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Editor 

Comments to the Author: 

Dear Dr. Biswas and co-authors, 

Thank you for your clear responses to the referee comments on your Discussion manuscript and your 
willingness to consider their suggestions. I invite you to submit a revised manuscript in the spirit of 
your responses. Because the nature of the referee comments and your proposed manuscript changes are 
fairly technical, any revised manuscript will go through an additional round of peer-review (this 
additional round will not be open to the public, though eventually the reviews and responses become 
part of the public record). This requires that I indicate a decision of “major revisions” on this 
manuscript. 

Sincerely, 

Alberto Reyes (handling editor) 

 

Non-public comments to the Author: 

Just a few additional comments based on the reviews and my own reading of the manuscript: 

1. I suggest rephrasing part of the paragraph beginning 4/30-31 of the original manuscript. Climate is a 
much longer term phenomenon than daily/season changes in conditions. And on longer timescales, 
climate does not follow Milankovitch forcing in a linear way but rather is paced by it. I realize that this 
section represents a theoretical exercise, but the way the section starts it would be easy for readers to 
get the wrong impression. 

We have changed the sentence to “Earth’s climate varies in cyclical way, at multiple time scales from 
years to decades, centuries, and millennia, influenced by periodic variations in the Earth’s orbit, known 
as Milankovitch cycles, at 25.77, 41 and 100 kyr”. See page 4, line 28-29 in the revised manuscript. 

2. The first and second substantive comments from Rev 2 involve some potential misunderstanding of 
assumptions made in your study. I encourage you to provide additional clarity on these points in your 
revision. 

Please see the replies to those comments the action taken in the manuscript. 

  



Anonymous Referee #1 

 General comments: 

The authors are investigating an interesting question–whether luminescence signals from K-feldspars 
in bedrock might archive changes in recent temperatures at Earth’s surface. More specifically, they ask 
whether we can resolve recent changes in temperature periodicity. This question is important and worth 
pursuing. 

I commend the authors for the layout of this study. Their approach involving sensitivity analyses, 
calibration to sample specific kinetics and attention to climatic complexity have resulted in an 
interesting manuscript with potential for significant scientific impact. 

We appreciate the reviewer for discerning the potential of this work. 

However, the present work needs significant clarification and expansion to yield a robust estimate of 
past temperatures. Specifically, the authors must determine how changes in amplitude, period, and mean 
temperature influence luminescence signal growth and depletion in a holistic way. Currently, the 
treatment is partial. Once this is done, the authors should give a more direct comparison of actual and 
predicted temperature histories in order for the reader to better examine the predictive success of the 
model. 

Please see the replies below. 

These points and others are detailed below. 

1/22: "Earth’s climate fluctuates in a cyclic way" While there are many internal cycles to climate 
systems, this characterisation might be too simplistic, especially at the timescales involved here (∼10ˆ1 
- 10ˆ2 kyr), where abrupt periods of change are common. Temperature changes during the Holocene, 
for example, can hardly be approximated as cyclic. 

We have changed the sentence to… “Earth’s climate fluctuates in a cyclic way, from years to million-
year time scales driven by Earth’s orbital processes and rare aberrant shift and extreme climate 
transients during the last 103 to105 years”. See page 1, line 22-23 in the revised manuscript. 

1/35: "equivalent diffusion temperature that is always higher than the actual mean temperature" This 
statement, while true, gives the false impression that this is an intractable bias. For a system with well-
characterised diffusion kinetics, the relationship between a given temperature history (e.g., a forward 
model) and the EDT is well known. In other words, paleothermometry using the He-3 
paleothermometry technique must rely upon comparisons against prescribed temperature histories in 
the same way as paleothermometry with luminescence techniques. This is not a comparative 
disadvantage of the noble gas technique, but a similar limitation as faced in the current study. 

This is true. We meant that a single thermometric system (OSL or 3He) will always provide a single 
equivalent temperature (like EDT in 3He) for a complex thermal history whereas a multi thermometric 



system (here TL) with different temperature and time sensitivities will have the potential to infer a more 
complex thermal history. We have clarified the sentences to “Tremblay et al. (2014a, b) recently 
introduced a new paleotemperature proxy based on the thermal stability and release of 3He and 21Ne 
noble gases in quartz. The system has a single energy level and is therefore only able to estimate a 
single equivalent diffusion temperature (EDT). As a result, reconstruction of complex rock temperature 
histories challenging.” See page 1, line 33-36 in the revised manuscript. 

2/6: The distinction between thermochronology and paleothermometry is not entirely clear in the 
language of this study. If what you aim to resolve is the temporal variation of temperature through time, 
you are describing thermochronology. If instead, you mean to resolve a past temperature which is 
representative of some time period (the measurement of which will be affected by seasonal variability 
and so on), then what you are describing is paleothermometry. I would encourage more precision when 
you describe these concepts. 

Paleothermometry is a methodology for determining past temperature, and thermochronology is the 
study of the thermal evolution of rocks, and they both rely on the same principle. However, 
thermochronology is more commonly used for rock cooling related to exhumation. So to avoid 
confusion, we now use paleothermometry throughout the manuscript. We only refer to 
thermochronometry when we refer to previous work, which was developed for thermal evolution of 
rocks associated with exhumation. 

 2/12-21: Please add corresponding references for these observations. 

Amended. See page 2, line 21 in the revised manuscript. 

2/36ff: The physical meaning of this model is unclear. This is obviously of fundamental importance, as 
the kinetic model that is chosen will determine all predictions of past thermal history. 

From Eq. 1, it would seem that the authors expect to model some number of individual traps, each with 
a singular values for D0, E, s, s-tilde, rho’, a, and b. All of these traps are modelled as disconnected. 

And yet, the transition in parameter values from one measurement temperature bin to another is smooth. 
This is true for D0, for rho’, for E, for s, and for b within Fig. 1. This observation strongly suggests 
continuity in the underlying kinetics, not only for trap depth(s) but for the system as a whole. To fit 
each measurement bin as a separate and disconnected trap seems suspect. A unified treatment would be 
preferable. 

Several studies suggest that broad TL glow curve from feldspar arises from a continuous distribution 
of trapping energies, which is suggested by several methods, like Tm-Tstop, the initial rise method, and 
analysis of fractional glow curves (Biswas et al., 2018; Duller, 1997; Grün and Packman, 1994; Pagonis 
et al., 2014; Strickertsson, 1985). Regardless, it is difficult to isolate a single trap with distinct kinetic 
parameters.  Instead we assign the most probable kinetic parameters for each thermometer (glow curve 
temperature) along the TL glow curve and in this manner we determine kinetic values in a continuous, 
rather than in a disconnected manner. This is the method that we have adopted here and in Biswas et al. 



(2018). We then arbitrarily choose 10 °C TL temperature windows as distinct thermometers. A 
continuous distribution of trapping energies can be assumed as the sum of a large number of discrete 
traps (Pagonis et al. 2014). Thus a continuous distribution of trapping energies is discretized as shown 
in the figure below. This has been added in the supplementary materials (section S1.2). 

 

Fig. S1: The evaluated continuous distribution of trap depth (E) of sample MBTP1 (circles with error bar) 
and its discretization in 10 °C windows (green box; width is 10 °C and height 5 % of the median value).  

Another issue to address is whether the same recombination centers are accessed by this distribution of 
traps during athermal fading. If so, as would seem unavoidable to some degree, rho should be kept 
constant (the density of centers being a property of the material). rho’ can then be related to the 
underlying activation energy via the alpha term. This should be attempted for internal consistency. 

Here we only use 𝜌!, which includes alpha as 𝜌! = "#$
%&$

.  Alpha controls the rate of fading through the 

lifetime 𝜏 = 𝑠'(exp	(𝛼𝑟). It is expected that with increasing activation energy fading rate (𝜌!) should 
decreases as the tunnelling depth increases. Indeed we get similar relationship between fading rate (𝜌!) 
and activation energy (Table 1) as shown in figure below.  



 

Fig. X: Plot of distance dependent fading rate (𝝆0) and activation energy (E) of five thermometers (200-250 
°C, 10 °C interval) of sample MBTP9. 

According to the second term on the RHS of Eq. 1, it seems that the authors model thermally-activated 
recombination locally (since the term is dependent upon the nearest neighbor distribution). If so, then 
observations of signal loss at room temperature could also be caused by this pathway. This deserves 
comment. 

Thermal loss of the TL signals which is a more diffusive process (athermal) can occur through the 
conduction band. However, the power term b, accounts for the nonlinearity (delayed) arise due to  
presence of band-tail states. However, athermal fading is  known as a tunnelling process. Separate 
treatments of thermal and athermal loss has adopted successfully in several previous studies (Guralnik 
et al. 2015a for IRSL of feldspar; Biswas et al. 2018 for TL of feldspar). 

3/29-30: Can we be confident that the kinetic parameters pertain to geologic timescales? Specifically, 
is there good evidence or reason to think that mixed order kinetics are predicted at low temperatures 
and long timescales (natural) as well as high temperatures and short timescales (lab)? Competition 
effects, for example, could easily produce observations of b > 1 for lab measurements whereas the 
concentration of charge activated on natural timescales would be orders of magnitude smaller. 

This is a difficult question and can never be answered in true sense but the premises of the approach 
used here was validated in Biswas et al. (2018), by successful recovering temperatures experienced by 
rocks in the KTB borehole, which have been in thermal steady state  for several millions of years. We 
have included that statement in the manuscript. 

1.2 1.3 1.4
E (eV)

-6.8

-6.7

-6.6

-6.5

-6.4

-6.3

-6.2

-6.1

-6

-5.9

lo
g 10



4/19 and Fig. 3: I find this figure a little difficult to interpret. In particular, the way that you have defined 
’memory time’ should be a bit clearer. If I’ve understood the meaning of this metric correctly, one 
suggestion would be to compare everything against ’tchange = 100ka’ or to extend the x-axis to include 
’t-change=150ka.’ By doing this, you could then visually show the meaning of the ’t-memory’ by 
comparing two horizontal lines, one at t-change=150ka (or 100ka, depending), and the other at the 
asterisk height. You could then annotate this difference as 20%. 

Amended as recommended. In the figure the 20% changes have been demonstrated clearly and text has 
been added in the figure title (Fig. 3). 

It would be good to consider also the influence of measurement uncertainty. Accurately resolving the 
difference between [n-bar] = 2.0e-3 and 2.4e-3 would likely involve a lot more relative uncertainty than 
discerning between, say, [n-bar] = 0.5 and 0.6. 

Typical photon counts of the present sample for near saturation (𝑛2 = 1) is >105 counts per second (cps), 
our instrumentation can resolve a few hundreds of cps with 20% uncertainty (𝑛2 of the order of 10-3). 
This is discussed in Section 4.3 (Page 8, line 23-26) as “Typically, the minimum detectable limit for the 
present instrument is ~ 300 photon counts per second (cps) considering the signal should be three times 
of background level which is ~ 100 cps. The present highly luminescent feldspar has maximum photon 
count of ~106 cps. This restrict to use the TL signals up to ~10-3 % of maximum TL signals” 

4/30-31: ’10 - 100 kyr timescales’ This should be a bit more specific. During the Quaternary, the 100kyr 
and 41kyr periods were most dominant (e.g., Raymo et al., 2006; Hinnov, 2013). 

We have changed the sentence to “Earth’s climate varies in cyclical way, at multiple time scales from 
years to decades, centuries, and millennia, influenced by periodic variations in the Earth’s orbit, known 
as Milankovitch cycles, at 25.77, 41 and 100 kyr”. See page 4, line 30-31 in the revised manuscript. 

Fig. 4: This is a nice figure. Please adjust so that the ’thermometer’ labels correspond to each panel. For 
example, in panels j-l, if the reader uses the labels on the far righthand side, they might conclude that 
the bottom-most series in panel k refers to the 220-230C chronometer. 

Thanks. Amended as recommended (Fig. 4). 

5/7: ’implies a gradient’ I would say this behavior more accurately ’results’ from a gradient in thermal 
stability, given that the kinetic parameters are imposed and known. 

Amended. 

5/9: ’the thermal stability decreases with increasing temperature.’ I disagree with this statement. The 
thermal stability for a given TL thermometer is known and fixed in your setup. So it is not the stability 
that is changing, but rather the probability of detrapping. 

Thanks for pointing this out. The sentence has been reworded to “This is because the probability of 
detrapping increases with increasing temperature”. See page 5, line 7 in the revised manuscript. 



5/10: ’the higher temperature TL thermometers remain relatively insensitive to such periodic 
temperature forcing.’ This is misleading. The insensitivity of the higher-T thermometers reflects the 
mean temperature values that you have chosen. If the temperature oscillated about a higher mean value, 
the same periodic filling/emptying behavior would be seen with the high-T thermometers. This is 
evident in Fig. 4 panels j-l, where different thermometers oscillate with comparable magnitude when a 
range of mean temperatures are tested. 

The sentence has been changed to “Finally, the higher temperature TL thermometers (near to 300 °C) 
remain relatively insensitive to such periodic temperature forcing (Tmean up to 30 °C); with increasing 
Tmean the higher temperature TL thermometers become more responsive.”. See page 5, line 7-9 in the 
revised manuscript. 

5/13: ’10 ka to 1 Ba’ If Ba represents ’billion years,’ please change to ’Ga.’ 

Amended. 

5/15: ’For P « tau’ This comparison must be qualified. The lifetime (tau) will depend on a chosen, 
singular temperature value. Choosing a singular temperature value for oscillating temperature requires 
some simplification that is not described (e.g., mean temperature? EDT?). Please clarify this issue. 

The sentence has been clarified to “For P<< 𝜏 (e.g. Fig. 4d where P=1 ka and 𝜏 spans ∼10 ka to 1 Ga 
for the 200 to 300 °C TL thermometers for Tmean= 0 °C), the value of  𝑛2)*+  exhibits small fluctuations 
but always remains lower than 𝑛2,*)”. See page 5, line 14-16 in the revised manuscript. 

5/16: ’This result implies that smaller periods (<1 ka) do not influence trapped charge equilibrium levels 
in an oscillating fashion and cannot be differentiated from the trapped charge population resulting from 
an isothermal condition.’ 

This statement is incomplete and only conditionally true. For argument’s sake, assume that the 200C 
TL thermometer has a lifetime of 10 ka at 0C. If the ambient temperature oscillated with an arbitrarily 
large amplitude (say 100C to make the point obvious) but with a period of only 1 ka or 100 yr, you 
would find that the fractional saturation would oscillate in response to the temperature forcing, depleting 
completely and then partially regenerating. 

This won’t happen if the temperature period is much smaller than the growth timescale (D0/Ddot). If 
that is the case, then the thermal imprint upon the sample approaches a steady value determined by the 
maximum temperature experienced. 

Temperature amplitude and the relationship between the forcing period and sample growth timescale 
both matter. To make this comparison between lifetime and period, these factors must be incorporated. 

The sentence has been modified to “This result implies that smaller periods (<1 kyr) and Tmean (<30 
°C) do not influence trapped charge equilibrium levels of 200 to 300 °C TL thermometers in an 
oscillating fashion and cannot be differentiated from the trapped charge population resulting from an 
isothermal condition. We must mention here, if the amplitude of oscillation increases the oscillating 



response to trapped charge equilibrium levels will be relatively prominent.”. See page 5, line 16-19 in 
the revised manuscript. The effect of oscillating parameters, mean temperature, amplitude of oscillation 
and period on trapped charge population is discussed is section 2.2.2 (Page 5, line 28-35) and shown in 
Fig. 5. 

5/19: ’remains correlated’ and ’deviates from...temperature forcing’ The meanings of these statements 
are unclear. n-bar behavior is distinct between isothermal and oscillating temperature histories for all 
periods; it is not an issue of matching and not matching, except for the highest-temperature systems, 
which are insensitive to the temperatures prescribed here. Please be more specific with these 
observations and, following from the previous comment, please do incorporate growth timescales, as 
these are of obvious relevance here. 

Clarifications have been made. The sentence has been changed to “Similarly, the present day 𝑛2)*+  
remains indistinguishable from 𝑛2,*)  when P>>𝜏 (e.g. see the behaviour of the low temperature TL 
thermometer shown in Fig. 4l)”. See page 5, line 21-22 in the revised manuscript. 

5/24: ’Therefore, temperature variations can be reconstructed...’ Just to reiterate, you must demonstrate 
the complex relationship among mean temperature, temperature amplitude, trap stability and 
regenerative timescales before attempting to reconstruct temperature variability. Additionally, what has 
been shown in Fig. 4 is that, for a given amplitude, different periods leave different imprints upon the 
shown thermometers. You have not yet demonstrated that you can accurately reconstruct differences in 
variability. Moreover, the results from Fig. 5 (panels b, c) seem to indicate that you cannot easily 
differentiate between various amplitudes or periods. 

This is discussed in section 2.2.2 and Fig. 5 where we show that the present day trapped charge 
population (𝑛2-./*/01 ) is highly sensitive to the mean temperature (Tmean) and less sensitive to the 

amplitude of oscillation (Tamp) and period (P). Moreover, we also mention that “Although the 𝑛2-./*/01 	is 
less sensitive to the amplitude and the period, the pattern of 𝑛2-./*/01  of different thermometers is 
unique. This ensures that complex thermal histories comprising mutiple harmonics with periods of 
about tens of kyr, but distinct from one another, can be recontructed”. See page 5, line 32-35 in the 
revised manuscript. Additionally, now we have added a new synthetic test to emphasis the sensitivity 
of the three periodic parameter (Tmean, Tamp and P) on the present day trapped charge population 
(𝑛2-./*/01) in section 3.3 and results are shown in Fig. 6. 

5/31-33: ’This ensures that complex thermal histories...can be reconstructed.’ Following from the 
previous comment, this is not yet demonstrated. 

See the answer above. 

6/11: ’considering that the other parameters are identical.’ Unclear what this means. From Fig. 1, it 
would seem that the kinetic parameters other than the thermal parameters (E, s) vary between the 
thermometers. Or do you mean something else? 

We agree this was confusing. We have now removed these unnecessary words.  



Fig. 7: This is not the most informative way to show your predictive ability. Unlike with 
thermochronology studies, where the T-t path is really the predicted feature, what you are more 
accurately doing is predicting the temperature minimum and amplitude (e.g., ll. 5/24-29). So, it would 
be much more informative to see these values, actual and predicted. 

It is true that the only difference with the inversion of thermochronometric data is that we impose the 
shape of 𝛿18O. To address the reviewer’s comment we have added histograms of the two main scaling 
parameters:  the minimum temperature Tbase (temperature at 20 ka) and the present temperature, Tpresent 
(which is Tbase+Tamp as shown in supplement Eq. S9). See Fig. 7. 

Additionally, the current figure makes it appear as if you are able to resolve the fine structure of the T-
t series, which of course you are not. 

Indeed, we cannot. Rather this figure shows the  scaling of the 𝛿18O curve. The reply to the previous 
comment should have addressed this comment. 

7/16-18: ’[Fig. 7a,b,c shows] it is possible to recover all three thermal histories within the 1-sigma 
confidence level.’ My previous comment will apply here as well. What matters for this experiment is 
the degree to which you are able to predict amplitude and minimum. 

To demonstrate that you could recover an arbitrary thermal history well, you would need a different 
test. 

Please see the reply of previous comment. We clearly mention we need prior information for the pattern 
of the thermal history (𝛿18O), as typically done for inversions, but that we can constrain the temperature 
minimum and amplitude. Please see section 3.3 and 3.4 in the revised manuscript. 

8/7: ’This restrict...’ Grammar 

Amended. 

8/15: This dose range, with upper doses at 0.9 and 1.9 kGy may not be sufficient to observe saturation 
in K-feldspar TL. Please demonstrate that these signals are saturating or add greater doses to better 
constrain lab saturation intensity. 

1.9 kGy is sufficiently high as it is greater than 2D0; maximum D0 is less than 800 Gy (see Table 1). 

8/33: ’no effect for doses below 100 Gy’ Wouldn’t the far more important question be whether there is 
sensitivity change above 100 Gy? After all, the majority of given doses are above 100 Gy and these 
responses allow you to determine the saturation values. 

The sensitivity change in the NCF method  permits  determination of the equivalent dose correctly by 
correcting for possible sensitivity changes during a sample read out and is generally tested on low doses 
(see Singhvi et al. 2011). 



9/13-15: ’The rationale here is that all temperatures follow the delta O-18 data, but the amplitude...and 
mean temperature are unknown.’ Please make clear that this is a stated assumption and not an inference 
from studies (unless it is, in which case state that). I think is not obvious that the climate signal on Mont 
Blanc would mirror a Greenland ice core signal, so this assumption probably warrants justification. 

To clarify, the text has been modified as follows “We assume that the atmospheric temperatures of the 
Mont Blanc massif followed the trend observed for the Greenland ice core data over the last 60 ka. 
Note that temperature increase during the last glacial cycle was synchronous with the temperature 
anomalies observed in Greenland (e.g., Heiri et al., 2014; Schwander et al., 2000; van Raden et al. 
2013). The rationale here is that all temperatures in the Mont Blanc massif follow the Greenland ice 
core δ18O data but the amplitude of temperature oscillation (minimum temperature at ∼20 ka to 
maximum temperature at the present day) and mean temperature are unknown.”. See page 9 line 31-
36 in the revised manuscript. 

Fig. 9: Is Fig. 9 referenced in the main text? 

Now it is mentioned.  

Fig. 9 and 10: As with Fig. 7, please recast to compare the predicted and actual values for the amplitude 
and base temperatures as these are the variables being investigated. 

We have now added subplots (histograms) of the two parameters, temperature minimum which we 
define as Tbase (temperature at 20 ka) and present temperature, Tpresent (which is Tbase+Tamp as shown in 
supplement Eq. S9). See Fig. 9 and 10. 

9/28: ’can constrain thermal history of ∼50kyr.’ I do not think this has been demonstrated yet, as an 
extension of my comments regarding pg. 5. 

In Fig. 3 we show that tmemory can be up to 50 kyr for typical temperature of 10-20 °C. If the amplitude 
of temperature change is higher, the method will be sensitive, thereby improving our ability to constrain 
the thermal history constraining of thermal history will be more precise. See section 2.2.1. 

Also, unclear what ’A higher temperature fluctuation’ means and whether you’ve actually shown this. 

This is shown in Fig. 3. 

10/14: ’At those depths [of 7 and 62 cm], mean temperature should be constant.’ Certainly, there will 
be seasonal temperature variability at a depth of 7 cm. Is this what you meant to say? 

We mean that at depths of 7 and 62 cm the rock temperature will be equilibrium with the atmospheric 
temperature. The sentence has been modified to “At those depths, mean temperature should be in 
equilibrium with atmospheric temperature (e.g. Hasler et al. 2011)” . See page 11, line 10-11 in the 
revised manuscript. 



10/17: For inverse modeling of a natural sample, the time-temperature histories were completely 
random’ If I have understood the previous text correctly, the histories are very much not random, but 
are tied to the Greenland delta O-18 temperature proxy with variability only in amplitude and initial 
temperature. Please reword. 

The sentence has been reworded to “For the inverse modeling of natural samples, 𝛿18O data are used 
as a prior on the shape of the thermal histories, but we leave two scaling parameters free – minimum 
temperature at 20 ka, and amplitude (temperature difference between at 20 ka and present)– and we 
did not include the role of ice on setting the rock temperature during glaciation.”. See page 11, line 13-
15 in the revised manuscript. 

Discussions generally: I won’t comment much on these inferences about past climate systems at this 
stage, because I think it will be very important to first demonstrate model success in capturing simple 
variations within a periodic forcing model, which, at this stage, has not been done. 



Anonymous Referee #2 
 
This manuscript proposes a new method to study/reconstruct paleo-temperature using TL of feldspar 
from rock surface. Reconstructing paleo-temperature is an important topic in climatic change study, so 
the attempt of this study is important and worth for publication. However, there are some technical 
issues that are not settled well, which prevents convincing me that this is achievable. Here I summarise 
my major concerns. 

1) Kinetic model: the authors considered three processes in their model, including dosing (growth), 
thermal decay and athermal decay (fading), which are represented by different terms in their equation 
1. They then estimated the parameters based on TL measurements in different ways. For both the growth 
curve parameters (D0 and a) and fading parameters (rho’), my understanding is that they were based on 
the signals from different integrals of the TL glow curve (e.g., 200 – 250 C in 10C interval). However, 
for the thermal decay parameters (E, s and b), they used a Tm-Tstop method, in which the signal from 
each temperature interval is obtained from subtracting consecutive fractional glow curve. That means, 
the signals they used to estimate present-day charge population (𝑛2), growth curve and fading are based 
on simple integral of TL signals at different intervals, which obviously are a mix of signals from a range 
of trapping energy levels, but the thermal kinetic parameters are based on single (or narrow-range) 
trapping energy levels. That says, the authors did not separate the TL signals for constructing their 
model using a similar way (Tm-Tstop method) that they did for estimating the thermal decay 
parameters. This is problematic, as the combination of different trapping levels are not linear, so their 
model (equation 1) simply becomes invalid when the signals being analysed are associated with a range 
of trapping levels are analysed. One need to makes sure that the different parameters in Equation 1 are 
all obtained from the same signal associated to a single or narrow-range energy level. I am not use if 
this can be achieved as the combination of MAR protocol (and fading test) and Tm-Tstop would be 
very difficult to achieve. 

We do not assume that the thermal kinetic parameters are estimated on single trapping energy levels, 
as the number of traps are not known. In the absence of any information of the number of peaks it 
difficult to deconvolve the TL glow curve. So instead we use a 10 °C window and treat them as different 
‘thermometers’, rather than single trapping energy levels. (Note that the rationale behind choosing a 10 
°C window is the uncertainty of sample temperature during TL measurement in the laboratory.)  

We constrain the growth parameters (D0 and a) and fading parameter (𝜌!) for these different  10 °C 
temperature windows. To evaluate the thermal decay parameters (E, s, b) of each ‘thermometer’, we 
need to know the distribution of these parameters along the TL glow curve and find the most probable 
decay parameters of different thermometers from the distributions. Pagonis et al. (2014) demonstrated 
that the distribution of thermal decay parameters along a TL glow curve can be obtained using the  Tm-
Tstop method, subtracting the fractional glow curve and fitting with a TL equation. Biswas et al. (2018) 
adopted this method for thermochronology and showed it could be used to extrapolate laboratory data 
to geological timescales, as a proof-of-concept.  

The subtraction of consecutive fractional TL glow curves, obtained through the Tm-Tstop method, and 
fitting of the subpeak provides the characteristics (kinetic parameters) at that TL temperature. The 



integrated TL signal is a mix of different signals but the major contribution comes from the subpeak at 
that temperature range and a small fraction from the subpeaks either side of the temperature. Biswas et 
al. (2018) demonstrated (Fig. S4 in their supplement) that the life time distribution along the TL glow 
curve (present method) exactly match with classical lifetimes of the main dosimetric peaks of feldspar 
(as summarised in Aitken’s TL book, 1985, Table E.1). This ensures the estimation of kinetic 
parameters of integrated TL signals from a distribution holds well.  

Since last six to seven years there are lot of development on kinetic of luminescence of feldspar. The 
theoretical model for the rate equation of trapped charge population in feldspar has been described in 
several ways; first order kinetics (Brown and Rhodes, 2017; Yukihara et al., 2018), general order 
kinetics (Biswas et al., 2018; Guralnik et al., 2015b), charge transport through sub-conduction band-
tail states (King et al., 2016a; Li and Li, 2013), Gausian distribution of trapped energies (Lambert et 
al., In Revision),  or localized recombination in randomly distributed defects (Jain et al., 2012). What 
is common to all these models is that luminescence of feldspar is complicated and exhibit a non-linear 
non-first order kind of behaviour due to either presence of sub-conduction band-tail states (Morthekai 
et al., 2019; Poolton et al., 2002) or complex charge transport mechanism. TL in feldspar is even more 
complicated because it shows continuous distribution of trapping energies (Biswas et al., 2018; Duller, 
1997; Grün and Packman, 1994; Pagonis et al., 2014; Strickertsson, 1985) and TL is a more diffusive 
process than OSL; OSL of feldspar has resonant energy levels (Hütt et al., 1988). Different models were 
reviewed and tested by Guralnik et al. (2015b) who suggested that the general order kinetic, a 
mathematically simplified model, could be used to explain luminescence phenomenon well. We 
adopted this model for TL of feldspar where the power terms (a, b) accounts for the nonlinearity 
involved in the TL of feldspar. The efficacy of using general order kinetics has been demonstrated to 
samples with known thermal history (KTB borehole samples) for OSL of feldspar (Guralnik et al., 
2015a) and TL of feldspar (Biswas et al., 2018). This section has been added in the beginning of 
discussion section, page 10, line 7-19. 

2) The authors simply assuming feldspar consist a continuous trapping energy level. However, it has 
been commonly accepted that band-tail states play important role in the luminescence process 
(including TL and IRSL) in feldspar (Poolton et al., 2002). I do not see any reason to discard the band-
tail states from their model. 

There is ample evidence from the literature suggesting that feldspar consists of continuous trapping 
energy levels (e.g. Biswas et al., 2018; Duller, 1997; Grün and Packman, 1994; Pagonis et al., 2014; 
Strickertsson, 1985).  

We do not discard band-tail states in feldspar. See the reply of previous comment. Feldspar 
luminescence is complicated and several models that describe thermal detrapping processes in feldspar 
have been proposed (see summary in Gurlanik et al., 2015b). Moreover, the TL of feldspar is a more 
diffusive process than IRSL which excites a resonant energy level below conduction band from which 
electrons either tunnel to recombination centers or hop through the band-tail states and recombine. The 
general order kinetic model is the simplest model available and the power term b (>1) accounts for the 
non-linearity that arises due to the presence of the band tail states (restricted mobility) or other complex 



process. This model has been used for a long time and most recently was used by Guralnik et al. (2015) 
for IRSL of feldspar and Biswas et al. (2018) for TL of feldspar.  

3) How sensitive is the model to dose rate (𝐷̇)? The dose rate would play an important role in filling 
the traps during natural process, so I would expect that it will somehow influence the model results. 
Unfortunately, the dosimetry of the samples is poorly described. How did the author estimate the dose 
rate of K-feldspar? The author appears to simply crush the rock and select 150 –250 um grain size 
range. What are the original grain sizes of the K-feldspar minerals in the rock? Did the authors make 
any rock slide to investigate this? This is critical as there are a large contribution of internal dose rates 
for Kfeldspar. 

The dose rate values were taken from Lehman et al. (2020). It is mentioned in title of Table 1. They 
mention in their paper (supplement) as follows: “Environmental dose rates were calculated using DRAC 
online calculator (Durcan et al., 2015), assuming a grain size between 750 and 1000 µm and water 
content of 2%”.  The grain sizes were estimated through thin section analysis by Lehman et al. (2020). 

4) The authors applied the NCF method to overcome sensitivity change issue for TL measurements. 
They do realise the limitation of this method as it is based on extrapolation of the NCF values from low 
temperature to high temperature region, which is unreliable. Although the authors tested the effect of 
initial sensitivity changes on the modelling results and found very little changes for their sample, it does 
not guarantee that this applies to other samples and situations. The reason that the sensitivity changes 
did not affect the results is simply because that their samples are young and the growth of signal still 
lies on the linear part of growth curve, so any systematic changes in the sensitivity result in a 
proportional changes of different signal integrals. For older samples or high-De samples, however, this 
may result in non-proportional changes among different signal integrals (because the different D0 
values for different integrals), and, hence, different model results in paleo-temperature. This potential 
problems should be appropriately acknowledged as at present it gives false impression that the initial 
sensitivity change does not matter. 

We agree and have included appropriate caveats. Sensitivity change is a limitation for TL measurements 
and as such we carefully screened the data. As for all TL measurements this will need to be done in 
further studies but as this is well known we do not emphasise the point here, but rather give a detailed 
account of how we addressed this challenge.  

To circumvent the initial sensitivity change the NCF was introduced (Singhvi et al. 2011) as shown in 
Fig. 8a. The limitation of this method is that the NCF can only be measured for the lower temperature 
part of the TL signal (<200 °C) where our region of interest (ROI) is 210-250 °C TL. In the absence of 
a strong correlation (dose response) between low temperature TL and the ROI, we extrapolated.  As the 
reviewer notes, this approach is appropriate for our sample suite. See section 4.3.1. 

Minor comments: 

5) Line 21: Credits should be given to Li and Li (Li and Li, 2012) who firstly proposed the idea of 
multiple-thermometers using TL (although not implemented in their study), and they also first 



introduced the rate equation to investigate the effect of single growth and saturation on 
OSLthermochronology. 

Reference added. 

6) Figure 1: The authors should at least provide some typical TL glow curves for their samples before 
showing the kinetic results. 

Amended. 

7) Figure 1c: The fading parameter (rho’) shows systematic change as a function of temperature up to 
280C, but it suddenly become ‘no fading’. This is surprising. The different integral signals represent a 
continuous mixture of signals of different athermal features, why one can obtain a sudden change in the 
fading? Is it because that the fading rate has large uncertainty range consistent with zero fading? In this 
case, it would be problematic to say ‘no fading’, as statistically it is also like to be ‘fading’. 

Beyond 270 °C, the fading parameter (𝜌!) is less than 10-10 with large uncertainty and is considered to 
be a non-fading signal. Even a fading curve with 𝜌!<10-7 looks parallel to the time axis.  

8) Figure 8b: Why not plot the results for other temperature range (e.g., 120 – 150 C)? 

The objective is to see whether NCF100 is dose dependent or not. 

9) Figure 8c: what are the errors for the NCF at high temperature range (200 – 250C)? Have you 
incorporated the NFC errors into the final results? 

The errors for the NCF at the high temperature range (200 – 250 °C) are stated in Table 1. We did not 
incorporate NFC errors into the final results. 

10) Table 1: Why there are no errors for E, s and b? Why an arbitrary error of 5% is assumed, rather 
than their actual analytical errors? 

See Fig. 1. The distribution of E, s and b are a bit scattered and we spline fit the trend. So we did not 
calculate the regression of the trend and rather assumed an working error of 5%. This is mentioned in 
the caption of Table 1. 

11) Figure S3: why there is only one natural point but 3 regenerative points for each thermometer? Did 
the author just measure one aliquot for natural? 

The natural point is the average of three discs. This is mentioned in the title of Fig. S3. 
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1. We have addressed all the queries of the reviewers and incorporated them in the revised manuscript 

and actions taken are mentioned in the replies to the reviewers’ comments. 

2. Two major changes are made in the this revised version of manuscript, 1) we introduce a new 

synthetic experiment in section 3 to justify the rationale behind using the trend of 𝛿18O in the 

inverse modelling. 2) we have added a paragraph in the beginning of Discussion section to justify 

the model used. 

3. All changes made in the manuscript can be seen in marked-up manuscript version (track change 
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Surface paleothermometry using low temperature thermoluminescence of 
feldspar 
Rabiul H. Biswas1, Frédéric Herman1, Georgina E. King1, Benjamin Lehmann1, Ashok K. Singhvi2 
1Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland 
2Atomic, Molecular and Optical Physics, Physical Research Laboratory, Ahmedabad, India 5 
Correspondence to: Rabiul H. Biswas (biswasrabiul@gmail.com) 

Abstract. Thermoluminescence (TL) of feldspar is investigated for its potential to extract temperature histories experienced 

by rocks exposed at Earth’s surface. TL signals from feldspar observed in the laboratory arise from the release of trapped 

electrons from a continuous distribution of trapping energies that have range of thermal stabilities. The distribution of trapping 

energies, or thermal stabilities, is such that the lifetime of trapped electrons at room temperature ranges from less than a year 10 

to several billion years. Shorter lifetimes are associated with low temperature TL signals, or peaks, and longer lifetimes are 

associated with high temperature TL signals. Here we show that trapping energies associated with shorter lifetimes, or lower 

temperature TL signals (i.e., between 200 °C and 250 °C), are sensitive to temperature fluctuations occurring at Earth’s surface 

over geological timescales. Furthermore, we show that it is possible to reconstruct past surface temperature histories in 

terrestrial settings by exploiting the continuous distribution of trapping energies. The potential of this method is first tested 15 

through theoretical experiments, in which a periodic temperature history is applied to a kinetic model that encapsulates the 

kinetic characteristics of TL-thermometry. We then use a Bayesian approach to invert TL measurements into temperature 

histories of rocks, assuming that past temperature variations follow climate variations observed in the 𝛿18O records. Finally, 

we test the approach on two samples collected at the Mer de Glace (Mont Blanc massif, European Alps) and find similar 

temperature histories for both samples. Our results show that TL of feldspar may be used as a paleo-thermometer. 20 

1 Introduction 

Earth’s climate fluctuates in a cyclic way, from years to million-year time scales driven by Earth’s orbital processes and rare 

aberrant shift and extreme climate transients during the last 103 to105 years  (e.g., Zachos et al., 2001). Reconstructions of past 

terrestrial climates often rely on the use of climate proxies that preserve the physical and/or chemical characteristics related to 

past climate of Earth's history. Examples of such proxies include ice cores, tree rings, sub-fossil pollen, boreholes, corals, lake 25 

sediments and carbonate speleothems (e.g., Jones and Mann, 2004 for a review). Although they have provided invaluable 

insights into past climates and their physical characteristics, very few of these proxies provide a direct measure of temperature 

variations in continental settings (e.g., glycerol dialkyl glycerol tetraether, GDGT; Tierney et al., 2012), and many of these 

methods often suffer from methodological limitations that limit reliable construction of terrestrial temperatures. For example, 

fossil pollen and plant macrofossils have provided key insights into past terrestrial climate at millennial timescales (e.g., 30 

Bartlein et al., 2011), but typically rely on numerous additional climate parameters, including precipitation, plant-available 

moisture, seasonality, and the length of the growing season that make the inference of rock temperature histories challenging. 

Similarly, GDGTs rely on the preservation of organic compounds. To address some of these issues, Tremblay et al. (2014a, b) 

recently introduced a new paleotemperature proxy based on the thermal stability and release of 3He and 21Ne noble gases in 

quartz. The system has a single energy level and is therefore only able to estimate a single equivalent diffusion temperature 35 

(EDT). As a result, reconstruction of complex rock temperature histories challenging.  

This study revives the use of thermoluminescence (TL) as a paleothermometer and takes advantage of recent progress made 

for TL thermochronometry (Biswas et al., 2018) to introduce a new approach for reconstructing temperature histories in 

Deleted: the 

Deleted: anomalies40 

Deleted: seasonal

Deleted: /

Deleted:  also

Deleted: Although this new method shows great potential, 
the45 
Deleted: that is always higher than the actual mean 
temperature, and in turn makes the



 2 

terrestrial settings at millennial timescales. The idea is not new; it has already been tested through a series of feasibility studies 

(Li and Li, 2012; Ronca, 1964; Ronca and Zeller, 1965) and was applied to lunar samples (Durrani et al., 1977). Unfortunately, 

the method has remained underdeveloped since this early work. More recently, Guralnik and Sohbati (2019) used Optically 

Stimulated Luminescence (OSL) to estimate paleotemperature. However, they only investigated a single thermal stability, and 

thus a single equivalent temperature, similar to the noble gas approach of Tremblay et al. (2014a, b). 5 

The present study aims to establish TL of feldspar as a paleothermometer to constrain temporal variations of Earth’s surface 

temperature, within the last few tens of thousands of years. TL signals from feldspar arise from a series of traps that have 

different thermal stabilities; with lifetimes at room temperature ranging from <yr to >Gyr (Biswas et al., 2018). In the 

following, we first investigate the sensitivity of the TL signals to linear and periodic thermal histories. Then, we use a Bayesian 

approach to infer the thermal histories of rocks from TL measurements. Finally, we apply this method to two samples collected 10 

from the Mer de Glace glacier (Mont Blanc massif, European Alps) as proof-of-concept.  

2 Theoretical background 

In its simplest form, luminescence enables the measurement of the concentration of charge trapped in the impurity or defect 

centers of natural crystalline minerals (e.g., quartz or feldspar); the trapped charge population is proportional to the time 

elapsed since the material was either heated or exposed to sunlight. In the laboratory when the minerals are heated using a 15 

linear heating rate, trapped electrons are released from increasingly higher energy traps, some of which recombine radiatively 

with the holes, and the luminescence process generates a TL glow curve. Trapping of electrons happens in nature when samples 

are exposed to environmental radiation over geological time. Detrapping reflects the escape of electrons from traps, which can 

occur thermally or athermally. In nature, the TL system can reach a dynamic equilibrium between radiation induced growth 

and decay via thermal and athermal pathways. For higher ambient temperatures, the thermal decay rate is greater, which results 20 

in a lower equilibrium level and vice versa (for more details see Aitken, 1985 and Ronca, 1964). Such a difference in 

equilibrium can be exploited to reconstruct the thermal history of rocks (Biswas et al., 2018; Brown et al., 2017; Guralnik and 

Sohbati, 2019; Herman and King, 2018; Herman et al., 2010; King et al., 2016a; King et al., 2016b). Until now, this principle 

has only been exploited for inferring rock cooling due to exhumation. Here we use the same principle for inferring the 

paleotemperature of rocks exposed at Earth’s surface. In this section, we start by outlining the theoretical model that describes 25 

the TL process of feldspar, and how can one constrain all the model parameters. Then we assess how sensitive the model is to 

various surface temperature histories and ultimately show how surface temperatures in terrestrial settings can influence TL 

signals. 

2.1 TL kinetic model and TL thermometer 

The kinetic model that describes TL of feldspar was reviewed in Biswas et al. (2018). The model encapsulates the process of 30 

populating traps with electrons in response to surrounding radiation, and the processes of electron escape through thermal and 

athermal pathways. A key element of the method is that each kinetic parameter can be constrained in the laboratory for each 

sample. We briefly outline the kinetic model here and illustrate how the kinetic parameters may be constrained from laboratory 

measurements for one sample. The reader is referred to the supplementary material S1 and Biswas et al. (2018) for further 

information.  35 

The model assumes general order kinetics (Biswas et al., 2018; Guralnik et al., 2015a; Guralnik et al., 2015b). The rate equation 

for the trapped charge population of a specific trapping center, with single trap depth (E), frequency factor (s), and athermal 

fading parameter (r¢; Huntley, 2006; Tachiya and Mozumder, 1974) is as follows: 
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where 𝑛& is equal to n/N (where n is the number of trapped electrons at time t and temperature T, and N is the total number of 

available traps), 𝐷̇ is the dose rate due to ambient radioactivity (Gy ka-1), D0 is the onset of dose saturation (Gy),  a and  b are 

the kinetic orders of trapping and thermal detrapping respectively, E is the trap depth or activation energy (eV), s and 𝑠̃ are the 

thermal and athermal frequency factor respectively (s-1), r¢ is the dimensionless athermal fading rate and 𝑟) is a dimensionless 5 

distance that characterizes the probability of athermal escape (Huntley, 2006). Each of these parameters can then be constrained 

from laboratory experiments that are described in Biswas et al. (2018) and summarized in the supplementary material S1 for 

one sample. 

To account for athermal loss, i.e., anomalous fading (Wintle, 1973), the total number of trapped electrons at any instant 𝑛&(t) 

is obtained by integrating over the whole range of dimensionless distances (0< r¢<2; Kars et al., 2008) over which electrons 10 

can athermally escape; 

𝑛&(𝑡) = ∫ 𝑝(𝑟′)𝑛&(𝑟), 𝑡)𝑑𝑟′G
H                                              (2) 

where p(r¢) is the probability of nearest recombination center at a distance between r¢ and r¢+dr¢ and expressed as 𝑝(𝑟))𝑑𝑟) =

3𝑟′J𝑒A)@𝑑𝑟′ (Huntley, 2006). This model was validated using rocks from the KTB borehole and applied to samples from 

Namche Barwa (Biswas et al., 2018), which gave results in agreement with other studies from the same area (King et al., 15 

2016a). 

TL of feldspar arises from a continuous distribution of trapping energies (Biswas et al., 2018; Duller, 1997; Grün and Packman, 

1994; Pagonis et al., 2014; Strickertsson, 1985) and can be assumed as sum of a large number of traps (Biswas et al., 2018; 

Pagonis et al., 2014); all follow the process described by Eq. 1.  To constrain the kinetic parameters in Eq. 1, we measure full 

TL glow curves and see how the kinetic parameters are distributed along the TL glow curve (Biswas et al., 2018). For the 20 

modeling, we use the kinetic parameters for sample MBTP9 (Lehmann et al., 2020 for sample details). The experimental 

details are provided in section 4 and supplementary material S1. The distribution of kinetic parameters along the TL glow 

curve temperature is reported in Fig. 1. The results show that the kinetic parameters vary systemically with the glow curve 

temperature. Such data are then fitted using a spline function from which the kinetic parameters are then extracted for a specific 

TL temperature (Biswas et al., 2018), which we define herein as a specific “TL thermometer”.  25 

Figure 1 

2.2 Temperature response of TL thermometers 

In this section, we use the model (Eq. 1) in a forward manner by prescribing a temperature history and predicting the trapped 

charge population through time	(𝑛&	). Both linear (isothermal, warming and cooling) and periodic thermal histories are used. 

The model was run for 1 Myr, with an initial condition of 𝑛&=0, which is long enough to ensure that 𝑛& reaches equilibrium. We 30 

investigate how 𝑛& changes for ten different TL thermometers, in the temperature range of 200-300 °C with 10 °C intervals, 

each having an independent set of kinetic parameters (see the supplement Table S1).  

2.2.1 Linear thermal history 

The thermal response of the dynamic equilibrium level of the trapped charge population (𝑛&) of the ten thermometers is tested 

for three different linear thermal histories: 1) isothermal holding at 20 °C (Fig. 2a), 2) isothermal holding at 20 °C for 900 kyr 35 
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followed by linear cooling to 0 °C during the last 100 kyr (Fig. 2b), and 3) isothermal holding at 0 °C for 900 kyr followed by 

linear heating to 20 °C during the last 100 kyr (Fig. 2c). The results are shown in Fig. 2d, e and f respectively. In all cases, 𝑛& 

is lowest for the lowest TL thermometers (or TL signals) and highest for the highest TL thermometers. For the isothermal 

scenario, 𝑛& remains constant over the entire recent time (after reaching steady state) as there is no temperature change. For the 

cooling scenario, 𝑛& increases as temperature decreases, because of a decrease of thermal loss. For the warming scenario, 𝑛& 5 

decreases as temperature increases because of an increase of thermal loss. The increase and decrease of 𝑛& (Figs. 2d and e) with 

temperature are most pronounced for lower temperature TL thermometers (<250 °C) and negligible for higher temperature TL 

thermometers (>250 °C). It must be noted that if the amplitude of temperature change (here 20 °C) were increased, the higher 

TL thermometers would change more dramatically. However, this would be unrealistic and beyond temperature variations 

observed at Earth’s surface at comparable timescales.  10 

Figure 2 

The previous section shows that the thermal sensitivities of the different TL thermometers are distinct. It is therefore expected 

that their temporal sensitivities are also different. To quantify the temporal response of each TL thermometer, we prescribe a 

simple step function in which the temperature is set equal to 0 °C until a given time, tchange, and then increases to 10, 20 and 

30 °C, in three different cases. We then calculate the present day trapped charge population (𝑛&LAMNMO# ) for each TL 15 

thermometer. tchange is varied from 100 kyr to the present.  

The model predictions (𝑛&LAMNMO#) are shown as a function of time of change (tchange) in Fig. 3. In addition, we calculate the 

tchange where 𝑛&LAMNMO#  increases by 20 % compared to 𝑛&LAMNMO#  predicted for a thermal history where tchange is equal to 100 kyr. 

We define this corresponding time as the memory time (tmemory) at which the TL thermometer can record a temperature change. 

As expected, the lower TL thermometers record more recent temperature changes and the higher TL thermometer record older 20 

temperature changes. For example, in case of a 10 °C temperature change (Fig. 3a), the 200-210 °C thermometers record a 

change for ∼10 kyr, while the 240-250 °C thermometers record a change for ∼50 kyr. Furthermore, the number of sensitive 

thermometers increases as we raise the final temperature. For a 10 °C temperature change, only 5 TL thermometers (200-250 

°C) record the temperature change (Fig. 3a), 6 TL thermometers (200-250 °C) record a 20 °C temperature change (Fig. 3b), 

and 7 TL thermometers (200-250 °C) record a 30 °C temperature change (Fig. 3c).  25 

Figure 3 

2.2.2 Periodic thermal history 

Earth’s climate varies in cyclical way, at multiple time scales from years to decades, centuries, and millennia, influenced by 

periodic variations in the Earth’s orbit, known as Milankovitch cycles, at 25.77, 41 and 100 kyr. Therefore, temperatures are 

dictated by periodic functions that include several harmonics comprising decadal and millenial periods. In order to assess how 30 

the trapped charge population is affected by a periodic temperature history, we prescibe the following function as a thermal 

history. 

   𝑇(𝑡) = 𝑇QM4O + 𝑇4QL × sin W
JX
Y
𝑡Z                                                                                                                         (3) 

where Tmean, Tamp, and P are the mean temperature, the amplitude, and the period of oscillation respectively. 

Different combinations of arbitrary periodic thermal histories, with the same amplitude (10 °C), but three different periods (1, 35 

10, 100 kyr) and three different mean temperatures (0, 15 and 30 °C) were used (solid lines of Fig. 4a,b and c) to assess the 
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effect of periodic temperature variations on 𝑛& (𝑛&[N\) for each TL thermometer (solid lines of Fig. 4d-l). These predictions are 

compared to isothermal effects on 𝑛& (𝑛&]N[) (dashed line in Fig. 4d-l) if the samples are kept at the mean temperature of the 

corresponding oscillation (dashed lines of Fig. 4a,b and c). 

The results show that the 𝑛& always depletes more for the lower temperature TL thermometer (e.g., 200-210 °C TL) than for 

the higher temperature TL thermometer (e.g., 290-300 °C TL), which results from a gradient in the thermal stabilities of lower 5 

to higher temperature TL thermometers. For every TL thermometer, 𝑛& decreases if the mean temperature, Tmean, increases (Fig. 

4d-f, g-i and j-l). This is because the probability of detrapping increases with increasing temperature. Finally, the higher 

temperature TL thermometers (near to 300 °C) remain relatively insensitive to such periodic temperature forcing (Tmean up to 

30 °C); with increasing Tmean the higher temperature TL thermometers become more responsive. 

Figure  4 10 

One can also describe how the system behaves by comparing the period of oscillation (P) and the lifetime (or resident time) 

of trapped electrons (𝜏) for a given temperature. For the 200 to 300 °C TL thermometers, 𝜏 spans ∼10 kyr to 1 Gyr when the 

samples are at 0 °C; at higher temperatures 𝜏 is reduced as the probability of electron escape increases, reducing the lifetime 

to between ∼0.1 kyr and 1 Myr when the samples are stored at 30 °C (Biswas et al., 2018). For P<< 𝜏 (e.g. Fig. 4d where P=1 

kyr and 𝜏 spans ∼10 kyr to 1 Gyr for the 200 to 300 °C TL thermometers for Tmean= 0 °C), the value of  𝑛&[N\  exhibits small 15 

fluctuations but always remains lower than 𝑛&]N[. This result implies that smaller periods (<1 kyr) and Tmean (<30 °C) do not 

influence trapped charge equilibrium levels of 200 to 300 °C TL thermometers in an oscillating fashion and cannot be 

differentiated from the trapped charge population resulting from an isothermal condition. We must mention here, if the 

amplitude of oscillation increases the oscillating response to trapped charge equilibrium levels will be relatively prominent. 

However, the predicted values of 𝑛&[N\  are lower than those predicted using  constant temperature of 𝑇QM4O , which is the mean 20 

temperature of the oscillation explored. Similarly, the present day 𝑛&[N\  remains indistinguishable from 𝑛&]N[ when P>>𝜏 (e.g. 

see the behaviour of the low temperature TL thermometer shown in Fig. 4l). These two end-member scenarios are therefore 

not suitable for predicting the temporal variation of surface temperature. Interestingly, the response of 𝑛&[N\  deviates from its 

temperature forcing when P∼𝜏 (e.g., Fig. 4g-i and j-l). Under this condition, 𝑛&[N\  is out of phase and asymetric compared to 

the prescribed forcing, i.e., the thermal history. More importantly, the degree of deviation for different thermochronometers is 25 

different. Therefore, temperature variations can be reconstructed by targeting TL thermometers that have lifetimes of trapped 

electrons comparable to the period of surface temperature changes. 

As discussed in the previous section, the response of trapped electron concentrations corresponding to a TL thermometer 

depends highly on the three characteristic parameters of the periodic forcing, i.e., Tmean, Tamp and P. We now test the sensitivity 

of the model to these three parameters. The present day trapped charge population (𝑛&LAMNMO#) is predicted for different arbitrary 30 

combinations of Tmean (0, 15 and 30 °C), Tamp (5, 10 and 20 °C) and P (1, 10 and 100 kyr). The results show that 𝑛&LAMNMO#  is 

highly dependent on the mean temperature variation, and less dependent on the amplitude and the period (Fig. 5). Although 

the 𝑛&LAMNMO#	is less sensitive to the amplitude and the period, the pattern of 𝑛&LAMNMO#  of different thermometers is unique. This 

ensures that complex thermal histories comprising mutiple harmonics with periods of about tens of kyr, but distinct from one 

another, can be recontructed. 35 

Figure 5 
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3 Inversion of TL data into realistic thermal histories 

The objective of this section is to test whether a temperature history can be recovered by inverting TL data into a realistic 

thermal history. We start the exercise by predicting TL data using Eq. 1 for a specific thermal history (forward modeling) that 

we then invert using a Bayesian approach (Biswas et al., 2018; King et al., 2016a; King et al., 2016b) (inverse modeling). This 

synthetic experiment is performed in two different cases. First, we describe the forward and inverse modeling in a general way 5 

and then report the two synthetic examples. 

3.1 Forward modeling 

Forward modelling is achieved by solving Eq. 1 and prescribing a thermal history, similarly to the previous sections. This 

approach enables us to predict the present day trapped charge population for a specific TL thermometer using the kinetic 

parameters extracted for sample MBTP9. Using this approach, we generate a range of “observed values” (𝑛&[;N) for a particular 10 

thermal history, which we then try to recover using an inversion method. We run the model for 1 Ma to ensure that 𝑛& reaches 

steady state assuming an initial condition of 𝑛&=0. For a specific thermal history, TL thermometers with lower thermal stability 

exhibit lower 𝑛&[;N than TL thermometers with higher thermal stabilities. It is worth noting that the predicted 𝑛&[;N	values are 

mostly sensitive to two parameters, the trap depth (E) and athermal fading (r¢), such that these must be constrained carefully 

from laboratory experiments.  15 

3.2 Inverse modeling 

To invert TL data (𝑛&[;N) into a thermal history, a Bayesian approach is used. We first generate a large number of random 

thermal histories (300,000). For each random path, the present-day TL signals are predicted by solving Eq. 1.  Each predicted 

present day TL values (𝑛&LAM"]\#) is then compared with the observed TL (𝑛&[;N) using the following misfit function (Wheelock 

et al., 2015) and likelihood: 20 

  𝑚𝑖𝑠𝑓𝑖𝑡 = c
d
∑ f

c
J
× O&ghi

jklghi
× log

O&pqrstuv
O&ghi

w
J

d
]xc                                     (4) 

  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = exp(−𝑚𝑖𝑠𝑓𝑖𝑡)                                                            (5) 

where l is the number of TL thermometers (here l=4) and 𝜎O&ghi  is the uncertainty of corresponding 𝑛&[;N . An arbitrary 

uncertainty of 20% of 𝑛&[;N is assumed for synthetic test. For each random path 𝑛&LAM"]\# for a specific thermometer is usually 

calculated using mean values of the specific set of kinetic parameters (Biswas et al., 2018; King et al., 2016a; King et al., 25 

2016b). However, the kinetic parameters have uncertainties as shown in Fig. 1 and supplementary Table S1. To accommodate 

the measurement uncertainties in kinetic parameters, for each random thermal history, we randomly picked the kinetic 

parameters within its error range. Finally, 𝑛&[;N was also randomly picked within its error range assuming that any value within 

error limit is equally probable (c.f. Guralnik et al., 2015). Since the randomization is applied to a large number of parameters, 

it is necessary to run the model for large number of thermal histories (300,000 iterations here). 30 

The thermal histories that best fit the data are selected using a rejection algorithm that satisfies the criterion likelihood >R, 

where R is a random number between 0 and 1. A probability density distribution is then constructed by counting the number 

of accepted thermal histories passing through each grid cell, which is generated by dividing the time-temperature space (0-100 

ka and -50 to 50 °C) into 100´100 cells. This approach is commonly used in different thermochronometric studies (Biswas et 

al., 2018; Braun et al., 2012; Gallagher et al., 2009; King et al., 2016b). It should be noted that the misfit function (Eq. 4) used 35 

here is different to the one used in previous studies (Biswas et al., 2018; King et al., 2016b) but is the same as that used in 
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King et al. (2019). We find that a log misfit enables us to better fit data that vary across orders of magnitude, as trapped charge 

populations vary greatly for different TL signals.  

3.3 Synthetic approach 1 

We choose three arbitrary periodic thermal histories, Path1 (Tmean= 10 °C, Tamp= 10 °C and P= 25.77 kyr), Path2 (Tmean= 20 

°C, Tamp= 10 °C and P= 25.77 kyr) and Path3 (Tmean= 10 °C, Tamp= 20 °C and P= 25.77 kyr) as shown Fig. 6a. For each thermal 5 

history, the present day trapped charge concentrations (𝑛&[;N) are calculated for four TL thermometers (210-250 °C, 10 °C 

interval) as described in section 3.1 and represented in Fig. 6b-d. We then invert the TL data (𝑛&[;N) into a thermal history as 

described in section 3.2. For the inverse modelling, we first generate a large number of random periodic histories (300,000) 

with Tmean and Tamp randomly varying from 0 to 50 °C, P randomly varies between three cycles, 25.77, 41 and 100 kyr. We do 

not vary P in a completely random fashion because 𝑛&[;N is less sensitive to P; i.e., it is difficult to resolve neighboring periods 10 

(as discussed in section 2.2.2 and Fig. 5). The results are shown in Fig. 6e-j.  Although this approach predicts the very recent 

temperature well (up to max 5 ka) it loses the periodic information (25.77 kyr) because of the significant number of accepted 

thermal histories with different periods (41 and 100 kyr). The same exercise was repeated but fixing the period to 25.77 kyr 

for the inversion. The results are shown in Fig. 6k-p. Interestingly, this approach enables to recover the actual solution within 

1𝜎 uncertainty. This shows that a periodic thermal history can be predicted well if the period is known a priori; it enables to 15 

constrains Tmean and Tamp satisfactorily. To circumvent the limitation (period) of this method we use synthetic approach 2, the 

𝛿18O data to impose the shape of the thermal histories as a priori information. This is typically done for inversion problem 

when appropriate. We then constrain Tmean and Tamp of the spectrum (as discussed in next section). 

Figure 6 

3.4 Synthetic approach 2 20 

Here we report the result of three thermal histories assuming that the temperature follows the measured 𝛿18O records from 

Greenland for the past 60 ka, which is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores 

(Svensson et al., 2008). For our purpose, we scale the 𝛿18O records to thermal histories and assume a constant temperature 

prior to 60 ka (Fig. 7a). For each thermal history, the present day trapped charge concentrations (𝑛&[;N) are calculated for four 

TL thermometer (210-250 °C, 10 °C interval). The results reported in Fig. 7b-d show a clear depletion of the trapped charge 25 

population during the last 20 kyr, for all investigated scenarios. However, high frequency temperature variations are dampened, 

implying that TL thermometry is insensitive to short term variations. This result is consistent with the results shown in Fig. 4. 

For the inverse modelling, we first generate a large number of random periodic histories (300,000) assuming that they all 

follow the Greenland ice core 𝛿18O record (Svensson et al., 2008), which we scaled randomly by varying the amplitude of the 

temperature oscillation (i.e., the difference between minimum the temperature, which is at ~20 ka, and the maximum 30 

temperature at present) between 0 and 40 °C and the minimum temperature (i.e., temperature at ~20 ka) from -20 to 30 °C (see 

supplement S2). Note that making this assumption is somewhat equivalent to assuming a prior estimated on the inferred 

thermal history (Tarantola, 2005). The inversion results for three tested thermal histories are shown in Fig. 7e-p. The 

probability density functions (Fig. 7e, f and g) show it is possible to recover all three thermal histories within the 1s confidence 

level using this inversion approach.  35 

Figure 7 
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4 Proof of concept 

The following sections explore the potential of multi TL thermometers in the lower temperature region of the TL glow curve 

(210-250 °C) to infer the rock temperature histories for two samples collected in the European Alps.  

4.1 Sample location 

Two bedrock samples (MBTP1 and MBTP9) were collected at the Mer de Glace glacier (Mont Blanc massif, European Alps) 5 

at an altitude of 2545 and 2133 m. The rock surfaces were exposed since the last glacial maximum (LGM); with exposure ages 

younger than the LGM of about 20 kyr, based on 10Be terrestrial cosmogenic nuclide and OSL surface exposure dating 

(Lehmann et al., 2019; Lehmann et al., 2020).  

4.2 Sample preparation 

The sample preparation followed the method reported previously (King et al., 2016b). The light exposed outer layer (>2 cm 10 

from the surface) was removed using a diamond saw under subdued red-light conditions with constant water flow to avoid 

frictional heating. The interior part of the sample was gently crushed with a mortar and pestle and sieved to separate the 150–

250 µm grain size. The samples were sequentially treated with 10% HCl and 30% H2O2 to remove carbonate and organic 

matter respectively. Once dried, the magnetic fractions were removed using a hand magnet. The K-feldspar fraction was 

separated by density separation (<2.58 gm/cm3) using sodium polytungstate. The grains were mounted on stainless steel discs 15 

using Silko-spay. Small aliquots of 2 mm diameter (containing ~100 grains) were prepared as these feldspars were highly 

luminescent. 

4.3 Experimental procedure 

The TL luminescence measurements were made using a Risø TL/OSL reader (TL/OSL DA- 20; Bøtter-Jensen et al., 2010) 

equipped with a 90Sr/90Y irradiation source (~ 0.24 Gy/s) at the University of Lausanne. A heating rate of 1 °C/s was used, 20 

under constant flow of N2 gas. The TL emission was restricted to violet-blue (395±30 nm) using a filter combination of BG3 

and BG39. The measurement details are discussed below. Typically, the minimum detectable limit for the present instrument 

is ~ 300 photon counts per second (cps) considering the signal should be three times of background level which is ~ 100 cps. 

The present high luminescent feldspar has maximum photon count of ~106 cps. This restricts to use the TL signals up to ~10-

3 % of maximum TL signals. 25 

4.3.1 Measurements 

Following Biswas et al. (2018), three sets of experiments were performed to constrain the growth parameters (D0, a), thermal 

decay parameters (E, s, b) and athermal decay parameters (r¢). The athermal frequency factor (𝑠̃) is taken as 3 ×1015 s−1 

(Huntley, 2006).  

The growth parameters and the natural TL level, i.e., the trapped charge population (𝑛&[;N), are estimated using the multiple 30 

aliquot regeneration dose (MAR) protocol (Aitken, 1985) with post-glow normalization (Tang and Li, 2017). Eight 

regeneration doses (0, 24, 47, 118, 236, 472, 944 and 1888 Gy) were given and three aliquots were used for each dose point. 

A cut-heat of 200 °C was applied to remove traps that are unstable over laboratory timescales. We observed a significant 

sensitivity change (decrease) during the very first measurement of natural TL, which means that natural and regenerative TL 

signals were not measured under identical TL sensitivity conditions. To circumvent this sensitivity change, we adopted the 35 
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natural correction factor method (NCF; Chauhan and Singhvi, 2019; Singhvi et al., 2010; Singhvi et al., 2011). However, the 

NCF was initially developed for quartz OSL (Singhvi et al., 2011), it should to be adapted for feldspar.  

The NCF method for quartz relies on the fact that the 110 °C TL peak and the blue stimulated OSL are correlated (Singhvi et 

al., 2011). In contrast, TL of feldspar does not exhibit a distinct 110 °C TL peak. The luminescence process in feldspar is more 

complicated because it arises from a continuous distribution of trapping energies and the dose response characteristics (D0) 5 

varies along TL glow curve (Fig. 1). To circumvent these issues, we proceeded as follows. We first give a small dose (i.e., 

<100 Gy) in addition to the natural dose and subsequently measure the TL signal up to 200 °C (TL1). Then the sample is 

annealed by heating it to 450 °C, which is followed by a dose of the same amount and measurement of the TL glow curve to 

200 °C (TL2). We observe that the TL sensitivity of the natural measurement is higher than the post natural regeneration 

measurement (Fig. 8a). We then calculate the NCF at different temperature between 90 to 150 °C, similar to the use of the 110 10 

°C TL peak for quartz. We find that the NCF decreases with increasing temperature during the TL measurement (Fig. 8c). 

Since there is no direct way to measure the NCF beyond 150 °C, we then extrapolate the NCF value at the region of interest 

to higher temperatures, i.e., 210-250 °C (Fig. 8c), which we call var-NCF. In turn, the trapped charge population (𝑛&obs) is 

corrected with the corresponding factor which is in between 1 and 2 for sample MBTP1 and MBTP9 (Table 1 and Fig. 8). 

Finally, we investigated the effects of variable doses and the NCF and found it had no effect for doses below 100 Gy (Fig. 8b).  15 

Figure 8 

The thermal decay parameters are estimated using the Tm–Tstop method (McKeever, 1980) and analyzed by subtraction and 

fitting of sub-peaks (Pagonis et al., 2014). For the athermal decay parameter, a fading experiment (Huntley and Lian, 2006) 

was performed for different delay times; aliquots were preheated to 200 °C prior to storage. 

4.3.2 Estimating the kinetic parameters 20 

The kinetic parameters of growth (D0, a), thermal decay (E, s, b) and athermal decay (r¢) were inferred using the approach of 

Biswas et al. (2018) for all thermometers (210-250 °C, 10 °C interval). The results are summarized in Table 1 and shown in 

supplementary material S3. The dose rate (𝐷̇) values, another growth parameter, were taken from Lehmann et al. (2020). Since 

a cut-heat of 200 °C was applied for the MAR growth analysis and fading experiments, we focus on the 210-250 °C TL 

thermometers (i.e., four thermometers). We did not use TL signals beyond 250 °C, as they are insensitive to typical surface 25 

temperature fluctuations, as discussed in section 2.2.  

Table 1 

4.4 Predicting the surface temperature 

The measured TL signals (𝑛&obs) are then inverted to infer the thermal history as described in section 3.2 and 3.4 (Synthetic 

approach 2). For the thermal histories, we again use the Greenland ice core 𝛿18O record (Svensson et al., 2008), which we 30 

scaled as described in section 3.2. We assume that the atmospheric temperatures of the Mont Blanc massif followed the trend 

observed for the Greenland ice core data over the last 60 ka. Note that temperature increase during the last glacial cycle was 

synchronous with the temperature anomalies observed in Greenland (e.g., Heiri et al., 2014; Schwander et al., 2000; van Raden 

et al. 2013). The rationale here is that all temperatures in the Mont Blanc massif follow the Greenland ice core 𝛿18O data but 

the amplitude of temperature oscillation (minimum temperature at ∼20 ka to maximum temperature at the present day) and 35 

mean temperature are unknown. We pick the amplitude of temperature oscillation randomly between 0 and 40 °C, and the 

base temperature (temperature at ∼20 ka) between -20 and 30 °C. By generating a large number of random thermal histories 
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(300,000), the probability density function is constructed as discussed in section 3.2. The results of two samples, MBTP1 and 

MBTP2, are shown in Fig. 9 and suggest that the temperature rose from −4.67�.c��.�  to 6.27�.���.c  °C for sample MBTP1 and 

−2.07�.c��.� to 7.97�.c��.H °C for sample MBTP9, since 20 ka, considering one sigma uncertainty. The inferred median suggests an 

increase of ∼10-11 °C for the rock surface temperature over the last 20 ka.  

Figure 9 5 

5 Discussion 

The theoretical model for the rate equation of trapped charge population in feldspar has been described in several ways; first 

order kinetics (Brown and Rhodes, 2017; Yukihara et al., 2018), general order kinetics (Biswas et al., 2018; Guralnik et al., 

2015b), charge transport through sub-conduction band-tail states (King et al., 2016a; Li and Li, 2013), Gausian distribution of 

trapped energies (Lambert et al., In Revision),  or localized recombination in randomly distributed defects (Jain et al., 2012). 10 

What is common to all these models is that luminescence of feldspar is complicated and exhibit a non-linear non-first order 

kind of behaviour due to either presence of sub-conduction band-tail states (Morthekai et al., 2019; Poolton et al., 2002) or 

complex charge transport mechanism. TL in feldspar is even more complicated because it shows continuous distribution of 

trapping energies (Biswas et al., 2018; Duller, 1997; Grün and Packman, 1994; Pagonis et al., 2014; Strickertsson, 1985) and 

TL is a more diffusive process than OSL; OSL of feldspar has resonant energy levels (Hütt et al., 1988). Different models 15 

were reviewed and tested by Guralnik et al. (2015b) who suggested that the general order kinetic, a mathematically simplified 

model, could be used to explain luminescence phenomenon well. We adopted this model for TL of feldspar where the power 

terms (a, b) accounts for the nonlinearity involved in the TL of feldspar. The efficacy of using general order kinetics has been 

demonstrated to samples with known thermal history (KTB borehole samples) for OSL of feldspar (Guralnik et al., 2015a) 

and TL of feldspar (Biswas et al., 2018).  20 

Here we investigate the difference in temperature sensitivity of different TL thermometers, which correspond to individual TL 

temperature or TL signals. On the basis of the kinetic parameters derived for our sample, and our sensitivity tests (section 

2.2.1), we recommend using TL thermometers with temperature range of 200 to 250 °C for a typical surface temperature 

fluctuation, e.g. ~10 °C. If the temperature fluctuations are larger, higher temperature TL (>250 °C TL) can be used. The 

multiple TL signal (200 to 250 °C, 10 °C interval) can constrain thermal history of ~50 kyr. A higher temperature fluctuation 25 

can be better constrained with a greater number of thermometers (as discussed in section 2.2.1). 

For periodic oscillations, when the period is comparable to the lifetime of the trapped electron for a given thermometer, it may 

be used to infer temporal variation of surface temperature (see section 2.2.2). Typically, tens of kyr of temperature oscillation 

can be detected using TL thermometers with peak temperatures higher than 200 °C (210 to 250 °C). Periodic oscillation with 

lower period (<1 kyr) will exhibit a similar effect to isothermal temperature condition, yielding a temperature higher than the 30 

mean of oscillation.    

One outstanding issue when using TL is the sensitivity change during the very first measurements up to 450 °C, which cannot 

be corrected by post-glow normalization (Tang and Li, 2017). Here we show that sensitivity changes during natural 

measurements can be monitored for lower temperature TL (<150 °C) following the same method adopted for the OSL of 

quartz, which is called the natural correction factor (NCF; Singhvi et al., 2011). Because there is no direct method to track the 35 

TL sensitivity change in the region of interest (210-250 °C TL), we simply extrapolate the sensitivity change observed in the 

lower temperature TL peaks (i.e., 90-150 °C) to the region of interest (i.e., 210-250 °C). This is new and it will need further 

investigation. However, we find that the effect of the initial sensitivity change on the amplitude of the inferred temperature 
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histories is small. In Fig. 10, we compare inversion results for three different scenarios for sample MBTP1; 1) there is no initial 

sensitivity correction, i.e., NCF =1; 2) the initial sensitivity correction is done using the value obtained at 100 °C 

(NCF100=1.64±0.08); and 3) the var-NCF approach described in the section 4.3.1 is used. Although the results show that the 

sensitivity correction has a significant impact on the absolute inferred temperature, we do not observe much difference between 

using a constant value and the extrapolated value. Furthermore, and more importantly, the difference between the present-day 5 

temperature and temperature about 20 ka remains about 10-11°C in the three tested cases (median of the prediction).  

Figure 10 

The estimated constant erosion rates in these two sample locations, MBTP1 and MBTP9, are 3.5×10-3 and 3.2×10-2 mm/yr 

with maximum possible time of erosion of 20.9 and 19.5 ka respectively (Lehman et al. 2020). This translates to a maximum 

erosion depth in these two locations are 0.07 and 0.62 m respectively. At those depths, mean temperature should be in 10 

equilibrium with atmospheric temperature (e.g., Hasler et al. 2011). Based on the rock temperature measurement of borehole 

samples in Mont-Blanc massif, Magnin et al. (2017) suggest up to a 2 m depth the rock temperature is constant with depth. 

For the inverse modeling of natural samples, 𝛿18O data are used as a prior on the shape of the thermal histories, but we leave 

two scaling parameters free – minimum temperature at 20 ka, and amplitude (temperature difference between at 20 ka and 

present)– and we did not include the role of ice on setting the rock temperature during glaciation. Lehman et al. (2020) provided 15 

a range of solution for deglaciation in the present location, either thinning of 450 m glacier occurred progressively between 

∼17 ka and ~12 ka or it was instantaneous. In absence of clear scenario, we took two samples from two extreme altitudes of 

2545 (MBTP1) and 2133 (MBTP9). The top most sample, MBTP1, had a very thin or no glacier covered during LGM, and 

the bottom most sample, MBTP9, was exposed or covered by ice. Thus, it is expected that the during LGM, rock temperature 

of MBTP1 would have been in equilibrium with atmospheric temperature (Hoelzle et al. 1999) whereas it is less clear for 20 

MBTP9. If it was covered by ice, it was likely temperate ice and  the basal temperature would be close to 0 °C. Interestingly, 

we find similar results from the inversion; predicted rock surface temperatures of MBTP1 and MBTP9, during LGM, are 

−4.67�.c��.� and −2.07�.c��.� respectively; temperature of the bottom most sample during LGM is close to 0 °C, at least within error. 

The application of the introduced method predicts that the final rock surface temperatures at the locations of Mont-Blanc 

massif are 6.2 ± 3.2 °C for MBTP1 (2545 m) and 7.9 ± 3.0 °C for sample MBTP9 (2133). Although these temperatures have 25 

large uncertainty, they are higher than the mean annual atmospheric temperature in this location. The mean annual temperature 

of Chamonix (1035 m), a nearby city, is 7.3 °C. Considering an adiabatic lapse rate of 5 °C/km, the expected mean annual 

atmospheric temperatures at the sample location of MBTP1 and MBTP9 are ∼0 and 2 °C respectively. The offset between the 

predicted and expected temperature (∼6 °C) can be explained by two main reasons: 1) the rock surface temperature is always 

higher than atmospheric temperature and the temperature difference can be up to 10 °C (Magnin et al., 2019), and 2) seasonal 30 

temperature fluctuations may lead to an overestimation of the mean annual temperature (as discussed in section 2.2.2). To 

quantify this latter offset, we performed a simple synthetic test, with annual oscillation of +10 °C (summer) to -10°C (winter) 

with mean at 0 °C, up to 20 ka (before that temperature was set to a 0 °C isotherm), and predicted the equivalent isothermal 

temperature using the inverse approach. The result suggests a mean annual temperature that is 2.7±0.7 °C higher than the mean 

temperature of the periodic signal (Fig. 11), confirming the results of Guralnik and Sohbati (2019).    35 

Figure 11 

The inverse modeling results show an increase of rock surface temperature in the Mont Blanc Massif of ~10-11 °C (considering 

median of the prediction) from 20 ka to today. The median of the distribution of possible thermal histories of the two samples 

follows Greenland ice core δ18O anomalies with missing of low frequencies. Climate reconstructions in Europe using fossil 
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pollen suggest that the mean annual temperature anomaly (the difference between the temperature at the LGM and today) is 

12±3 °C in the north of  Pyrenees–Alps line (Peyron et al., 1998). Wu et al. (2007) inferred that LGM temperatures in Europe 

were ~ 10-15 °C lower than the present-day temperature based on pollen analysis. Although there are large uncertainties 

associated with pollen data and having its methodological constrain, the overlap in temperature estimates between the two 

proxies suggest that TL may be a reliable paleothermometer.  5 

6 Conclusions 

A new approach to reconstruct the temporal variation of rock surface temperature using the TL of feldspar is introduced. 

Forward modeling of different TL signals suggests that TL signals in the range of 210 to 250 °C are sensitive to typical surface 

temperature fluctuations, which we define as TL thermometers. Multiple TL thermometers (210-250 °C, 10 °C interval) can 

then be used to constrain thermal histories of rocks over ~50 kyr for temperature fluctuations of ~10 °C. The sensitivity of the 10 

periodic forcing on trapped charge populations suggest that natural TL is sensitive enough to mean temperature and amplitude 

of periodic forcings. Typically, tens of kyr of temperature oscillation can be predicted using this approach. Finally, we show 

that it is possible to recover thermal histories of rocks when one assumes that the temperature followed observed Greenland 

ice core 𝛿18O record.  
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Figure 1: Inferred TL kinetic parameters from TL glow curve of sample MBTP9. The method used to constrain these parameters 5 
in the laboratory is fully explained in Biswas et al. (2018) and described in supplementary material S1. 
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Figure 2: a, b, and c are the three prescribed thermal histories: isothermal, cooling and warming respectively. d, e and f are the 

corresponding dynamic equilibrium levels of trapped charge population (𝒏l) of 10 different thermometers in the range of 200-300 

°C. The temperature of the thermometers (or TL temperature) are shown on the right.  Deleted: in the right. The temperature of the 5 
corresponding thermometers (or TL temperature) are 
shown in the right.
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Figure 3: The variation of present day trapped charge population (𝒏l𝒑𝒓𝒆𝒔𝒆𝒏𝒕) of different thermometers with time of change of 

temperature (tchange) of step function like thermal history with temperature change of a) 10 °C, b) 20 °C and c) 30 °C. The asterisk 

symbols denote the memory time (tmemory) that a thermometer can record the temperature change history. Estimation of tmemory is 

illustrated in plot a for 200-210 °C TL thermometer. The solid green line corresponds to 𝒏l𝒑𝒓𝒆𝒔𝒆𝒏𝒕 for tchange =100 ka, and the dashed 5 

green lines represent 𝒏l𝒑𝒓𝒆𝒔𝒆𝒏𝒕 for tchange = tmemory, which is 20% higher than the solid green line. 
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Figure 4: Variation of trapped charge population (𝒏l) for different sinusoidal thermal histories. a, b, and c represents the prescribed 

thermal histories with same mean amplitude (10 °C) and three different mean temperatures (0, 15 and 30 °C) but for different 

periods, 1, 10 and 100 ka respectively. The dashed lines are the isotherm (mean temperature of oscillation). Fig. d-f, g-i, and j-l are 

the the response of 𝒏l for the corresponding thermal field. The solid lines are for oscillating fields and dashed lines are for isothermal 5 
fields. The temperature of the representative thermometers (or TL temperature) are shown inside in blue. 
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Figure 5: Present day trapped charge populations (𝒏l𝒑𝒓𝒆𝒔𝒆𝒏𝒕)  of different TL signals (or thermometers) with a) mean 

temperature variation (amplitude and period are fixed), b) amplitude variation (mean temperature and period are 5 

fixed), and c) period variation (mean temperature and amplitudes are fixed). 
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Figure 6: Results of synthetic experiment of approach 1, a-d) are for the forward modeling and e-p) are for the inverse modeling. a) 

three arbitrary periodic thermal histories with different mean temperature (Tmean) and amplitude (Tamp) but fixed period P. b), c) 

and d) are the evolution of trapped charge population (𝒏l) for four different thermometers (210-250 °C, 10 °C interval) of the 

corresponding to three thermal histories, respectively. The present day trapped charge populations are considered as observed 5 
values (𝒏l𝒐𝒃𝒔) for the inverse modeling. e), f) and g) are the inferred probability density plots when Tmean, Tamp and P are randomly 

varied. h), i), and j) depict the fit between the observed TL (obtained through forward modeling). The solid red lines show the 

predicted median, white lines and black lines show the 1𝜎 and 2 𝜎 confidence intervals in the probability density distribution k), l) 

and m) are the inferred probability density functions when Tmean, and Tamp are randomly varied but P is fixed. n), o), and p) depict 

the fit between the observed TL (obtained through forward modeling). These results are obtained using the kinetic parameters of 10 
sample MBTP9. 

Deleted: ¶
Figure 6: a), b) and c) are three arbitrary temperature 
histories obtained by scaling the Greenland 𝛅18O ice core 
anomalies15 



 23 

 

Figure 7: Results of synthetic experiment of approach 2, a-d) are for the forward modeling and e-p) are for the inverse modeling. a) 

three arbitrary temperature histories obtained by scaling the Greenland 𝛅18O ice core record (Svensson et al., 2008). b), c) and d) 

are the evolution of trapped charge population (𝒏l) for four different thermometers (210-250 °C, 10 °C interval) corresponding to 

three histories respectively. The present day trapped charge populations are considered as observed value (𝒏l𝒐𝒃𝒔) for the inverse 5 
modeling. e), f) and g) are the inferred probability density functions. The dashed red lines show the actual temperature history as 

used in forward modeling, the solid red lines show the predicted median, white lines and black lines show the 1s and 2s confidence 

intervals in the probability density distribution. h), i), and j) depict the fit between the observed TL (obtained through forward 

modeling) and modelled TL (obtained through inverse modeling). k), l), and m) represent histograms of the parameter, base 

temperature, Tbase (which is temperature at 20 ka).  n), o), and p) represent histograms of present temperature, Tpresent (which is 10 
Tbase+Tamp as shown in supplement Eq. S9). These results are obtained using the kinetic parameters of sample MBTP9. 
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Figure 8: a) The lower temperature TL before (TL1) and after (TL2) natural TL measurement (up to 450 °C) of samples MBTP1 

and MBTP9. b) NCF for TL signal (integrated over 90-120 °C) for different given doses. The data are scattered and vary within 

±10%, which possibly suggest the NCF is dose independent c) plot of var-NCF (=TL1/TL2) at different temperature (90-150 °C) 

along TL glow (solid circles), and extrapolated to calculate NCF in the region of interest (210-250 °C; empty circles). The values 5 
were calculated by taking the average of three measurements. 
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Figure 9: Inferred rock surface temperature history for sample MBTP1 and MBTP9 collected in the Mont Blanc massif at an altitude 

of ~2.0-2.5 km obtained through inverse modeling of TL data as described in section 4.4. a-d are for the sample MBTP1. a) is the 

probability density function. The red line, white lines and black lines are the predicted median, 1𝛔 and 2𝛔 confidence intervals.  b) 

is the plot of observed TL (𝒏lobs) and modeled TL (predicted TL through inverse modeling). c) and d) are histograms of temperature 5 
at 20 ka and present respectively. e-h are the result of same analysis for sample MBTP9. 
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Figure 10: The impact of initial sensitivity correction for past temperature prediction to sample MBTP1 for three different scenarios, 

1) no initial sensitivity correction i.e. NCF =1, 2) initial sensitivity corrected with fixed NCF at 100 °C (=1.64±0.08) for all 

thermometers, and, 3) initial sensitivity corrected to all TL thermometers with var-NCF for all TL thermometers (i.e. the selected 5 
method). a, e and i are the probability distributions, and b, f and j are observed and predicted TL plots for all three scenarios 

respectively. c, g, k and d, h, l are the histogram of predicted temperature for all accepted paths at 20 ka and the present day for all 

three scenarios respectively. 
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Figure 11: Result of synthetic test for annual fluctuation of temperature. a) probability density plot. The dotted redline is the actual 

thermal history. Solid red line is the predicted median of the isotherms. white and black lines are the 1𝜎	and 2𝜎 confidence intervals. 

Fig. b shows the plot of observed (𝒏lobs) and modeled TL values (predicted TL through inverse modeling) for all TL thermometers. 
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Table1: List of kinetic parameters that describe growth (𝐃̇,	D0, a), thermal decay (E, s, b) and athermal decay (r¢) and natural TL 

(observed) trapped charge populations (𝒏lobs) for the four thermometers (210-250 °C, 10 °C interval) for sample MBTP1 and MBTP9. 

The dose rate (𝑫̇) values were taken from Lehmann et al. (2020). Note that in the thermal decay parameters (E, s and b) no errors 

are mentioned. The mean values of these parameters are calculated from the distribution and an arbitrary error of 5% was 5 
considered. 
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