Supplementary Information For: Large-scale features of Last Interglacial climate: Results from the Coupled Model Intercomparison Project (CMIP6) and Paleoclimate Modeling Intercomparison Project (PMIP4)

December 31, 2019

Figure S1. The observed 15% concentration boundaries for the 2000-2018 and 1870-1899 CE intervals based on the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST; Rayner et al., 2003) data set.

piControl August-September ice concentration (%)

Figure S2. The *piControl* sea ice concentration in the Northern Hemisphere for August-September for the individual models included in Figures 4, 7, and 8. Also shown are the observed 15% concentration boundaries for the 2000-2018 and 1870-1899 CE intervals based on the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST; Rayner et al., 2003) data set.

lig127ka August-September ice concentration (%)

Figure S3. The *lig127k* sea ice concentration in the Northern Hemisphere for August-September for the individual models included in Figures 4, 7, and 8.

piControl February-March ice concentration (%)

Figure S4. Same as Figure S2 but for the Southern Hemisphere for February-March.

lig127ka February-March ice concentration (%)

Figure S5. Same as Figure S4 but for the Southern Hemisphere for February-March.

piControl August-September sea ice thickness (m)

Figure S6. The annual *piControl* sea ice thickness in the Northern Hemisphere for the individual models included in Figure 8.

Table S1. Hoffman et al marine reconstruction of SST for 127 ka

	Latitude	Longitude	SST reconstruction method	Inferred proxy signal	[127ka -25D] Abs. Temp. (°C)	[127ka Mean] Abs. Temp. (°C)	[127ka +25D] Abs. Temp. (°C)	[1870-1889] HadlSST Temp. (°C	[127ka -2SD] Temp. Ano. (°C)	[127ka Mean] Temp. Ano. (°C)	[127ka +2SD] Temp. Ano. (°C)
North Atlantic											
GIK15637-1	27	-18.98	Forams	Winter	17.9	19.8	21.7	19.5	-1.6	0.3	2.2
M12392-1	25.16	-16.85	Forams	Winter	11.9	14.4	16.9	18.9	-7.0	-4.5	-2.0
TR126-29	21.33	-93.95	Forams	Winter	20.1	21.9	23.7	23.4	-3.3	-1.5	0.3
TR126-23	20.48	-95.62	Forams	Winter	19.4	21.2	23.0	23.0	-3.6	-1.8	0.0
V22-196	13.83	-18.97	Forams	Winter	17.2	21.2	25.3	21.5	-4.3	-0.3	3.8
V28-127	11.65	-80.13	Forams	Winter	23.2	26.0	28.8	26.8	-3.6	-0.8	2.0
V25-59	1.37	-33.48	Forams	Winter	22.5	24.6	26.6	27.2	-4.7	-2.6	-0.6
Desific Occan											
V7211 1	12 25	176 20	Dadiolaria	Wintor	9 C	12.0	10.2	10.2	155	10.2	4.0
1/211-1	45.25	-120.56	Farana	Winter	0.0	15.9	19.2	10.2	-15.5	-10.2	-4.9
V 28-238	1.02	100.48	Porams	Winter	24.7	27.4	30.0	29.1	-4.4	-1.7	0.9
1/1-0-12 DC15_C1	-10.45	-//.5/	Radiolaria	Winter	15.1	10.7	24.5	10.7	-5.0	2.0	7.0
RC13-01	-40.62	-77.2	Radioialia	whiter	1.1	4.1	1.2	11.0	-9.9	-0.9	-5.0
Indian Ocean											
V34-88	16.52	59.53	Forams	Winter	21.9	24.5	27.2	24.9	-3.0	-0.4	2.3
RC12-339	9.13	90.03	Forams	Winter	24.3	26.6	28.8	27.8	-3.5	-1.2	1.0
V28-345	-17.67	117.95	Forams	Winter	23.7	25.9	28.1	25.1	-1.4	0.8	3.0
MD73-25	-43.82	51.3	Radiolaria	Winter	2.5	4.5	6.4	7.0	-4.5	-2.5	-0.6
South Atlantic											
V22-182	-0.55	-17.27	Coccolithophora	Winter	20.1	23.4	26.8	23.9	-3.8	-0.5	2.9
V22-182	-0.55	-17.27	Forams	Winter	18.7	21.2	23.7	23.9	-5.2	-2.7	-0.2
GeoB1105	-1.67	-12.43	Forams	Winter	15.8	18.8	21.8	23.1	-7.3	-4.3	-1.3
RC13-205	-2.28	5.18	Forams	Winter	18.7	21.9	25.1	23.5	-4.8	-1.6	1.6
RC13-205	-2.28	5.18	Radiolaria	Winter	20.7	23.5	26.4	23.5	-2.8	0.0	2.9
V22-38	-9.51	-34.25	Forams	Winter	22.8	25.1	27.3	25.8	-3.0	-0.7	1.5
V22-38	-9.51	-34.25	Coccolithophore	Winter	22.0	24.3	26.5	25.8	-3.8	-1.5	0.7
V22-174	-10.07	-12.82	Forams	Winter	21.7	23.9	26.1	23.9	-2.2	0.0	2.2
V22-174	-10.07	-12.82	Coccolithophore	Winter	19.2	22.6	26.0	23.9	-4.7	-1.3	2.1
RC13-228	-22.33	11.2	Forams	Winter	16.0	18.9	21.8	16.7	-0.7	2.2	5.1
RC13-228	-22.33	11.2	Coccolithophore	Winter	13.4	17.0	20.6	16.7	-3.3	0.3	3.9
RC13-228	-22.33	11.2	Radiolaria	Winter	16.0	18.9	21.8	16.7	-0.7	2.2	5.1
RC13-229	-25.5	11.3	Forams	Winter	12.9	15.6	18.2	16.6	-3.7	-1.0	1.6
RC13-229	-25.5	11.3	Radiolaria	Winter	16.4	18.8	21.3	16.6	-0.2	2.2	4.7
RC11-86	-35.78	18.45	Forams	Winter	12.7	15.1	17.4	15.8	-3.1	-0.7	1.6
RC11-86	-35.78	18.45	Coccolithophore	Winter	15.4	18.7	22.0	15.8	-0.4	2.9	6.2
RC12-294	-37.27	-10.1	Forams	Winter	10.8	14.2	17.6	13.8	-3.0	0.4	3.8
RC12-294	-37.27	-10.1	Coccolithophore	Winter	12.0	15.5	19.0	13.8	-1.8	1.7	5.2

Annual* = When a * is indicated next to Annual, it means that Hoffman et al. 2017 took a site average between the summer and winter SST corrected for seasonal bias using HadISST data (see SOM of Hoffman et al. 2017 for details). Forams = Please look at Table S1 from Hoffman et al. 2017 for details on the method (e.g. transfer function, % pachyderma,)

Capron et al. QSR 2017 Critical evaluation of climate syntheses to benchmark CMP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions.

The dataset contains: Columns Ato L: The information of marine sediment and (recore sites included in the study: name, lattude, longitude, elevation, information of temperature reconstruction, WOA98 temperature value and the difference with pre-industrial HadIS5T and modern WOA98 data Columns A and N: Temperature anomaly and ±2 sigma (2s) errors for 127 ka using WOA98 values as modern reference (WoA4n) Columns O and P: Temperature anomalies and ±2 sigma errors (2s) for 127 ka using Pre-industrial surface temperature values (PIAn; Time interval 1870-1899)

Note that age pointers defined for building the common temperal framework between marine and ice core records are given in Table A2 available on line as a supplement of the Capron et al. OSR 2014 paper.

	n r	N M	00		0 0	0	mα	5 0	4	9 0	1 10	9	mμ	0 00	N	- 0	9		0 0	0	m (ησ	20	4		<u>ה</u> ה	6	oo <	± σ	m 00
[]]] 0104 35 61 221	mi r	4 m	'n	m n	i ci	'n	- 5	imi	'n	~ ~	i ri	ų.	ч с	i 4	2.0	m 4	2.		imi	'n	4 (n in	i 4	2.		vi mi	'n	o -	-i -o'	ы. К
[2°] nAI9 neib9M sX Y 22	ب بو	و به	ņ	r, e		2	4. 1	: N	o.	υų	, o	Ę.	منع	i o	сi л	نه نه	Ŋ	4 4	t ei	œ	Ņ,	i «	وم	o.	۰. ۱	. 9	o.	ون ہ	- m	4 1
			4	ορc	ուգ	2	ψĊ	4 1 1	-			0	- 1	ιψ	ω,	ή	Ŷ	0 "	n n	4	φ (0	ŝ		- 4	4	0 -	10	mφ
[2°] s2 nA60W sA 721	<u>б</u> ч	o 9	5.5	80. 5	t 00	3.2	9 0		4.8	9.0	t 00	<u>∞</u>	υα	6.0	6.1	ñ u	6.9	0.0	0	5.5	٥. ٥	n m		.2	5	2.5	8.7	4. •	ŧ 9	1.7
		, .,	(1)	,	., .,	,		• (1)	,					• (1)							, .					• (1)	,			(1 (1)
[]] nAsoW nsibeM sk 721	5 -	1 0	9°t	3.7	ο ο ο	8.0	1.8	0.1	0.1	vi r	181	£		0.1	4.8		0.2	8. C	, n	1.4	5.0	1 2		8.0		1 9	6.8	S -	10	3.2
			7	ΨC	, u		φ e	•						• 7	, .		Ŷ	0.	• • • •	7	ų.	70					,			. <i>.,</i>
[2°] 86AOW sunim T22Ib6H Hid	0.0	0.5 4.0	0.4	0.1	0.2	0.2	0.3	0.1	0.1	0.1	0.3	0.2	0.2	1.0	0.2	0.3	0.3	0.3	1.6	0.5	0.4	0.0	0.1	0.2	0.0	0.3	0.2	0.6	0.6	0.1
[ጋ°] 86AOW moit T22	5.6	o u o	10.9	L0.3	8.9	11.5	7.3	7.9	13.7	13.8	12.9	14.5	16	12.1	L6.5	19.9 19.8	21.7	21.8	16.6	13.2	13	11.	11.5	11	13.5	8.0 9.1	8.9	1.8	1.7	2.5
[]°] Surface air temperature	-				-								-									_								
Reterences temperature data	_																													
										Ð								5												
										n, 195	ι, 199!							I., 195												
									:	ckleto	ckletor					666		jo et a							9	50	2			
					ĥ'n				;	& Sha	& Shai					t al., 1		Cort			86		98		7	ai., z 98	., 201			
				1998 *hird						pman	pman	shed)	shed)			ortijo (1981	, 1998			ac, 19	7007	ac, 19		1	ovin ei ac, 19	n et al	2002	2002	
	8	. 8	98	anthé,	'ennz		5		1	9; Ch	9; Cha	ilduq	ntvre1	2003	1998	D2 : 66	ntyre,	kleton	2 9	22	alvign	, anii ue,	alvign	1997	33	alvign	; Govi	onde,	onde, :	5 4
	al., 199	., 201. I., 199	ıl., 199	00; M	et al., 1997	86	1., 201 2011	2011	, 2006	201.	1. 199!	ase (ur	ase (ur & Mch	et al.,	et al.,	95 al., 15	& McI	Shacl	1., 200	il., 200	998; S	t alers	998; 5	okada,	1., 200	ан., тэ 998; S	, 2009	Gerso	Gerso	l., 195
	val et a	n et al val et a	val et a	on, 20	et al.	hé, 19	or et a	et al.,	o et al.	joeta hetal	jo et a	datab	datab	ussen	neva	Jo, 19 /rie et	iman	man 8	keeta	ese et a	oine, 1	uey an	oine, 1	s and C	ke et a	/fieeu bine, 1	n et al.	chi and	chi and	on et a :a et al
	Fron	Fron	Fron	Balb	Oppo	Mant	Wins	Irva	oddo	Cort	Corti	LSCE	LSCE Budd	Rasm	Villa	Labe	Rudc	Chap	Pahn	Cort	Lemo	Brat	Lemo	Well	Pahn	Lemo	Govi	Bian	Bian	Pich ₆ Crost
9qyT			⊢			⊢			F			F I		. L	,		⊢		_	⊢	⊢ +		. F		⊢ ⊦		F	⊢ ⊦		
	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS ner SS	ner SS	ner SS	ner SS ner SS	ner SS	al SST	ner SS	ner SS	ner SS	al SST	ner SS	ner SS	ner SS	ner SS	al SST	ner SS	ner SS	ner SS	ner SS	ner SS	ner SS ner SS
	Sumr	umus Sum	Sumr	Sumr	Sumi	Sumr	Sumr	Sumr	Sumr	Sumr	Sum	Sumr	Sumr	Sumr	Annu	Sumr	Sumr	Sumr	Annu	Sumr	Sumr		Sumr	Annu	Sumr	Sumr	Sumr	Sum	Sumr	Sumi
Uncertainty on temperature reconstruction [°C]	1.9	т. 1.9	1.9	1 0	1.5	1.5	1.3	1.7	1.7	1.3	1.3	6.0	0.8	1.9	1.5	1.8 2.1	1.4	1 9	. .	1.2	2.1	161	2.1	0.9	0.8	1.9	1.9	0.7	0.7	1 1.8
Temperature reconstruction method													í	-			ŝ													
	tral	tral	tral	(I)	È E	Ē	Ę	Ē	Ē	EE	E	Σ	M) 38-40	tral	F	EE	3B-4CI	Ē			Ē	Ē	Ę	Ē	F	2 E	Ē			Ē
	asinis	asinis asinis	asinis	M) uo	N) uo	on (M	/W) uo		on (M	n (M)	nu) uo	on (RA	on (RA	asinis		M) uo W) uo	on (F1	on (M		c	on (M		on (M	on (M		wi) no M) no	on (M			nu (M
	yderm	yaerm yderm	yderm	functi	functi	functi	functi		functi	functi	functi	functi	functi	yderm		functi	functi	functi		unctio	functi	Inctio	functi	functi	atio	functi	functi	u i	i i	function
	. pach	. pach	. pach	ansfer	ansfer	ansfer	ancfar		ansfer	ansfer	ansfer	ansfer	ansfer	. pach		anster ansfer	ansfer	ansfer		nsfer fu	ansfer	ansier Sterfi	ansfer	ansfer	lg/Car	ansrer ansfer	ansfer	funct	funct	ansfer funct
	ge of N	ge of N.	ge of N	fera tri	fera tra	fera tra	ora tra		fera tra	fera tra	fera trá	fera tra	fera tr. ^S era tr.s	ge of N	ratio	fera tr. fera tra	fera tra	fera tra ratio	ratio	antrar	fera tra	antrar	fera tra	fera tra	feral N	fera tra	fera tra	ransfer	ansfer	fera tr: ansfer
	centag	centag	centa	inime tinime	aminif	aminih	/Ca aminif	,Ca	aminit	am in i am in it	aminif	aminit	aminif	centag	enone	amini. aminif	aminit	aminin	enone	liolari	amini	liolariș	aminit	aminit	amini	amini. aminif	aminit	tomtr	tomtr	aminii tom tr
עובמ	Per	Per	Per	For	ē ģ	For	M N N N	β	For	P To	<u>p</u>	For	Por 1	Per	Ak.	P P	For	For	2 ¥	Rao	Ē	P ad	For	For	P. F	5 č	For	Dia	Dia	For Dia
2010	n Sea	n sea n Sea	n Sea	n Sea	antic	antic	Sea	Sea	antic	antic	antic	antic	antic	Sea	antic	antic	antic	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean	Ocean Ocean
	wegia	wegiai wegiai	wegiaı	wegiai	th Atla	th Atla	rador	ador	th Atla	th Atla	th Atla	th Atla	th Atla	rador	th Atla	th Atla th Atla	th Atla	th Atla	thern	thern	thern	thern	thern	thern	thern	thern	thern	thern	thern	thern
[u] uouro ar	0 Nor	1 Nor	6 Nor	7 Nor	7 Nor	7 Nor	0 Lab	2 Lab	0 Nor	0 Nor	5 Nor	5 Nor	3 Nor	1 Lab	0 Nor	0 Nor	1 Nor	5 Nor	4 Sou	0 Sou	0 Sou	4 200	5 Sou	4 Sou	0 Sou	0 Sou	0 Sou	0 Sou	/ 20U	0 Sou 4 Sou
[m] noiteval3	-221	-162	-122	-102	-191	-239	-346	-344	-2.18	-232	327	-395	425	-125	-308	410	-337	-247	-301	-462	-292	461	-320	-120	-121	-342	-342	-239	438	-223 -391
	9.52 5.5	(187) (187)	1.57	4 4	-25	2.07	3.37	.61	1.11	1.75 1.78	30	1.94	17.1	60.5	0.41	7.35	2.93	2.05	69	9.9	9.42	47.0	3.83	1.57	1.93	01.0	3.02	1.98	157	73).14
əbutignol	di d	Ϋ́	ч	•	7	-22	44	f 4	-14	-14	77-	-21	- <u>,</u>	14	οų s	ņ 4	-32	ĉi ĉ	171		52	° =	152	174	174	26	88	4 0	-23	160
	9.49	9.37 8.43	6.67	2.74	61	0.58	8.21	44.7	55.8	5.57	23	2.57	0.02	48.8	3.35	3.35 1.76	41	0.51 7 7 7	0.22	0.94	2.50	20.2	3.50	5.31	5.53	6.07	6.49	3.07	3.10 4.38	-55 56.4
Latitude	99	6 6	66	6 6	b.	6(56	n iñ	-,	ώů	ń	5	ñ	7	4	4 4		4 4	1 4	4	4	ŧ 4	4	4	4	14	4	ជុំដំ	ρųγ	٩,
							Ę	, ů																						
noitete				60	PC8	14	27 5.4 MA	54 Mg	, I	_				PC2	Alk	MAI		< 10 <	21 B		T -		2	_	20	- -	38			
	71-19	243 57 <i>-</i> 7	644	95-20	6 CIVI	95-20:	99-22:	03-26(980	87-25 2414-0	P18K	0-39	8-1	9302-J	0.08	-0-08 -0-00	-97	0-03	97-212	01089	94-10	409-2	94-10	P-594	97-21.	88-7.65 38-7.65	02-24	102-2	276-4	84-55 36-11
	HM.	T N	ODF	MD	EV 5	ЯD	ign M	ND ND	ODF	BAN FCM	NEA	SU9	SU9 K70:	EV:	603	SU9 CH6	V30	SU9	a ŭ	go	ΩÑ β	PS 2(ЯЙ	DSD	Ő Z	M۵	MD(PS2	PS2:	MD; SO1

Table S2 Capron et al marine reconstruction of SST for 127 ka

References

- Bianchi, C. and R. Gersonde (2002). The Southern Ocean surface between Marine Isotope Stages 6 and 5d: Shape and timing of climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology 187: 151-177.
- Becquey, S. and R. Gersonde (2002). Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic -The Pleistocene record from ODP Site 1090. Palaeogeography, Palaeoclimatology, Palaeoecology 182(3-4): 221-239, doi:210.1016/S0031-0182(1001)00497-00497.
- Balbon, E. (2000). Variabilité climatique et circulation thermohaline dans l'océan Atlantique Nord et en Mer de Norvège au cours du stade isotopique marin 5. Ph. D. thesis, Université d'Orsay.
- Bauch, H.A., Kandiano, E.S., Helmke, J.P. (2012). Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka. Geophysical Research Letters 39, DOI: 10.1029/2012GL051800.
- Brathauer, U. (1996). Rekonstruktion quartärer Klimaänderungen im atlantischen Sektor des Südpolarmeeres anhand von Radiolarien (Radiolarians as indicators for Quaternary climatic changes in the Southern Ocean (Atlantic sector)). Berichte zur Polarforschung = Reports on Polar Research 216: doi:10.2312/BzP_0216_1996.
- Govin, A., Michel, E., Labeyrie, L., Waelbroeck, C., Dewilde, F., Jansen, E. (2009). Evidence for northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial inception. Paleoceanography 24, PA1202, doi:1210.1029/2008PA001603.
- Capron, E., Govin, A., Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner, B., Sime, L., Waelbroeck, C., Wolff, E. (2014). Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial, Quaternary Science Reviews, 103, 116-133.
- Chapman, M. R. and N. J. Shackleton (1998). "Millennial-scale fluctuations in North Atlantic heat flux during the last 150,000 years." Earth and Planetary Science Letters 159: 57-70.
- Chapman, M. and N. J. Shackelton (1999). "Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka." Geology 27: 795-798.
- Cortese, G., A. Abelmann, et al. (2007). The last five glacial-interglacial transitions: A high-resolution 450,000-year record from the subantarctic Atlantic. Paleoceanography 22: doi :10.1029/ 2007PA001457.
- Cortijo, E., S. J. Lehman, et al. (1999). Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (300-720N) during the last interglacial period. Paleoceanography 14: 22-33.
- Fronval, T., Jansen, E., Haflidason, H., Sejrup, H.-P. (1998). Variability in surface and deep water conditions in the Nordic seas during the last interglacial period. Quaternary Science Reviews 17, 963-985.
- Lemoine, F. (1998). Changements de lhydrologie de surface (temperature et salinite) de l'ocean Austral en relation avec les variations de la circulation thermohaline au cours des deux derniers cycles climatiques. thesis, Univ. Paris VI, Paris.
- Labeyrie, L., H. Leclaire, et al. (1999). Temporal variability of the surface and deep waters of the North West Atlantic Ocean at orbital and millenial scales, in Mechanisms of Global Climate Change at Millennial TimeScales. Geophys. Monogr.Ser., vol.112, edited by P.U.Clark, R.S.Webb,and L. D. Keigwin, pp. 77-98, AGU, Washington D.C.
- Oppo, D. W., M. Horowitz, et al. (1997). Marine core evidence for reduced deep water production during Termination II followed by a relatively stable substage 5e (Eemian). Paleoceanography 12: 51-63.
- Oppo, D. W., J. F. McManus, et al. (2006). Evolution and demise of the last interglacial warmth in the subpolar North Atlantic. Quaternary Science Reviews 25: 3268-3277.
- Pahnke, K. and J. P. Sachs (2006). Sea surface temperatures of southern midlatitudes 0-160 kyr B.P. Paleoceanography 21: PA2003, doi:2010.1029/2005PA001191.
- Pahnke, K., R. Zahn, et al. (2003). 340,000-year centennial- scale marine record of Southern Hemisphere climatic oscillation. Science 301: 948-952.
- Pichon, J.-J., L. Labeyrie, et al. (1992). Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleoceanography 7(3): 289-318, doi:210.1029/1092PA00709.
- Crosta, X., A. Sturm, et al. (2004). Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages. Marine Micropaleontology 50: 209-223.
- Rasmussen, T.L., Thomsen, E., Kuijpers, A., Wastegard, S. (2003). Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial). Quaternary Science Reviews 22, 809-821.
- Risebrobakken, B., Balbon, E., Dokken, T., Jansen, E., Kissel, C., Labeyrie, L., Richter, T., Senneset, L. (2006). The penultimate deglaciation: high-resolution paleoceanographic evidence from a north-south transect along the eastern Nordic Seas. Earth and Planetary and Sciences Letters 241, 505-516.
- Ruddiman, W. F., and McIntyre, A. (1984). Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N to 63°N, Geological Society of America Bulletin, 95, 381-396, 10.1130/0016-7606(1984)95<381:itracr>2.0.co;2
- Ruddiman, W. F., and McIntyre, A. (1981). Oceanic Mechanisms for Amplification of the 23,000-Year Ice-Volume Cycle, Science, 212, 617-627, 126/science.212.4495.617.
- Villanueva, J., Grimalt, J.O., Cortijo, E., Vidal, L., Labeyrie, L. (1998). Assessment of sea surface temperature variations in the central North Atlantic using the alkenone unsaturation index (U37k*). Geochimica et Cosmochimica Acta 62, 2421-2427.
- Salvignac, M. E. (1998). Variabilites hydrologiques et climatique de lOcean Austral (secteur indien) au cours du Quaternaire terminal. Essai de correlations inter-hemispheriques. phD thesis, Univ. Bordeaux I, Talence, France.
- Wells, P. and H. Okada (1997). Marine Micropaleontology. Response of nannoplankton to major changes in sea-surface temperature and movements of hydrological fronts over Site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr 32(3-4) 341-363, doi:310.1016/S0377-8398(1097)00025-X.

Winsor, K., A. E. Carlson, et al. (2012). Evolution of the northeast Labrador Sea during the last interglaciation. Geochemistry Geophysics Geosystems 13.

Table S3 Ice cores surface temperatures for 127 ka

Station	Latitude	Longitude	Ele vation [m]	Area	Temperature reconstruction method	Unce rtaint y on te mpe rature re construction [*6	and the second se	Be ferences tomperature data	Surface air temperature [°C]	SSTfrom WCA98 [°C]	Diff HadiSST minus WOA98 [*C]	127 ka Median WoaAn [*C]	127 ka WoaAn 2s [*C]	127 ka Median PIAn [*C]	127 ka 2s PIAn [°C]
NEEM	77.49	-51.2	2545	Greenland	Water isotopes	4	Precipitation-weighted surface temperature	NEEM c. m., 2013	-29		0.0	7.3	7.8	7.3	7.8
EDML	-75	0	2892	Antarctica	Water isotopes	1.5	Annual air temperature	Masson-Delmotte et al., 2011	-44.6		0.0	0.9	2.9	0.9	2.9
EDC	-75.1	123.35	3233	Antarctica	Water isotopes	1.5	Annual air temperature	Masson-Delmotte et al., 2011	-54.5		0.0	2.9	3.0	2.9	3.0
Dome F	-77.3	39.7	3810	Antarctica	Water isotopes	1.5	Annual air temperature	Masson-Delmotte et al., 2011	-57		0.0	3.3	3.1	3.3	3.1
Vostok	-78.5	106.87	3488	Antarctica	Water isotopes	1.5	Annual air temperature	Masson-Delmotte et al., 2011	-55.3		0.0	1.9	2.9	1.9	2.9

References

Masson-Delmotte et al. (2011). A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim. Past 7, 397-423, d oi:10.5194/cp-7-397-2011.
NEEM community members (2013). Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489-493,

doi:410.1038/nature11789.

Table S4 Europe: Terrestrial surface temperature reconstruction for 127 ka

Europe: Reconstructed temperatures for 127 ka (Brewer et al., (2008)

					A	nnual Mean				
site name	longitude	latitude	Proxy	Reconstructe d Annual Mean Temperature [°C] 127 ka	Uncertainty of temperature reconstruction [°C]	PI Annual Mean Temperature [°C] *	Anomaly wrt. PI [°C]	PI to Modern offset HadCRUT4 **	Modern Annual Mean Temperature [°C] ***	Anomaly wrt. Modern [°C]
La Grande Pile	6.5	47.73	pollen	11.9207	1.54	8.77	3.16	1.00	9.77	2.15
Ioannina 249	20.92	39.65	pollen	9.01928	1.78	13.82	-4.80	0.00	13.82	-4.80
Imbramowice	16.58	50.89	pollen	10.6934	1.15	7.36	3.33	0.53	7.89	2.80
Beerenmösli	7.51	47.06	pollen	11.0475	1.32	7.00	4.05	1.00	8.00	3.05
Eurach	11.31	47.78	pollen	6.34872	1.69	6.10	0.24	0.90	7.00	-0.65
Jammertal	9.53	48.06	pollen	11.1832	2.19	7.05	4.14	1.00	8.05	3.13
Lathuile	6.14	45.75	pollen	6.24336	1.66	8.50	-2.25	1.00	9.50	-3.26
Samerberg	12.2	47.75	pollen	5.19792	2.21	6.10	-0.91	0.90	7.00	-1.80
Eiffel Maar	6.59	50.19	pollen	0.700853	2.63	6.42	-5.72	0.58	7.00	-6.30
Hoher List (Eiffel)	6.84	50.17	pollen	0.102877	1.93	7.58	-7.47	0.58	8.16	-8.06
Les Echets	5	45.83	pollen	10.576	1.14	10.50	0.08	0.72	11.22	-0.64
Lago Grande di Monticchio	15.6	40.94	pollen	12.5627	1.15	9.56	3.00	0.44	10.00	2.56

						Mean tem	p Warmest	Month		
				Reconstructe d Mean Temperature	Uncertainty of	PI Mean			Modern Mean Temperature	Anomaly
				of Warmerst	temperature	Temperature	Anomaly	PI to Modern	of Warmerst	wrt.
			_	Month [°C]	reconstruction	of Warmerst	wrt. Pl	offset	Month	Modern
site name	longitude	latitude	Proxy	127 ka	[°C]	Month[°C] *	[°C]	HadCRUT4 **	[°C]***	[°C]
La Grande Pile	6.5	47.73	pollen	21.2328	1.52	17.92	3.31	0.85	18.77	2.46
Ioannina 249	20.92	39.65	pollen	20.9976	2.39	23.80	-2.80	-0.51	23.29	-2.29
Imbramowice	16.58	50.89	pollen	20.1699	1.29	17.73	2.44	0.53	18.26	1.91
Beerenmösli	7.51	47.06	pollen	20.068	1.53	16.51	3.56	0.85	17.36	2.71
Eurach	11.31	47.78	pollen	17.6367	2.05	16.63	1.01	0.87	17.50	0.14
Jammertal	9.53	48.06	pollen	20.1572	1.84	17.15	3.01	0.85	18.00	2.16
Lathuile	6.14	45.75	pollen	15.8446	1.78	17.65	-1.81	0.85	18.50	-2.66
Samerberg	12.2	47.75	pollen	16.7928	1.51	16.40	0.39	0.87	17.27	-0.48
Eiffel Maar	6.59	50.19	pollen	15.2746	1.19	16.86	-1.58	0.39	17.25	-1.98
Hoher List (Eiffel)	6.84	50.17	pollen	14.9018	1.14	16.96	-2.05	0.39	17.35	-2.45
Les Echets	5	45.83	pollen	19.5498	1.28	19.71	-0.16	0.30	20.01	-0.46
Lago Grande di Monticchio	15.6	40.94	pollen	21.5172	1.19	18.76	2.75	0.24	19.00	2.52

					Mean te	mp Coldest Mo	nth			
				Reconstructe d Mean Temperature of Coldest Month [°C]	Uncertainty of temperature reconstruction	PI Mean Temperature of Coldest	Anomaly wrt. Pl	PI to Modern offset	Modern Mean Temperature of Coldest Month	Anomaly wrt. Modern
site name	longitude	latitude	Proxy	127 ka	[°C]	Month [°C]*	[°C]	HadCRUT4 **	[°C]***	[°C]
La Grande Pile	6.5	47.73	pollen	2.51	3.67	-0.08	2.59	1.19	1.11	1.40
Ioannina 249	20.92	39.65	pollen	-2.35	4.54	3.86	-6.21	0.20	4.06	-6.41
Imbramowice	16.58	50.89	pollen	1.48	2.32	-2.71	4.19	0.51	-2.20	3.68
Beerenmösli	7.51	47.06	pollen	1.45	3.11	-3.19	4.63	1.19	-2.00	3.45
Eurach	11.31	47.78	pollen	-4.62	4.40	-2.58	-2.04	0.93	-1.65	-2.97
Jammertal	9.53	48.06	pollen	2.01	3.83	-3.19	5.20	1.19	-2.00	4.01
Lathuile	6.14	45.75	pollen	-3.25	4.82	-1.19	-2.06	1.19	0.00	-3.25
Samerberg	12.2	47.75	pollen	-7.48	5.11	-3.05	-4.43	0.93	-2.12	-5.36
Eiffel Maar	6.59	50.19	pollen	-13.19	5.41	-2.61	-10.58	0.61	-2.00	-11.19
Hoher List (Eiffel)	6.84	50.17	pollen	-13.48	6.33	-2.61	-10.87	0.61	-2.00	-11.48
Les Echets	5	45.83	pollen	1.48	2.23	1.50	-0.02	1.32	2.82	-1.34
Lago Grande di Monticchio	15.6	40.94	pollen	3.73	3.09	-0.48	4.22	0.54	0.06	3.67

* Preindustrial (PI) refers to 1871-1900. ** The observed warming until 1971-2000 was computed from a spatially-complete gridded temperature anomaly dataset of Cowtan and Way (2014) for the relevant location and months. *** Modern (1971-2000) from Brewer et al. (2008) (CRU TS (v3: published in 2006)

Table S5 Arctic: Terrestrial surface temperature reconstruction for 127 ka

Inclusion criteria: location above 65 N latitude; calibrated air temp estimates published in peer-reviewed literature; includes the most stratigraphically complete and well-dated sites from each region; avoids isolated LIG time slices. Note temps used for anomalies are "peak" temps of the LIG reconstructions at each site (avg of two warmest consecutive samples).

Site Name	Location	Latitude	Longitude	Elevation (m)	Proxy	Modern July air 1Re	constructed J	u±Uncertainty of	r Reference
Fog Lake	Canada	67°11′N	63°15′W	460	pollen & chirono	4.5	9.9	1.5	Fréchette, B. et al. (2006) ; Francis, D.R. et al. (200
Amarok Lake	Canada	66°16′N	65°45′W	848	pollen	5.5	9.9	0.8	Fréchette, B. et al. (2006)
Lake CF8	Canada	70°34′N	68°57′W	195	chironomids	4.4	10.0	1.5	Axford, Y. et al. (2011)
Wax Lips Lake	Greenland	76°51′N	66°58′W	500	chironomids	6.2	13.4	1.5	McFarlin, J.M. et al. (2018)
El'gygytgyn	Siberia	67°30′N	172°05′E	500	pollen	8.8	9.8	4.1	Melles, M. et al. (2012)
Sokli	Finland	67°48′N	29°18′E	220	pollen & chirono	13.0	15.1	2.1	Salonen, J.S. et al. (2018); Plikk, A. et al. (2019)
Birch Creek*	Alaska	65°49′N	144°18′W	250	beetles	16.8	14.8	1.0	Bigelow et al. (2014)
Koyukuk*	Alaska	66°33′N	152°05′W	300	beetles	15.7	16.5	2.8	Bigelow et al. (2014)

* Elevation estimated, ±100m

References

Fréchette, B. et al. (2006) Palaeogeography, Palaeoclimatology, Palaeoecology 236: 91-106

Francis, D.R. et al. (2006) Palaeogeography, Palaeoclimatology, Palaeoecology 236, 107-124

Axford, Y. et al. (2011) Geological Society of America Bulletin 123, 1275-1287.

McFarlin, J.M. et al. (2018) Proc Natl Acad Sci USA 115, 6357-6362

Melles, M. et al. (2012) Science 337, 315-320

Salonen, J.S. et al. (2018) Nature Communications doi 10.1038/s41467-018-05314-1

Plikk, A. et al. (2019) J Paleolimnol 61, 355–371

Bigelow et al. (2014) Veget Hist Archaeobot 23, 177-193