.1 and GI-3, which both have ratios of rapid to gradual cooling rates very close to the

constraint value of 2.0. Similarly, for GI-15.2 and GI-6 the ratio of gradual to rapid cooling duration is close to 2.0. Detailed

pictures of each transition and the corresponding fit are shown in Fig. S2 in the supplementary material.20

The fact that some constraints are needed in order to ensure that the fit of each event follows a saw-tooth shape can be used

to classify which events fall outside of this description. To this end, we perform another run of the iterative fitting routine

without using constraints 3, 4, 6 and 7 listed in Appendix A. From the resulting fit we then analyze, which of the events are

not consistent with the saw-tooth shape. For this, we use 4 criteria: 1. The abrupt cooling rate is at least twice as large as the

gradual cooling rate. 2. The gradual cooling lasts at least twice as long as the abrupt cooling. 3. There is gradual cooling after25

the rapid warming, i.e., the gradual cooling rate is negative. 4. The abrupt cooling amplitude is larger than 0.5 permil. Criterion

1 is not met by events 23.1, 19.2, 15.1, 11, 5.1, 3 and 2.2, criterion 2 by events 21.2, 19.2, 17.2, 15.2, 15.1, 11, 10, 9, 8, 6, 5.1,

3 and 2.2, criterion 3 by event 11, and criterion 4 by events 23.1 and 15.1. By demanding that all of these criteria are met, we

thus conclude that the following 14 out of 31 events fall outside of the saw-tooth description: 23.1, 21.2, 19.2, 17.2, 15.2, 15.1,

11, 10, 9, 8, 6, 5.1, 3 and 2.2.30
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Figure 2. High-resolution NGRIP δ18O time series and the piecewise-linear fit obtained by our method. The numbers above the interstadials

indicate the names of the DO cycles considered in this study.

3.2 Uncertainty of fit parameters and features

From the best fit, we estimate the uncertainty of each parameter via bootstrapping, as explained in Appendix C. As an example,

we show distributions of the parameters for DO event 20 in Fig. 3. In Tab. 3 we show the durations and amplitudes of the

rapid warmings for each event along with a bootstrap confidence interval consisting of the 16- and 84-percentiles, which would

correspond to the ±σ range if the distributions were Gaussian. The actual distributions are often skewed, so that the best fit5

values lie close to the edges of the confidence intervals, or even outside of the intervals. In these cases, the ±σ confidence

intervals are not the best indicator for the uncertainty, because they barely include the mode of the very skewed distributions.

The magnitude of the uncertainty varies from event to event. In the case of the warming durations, the average bootstrap

standard deviation is 20.0 years, with a minimum of 3.4 years for GI-16.2 and a maximum of 57.4 years for GI-18. We observe

that shorter warmings typically also have smaller uncertainties. As comparison, the durations of the rapid coolings at the end of10
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Table 2. Parameters resulting from the fitting routine on the NGRIP data.

Event Stadial
End
(yr BP)

Interstadial
Onset
(yr BP)

Interstadial
End
(yr BP)

Stadial
Onset
(yr BP)

Warming
Rate
(permil/yr)

Cooling
Rate
(permil/yr)

24.2 108313 108270 106914 106810 0.0992 0.00062
24.1 106790 106743 105452 105439 0.0744 0.00069
23.2 104556 104441 104387 104366 0.0340 0.01555
23.1 104090 103996 93916 93898 0.0290 0.00027
22 90069 89999 87743 87631 0.0270 0.00082
21.2 85060 85027 84964 84952 0.1230 0.03992
21.1 84799 84737 77866 77659 0.0655 0.00049
20 76452 76434 74245 74009 0.2935 0.00148
19.2 72377 72280 70385 70365 0.0730 0.00251
19.1 69646 69587 69443 69381 0.0831 0.01262
18 64212 64051 63858 63846 0.0262 0.00367
17.2 59520 59390 59323 59294 0.0446 0.00503
17.1 59076 59061 58571 58549 0.2951 0.00491
16.2 58266 58245 58168 58162 0.2340 0.03107
16.1 58051 58023 56536 56364 0.1059 0.00131
15.2 55821 55759 55449 55296 0.0554 0.00062
15.1 55011 54950 54892 54887 0.0981 0.05104
14 54228 54193 49617 49410 0.1092 0.00046
13 49315 49253 48517 48301 0.0367 0.00223
12 46890 46826 44286 44277 0.0761 0.00140
11 43450 43271 42285 42278 0.0225 0.00236
10 41479 41439 41024 40864 0.0910 0.00326
9 40175 40131 39933 39928 0.0699 0.01096
8 38231 38199 36602 36583 0.1549 0.00210
7 35508 35461 34741 34735 0.0859 0.00289
6 33822 33681 33434 33314 0.0250 0.00334
5.2 32521 32485 32039 32028 0.1324 0.00583
5.1 30794 30752 30514 30473 0.0394 0.00695
4 28908 28871 28635 28544 0.1302 0.00485
3 27786 27765 27572 27492 0.2762 0.01529
2.2 23389 23328 23196 23191 0.0607 0.01098

an interstadial have a larger uncertainty with an average bootstrap standard deviation of 53.6 years. This is expected, because

the rapid cooling is typically less well pronounced in the record compared to the rapid warming. The coolings also have a

larger spread in the bootstrap standard deviations with a minimum of 4.6 years for GI-16.2 and a maximum of 209.9 years

for GI-23.1, because some events have a very clearly defined rapid cooling, while others do not. Similarly, the onset times of

the rapid warmings have an average bootstrap standard deviation of 11.4 years, whereas the onset of the stadial periods have a5

corresponding average uncertainty of 31.7 years.
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Figure 3. Gaussian kernel density of the density of model parameters and some derived quantities for the DO event 20 after 5000 iterations

of the bootstrap resampling procedure. The parameter values for the best fit, as reported in Sec. 3, are indicated with red dashed lines. The

amplitude feature is given by s1(b2 − b1).

3.3 Comparison of NGRIP and GRIP records

As complementary approach to assess the uncertainties of the features, we compare them to those derived in the same way

from another Greenland ice core. We chose the δ18O record of the GRIP ice core, which is measured at a similar resolution to

the NGRIP record and has been transferred to the GICC05 time scale starting at the onset of GI-23-1. We thus started fitting the

record from GS-22 with 40 iterations of our algorithm, using the same constraints and hyperparameters. Again, the algorithm5

converges to a consistent fit, where each of the events is well approximated by a saw-tooth shape. We now describe how well

the features of NGRIP and GRIP correspond for the 26 mutual events.

For the gradual cooling rates, the Pearson (Spearman) correlation is rp = 0.64 (rs = 0.65). Here, the discrepancy in between

the two records is only due to a handful of short events that show a clear linear cooling slope in one record, but are more

plateau-like in the other. This happens for the interstadials 18, 16.2 and 5.1, which don’t show a slope in GRIP, and 17.2, which10

doesn’t show a strong slope in NGRIP. If we remove these events, the correlation is rp = 0.97 and rs = 0.98. The warming

durations show a correlation of rp = 0.55 and rs = 0.63. There are no outliers, but a rather large spread, indicating that the

warming duration is a less robust feature compared to the cooling rate. With 69 years on average, the GRIP warmings are 8

years shorter than the NGRIP average. The average absolute deviation of warming durations in the two cores is 31 years, with

a maximum discrepancy of 103 years for GI-10, where we find a warming of 40 years for NGRIP and 143 years for GRIP.15
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Table 3. Durations and amplitudes of the rapid warmings inferred from the fit, together with a confidence interval obtained by bootstrapping.

Event Warming duration (yr) Amplitude (permil)
Best fit 16-p 84-p Best fit 16-p 84-p

24.2 43.4 36.3 47.8 4.30 4.23 4.40
24.1 47.4 34.9 45.0 3.53 3.42 3.61
23.2 115.2 96.1 126.1 3.92 3.72 4.11
23.1 94.1 78.9 127.3 2.73 2.69 2.75
22 70.0 70.3 91.8 1.89 1.78 1.95
21.2 33.0 25.7 39.9 4.06 3.61 4.10
21.1 61.7 53.5 79.6 4.05 3.98 4.09
20 18.2 14.7 21.6 5.34 5.25 5.42
19.2 97.2 74.3 98.1 7.09 6.93 7.19
19.1 58.5 37.7 60.0 4.86 4.45 4.97
18 161.0 74.6 194.0 4.21 3.99 4.51
17.2 129.7 83.7 158.0 5.79 5.47 6.20
17.1 15.3 13.9 27.0 4.53 4.14 4.72
16.2 21.0 18.6 24.0 4.92 4.59 5.19
16.1 28.4 28.9 84.0 3.01 2.88 3.16
15.2 61.6 39.0 100.0 3.41 3.38 3.67
15.1 60.6 56.4 69.2 5.94 5.68 6.12
14 35.5 38.0 79.0 3.87 3.78 3.95
13 62.4 63.4 101.2 2.29 2.07 2.60
12 63.9 45.7 73.8 4.86 4.71 4.94
11 179.5 143.0 201.0 4.05 3.86 4.17
10 40.3 41.3 80.2 3.67 3.40 3.97
9 44.2 37.5 86.4 3.09 2.66 3.22
8 31.7 29.8 53.0 4.91 4.78 4.98
7 47.4 45.3 90.2 4.07 3.86 4.27
6 140.4 110.6 172.1 3.51 3.41 3.92
5.2 36.0 31.1 54.6 4.76 4.45 4.93
5.1 41.8 41.4 82.0 1.65 1.51 1.89
4 37.2 27.1 41.8 4.84 4.47 5.11
3 21.3 18.0 25.0 5.88 5.40 5.92
2.2 61.2 42.0 91.6 3.72 3.21 3.75

Such deviations can arise if there is a slight step in the record before the most rapid warming and the algorithm includes this in

the fit.

The warming amplitudes are very well correlated with rp = 0.87 and rs = 0.83. The average amplitude of 3.87 permil in

GRIP is 0.45 permil lower than the NGRIP average. The stadial levels are also well correlated with rp = 0.78 and rs = 0.66.

There is a quite consistent offset in between the cores of 1.84 permil due to differences in altitude and latitude of the GRIP5

and NGRIP sites. Exceptions include GS-21.1, which does not follow the offset but is at a very similar level in both GRIP and

NGRIP, and GS-14, which is difficult to define and thus vulnerable to give different results due to different noise in the cores.

The rapid cooling durations, i.e. b4− b3, show an average absolute deviation in between the two cores of 59 years, with

rp = 0.46 and rs = 0.53. This corroborates the fact that this feature is harder to define than the rapid warmings. The break

points b3 and b4 are very susceptible to noise and can yield qualitatively different results for different cores. As a result, the10

abrupt cooling of GI-19.2 lasts 208 years in GRIP and only 20 years in NGRIP, and for GI-12 294 years in GRIP and only 9
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years in NGRIP. Conversely, the abrupt coolings of GI-19.1, GI-10 and GI-6 last much longer in NGRIP, with 62, 160 and 120

years in NGRIP versus 2, 5 and 2 years in GRIP, respectively. Consequently, we do not report any results concerning the rapid

cooling period in this paper.

The stadial and interstadial durations are very well correlated with rs = 0.99 and rs = 0.97, respectively. The average ab-

solute deviation is 59 years for interstadials and 73 years for stadials, which is small compared to the average durations.5

The biggest discrepancies in between the two cores come from the indeterminacy in the rapid coolings of certain events, as

described above.

In summary, the uncertainties obtained by bootstrapping and by comparison with the GRIP ice core are compatible. The

average bootstrap standard deviation of rapid warming and cooling durations is 20 and 54 years, respectively. This compares

well to the average absolute deviation in between GRIP and NGRIP of warming and cooling durations of 31 and 59 years,10

respectively. The discrepancy of 31 years for warming durations also includes a systematic bias of on average 8 year longer

warmings in GRIP. Thus the unbiased uncertainty is likely even closer to the one obtained by bootstrapping. Shorter time scale

features like rapid warming durations are not fully representative for every single event in one core. However, the overall trends

are consistent, as seen by significant correlation. Features on longer time scale, such as most of the cooling slopes and stadial

levels, are clearly representative. The same holds for stadial and interstadial durations.15

4 Statistical analysis of DO event features

In Fig. 4 we show histograms of all the DO event features derived from the fit parameters that we consider in this study, as

defined in Sec. 2.3. From the histograms we can see that the features have different types of distributions. Whether an event

feature should be considered an independent sample from a distribution depends on whether it shows a significant trend over

time. If we consider the event-wise sequence of one feature as evenly spaced time series we can calculate the autocorrelation20

and determine by a permutation test, whether the value at a given lag is significantly larger than what could be expected in

an uncorrelated sample for a given confidence. By considering autocorrelations up to lag 5, we find that the three different

levels (stadial, interstadial and level before rapid cooling) show significant autocorrelation at 95% confidence until a lag of 3.

We also find significant autocorrelation for four other features at only one specific lag value each, which we believe are false

positives. In fact, when independently testing the hypothesis of significant autocorrelation at 95% confidence for 15 different25

time series (features) at 5 lags, there is an expected value of 3.75 false positives. The corresponding data is shown in Fig. S3

in the Supplementary material. As a result, in most cases we can consider the features of each event as independent samples.

This helps to assess the significance of correlations between features with permutation tests. While a
:
A

:
general overview of

the correlations between different features and forcings is given
:::
can

:::
be

::::
seen

::
in

:::
Fig.

::
5,
::::
and

::
is

::::::::
explained

::::::
further in Appendix D,

the
:::
The

:
most important results of our statistical analysis are presented in the following Sections.30
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Figure 4.
:::::::::
Histograms

::
of

:::
our

:::::
sample

::
of
:::
31

:::::
events

::
for

:::
all

::::::
features

::::::::
considered

::
in

:::
this

:::::
study,

::
as

::::::
defined

::
in

:::
Tab.

::
1.
::::
The

::
red

:::::
curves

::
in

:::::
panels

::
b)

:::
and

::
e)

::
are

:::
fits

::::
with

:::
the

:::::::::
exponential

:::
and

::::::
Gumbel

::::::::::
distributions,

::::::::::
respectively,

::::::
whereas

:::::
those

::
in

:::::
panels

::
g)

:::
and

::
n)

:::
are

:::
fits

:::
with

:::
the

:::::::::
log-normal

:::::::::
distribution.

4.1 Interstadial periods

4.1.1 Cooling rates determine
::::::
govern interstadial durations

We focus on the factors influencing the durations of the interstadial periods , defined as b3− b2. As noted previously for the

younger half of the last glacial in the GISP2 ice core, there is a correlation of interstadial durations DI and their respective

cooling rates λc =AD−1
I , where A

:::::::::::
DI = b3− b2.

::
In

:::
our

:::
fit,

:::::
these

::::::::
durations

:::
are

::::::::::
furthermore

::::::
defined

:::
by

::::::::::
DI =Aλ−1

c ,
::::::
where

::
A5

is the amplitude of the cooling (Schulz, 2002)
:::
and

:::
λc ::

the
::::
rate

::
of

:::
the

::::::
gradual

:::::::
cooling. If for every interstadial the gradual cooling

would be perfectly linear and the jump back to stadial conditions would always occur after the same magnitude of cooling Ā,

the interstadial duration would be inversely proportional to the cooling rate DI = Āλ−1
c . Conversely, if the interstadials would

have a fixed cooling rate λ̄c and the jump back to stadial conditions happened after variable cooling magnitudes, the interstadial

durations would be proportional to the cooling amplitudes DI =Aλ̄−1
c .10

We test which of the two scenarios is better supported by the data. This depends on whether either the cooling amplitudes

or the cooling rates have a larger spread than the other. The coefficient of variation for the amplitudes is CV = 0.51, whereas

for the rates we find CV = 1.49. The Spearman correlation of durations and cooling rates is rs =−0.89, which is clearly

14
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Figure 5. Histograms
:::::::
Spearman

:::::::::
correlation

:::
heat

::::
map

:
of our sample

::
a)

:::
pairs

:
of 31 events for all features considered in this study

:::::
within

::
the

:::::
same

:::
DO

::::
cycle, as defined in Tab. 1. The redcurves in panels b)and e) are fits with the exponential and Gumbel distributions,

respectively, whereas those
:::
pairs

::
of
:::::::

features in panels g
::::::
adjacent

:::
DO

::::::
cycles,

:::
and

:
c)

:::
pairs

::
of

:::
one

::::::
feature and n

:::
one

::::::
external

::::::
forcing

::
at

:::
the

::::::
relevant

:::
time

:::::
point

:
of
:::

the
::::::
feature.

:::::::::
Correlations

::::
that

::
are

::::::::
significant

::
at

::::
95%

::::
(99%)

:::::::
according

::
to

:
a
:::::::::
permutation

:::
test

:
are fits

::::::::
highlighted

:
with the

log-normal distribution
:
a

::::
black

:::::
frame

:::
(dot).

significant given the samples size of 31 events and weak autocorrelation of the sequence of interstadial durations and rates. On

the contrary, for durations and cooling amplitudes we find rs = 0.40, which is mainly due to two outliers, the two longest inter-

stadials GI-23.1 and GI-21.1. Removing these reduces the correlation to rs = 0.30, which is not significant at 95% confidence.

As a result, there is no relationship between durations and amplitudes that goes beyond outlier events, as opposed to durations

and cooling rates. Furthermore, the correlation of cooling amplitudes and rates is not significant. Thusthere is indeed a strong5
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control by the cooling rates on ,
:::::
from

:::
the

:::::::::
perspective

:::
of

:::::
linear

:::::::::
interstadial

::::::::
cooling, the interstadial durations over the entire

glacial
::
are

::::::
indeed

::::::
largely

::::::::
governed

:::
by

:::
the

::::::
cooling

:::::
rates, in agreement with the findings for the younger half of the glacial by

Schulz (2002)
:::::::
obtained

:::
by

::::::::::::::::
Schulz (2002) from

:::
the

::::::
GISP2

::
ice

::::
core.
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Figure 6. a) Scatterplot of the logarithms of interstadial durations and cooling rates. The color coding indicates the temporal sequence of the

events starting with GI-24.2 as event #0. Two linear fits obtained by ordinary least squares are shown. For one of them we fixed the slope to

-1 and varied only the intercept. b) Correlation coefficients of the logarithms of interstadial duration and the linear slope fitted to a slice of

the beginning of the interstadial as a function of the length of that slice. The values of the Spearman (Pearson) correlation coefficients using

slopes obtained from the full interstadials is marked with a dashed (dotted) line.

In Fig. 6a we show a scatterplot of logλc and logDI along with a linear regression yielding a slope of -0.94. The 95%

confidence interval of this slope obtained via bootstrapping is [-1.12, -0.75]. Because we do not account for errors in the rates5

estimated from the data the regressed slope is biased towards 0 due to attenuation and the true slope will be closer to -1. The

model DI ∝ λ−1
c is consistent with the data, where the spread is caused by the fact that the jump back to stadial conditions

happens after varying cooling amplitudes, which have a mean of 2.04 and standard deviation of 1.04.
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4.1.2 Distribution of interstadial cooling rates and durations

The relationship between interstadial durations and cooling rates also manifests itself in the respective distributions. As seen in

Fig.’s 4g and 4n, both features have strongly skewed histograms. Both are consistent with log-normal distributions, as shown

by Anderson-Darling
:::
AD tests with p= 0.47 and p= 0.89 for durations and rates, respectively. A fit with this distribution is

illustrated in the figure. Because the two features are inversely related with DI = Ā ·λ−1
c , the fact that one is a log-normal5

random variable implies that the other is, too. If DI is distributed log-normally with parameters µ and σ, then λ−1
c follows a

log-normal distribution with parameters −µ+ ln(Ā) and σ. In our data this relation holds: We estimate µ and σ from the data

DI and use the observed average amplitude Ā= 2.04. An Anderson-Darling
:::
AD test with p= 0.33 shows that the data λ−1

c is

consistent with a log-normal distribution with −µ+ ln(2) and σ.

As opposed to other skewed distributions like the exponential, Gumbel and power law, both durations and cooling rates are10

also consistent with an inverse Gaussian distribution. The observation that the durations and rates and are both well fitted by the

inverse Gaussian despite their inverse relation is explained by the similar shape of the reciprocal inverse Gaussian distribution.

If a variable is distributed as inverse Gaussian X ∼ IG(x), then the distribution of Y = Ā
X is reciprocal inverse Gaussian

Y ∼ Ā
x2 IG(Ā/x). A moderately sized sample of Y is still likely to be consistent with an inverse Gaussian distribution, due to

the similarity of the two. The inverse Gaussian could make an appealing model for the interstadial durations, since it arises as15

distribution of first hitting times of a constant level for Brownian motion with a constant drift. However, the proxy time series

in interstadials look qualitatively different than what is expected from this model, because they are quite linear and yet have

strongly varying slopes. In order for the model to produce roughly linear time series, the drift has to be high, which results in

very similar slopes of the time series with the resulting distribution of first hitting times converging to a Gaussian. We leave a

further discussion on which mechanism could yield log-normal or inverse Gaussian distributions of durations or cooling rates20

for upcoming studies. Instead, in the following we focus on implications of the approximate linearity of the interstadial time

series.

4.1.3 Predictability of interstadial durations

The simple
:::::
strong

:
relationship of interstadial durations and cooling rates might have some implications on the understanding of

DO event dynamics. If the rates imply the durations
::::::
govern

:::
the

::::::::
durations

:::::
much

::::
more

:::
so

:::
than

:::
the

:::::::
cooling

:::::::::
amplitudes, then the25

durations are already determined
::
can

:::::::
already

::
be

::::::::::::
approximately

::::::::
predicted as soon as the rate is established, which might happen

early in the interstadial. This is different from the idea that the transition from interstadial to stadial might be
:::::::::::::::
interstadial-stadial

::::::::
transition

:
is
:

a noise-induced escape from one metastable state to another. To test this, we take small slices of the beginnings

of each interstadial, fit a linear slope s to them and then calculate how well these slopes determine
:::::::
correlate

::::
with the durations

of the full interstadials as we increase the length of the slices. Due to noise in the beginning of the interstadials, for some30

interstadials a small positive slope is being detected. We reset these slopes instead to s=−0.0001, because in our analysis we

use the logarithms of slopes and durations. For the relatively short events 15.2 and 17.2, no negative slopes are obtained when

fitting the whole interstadial part independently, as opposed to the slopes obtained in the fit of the entire time series. We thus

17



have to exclude these two outliers in the following. In Fig. 6b we show how the correlation between the logarithm of the slopes

− log(−s) of these slices and the durations logDI evolves as we increase the length of the slices. The correlation of the slopes

estimated from the full interstadials and the durations, when excluding events 15.2 and 17.2, is rs = 0.94 (rp = 0.94), and is

indicated by a dashed (dotted) line. We can see that the correlation rapidly increases up to a length of 150 years. Thereafter

the correlation stabilizes until another more rapid increase at a length of 350 years. The rapid increase in correlation is partly5

due to a non-negligible number of events already being at full length (6 events at 150 years and 12 events at 350 years). Still,

also the slopes of the remaining events already correlate well with the durations. At 350 years, the durations are almost as well

determined by the slopes estimated from the slices as they are from the full interstadials. The remaining indeterminacy comes

from a handful of longer interstadials (23.2, 22, 14 and 11) that do not settle to a clear negative slope after 350 years. For the

latter three events, this is due to sub-events that occur shortly after the interstadial onset.10

:::
Our

::::::::::::
interpretation

::
is

:::
that

::::
the

::::::
cooling

::::
rate

::
is

:::
an

:::::::
indicator

:::
of

:
a
:::::::::

timescale
::
of

:::::::::
large-scale

:::::::
climate

:::::::::::::
reorganization,

:::::
which

::::
can

::::::
already

::
be

:::::::::
measured

::::::::
relatively

::::
early

::
in
:::
the

::::::::::
interstadial

:::
and

::::::
which

:::::::
remains

::::::::::::
approximately

::::::::
constant. Although we can see that

there are exceptions, we conclude that for most events the interstadial duration is determined at a relatively early stage within

a few hundred years after the rapid warming.

4.1.4 Influence of external forcing15

Having established control of the interstadial durations by the cooling rates
:::::
Given

:::
the

:::::::
previous

:::::
result, we investigate whether

the variability in the rates
::::::::
timescale

::::::::
associated

:::::
with

:::
the

:::::::
cooling

:::
rate

:
can be explained by other features of the DO cycles,

or by external forcing. Among correlations of the cooling rates with other features deemed significant by a permutation test,

none of them are relevant, either because they are caused by few outliers or else directly due to their definition and parameter

constraints.20

Considering external climate factors, we find a correlation of rs = 0.40 and rp = 0.35 of the logarithm of the cooling rates

with LR04 at the time of the interstadial maximum. This correlation is, however, influenced by a common trend of the two

quantities, and is not significant anymore at 90% confidence when removing a linear trend. On the other hand, there is a large

sub-set of events which appears to be linearly related.

As shown in Fig. 7a and c, the furthest outliers from an approximate linear relationship are the interstadials 23.2, 21.2,25

16.2 and 15.1. When removing these outliers, the correlation is rp = 0.79, which clearly goes beyond a common trend with

rp = 0.63 after linearly detrending. When only considering the younger half of the record starting with GI-14, the correlation is

rp = 0.84. This corresponds to the finding by Schulz (2002), who reports that the interstadial cooling rates starting from GI-14

are forced by global sea level. We note, however, that the correlation after GI-14 is largely due to common trend, as we find

rp = 0.37 after linear detrending, which is not significant at 90% confidence. Nevertheless, as shown above, when discarding30

a few outliers there is evidence for significant correlation as we include older parts of the record.

A better predictor of the interstadial cooling rates of the more recent DO cycles is given by the CO2 composite record.

Whereas for the older half of the glacial there is no significant correlation, when starting at GI-14, we find a linear relationship
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Figure 7. a-b) Scatterplot of the logarithm of the interstadial cooling rates and the b) LR04 and b) EMDL at time points corresponding to

the interstadial onsets. c) Time series of the cooling rates (dots) and the LR04 stack (crosses). The error bars on the cooling rates are given

by the 16- to 84-percentile obtained by bootstrapping. d) Time series of the cooling rates (dots) and the EDML stack (crosses). Note the

inverted axis for EDML. e) Time series of the interstadial cooling rates starting at GI-14 and of a linear regression model of the CO2 record

fitted to the logarithm of the cooling rates.

with rp =−0.93 and rp =−0.81 after linear detrending. In Fig. 7e we illustrate how well the cooling rates of this period can

be predicted from CO2 by linearly regressing CO2 onto the logarithm of the cooling rates and then exponentiating the result.
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Additionally, in a subset of the events, there is a linear relationship between the logarithm of the cooling rates and EDML

at the interstadial onsets. While the correlation of the entire data set is not significant at 90% confidence with rp =−0.19 and

rs =−0.23, when removing events 24.2, 23.2, 23.1, 21.2, 16.2 and 15.1, the remaining events appear to have an approximate

linear relationship, as indicated in Fig. 7b and d. The correlation then becomes rp =−0.81 and rs =−0.78, or rp =−0.72

and rs =−0.61 after linearly detrending, which is significant at 99% confidence. Thus, in this subset there is evidence for5

anti-correlation beyond a simple linear trend. Again, the linear relationship is strongest for the younger half of the record,

which starts at GI-14 and does not have outliers. Here, we find rp =−0.89, and rp =−0.70 after linearly detrending, which is

significant at 99% confidence.

A corresponding linear relationship between the logarithms of interstadial durations and Antarctic temperature in different

ice cores has been noted before by Buizert and Schmittner (2015). In our data we find correlations of these quantities of10

rp = 0.29 and rs = 0.27 which are not significant at 90% confidence. This disagreement comes from the fact that Buizert

and Schmittner (2015) lump
::::
view

:
each of the interstadials 24, 23, 21, 17, 16, 15 and 2 together into

::
as

:
one event, even

though they are comprised of two events
::::::
whereas

::::
we

:::::::
consider

:::::
these

::
as

::::
two

::::::
events

:::::
each,

::
as

:::::::::
suggested

:::
by

:::
the

:::::::
analysis

:::
of

:::::::::::::::::::
Rasmussen et al. (2014). If we remove the events 24.2, 23.2, 23.1, 21.2, 17.2, 16.2 and 15.1, we find a strong linear relationship

of rp = 0.91, comparable to the findings by Buizert and Schmittner (2015). It is robust to linear detrending with rp = 0.87.15

Most of these outliers are very short events, and discarding them removes a lot of the variability of the interstadial durations,

similar to lumping them together with adjacent longer events.

4.2 Stadial periods

4.2.1 Stadial duration distribution

The stadial periods are defined to start after the rapid cooling and end at the onset of the rapid warming, and their duration is20

thus b1. These durations are highly variable, ranging from 20 years for GS-24.2 to 5169 years for GS-19.1, with an average

of 1328 years. Due to our definition of stadials GS-24.2 is exceptionally short, because the proxy shows rapid warming again

right after the rapid cooling without stabilizing. Figure 4b shows that the stadial duration distribution is skewed. The data

is
::
are

:
consistent with an exponential (p= 0.79 with Anderson-Darling

:::
AD test) and a log-normal distribution (p= 0.18). A

relative likelihood test prefers the exponential distribution by a factor of 16 over the log-normal. An exponential fit to the data25

is illustrated in Fig. 4b. This distribution might be relevant in this context, as it arises in the low noise limit of noise-induced

escape times from asymptotically stable equilibria in dynamical systems (Day, 1987).

4.2.2 Influence of stadial levels and forcing on durations

In the following we discuss whether the stadial duration variability is influenced by other features in the data, or external

factors. Among external factors, the stadial durations are best correlated with 65Nss (rs =−0.64). The only DO feature that30

is significantly and robustly correlated with the stadial durations, is the stadial levels with rs =−0.43. In Fig. 8a we show a

scatterplot of the stadial levels and the logarithms of the durations. If one discards the first 6 events of the record, there is a

20
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Figure 8. a) Scatterplot of stadial levels and logarithmic durations. Outliers from an approximate linear relationship are labeled. b) Event

series of observed stadial levels and those modeled by Lmod = 3.52 ·X1+98.84 ·X2−57.96, where X1 is 65Nint and X2 the eccentricity.

c) Models predicting the observed stadial durations (crosses). The first 6 events, indicated by gray markers, were discarded when fitting

the models. The model based on predicted stadial levels from insolation (squares) is given by log(Dmod) =−0.90 ·Lmod − 32.18. The

second model (circles) is given by log(Dmod) =−0.037 ·X1−27.11 ·X2+25.24, whereX1 is 65Nss andX2 eccentricity. The third model

(diamonds) is given by log(Dmod) =−0.90 ·X1 +75.39 ·X2 +38.71, where X1 is EDML and X2 eccentricity.

linear anti-correlation of rp =−0.80, or rp =−0.76 after linear detrending. This could be either due to common forcing or

due to the levels directly controlling
:::::::::
influencing

:
the durations.

While the stadial levels correlate well with LR04 and EDML due to a common linear trend, there is better correlation with

insolation, as seen by rp = 0.60 (GS-24.2 and GS-22 are outliers) for 65Nss. Removing outliers yields rp = 0.82, which does

not change when linearly detrending. To see whether this forcing explains most of the correlation of durations and levels, we5

remove a linear fit to 65Nss from each variable and find a remaining correlation of rp =−0.38. Even though the significance

of this correlation is unclear due to the autocorrelation of the stadial levels, this could imply that there is more information
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in the stadial levels about the durations than simply common insolation forcing. On the other hand, insolation components in

addition to 65Nss might explain more of the observed variability.

We investigate whether multiple linear regression models with two predictors explain the stadial levels and durations signif-

icantly better. A model comprised of 65Nint and eccentricity determines the stadial levels very well (R2 = 0.86), as shown in

Fig. 8b. These modeled levels also correlate well with the logarithm of the stadial durations (rp =−0.64 when excluding the5

earliest 6 events). We check whether this is a good model for the durations by linearly regressing the modeled levels onto the

logarithm of the durations and exponentiating the result. In Fig. 8c we compare this to two other models that directly regress

external forcings on the logarithm of the durations. None of the models fits the first 6 events adequately. Thereafter, all three

models produce a similar trend. The model based on predicted stadial levels, and a model with direct forcing by 65Nss and ec-

centricity show similar skill withR2 = 0.29 andR2 = 0.30, respectively. The third model based on eccentricity and the EDML10

record is slightly better with R2 = 0.46, mainly because it fits two of the longest stadials better. Still, all of the models fit only

the overall trend and leave unexplained variability on top of it. Unless the correlation is nearly perfect, a linear correlation of

the logarithm still leaves a lot of room for scatter in the original scale.

The exponential tail in the variability of the stadial durations is not a result of the modulation by the external forcings

we consider. To demonstrate this, we remove the forcing influence by fitting a linear model of one or more forcings to the15

logarithm of the stadial durations. We obtain detrended data by adding the mean of the logarithmic data to the residuals of the

fit and then exponentiating. When using 65Nss as forcing, we find p= 0.15 in an Anderson-Darling
::
AD

:
test on the exponential

distribution. With the model of both eccentricity and 65Nss, as introduced above, we find p= 0.29. Thus, the distribution of

the detrended data is still long-tailed and consistent with an exponential distribution.

4.2.3
:::
Are

:::::::
stadials

::::
with

::::::::
Heinrich

::::::
events

::::::::
special?20

::::::
Besides

::::
DO

::::::
events,

::::::::
Heinrich

:::::
events

::::
are

:::
the

::::
other

::::::
major

:::::
mode

::
of

::::::::::::::
millennial-scale

::::::
climate

:::::::::
variability

::::::
during

:::
the

::::
last

::::::
glacial

::::::
period.

:::::
These

::::::
events

:::::::::
correspond

::
to
:::::::

massive
::::::::::

discharges
::
of

:::
ice

:::::
rafted

::::::
debris

:::::
found

::
in

::::::
ocean

:::::::
sediment

:::::
cores

:::::::::::::::
(Heinrich, 1988),

::::
with

::::
large

:::::::
climatic

:::::::
impacts

::::
that

:::
are

:::::::::::::::
well-documented

::
in

::::::::
numerous

::::::
proxy

::::::
records

::
at
:::::::
various

::::::::
locations.

::::::
While

:::::::::
constraints

:::
on

::::
their

:::::::
duration

:::
and

::::::
timing

:::::
need

::
to

::
be

:::::::::
improved,

:::
we

:::::
follow

:::::::::::::::::::::
Seierstad et al. (2014) for

:::
the

::::::::
temporal

::::
link

::
of

::::::::
Heinrich

:::::
events

::::
and

::
the

::::::::
GICC05

::::::::::
chronology.

::::
This

:::::
yields

::::
the

::
set

:::
of

:::::::
Heinrich

::::::
events

:::
H2,

::::
H3,

::::
H4,

::::
H5a,

::::
H5,

:::
H6,

:::::
H7a,

::::
H7b

:::
and

::::
H8,

:::::
which

:::::::
overlap25

::::
with

::::::
stadials

::
3,

:::
5.2,

::
9,
:::
13,

:::::
15.1,

:::
18,

:::
20,

::::
21.1

:::
and

:::
22,

::::::::::
respectively.

:::::
Since

:::::
some

::
of

:::::
these

:::::::
Heinrich

:::::
events

::::::
might

::
be

:::
less

::::::::::
established

::
in

:::
the

::::::::::
community,

:::
we

::::
also

::::
look

::
at

:::
the

:::::::
reduced

:::
set

::
of

:::
H2,

::::
H3,

:::
H4,

:::
H5

:::
and

::::
H6.

:::
We

:::
test

:::::::
whether

:::::
these

::::::::
’Heinrich

:::::::
stadials’

::::
have

:::::::::::
significantly

:::::::
different

:::::::::
properties

::::
than

:::
the

:::::::::
remaining

:::::::
stadials,

::::
such

::
as

::::::
longer

::::::::
durations,

:::
by

::::::::
randomly

::::::::
sampling

::
9

::::::
stadials

:::
(5

:::
for

:::
the

:::::::
reduced

::::
set)

::::
from

:::
the

:::::
entire

:::
set

:::::::
without

:::::::::::
replacement

:::
and

::::::::::
calculating

::
the

:::::
mean

::::::::
duration

::
of

:::
this

::::::
subset.

:::
We

::::::
repeat

:::::
many

:::::
times

::::
until

:::
we

:::
can

:::::::
estimate

:::
the

::::::::::
probability

::
of

:::::
trials

:::::::
yielding

:
a
::::::
higher

:::::
mean30

:::::::
duration

::::
than

:::
the

:::::
actual

:::
set

::
of

::::::::
’Heinrich

::::::::
stadials’.

::
If

:::
this

::
is

::::
less

::::
than

:::
5%

::::::::::::
(corresponding

:::
to

::::::::
p= 0.05)

:::
we

:::::
reject

:::
the

:::::::::
hypothesis

:::
that

::::::::
’Heinrich

::::::::
stadials’

::::
have

:::
the

:::::
same

::::
mean

::::::::
duration

::
as

:::
the

:::::::::
remaining

::::::
stadials

::
at
:::::
95%

:::::::::
confidence.

:::::
This

:::
test

:::::
gives

:::::::::
essentially

::
the

:::::
same

::::::
results

::
as

:
a
:::::::::
one-sided

:::::
t-test.
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:::
For

:::
the

::::
full

::::::::
(reduced)

:::
set

:::
of

::::::::
Heinrich

:::::
events

::::
we

::::
find

::::::::
p= 0.028

:::::::::::
(p= 0.022).

::
It
::
is
::::

not
:::::::
obvious

:::::::
whether

::::
this

::::::
should

:::
be

:::::::::
considered

:::::::::
significant

::
in

:::
the

:::::
sense

:::
of

:
a
:::::::::
hypothesis

::::
that

::::::::
Heinrich

::::::
events

::::::
prolong

::::::::
stadials.

::
A

:::::
better

::::::::
statistical

::::
test

::
is

:::::::
needed,

::::
since

::
if

:::
the

:::::
events

:::::
were

::
to

:::::
occur

::::::::
randomly

::::::
during

:::
the

:::::
course

:::
of

::::::
stadials

::::
they

::::::
would

:::::::
naturally

:::
be

:::::
found

:::::::::::
preferentially

::
in

::::::
longer

::::::
stadials.

::::
We

::::
leave

::
a
:::::::::
resolution

::
of

:::
this

:::
for

:::::::::
upcoming

:::::
work.

::::::
Based

::
on

:::
the

::::
idea

::::
that

::::::::
’Heinrich

:::::::
stadials’

:::
are

::::::
colder

::::
than

:::::::
normal,

::
we

:::::::
perform

::
a
:::
test

:::
on

:::
the

::::::
stadial

:::::
levels,

:::::::
yielding

:::::::::
p= 0.052

::::::::::
(p= 0.047).

::::::
Again,

::::
this

::
is

:::::::
probably

::::
not

::::::::
significant

:::::
since

::::::::
Heinrich5

:::::
events

::::::
mostly

:::::
occur

::
in

:::
the

:::::::
younger

::::::
glacial

:::
half

:::::
with

:::::::
generally

::::::
lower

:::::
levels.

:::
We

::::
can

::::
reject

:::
the

::::::
notion

::::
that

:::
DO

:::::
events

:::::::::
following

:::::::
Heinrich

:::::
events

:::
are

:::::::::
’stronger’.

::
A

::::::::
statistical

:::
test

:::
on

:::
the

:::
DO

:::::::
warming

::::::::::
amplitudes

:::::
yields

::::::::
p= 0.102

:::::::::::
(p= 0.472),

:::::::
whereas

:
a
:::
test

:::
on

::
the

::::::::::
interstadial

::::::::
durations

:::::
yields

:::::::::
p= 0.403

::::::::::
(p= 0.583).

::::
This

:::::
might

:::::::
depend

::
on

:::
the

:::::::
precise

:::::
timing

::
of
::::

H3,
:::::
which

:::
in

:::
our

:::::::
analysis

:::::::
precedes

:::
the

::::::::
especially

:::::
weak

::::::
GI-5.1.

:

4.3 Abrupt warming periods10

4.3.1 Warming durations

The rapid warming transitions in NGRIP as determined by our piecewise-linear fit have an average duration of 63.2 years.

There is quite a large spread with a minimum duration of 15.3 years for GI-17.1 and a maximum of 179.5 years for GI-11.

There is no clear trend, as we find both short and long warmings in early and later parts of the record. The distribution is skewed

as seen in Fig. 4e. We find 5 transitions that last for more than a hundred years (interstadials 6, 11, 17.2, 18, 23.2). For each of15

them there is not only a single abrupt warming, but also a systematic departure from stadial to warmer values before, as can be

seen in Fig. S1 of the supplemental material. Our algorithm includes these early warming trends into the warming transition.

Clearly, other methods to define the abrupt warmings might give different results in these cases. In Rousseau et al. (2017), the

transition onsets are defined by the derivative of the signal and consequently the warming transitions into interstadials 6 and

11 are reported to be much shorter. Given our definition of abrupt warmings, we can at least argue that the longest warming20

transitions are not a result of noise, because in our fit of the GRIP record the same transitions are also among the longest and

are clearly above average.

Within the framework of our analysis, we cannot identify any DO cycle features, external forcings, or combinations thereof

that can explain a significant part of the variability in the warming durations. Thus, we aim to infer something about the

mechanism of the warming transitions from the distribution of their durations. To assess which distributions are consistent25

with the data we use the Anderson-Darling test. Using the Cramer-von Mises or Kolmogorov-Smirnov test yields qualitatively

unchanged results for all tests reported in this section. The Anderson-Darling test shows
:::
AD

::::
tests

:::::
show that the log-normal

(p=0.63
:::::::
p= 0.63), Gumbel (p=0.053

::::::::
p= 0.053) and inverse Gaussian (p=0.95

:::::::
p= 0.95) distributions cannot be rejected at 95%

confidence by the data. A fit with the Gumbel distribution is illustrated in Fig. 4e. By computing the relative likelihood from

the Akaike information criterion, we find that the inverse Gaussian distribution is 9.7 times more likely than the Gumbel30

distribution, and the log-normal distribution is 7.6 times more likely than the Gumbel distribution. We cannot choose in between

log-normal and inverse Gaussian with any confidence.
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4.3.2 A model for the stadial-interstadial transition

In the following we compare the warming durations to what is expected in the framework of noise-induced transitions in

multi-stable systems. The DO warming durations are much shorter than the time spent in the stadial state. If we consider the

stadial-interstadial transition as a noise-induced transition from one metastable state to another, starting at the stadial onset,

most of the time is spent in the vicinity of the stadial state. The part of the trajectory that leaves this vicinity for the last time and5

then moves towards the other state (interstadial) is referred to as the reactive trajectory. Because of the high noise level in the

record, an unknown part of which is non-climatic or regional and changes over time, we do not estimate reactive trajectories

by defining neighborhoods of two metastable states. Instead, we believe the warming periods obtained by our piecewise-

linear fit are reasonable estimates. Figure 9a illustrates the reactive trajectory (in green) leading up to GI-20. In Fig. 9b the

different parts of this stadial-interstadial transition are projected onto an arbitrary potential that features two metastable states.10

For overdamped motion driven by additive noise in such a potential, it has been proven that the reactive trajectory durations

converge to a Gumbel distribution in the zero noise limit (Cérou et al., 2013). Similarly, there is numerical evidence for the

Gumbel distribution applying to one-dimensional spatially extended systems for low noise (Rolland et al., 2016). Because in

our data we cannot separate true climatic noise, potentially driving the observed large-scale climate transitions, from other

types of noise, it is hard to say whether a low noise condition is met and a Gumbel distribution should be expected.15
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Figure 9. a) Stadial-interstadial transition leading up to GI-20 (red) including our estimate of the so-called reactive part of the trajectory

(green) preceded by 350 years of the stadial GS-21.1. b) Data points of the same time series projected onto an arbitrary one-dimensional

potential function with two minima as conceptual model for the transition.

With a small numerical experiment we address the case of finite noise levels and small sample sizes. We use stochastic

motion in a double well potential as generic model for a noise-induced transition out of a metastable state to another. It is

given by the stochastic differential equation dXt =
(
−dV (Xt)

dx

)
dt+σdWt, with the potential V (x) = x4−x2 and the Wiener

process Wt. For zero noise, there are two fixed points at x=−1 and x= 1. We initialize the system at x=−1 and repeatedly

collect reactive trajectories, which start when they last leave x <−0.9 and end as they enter x > 0.9. Small samples of 3120

reactive trajectory durations are indeed typically consistent with a Gumbel distribution for a range of different noise levels, but

can be consistent with other distributions, too.
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To show this, we collect p-values of Anderson-Darling
:::
AD tests on many small samples. For the Gumbel distribution at a

low noise level of σ = 0.00045, 96.3% of the p-values are above 0.05. Thus, in this case, very rarely a sample of 31 reactive

trajectory durations is rejected by a hypothesis test on the Gumbel distribution. For a higher noise level of σ = 0.5, still 80.1%

yield p > 0.05. However, the log-normal distribution fits equally well with 95.4% (93.6%) yielding p > 0.05 for σ = 0.00045

(σ = 0.5). The distribution that most reliably fits the data is the inverse Gaussian with >99.9% (>99.9%) yielding p > 0.05 for5

σ = 0.00045 (σ = 0.5), despite the fact that in the zero noise limit the correct distribution is Gumbel. It has been noted that the

inverse Gaussian also fits well for large sample sizes (Cérou et al., 2011). Even non-skewed distribution can be consistent with

the samples, as seen for the Gaussian distribution, with 55.1% (22.8%) yielding p > 0.05 for σ = 0.00045 (σ = 0.5). Similar

values are obtained for the logistic distribution.

These results imply that from a small sample of 31 reactive trajectories we cannot reliably identify the true distribution and10

thus a potential mechanism. Still, the data are at least consistent with the expected behavior of noise-induced escape from a

metastable state. Clearly, other simple mechanisms can be consistent with the data, too. For example, as mentioned above, the

inverse Gaussian is the distribution of time elapsed for a Brownian motion with drift to reach a fixed level.

4.3.3 Warming amplitudes

The average amplitude of the rapid warmings is 4.2 permil, with most events clustering around this value. The most extreme15

values are 7.1 permil for GI-19.2 and 1.7 permil for GI-5.1. The latter is not surprising, because GI-5.1 is almost not visually

discernible as an event in the δ18O series. We find an anti-correlation of the warming amplitudes and the preceding stadial

levels. When discarding GI-5.1, the correlation is significant at 99% confidence with rs =−0.63, which is largely due to GI-

19.2 being preceded by a very deep stadial, and GS-23.1 and GS-22, which are preceded by very shallow stadials, as they

happen early in the glacial. When discarding these events the remaining correlation is still significant at 99% confidence with20

rs = 0.50. Thus, to some degree, the warming amplitudes are predictable in a statistical sense: When residing in a shallow

stadial, the amplitude of the next DO warming will be small, and vice versa for a deep stadial. We also assess whether the

variability can be explained by external forcing. Our analysis does not show a relationship between the DO event amplitudes

and global ice volume (LR04), as has been proposed by McManus et al. (1999); Schulz et al. (1999). It should be noted,

however, that these studies have a quite different notion of DO event amplitudes. Our approach, based on fitting high resolution25

data, seems well suited to estimate the actual amplitude of rapid transitions, as opposed to low-pass filtering that reduces the

amplitude of shorter events. Instead of ice volume, we find a correlation with 65Nint of rp =−0.36 and rs =−0.31, which is

significant at 90% confidence. However, the correlation is visually not striking. Removing GI-19.2, which occurs close to an

insolation minimum, yields a correlation that is not significant at 90% confidence.

5 Discussion30

This work presents a consistent fitting routine allowing to extract robust features of DO events from noisy,
::::::::::::::
piecewise-linear

::
fit

::
for

:::
the

:
high-resolution ice core data, such as the NGRIP δ18O record . The algorithm converges to a continuous piecewise-linear
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fit of the whole time series
::
of

:::
the

:::
last

::::::
glacial

:::::
period, where each DO event cycle is given by a constant stadial period, an abrupt

warming period, a gradually cooling interstadial period and an abrupt cooling period. The fit is satisfactory in the sense that

each event receives a reasonable
::::::
receives

::
a
:
saw-tooth shaped fit, which is characteristic for the ensemble of DO events as a

whole. Not for all events this is necessarily the overall best piecewise-linear fit. For example, ,
:::::
since there are transitions that

do not have a significant rapid cooling period at the end of the interstadials, but rather cool gradually until reaching roughly5

constant stadial values. In Sec. 3.1 we showed that 14 out of the 31 DO events analyzed in this study do not strictly follow the

saw-tooth shape that is often reported as being generic for all DO events.

The uncertainties of the fit parameters are assessed by using
::::
with

:
a bootstrap resampling technique (Sec. 3.2) and alter-

natively by comparison to a different ice core (GRIP, Sec. 3.3). The average absolute deviations of the GRIP and NGRIP

features and the average standard deviations obtained by bootstrapping are of very similarmagnitude. This gives us
:::::
results

:::
are10

::::
very

::::::
similar,

::::::
giving confidence in the validity of the uncertainty estimates of the latter method. From the uncertainties

::::::
former

:::::::
method.

:::::::::
However, it follows that some of the shorter time scale features have to be taken with care, such as the rapid warming

durations. Here, not all individual values might be reliable. However, the comparison with GRIP shows that the overall trends

and distributions, also of the shorter time scale features, are robust. Still, different methods or models to define the features

might alter the results. As an example, our piecewise-linear method yields quite different estimates of the abrupt warming du-15

rations as compared to Rousseau et al. (2017), where abrupt warmings are defined by an estimated derivative of the time series.

Our results have an average absolute deviation of 25 years (26 years) compared to their algorithmically (visually) determined

warming durations starting at GI-17.1.

We subsequently analyzed different features that describe
::::
From

:::
the

::
fit

::::::::::
parameters,

::
we

:::::::
derived

:::::::
different

::::::
features

::::::::::::
characterizing

each DO cycle and can be derived from the fit parameters. These include the proxy levels in the stadials, at the interstadial20

maxima and ends, the durations and rates of warming and cooling periods, as well as stadial and interstadial durations. In

general, all features except for the proxy levels
:::::::::
performed

::
an

::::::::
extensive

::::::::
statistical

:::::::
analysis

:::
on

::::
these

::::
and

::::::
various

::::::::
forcings.

::::
This

::::
could

:::::::
provide

::
a

::::
basis

:::
for

:::::
future

::::::::
modeling

:::::::
studies

::
to

:::::::
compare

::::::::::::
characteristics

::
of

::::::::
modeled

:::
DO

::::::
cycles

::
to

:::
the

:::
ice

::::
core

::::
data.

:::::
Even

::::::
though

::::
most

:::::::
features

:
develop rather irregularly from event to event, as shown by the absence of significant autocorrelation,

and many of them are very broadly distributed. We evaluated which distributions and corresponding processes describe the25

individual features best. This can give some insight into the nature of the mechanisms giving rise to the abrupt climate changes.

Furthermore, we investigated whether the variability in some features can be explained by other features, external forcings or

combinations of them. This is done by a brute force search of significant correlations, multiple linear regression models and

clusterings, which is subsequently narrowed down by assessing robustness to outliers and trends. We synthesized the most

important findings in terms of the interstadial, stadial, and abrupt warming periods of the DO cycle, as summarized in the30

following
:::
and

::::
show

:::::
only

:::::
weak

::::::::::
correlations

::::
with

::::
each

:::::
other

:::
and

::::::::
external

:::::::
forcings,

:::::
some

::::::
useful

::::::::::
information

:::
can

:::
be

::::::::
extracted

::::
from

:::
the

:::::::
analysis.

The interstadial periods have highly variable durations and are characterized by a roughly linear cooling with rates that vary

strongly from one DO cycle to the next (Sec. 4.1.1). The cooling rates clearly determine the interstadial durations , as opposed

to the cooling amplitudes, which cannot robustly explain the variability of the durations. Interstadial durations and cooling35
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rates are consistent with a simple inverse relationship. As a result, the interstadial durations are determined
:::::::
Because

:::::
these

:::::::
durations

:::
are

:::::
much

:::::
more

:::::::
strongly

::::::::
governed

::
by

:::
the

::::::
cooling

:::::
rates

::::
than

::
by

:::
the

::::::
cooling

::::::::::
amplitudes

:::
they

::::
can

::
be

::::::::
predicted to a good

approximation as soon as the cooling rates have stabilized. We estimate from the data that for most DO cycles this happens

within the first 150 to 350 years of the interstadial (Sec. 4.1.3).
:::
Our

:::::::::::
interpretation

::
is

::::
that

::::
after

:::::::::
interstadial

:::::
onset

::
a

:::::::::
large-scale

::::::::::::
reorganization

::
of

:::
the

::::::
climate

::::::
system

:::::
takes

::::
place

:::
on

:
a
::::
time

:::::
scale,

::::::
which,

::::
even

::::::
though

::::
very

::::::::
different

::::
from

:::::
event

::
to

:::::
event,

:::
can

:::
be5

::::::
inferred

:::::
from

:::
the

::::::
cooling

::::
rate

:::
and

::::
stays

::::::::
constant

:::::::::
throughout

:::
the

::::::::::
interstadial.

::::
This

::::::::::::
reorganization

:
is
:::
the

:::::
major

:::::::
driving

::::
force

::::
that

:::::::::
determines

:::::
when

:::
the

:::::::::::::::
interstadial-stadial

::::::::
transition

::::
takes

::::::
place,

:::::
which

::
as

::
a

:::::
result

:::::
cannot

:::
be

:::::
purely

:::::::::::::
noise-induced.

The influence of external factors on the large variability of the interstadialfeatures is assessed and compared to previously

proposed forcing mechanisms (Sec. 4.1.4). Based on the GISP2 ice core record of the younger half of the last glacial it

has been proposed ,
:::::::
External

::::::
forcing

::::::
might

::::::
explain

::::
the

::::
large

::::::::
variation

::
of

::::
this

::::
time

:::::
scale

:::::
from

:::::
event

::
to

:::::
event,

:::
as

::::::::
proposed10

::
by

::::::::::::
Schulz (2002),

:::::
who

:::::
argues

:
that the interstadial cooling rates are controlled by global sea level(Schulz, 2002). While we

can confirm this finding by observing a linear correlation of the logarithm of the cooling rates with the LR04 record for

global ice volume, the relation seems
:
,
:::::
based

:::
on

:::
the

:::::::
GISP2

:::
ice

::::
core

::::::
record

::
of
::::

the
:::::::
younger

::::
half

:::
of

:::
the

::::
last

::::::
glacial.

::::
We

:::
find

::::
this

:::::::
relation to be weak in the older half of the glacial due to a handful of outliers . The interstadial duration might

be controlled by
::::::
number

:::
of

::::::
outliers

:::::
(Sec.

::::::
4.1.4).

::
A
::::::::
physical

:::::::
pathway

:::
for

:::::
such

:
a
:::::::
forcing

:::::
might

:::
be influences of global ice15

volume on the strength and stability of the interstadial (strong) mode of the Atlantic Meridional Overturning Circulation

(AMOC)
::::::
AMOC. However, contrary to our finding, the influence of ice volume on AMOC stability reported by studies

with globally coupled models is often such that increases
:::::
studies

:::::
with

:::::::
coupled

::::::
climate

:::::::
models

:::::
show

::::
that

::::::::::
enlargement

:
of

Northern Hemisphere ice sheets actually enhance
:::::::
enhances

:
the stability of the strong AMOC state , which would intuitively

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 2014; Ullman et al., 2014; Muglia and Schmittner, 2015).

:::::::::
Intuitively,

::::
this

:::::
would result in longer interstadials(Zhang et al., 2014)

:
,20

:::::
which

::
is

::
in

::::::
contrast

:::
to

::::
what

:::
the

:::
ice

:::
core

::::
data

:::::::
suggest. This has been addressed by Buizert and Schmittner (2015), where South-

ern Ocean processes are invoked to influence interstadial durations. We find that the control
:::::::::
correlation of Antarctic temperature

on
::
and

:
interstadial durations reported in this study is only valid if certain outliers are discarded. Finally, for the younger half

of the glacial , starting at GI-14, we find that the
:::::::::
atmospheric

:
CO2 record is the best

::
is

:
a
:::::
much

:::::
better

:
predictor of the cooling

rates.25

In our analysis, certain interstadials frequently show up as outliers. These include the short events 23.2 and 21.2, which

occur early in the glacial and are surrounded by longer interstadials, as well as the events 18, 17.2 and 15.2, which are

short, but do not show a clear gradual cooling. Their presence either showcases the strong irregularity and variability of

the processes underlying
:
A

::::::::
sensitive

::::::::::
dependence

::
of

:::
the

::::::
strong

::::::
AMOC

:::::
state

::
to

::::
CO2:::

has
:::::

been
:::::::
verified

::
in

:::::
model

:::::::::::
experiments

::
by

::::::::::::::::::::
Kawamura et al. (2017).

::::::::
However,

:::::
more

::::::
model

::::::::::
experiments

::::
with

::::::
active

::::::
carbon

:::::
cycle

:::
are

::::::
needed

::
to
::::::

clarify
:::::::
whether

:::::
CO230

:::::
should

:::
be

:::::::::
considered

::
as

:::::::
forcing

::
or

:::::::
response

::
to
:

the DO cycle, or could indicate that not all transitions are caused by the same

trigger. We find more groups of outliers using clustering analysis. These could be studied more thoroughly, and compared with

other paleoclimatic indicators.
::::
Yet

::::
other

::::::
model

::::::::::
experiments

:::::::
showed

:::
that

:::::::
changes

::
in
:::::
CO2 :::::

could
::
in

:::
fact

:::::
even

::
be

:::
the

::::::
trigger

:::
for

:::::::
DO-type

:::::::::
transitions

::::::::::::::::
(Zhang et al., 2017).
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The stadials have different properties compared to the interstadials, going beyond the approximately constant temperature

within stadials. The duration distribution closely resembles an exponential, and is thus consistent with noise-induced escape

from a metastable state to another (Sec. 4.2.1). The large dispersion of this distribution
::
its

:::::
large

::::::::
dispersion

:
cannot be explained

by external forcing alone. Instead, the distribution is still consistent with an exponential after detrending with the best fit to

insolation forcing (Sec. 4.2.2). Although there are different possibilities to obtain a good fit of the trend of the stadial durations,5

a forcing by insolation seems most plausible. We additionally find indications for a control of the stadial durations by the levels,

but it is difficult to conclude from our data whether there is a true causal link, or merely common insolation forcing on both

variables.

The piecewise-linear fit furthermore gives estimates for the amplitudes, rates and durations of the rapid DO warmings.

We find no evidence for influence of other DO features or external factors on the warmings. As an exception, the warming10

amplitudes are anti-correlated with the stadial levels
::::
The

:::::
stadial

::::::::
durations

:::
are

::::
thus

:::::::::
consistent

::::
with

:::::::::::
noise-induced

::::::
escape

:::::
from

:
a
:::::::::
metastable

::::
state

::
to

:::::::
another (Sec. 4.3.3). Consequently, they may be predicted in a probabilistic sense. There is considerable

variability of the warming durations, and we find the distribution to be
:::::
4.2.1).

:::::
This

::
is

::::::::::
corroborated

:::
by

::::
our

::::::
finding

::::
that

:::
the

:::::::::
distribution

::
of

::::
DO

:::::::
warming

::::::::
durations

::
is
:
consistent with the durations of so-called reactive trajectories in systems with noise-

induced escapes in between multiple metastable equilibria (Cérou et al., 2013; Rolland et al., 2016) (Sec. 4.3.2).15

Thus, our analysis suggests that both the stadial period durations and subsequent warming durations are consistent with

the stadial-interstadial transition as
:
is
:::::::::
consistent

::::
with

:
a noise-induced escape from a metastable state. This is different from

the interstadial-stadial transition, which occurs in a more predictable fashion, because the linear cooling rates anticipate

the interstadial durations. Additionally, the interstadial durations are not consistent with an exponential distribution. It has,

however, recently been suggested
:
,
:::
and

:::::
thus

::::
with

:::::::::::
spontaneous,

::::::::
unforced

::::::
climate

::::::::::
transitions,

::::
such

:::
as

:::
the

::::
ones

::::::::
observed

:::
in20

::::::::::::::::::::::::::::::::::::
Drijfhout et al. (2013); Kleppin et al. (2015).

::::::::
However,

:::::::
evidence

:::
for

::
a

:::::::
different

:::::::
scenario

:::::
might

::::
arise

::::
with

::::
new

::::
data

::
or

::::::::
analyses,

::
as

::
in

:::
the

::::::
studies

::
by

::::::::::::::::
Rypdal (2016) and

:::::::::::::::
Boers (2018) who

::::::
suggest

:
that there is a bifurcation before DO events in a fast

::::::
climate

sub-system of the climate , which was based on evidence for
:::::
before

::::
DO

:::::::::
warmings,

::::::::
evidenced

:::
by critical slowing down in the

high-frequencies of the ice core record prior to a significant number of DO warming transitions (Rypdal, 2016; Boers, 2018)
::::
some

:::::
events. If this is the case

:
,
:
it would mean that there is some predictability of the warming transitions, too. Additionally, we25

find that
:::
the

:::::::::
transitions

:::
are

:::
not

::::::
purely

::::::::::::
noise-induced,

:::
but

::::::::::
predictable

::
to

:::::
some

::::::
degree

:::
and

::::::::::
potentially

:::
part

:::
of

:
a
::::::::::::
self-sustained

::::::::
oscillation

::::
such

:::
as

::
in

:::
the

:::::
model

::::::::::
experiments

:::
by

::::::::::::::::::::::::::
Vettoretti and Peltier (2016) and

:::::::::::::::::::::
Klockmann et al. (2018).

:::
Our

::::::::
analysis,

:::::::
however,

::::::
allows

:::
for

:::
the

:::::::::::
interpretation

::
of

:::
the

::::
DO

:::::
cycle

::
as

:
a
::::::::::::
manifestation

::
of

::
an

::::::::
excitable

:::::::
system,

::
as

::::::::
proposed

::
by

:::::::::::::::::::::::::::::::
Ganopolski and Rahmstorf (2002) and

::::::::::::::::::::::
Timmermann et al. (2003),

::::
with

::
a
::::::::::::
noise-induced

::::::::
transition

:::
out

::
of

:::
the

:::::
stadial

:::::
state

::
to

::
the

::::::::::
marginally

:::::::
unstable

:::::::::
interstadial

:::::
state,

:::
and

::
a
:::::::::::
deterministic

::::::::
excursion

::::
back

::
to
:::

the
::::::

stadial
:::::
state.

::::::::
However,

:::
the

:::::
vastly

::::::::
different30

::::
time

:::::
scales

:::
for

:::
this

::::::::
excursion

::::
still

::::
need

::
an

:::::::::::
explanation.

:::
The

:::::::::::
mechanisms

:::::::::
underlying

::::::::
warming

:::
and

:::::::
cooling

:::::::::
transitions

:::
are

::::::::::
furthermore

:::::
likely

::
to

:::
be

::::::::
different,

:::::::
because the influence

of external forcing is different for stadial and interstadial periods, with more evidence for insolation forcing on stadials and

ice volume or CO2 on interstadials, which is related to the findings by Lohmann and Ditlevsen (2018). Except for a common
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forcing envelope of stadial and interstadial levels, there is no strong relationship in between features across the different periods

of the DO cycle.

::
In

:::
this

:::::
work

:::
we

:::
rely

:::
on

:::
the

:::::::::::
classification

::
of

:::::::::
Greenland

:::
ice

::::
core

:::::::::
centennial

::
to

:::::::::
millennial

::::::::
variability

::::
into

::
a

::
set

:::
of

:::
DO

::::::
events

::
by

::::::::::::::::::::
Rasmussen et al. (2014).

::::::::
Notably,

:::
this

:::::::::::
classification

::::::::
includes

::::
short

::::::
events

::::
such

::
as

::::
23.2

::::
and

::::
21.2,

::::::
which

:::::
occur

:::::
early

::
in

:::
the

:::::
glacial

::::
and

:::
are

:::::::::
surrounded

::
by

:::
the

:::::::
longest

::::::::::
interstadials,

::
as

::::
well

::
as

:::
the

::::::
events

:::
18,

::::
17.2

:::
and

::::
15.2,

::::::
which

:::
are

:::::
short,

:::
but

::
do

:::
not

:::::
show5

:
a
::::
clear

:::::::
gradual

:::::::
cooling.

:::
In

:::
our

::::::::
analysis,

::::
these

:::::::::::
interstadials

:::::::::
frequently

:::::
show

::
up

:::
as

:::::::
outliers.

:::::
Their

:::::::
presence

::::::
either

:::::::::
showcases

::
the

::::::
strong

::::::::::
irregularity

:::
and

:::::::::
variability

::
of

:::
the

:::::::::
processes

:::::::::
underlying

:::
the

::::
DO

:::::
cycle,

::
or

:::::
could

:::::::
indicate

::::
that

:::
the

::::::
events

:::
are

::::::
caused

::
by

:
a
::::::::

different
::::::
trigger

:::
and

:::
do

:::
not

::::::::
represent

:::::::::
large-scale

:::::::::::::
reorganizations

::
of

:::
the

::::::
climate

:::::::
system

::
in

:::
the

::::
same

::::
way

::
as

::::::
longer

::::::
events

:::
do.

:::::
Some

::::::::::
conclusions

::
of

:::
our

:::::
work

:::::
might

:::::::
change

:
if
:::

all
:::::
short

:::::
events

:::::
were

::::::::::::
systematically

:::::::::
discarded.

::::
They

:::
do

:::
not

::::::
appear

::
to

:::
be

::::
local

::
to

::::::::::
Greenland,

:::::
since

::::
they

:::
are

::::
seen

::
in

:::::::::::
atmospheric

:::::::
methane

:::::::
records

:::::::::::::::::::::
(Rhodes et al., 2017) and

::::::::::
speleothem

::::::
records

:::::
from10

::
the

:::::
Alps

::::::::::::::::::::::::::::::::::::
(Boch et al., 2011; Moseley et al., 2014) and

::::
Asia

:::::::::::::::::
(Cheng et al., 2016).

::::::::
However,

:::::
their

::::::::::
significance

::
in

::::::::::
comparison

::
to

:::::
longer

::::
DO

:::::
events

::
is

::
an

:::::
open

:::::::
problem

:::
that

:::::
needs

:::
to

::
be

::::::::
evaluated

::
as

:::::
more

::::::::
precisely

:::::
dated,

:::::::::::::
high-resolution

::::::
records

::::
from

:::::::
outside

::
of

::::::::
Greenland

:::::::
become

::::::::
available.

:

6 Conclusion

We developed an iterative
:
a
:
method to fit a continuous piecewise-linear waveform to the entire last glacial

::::::
NGRIP

:
δ18O15

record , which converges well. By using parameter constraints, we
:::
that can fit a characteristic saw-tooth shape to every DO

event. However, we find that for many of the transitions this is ad-hoc. Almost half of the events do not show a distinct and

significant rapid cooling episode after the more gradual interstadial cooling. An analysis of the DO event features derived

from the fit confirms the irregularity and randomness that is evident from visual inspection of the record. There is hardly any

evidence for relationships linking the features that describe the stadial, interstadial and abrupt warming periods, except for a20

common envelope that governs the stadial and interstadial levels via external forcing. A statistical analysis hints at different

mechanisms underlying warming and cooling transitions. This manifests itself in different distributions and external influences

of the stadials and interstadial durations
::::::
follows

:::::
from

:::
the

::::::::::
distributions

:::
of

:::
the

::::::
stadial

:::
and

:::::
rapid

:::
DO

::::::::
warming

::::::::
durations

:::
on

:::
the

:::
one

:::::
hand,

:::
and

:::
the

::::::::::
interstadial

::::::::
durations

::
on

:::
the

:::::
other

:::::
hand.

:
It
::
is
::::::::::
furthermore

:::::::::
supported

::
by

:::
the

:::::::
different

::::::::::
importance

::
of

:::::
CO2,

:::
ice

::::::
volume

:::
and

:::::::::
insolation

::::::
forcing

::
to

::::::
explain

:::
the

::::::
stadial

:::
and

::::::::::
interstadial

::::::::
properties, as well as the fact that the interstadial durations25

can be predicted to some degree by the linear cooling rates shortly after interstadial onset.
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Appendix A: Iterative algorithm to fit piecewise-linear model

Algorithm 1 Pseudocode for fitting algorithm

1: while j < J do

2: if j = 0 then

3: {tbi} = {tb0i }; {tei } = {te0i }

4: else

5: Set Stadial durations: {DSt
i } = {b1,i + tbi − tbi−1− b4,i−1}

6: Set Interstadial durations: {DIs
i } = {b4,i− b1,i}

7: Set Stadial beginning times: {tbi} =
{∑i−1

n=0(DSt
n +DIs

n )
}

8: Set Stadial end times: {tei } =
{∑i

n=0D
St
n +

∑i−1
n=0D

Is
n

}
9: end if

10: Define Stadial levels: {lsi } =
{〈
Xtbi ,...,t

e
i

〉}
11: Cut into segments: {si} =

{
Xtbi ,...,t

e
i+1

}
12: while i < N do

13: if j=0 then

14: Initial conditions: θ∗i = θ0
i

15: else

16: Initial conditions: θ∗i = θi

17: end if

18: Find optimal θnewi of segment si with θ∗i , lsi and lsi+1

19: i= i+ 1

20: end while

21: Update parameters {θi} = {θnewi }

22: j = j+ 1

23: end while

In the following, we detail the optimization procedure to find the best saw-tooth shaped fit for each event, i.e., line 18 of the

algorithm above. To determine the 6 parameters at each transition, we minimize the root mean squared deviation of the fit from

the time series segment. Due to the high noise level, there are many local minima in this optimization problem. Thus, either a

brute-force parameter search on a grid or an advanced algorithm is needed to find a global minimum. We chose an algorithm5

called basin-hopping, which is described in Olson et al. (2012) and is included in the Scientific Python package scipy.optimize,

where it can also be customized. The basic idea of the algorithm is the following: Given a initial coordinates in terms of the

parameter vector θ0, one searches for a local minimum of the goal function f(θ), e.g., with a Newton, quasi-Newton or other

method. The argument to this local minimum θn is then randomly perturbed by a Kernel to yield new coordinates θ∗, which
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are the starting point of a new local minimization. Next, there is a Metropolis accept or reject step: We accept the argument

of the local minimization θn+1 as new coordinates if the local minimum is deeper than the previous one f(θn+1)< f(θn), or

else with probability e−(f(θn+1)−f(θn))/T , where T is a parameter relating to the typical difference in depth of adjacent local

minima. Now we go back to the perturbation step either with old coordinates θn or, if accepted, with new coordinates θn+1,

and repeat. The iterative procedure is repeated for a large number of iterations and the result is the argument to the lowest5

function value found.

Within basin-hopping, one has the freedom of choosing any local minimizer as well as perturbation Kernel. These have to be

adapted to our optimization problem. We have several constraints on the parameters that need to be satisfied by the optimization.

For instance, we demand that all segments of the fit are present and do not overlap (b1 < b2 < b3 < b4). Other constraints ensure

that the characteristic shape of DO events is fit as good as possible for all events. Among other things, we thus demand the10

gradual slope to be significantly longer and less steep than the fast cooling transition at the end of an interstadial. An overview

of all the constraints we used is given further below. To satisfy them, we chose a multivariate Gaussian perturbation Kernel,

which is truncated at the respective parameter constraints. The local minimizer choice requires further consideration. Our goal

function landscape is very rough and not differentiable. Thus, methods like gradient descent give very poor results in our

case. A method that does not depend on derivatives and can handle constraints is called Constrained Optimization by Linear15

Approximation (COBYLA), and we found it to work well in our case.

Two hyper-parameters have to be specified in the basin-hopping algorithm: The variance of the perturbation Kernel, and

the parameter T used in the Metropolis criterion. These should both be comparable to typical differences in goal function

(temperature) and arguments (perturbation width) of neighboring local minima in the minimization problem. We chose these

parameters empirically by observing how the goal function changes as we slightly change the fit. Although this varies signifi-20

cantly from transition to transition, we determined single values as a compromise for all transitions. For the Kernel variance in

the directions of b1,2,3,4 we chose a value of 15, and for s1 and s2 we chose 0.004 and 0.0015, respectively.

The following list contains all constraints used in the optimization problem in order to ensure convergence of the algorithm

to a fit within the qualitative limits of the desired characteristic waveform. Specifically, constraints 3 and 4 shall guarantee that

there is a distinction in between gradual cooling and rapid cooling at the end of an interstadial. With these constraints we can25

prevent that our algorithm splits an interstadial in half with two very similar slopes, which can easily happen because there are

interstadials which arguably have a rather gradual cooling all the way down to the next stadial with no easily discernable steep

cooling at the end. The lower limit of constraint 6 shall help to only fit to the steep part of warming transitions, which might

have a slight warming prior to it. The upper limit of constraint 7 is needed in order to force a small negative slope on very short

transitions which otherwise could also be viewed as plateaus.30

1. No overlap of segments:

b2 > b1, b3 > b2 and b4 > b3

2. Gradual slope cannot go below following stadial level lsi+1:

s1(b2− b1) + s2(b4− b3)> lsi+1
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3. Gradual slope must be twice as long as steep drop:

b3− b2 > 2 · (b4− b3)

4. Drop at end of interstadial must be at least twice as steep as gradual slope:

2 · s2 <
s1(b2−b1)+s2(b3−b2)−lsi+1+lsi

b4−b3

5. Stadial period not shorter than 20 years:5

b1 > 20, b2 > 20, b3 < (DSt +DIs− 20)

and b4 < (DSt +DIs− 20)

6. Limit steepness of up-slope (permil y−1):

0.02< s1 < 1.5

7. Limit steepness of down-slope (permil y−1):10

−0.3< s2 <−0.0001

For the basin-hopping algorithm we use a multivariate Gaussian Kernel of fixed variance with σb1 = 15, σb2 = 15, σb3 = 15,

σb4 = 15, σs1 = 0.004 and σs2 = 0.0015.

Appendix B: Convergence of iterative fitting routine

We repeatedly run our iterative fitting routine and monitor whether the individual parameters converge, so that a consistent fit15

is obtained in the end. Critical for obtaining a consistent fit is that the stadial levels do not change substantially, as explained

in the Methods section. In Fig. B1a we show the evolution over 40 iterations of the incremental deviations of the stadial levels

compared to the previous iteration. Most stadial levels converge rapidly so that their increments stay below 0.05 permil. Two

short stadials keep fluctuating until around iteration 20 before they converge. Because of the convergence of stadial levels, we

consider our fit to be consistent. Furthermore, the best fit parameters are robust, which can be seen in Fig. B1b. Here, we show20

the average absolute incremental deviations to the break point parameters at each iteration. After 15 iterations the procedure is

stable, with average incremental deviations of roughly 0.4 years for b1 and b2 to 0.5 years for b3 and b4, which result from the

stochastic fitting algorithm. Note that these values are already well below the smallest sample spacing of the original unevenly

spaced time series.

Appendix C: Uncertainty estimation of fitting parameters25

Because of the nature of the data, care has to be taken when generating synthetic data. The properties of the data changes

throughout the record and are also quite different in between adjacent stadials and interstadials. Stadials have both a larger

variance and a larger effective sample spacing in time than the interstadials. For this reason, synthetic data will be created for

each stadial and interstadial period individually. The original data is unevenly spaced, which would provide difficulties on its
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Figure B1. a) Evolution of the incremental change of all stadial levels compared to the previous iteration for all 40 iterations of the fitting

routine. b) Average over all transitions of the incremental change (absolute value) of the break point parameters b1, b2, b3 and b4.

own, while our data is nearest-neighbor interpolated and oversampled to a 1-year resolution. This means that there typically

are multiple neighboring point with the same value, making it challenging to find a valid autoregressive or ARMA model for

the residuals to generate synthetic data. Instead, we use a block bootstrap resampling technique to keep all relevant structure

in the data. We chose a simple block bootstrap where non-overlapping blocks of fixed length of the time series are randomly

ordered, because it preserves the correct mean of the individual stadial and interstadial residuals. More involved methods, such5

as the stationary bootstrap, could be applied, but it likely will not change any of our conclusions.

In the following, we present the procedure for uncertainty estimation. We denote the original data time series of a given

transition as {Xt}, the fit obtained by the data as {Yt} and the residuals to the fit as {Rt}= {Xt−Yt}. We furthermore use

the break points b1,2,3,4 obtained in the fit of this transition.

1. Divide the residuals into four segment Rit at the breakpoints:10

{Rit}= {Rt}t=bi−1...bi for i= 1...4, where b0 = 0.

Denote the length of {Rit} as ni.

2. For each segment: Divide into ni/l blocks of length l.

Append remaining data points to last block if ni/l non-integer.

The block length l is determined by the length of the segment, as explained below.15
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3. For each segment: Randomly sample blocks without replacement and concatenate until all blocks have been used. This

yields resampled segments {R̄it}.

4. Concatenate the four resampled segments and add the fit to get synthetic data

{X∗
t }= {Yt}+ {{R̄1

t },{R̄2
t },{R̄3

t },{R̄4
t }}

5. Fit {X∗
t } to a piecewise-linear model with the basin-hopping algorithm.5

6. Repeat from step 2.

In order to also be able to resample the shortest segments, while also preserving the autocorrelative structure in all but the

shortest segments, we choose the following scheme for the block length l: If the segment length ni is larger than 40 years,

choose l = 20. If 40> ni ≥ 20 choose l = 10. If 20> ni ≥ 10 choose l = 5. If ni < 10 do not resample and simply return

original segment. The scheme has been determined by looking at the residuals of each segments in all transitions and observing10

that the autocorrelation drops to non-significant values for all segments after 10-15 years. It thus seems reasonable to use the

same block length rule for all transitions and segments.

Appendix D: Correlation analysis of features and forcings

In the following, we give an overview of the pairwise correlations in between different features and forcings. We show the

Spearman correlation coefficients of all tests and their significance in Fig. S4 of the Supplementary Material
:
5. Considering15

Spearman correlations with p < 0.05, we find 81 positives at 95% and 50 positives at 99% confidence, which is clearly more

than expected by chance. However, as detailed in the Methods Section, many of these are due to construction and will not be

discussed here. We will furthermore omit correlations which are not robust due to the presence of outliers.

Among features within the same DO cycle, the three different levels yield a strong correlation with each other. However,

the significance is overestimated due to their autocorrelation, and after linear detrending, the correlations are not significant20

anymore. Thus, the correlation comes mostly from a common trend associated with evolution of the background climate state

during the glacial. Furthermore, we find significant correlations of fast cooling, gradual cooling and warming amplitudes, and

a correlation of interstadial levels and gradual cooling amplitudes. This implies a certain consistency of DO cycles, where a

large amplitude warming is typically also followed by a large amplitude cooling (gradual and/or fast). This is equivalent to the

fact that the stadial levels are autocorrelated. In Sec. 4 we furthermore discuss the correlation of the gradual cooling durations25

with the gradual cooling amplitudes and rates, as well as the correlation of the stadials levels with the stadial durations and

warming amplitudes.

For features in adjacent DO cycles, we do not expect any true positives a priori, because no features are related by construc-

tion. Significant correlations at 99% confidence are only found for the levels. Due to their autocorrelation, the significance

determined by permutation tests are not reliable, however. Detrending shows that the correlations are dominated by a common30

linear trend due to the slowly changing background climate state. The remaining 8 correlations significant at 95% confidence
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could either be false positives, or a result of common external forcing. This is because 7 of the 8 correlations involve the levels,

which are clearly influenced by forcing, as detailed below.

We furthermore correlate the features with all forcings at the onset times of the respective periods within the DO cycles. The

tests indicate clearly more significant correlations than expected by chance. However, due to autocorrelation, the significance

is overestimated by permutation tests. In particular, the levels yield significant correlation with most forcings, however, both5

are autocorrelated. By linearly detrending and discarding outliers where necessary, we find that the interstadial levels are best

correlated with LR04, EDML and CO2, the interstadial end levels with 65Nss and precession, and the stadial levels with LR04,

65Nint, 65Nss, obliquity and eccentricity. Additional significant correlations we found are discussed in Sec. 4 and include

those of gradual cooling rates with the LR04 and CO2 forcings, as well as those of stadial durations and different insolation

forcings.10
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