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Abstract:  33 

Accurate estimates of past global mean surface temperature (GMST) help to contextualise 34 

future climate change and are required to estimate the sensitivity of the climate system to CO2 35 

forcing through Earth history. Previous GMST estimates for the latest Paleocene and early 36 

Eocene (~57 to 48 million years ago) span a wide range (~9 to 23°C higher than pre-industrial) 37 

and prevent an accurate assessment of climate sensitivity during this extreme greenhouse 38 

climate interval. Using the most recent data compilations, we employ a multi-method 39 

experimental framework to calculate GMST during the three DeepMIP target intervals: 1) the 40 

latest Paleocene (~57 Ma), 2) the Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) and 41 

3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different 42 

methodologies, we find that the average GMST estimate (66% confidence) during the latest 43 

Paleocene, PETM and EECO was 26.3°C (22.3 to 28.3°C), 31.6°C (27.2 to 34.5°C) and 44 

27.0°C (23.2 to 29.7°C), respectively. GMST estimates from the EECO are ~10 to 16°C 45 

warmer than pre-industrial, higher than the estimate given by the IPCC 5th Assessment Report 46 

(9 to 14°C higher than pre-industrial).  Leveraging the large ‘signal’ associated with these 47 

extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, 48 

PETM and EECO to calculate gross estimates of the average climate sensitivity between the 49 

early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (66% 50 

confidence) during the latest Paleocene, PETM and EECO is 4.5°C (2.4 to 6.8°C), 3.6°C (2.3 51 

to 4.7°C) and 3.1°C (1.8 to 4.4°C) per doubling of CO2. These values are generally similar to 52 
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those assessed by the IPCC (1.5 to 4.5°C per doubling CO2), but appear incompatible with 53 

low ECS values (< 1.5 per doubling CO2). 54 

1. Introduction  55 

Under high growth and low mitigation scenarios, atmospheric carbon dioxide (CO2) could 56 

exceed 1000 parts per million (ppm) by the year 2100 (Stocker et al., 2013). The long-term 57 

response of the Earth System under such elevated CO2 concentrations remains uncertain 58 

(Stevens et al., 2016; Knutti et al., 2017; Hegerl et al., 2007). One way to better constrain 59 

these climate predictions is to examine intervals in the geological past during which 60 

greenhouse gas levels were similar to those predicted under future scenarios. This is the 61 

rationale behind the Deep-time Model Intercomparison Project (DeepMIP; www.deepmip.org) 62 

which aims to investigate the behaviour of the Earth System in three high CO2 climate states 63 

in the latest Paleocene and early Eocene (∼ 57–48 Ma) (Lunt et al., 2017; Hollis et al., 2019). 64 

Sea surface temperature (SST) and land air temperature (LAT) proxies indicate that 65 

the latest Paleocene and early Eocene were characterised by global mean surface 66 

temperatures (GMST) much warmer than those of today (Cramwinckel et al., 2018; 67 

Farnsworth et al., 2019; Hansen et al., 2013; Zhu et al., 2019; Caballero and Huber, 2013).  68 

Having a robust quantitative estimate of the magnitude of warming at these times relative to 69 

modern is useful for two primary reasons: (1) it allows us to contextualise future climate 70 

change predictions by comparing the magnitude of future anthropogenic warming with the 71 

magnitude of past natural warming; (2) combined with knowledge of the climate forcing, it 72 

allows us to estimate climate sensitivity, a key metric for understanding how the climate 73 

system responds to CO2 forcing. Using different proxy data compilations (Hollis et al., 2012; 74 

Lunt et al., 2012), the Fifth IPCC Assessment Report (AR5) stated that GMST was 9°C to 75 

14°C higher than for pre-industrial conditions (medium confidence) during the early Eocene 76 

(~52 to 50 Ma) (Masson-Delmotte et al., 2014). However, subsequent studies indicate a wider 77 

range of estimates, from 9 to 23°C warmer than pre-industrial (Caballero and Huber, 2013; 78 

Cramwinckel et al., 2018; Farnsworth et al., 2019; Zhu et al., 2019; Figure 1 and Table 1). It 79 
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is an open question whether this range arises from inconsistencies between the methods used 80 

to estimate GMST, such as selection of proxy datasets, treatment of uncertainty, and/or 81 

analysis of different time intervals. This methodological variability has thwarted robust 82 

comparisons between GMST methodologies for key intervals through the latest Paleocene to 83 

early Eocene. 84 

Here we calculate GMST estimates within a consistent experimental framework for the 85 

target intervals outlined by DeepMIP: i) the Early Eocene Climatic Optimum (EECO; 53.3 to 86 

49.1 Ma), ii) the Paleocene-Eocene Thermal Maximum (PETM, ca. 56 Ma) and iii) the latest 87 

Paleocene (LP, ca. 57-56 Ma). We use six different methods to obtain new GMST estimates 88 

for these three time intervals, employing previously compiled SST and LAT estimates (Hollis 89 

et al., 2019) and bottom water temperature (BWT) estimates (Dunkley Jones et al., 2013; 90 

Cramer et al., 2009; Sexton et al., 2011; Littler et al., 2014; Laurentano et al., 2015; Westerhold 91 

et al., 2018; Barnet et al., 2019). We also undertake a suite of additional sensitivity studies to 92 

explore the influence of particular proxies on each GMST estimate. We then compile GMST 93 

estimates from all six methods to generate a ‘combined’ GMST estimate for each time slice 94 

and use these, with existing estimates of CO2 (Gutjahr et al., 2017; Anagnostou et al., 2016) 95 

to develop new estimates of “bulk” equilibrium climate sensitivity (ECS) during the latest 96 

Paleocene, PETM and EECO. 97 

 98 

2. Methods and Materials 99 

Three different input datasets are used to calculate GMST: 1) dataset Dsurf which consists of 100 

surface temperature estimates, both marine (sea surface temperature) and terrestrial, 2) 101 

dataset Ddeep which consists of deep-water temperature estimates, and 3) dataset Dcomb which 102 

consists of a combination of surface- and deep-water temperature estimates.  Here we make 103 

use of six different methodologies, which are described in detail below, to estimate GMST 104 

from these datasets.  105 
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 106 

2.1. Dataset Dsurf 107 

Dataset Dsurf is version 0.1 of the DeepMIP database, as described in Hollis et al (2019) 108 

(Supplementary Information).  It consists of SSTs and LATs for the latest Paleocene, PETM 109 

and EECO.  The SSTs are derived from foraminiferal δ18O values, foraminiferal Mg/Ca ratios, 110 

clumped isotopes (Δ47), and isoprenoid GDGTs (TEX86).  Foraminiferal δ18O values and 111 

Mg/Ca ratios are calibrated to SST following Hollis et al., 2019 and Evans et al. (2018), 112 

respectively. TEX86 values are calibrated to SST using BAYSPAR (Tierney and Tingley, 2014). 113 

Δ47 values are reported using the parameters and calibrations of the original publications 114 

(Evans et al., 2018; Keating-Bitonti et al., 2011). LATs are derived from leaf fossils, pollen 115 

assemblages, mammal δ18O values, paleosol δ18O values, paleosol climofunctions and 116 

branched GDGTs. LAT estimates are calculated using the parameters and calibrations of the 117 

original publications (see Hollis et al., 2019 and ref. therein). The locations of the proxy 118 

datasets are shown in Figure S1 using the paleomagnetic-based reference frame (Hollis et 119 

al., 2019). For each dataset, we utilise the uncertainty range of temperature estimates reported 120 

in Hollis et al. (2019).   121 

Four methods (Dsurf-1, Dsurf-2, Dsurf-3 and Dsurf-4) are employed to calculate GMST from 122 

dataset Dsurf. These methods employ parametric (Dsurf-1, Dsurf-2, Dsurf-4) or non-parametric 123 

(Dsurf-3) functions to estimate temperature. We calculate GMST on the mantle-based 124 

reference frame and employ the rotations provided in Hollis et al (2019). These differ very 125 

slightly from those utilised in the DeepMIP model simulations (Lunt et al, 2020). Each method 126 

conducts a ‘baseline’ calculation that uses the SST and LAT data compiled in accordance with 127 

the DeepMIP protocols (i.e. Hollis et al., 2019). Our baseline calculation (Dsurf-baseline; Table 128 

2) excludes δ18O values from recrystallized planktonic foraminifera because the resulting 129 

temperature estimates are biased by diagenesis toward significantly cooler temperatures than 130 

those derived from: i) the δ18O value of similar aged and similarly located well-preserved 131 

foraminifera, ii) foraminiferal Mg/Ca ratios and iii) Δ47 values from larger benthic foraminifera 132 



 

UOB Open 

(Pearson et al., 2001; Hollis et al., 2019 and ref. therein). For each method, we also conduct 133 

a series of illustrative sub-sampling calculations relative to Dsurf-baseline, based on varying 134 

assumptions about the robustness of different proxies (Table 2). The first sensitivity 135 

experiment (Dsurf-Frosty; Table 2) includes δ18O values from recrystallized planktonic 136 

foraminifera. The second sensitivity experiment (Dsurf-NoTEX; Table 2) removes TEX86 values 137 

as these give slightly higher SSTs than other proxies, especially in the mid-to-high latitudes 138 

(Bijl et al., 2009; Hollis et al., 2012; Inglis et al., 2015). The third sensitivity experiment (Dsurf-139 

NoMBT; Table 2) removes MBT(‘)/CBT values derived from marine sediment archives as they 140 

may suffer from a cool bias (Inglis et al., 2017; Hollis et al., 2019). The fourth sensitivity 141 

experiment (Dsurf-NoPaleosol; Table 2) removes mammal/paleosol δ18O values and paleosol 142 

climofunctions as these proxies may suffer from a cool bias (Hyland and Sheldon, 2013; Hollis 143 

et al., 2019). For each method, GMST is calculated for: i) the Early Eocene Climatic Optimum 144 

(EECO; 53.3 to 49.1 Ma), ii) the Paleocene-Eocene Thermal Maximum (ca. 56 Ma) and iii) the 145 

latest Paleocene (LP; ca. 57-56 Ma). 146 

 147 

2.1.1. Dsurf-1  148 

Method Dsurf-1 was first employed by Caballero and Huber (2013) to estimate GMST from 149 

early Eocene surface temperature proxies after it was recognised that pervasive 150 

recrystallization of foraminiferal δ18O could overprint the original SST signal (e.g. Pearson et 151 

al., 2001; Pearson et al., 2007). That study used data compilations (Huber and Caballero, 152 

2011, Hollis et al., 2012) which were the predecessors to the DeepMIP compilation (Hollis et 153 

al., 2019).  154 

Here, the anomalies of individual proxy temperature data points with respect to modern 155 

values at the corresponding paleolocation are first calculated. The time period used is between 156 

1979 and 2018 and we used a climatology of the full ERA-interim period (Dee et al., 2011). 157 

The calculation involves binning into low, mid, and high latitudes (30°N to 30°S, 30°N/S to 158 

60°N/S, and 60°N/S to 90°N/S), and calculating the unweighted mean anomaly within these 159 
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bins between the median reconstructed value at a given locality and the temperature in the 160 

modern system (from reanalysis). The geographically binned means are then weighted 161 

according to relative spherical area to calculate a globally weighted mean temperature 162 

anomaly between the paleo-time slice and modern. All samples are treated equally and 163 

considered independent. The associated errors are added in quadrature with the inter-sample 164 

standard deviation. These two sources of error were combined and normalized by the square 165 

root of the number of samples. This method is intended as an unsophisticated, brute force 166 

approach to estimating GMST when dealing with many localities with poorly characterized 167 

errors in which there is a large difference between the reconstructed temperature at a given 168 

location and the modern equivalent. It is not intended to identify small changes in GMST; nor 169 

is it expected to work well under conditions in which temperature gradients are stronger than 170 

today, continents are far removed from their current configuration, or in situations in which 171 

systematic errors are not readily mitigated by large sample size (i.e. when there are 172 

correlations in systematic errors between proxies). It is designed to be relatively 173 

straightforward to interpret and simple to reproduce without relying overly on climate models 174 

or sophisticated statistical models.   175 

Various sanity checks have been performed to determine if the method is likely to 176 

produce useful results for a given sampling distribution and what corrections should be applied 177 

to optimize it. For example, if the modern temperature field is sampled using a geographic 178 

sampling distribution for a given time interval, what would the reconstructed modern 179 

temperature be? Sampling the modern global annual average surface temperature field in the 180 

reanalysis product ERA-5 yields a mean value of 15.1°C but when resampled at the equivalent 181 

geographic distribution of our samples from the latest Paleocene, PETM and EECO yields 182 

mean values for the modern of 16.9°C (±1.8°C), 14.2°C (±1.7°C), and 15.2°C (±1.1°C), 183 

respectively. Thus, for the sampling densities and spatial structure of the early Paleogene, this 184 

method can approach the true value within ~1.5°C and the error propagation adequately 185 

characterizes the error, in this 'perfect knowledge' scenario. Seeking precision beyond that 186 

range is unwarranted and as indicated above, systematic biases are a serious concern.  187 
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However, estimating the latest Paleocene and early Eocene GMST may be somewhat easier 188 

than estimating the modern GMST because temperature gradients were much reduced from 189 

modern. Huber and Caballero (2011) estimate a reduction to less than half the modern 190 

temperature gradient whilst Evans et al (2018) constrain the low-to-high latitude SST gradient 191 

to at least  ~30% (+/- 10%) weaker than modern (Evans et al., 2018).   192 

Alongside modern observations, we can also use paleoclimate model results to 193 

characterise how well the existing palaeogeographic sampling network will impact results 194 

(Figure 2). Here we utilize two CESM1 simulations, as described in Cramwinckel et al., (2018; 195 

EO3 and EO4). The two cases are chosen to minimize the magnitude of the correction to 196 

GMST and the final result is not sensitive to the choice of reference simulation between these 197 

two (Supplementary Information). For each interval, the difference between reconstructed 198 

global temperatures and the true paleoclimate model mean is <1 to 3°C. These comparisons 199 

demonstrate that this method produces estimates that are within random error given otherwise 200 

perfect knowledge.  The errors introduced by limited paleogeographic sampling can be 201 

alleviated by incorporating the offset in mean values between the true paleoclimate model 202 

GMST and the sampled paleoclimate model GMST outlined above (Figure 2). We utilise this 203 

offset to correct for systematic errors, but this is the only component in which paleoclimate 204 

model information is included in this GMST estimation methodology. This approach is best 205 

applied within the context of studying the random and systematic error structure as described 206 

above and caution should be taken in using systematic corrections that are significantly bigger 207 

than the estimated random error. The underlying assumption is that the bias in the global 208 

mean estimate that exists due to uneven sampling is the same in the ‘proxy’ Eocene world as 209 

in the ‘model’ Eocene world, i.e. that the zonal and meridional gradients are well characterised 210 

by the model, even if the absolute temperatures are not.  211 

We note that the magnitude of the global correction could be sensitive to different 212 

models and/or boundary conditions.  To explore this further, we performed the same analysis 213 

using Community Earth System Model version 1.2 (CESM1.2) at 6x CO2. This model 214 

simulation offers a major improvement over earlier models (Zhu et al., 2019) due to the 215 



 

UOB Open 

improved treatment of cloud microphysics and is able to reproduce key features of the early 216 

Paleogene (e.g. the meridional SST gradient; Zhu et al., 2019; Lunt et al., 2020). We find that 217 

CESM1 (8x and 16x CO2) and CESM1.2 (6x CO2) yield similar GMST estimates during the 218 

PETM, EECO and latest Paleocene. For example, GMST values (obtained using Dsurf-219 

baseline) during the EECO average 24.5°C, 24.6°C and 25.2°C for CESM1 (x8 CO2), CESM1 220 

(x16 CO2) and CESM1.2 (6x CO2), respectively. This indicates that the final result is not overly 221 

sensitive to the choice of reference simulation, at least within the CESM model family.  In the 222 

following sections, we only discuss CESM1 simulations to avoid circularity if the results from 223 

this paper are used to evaluate more recent simulations (e.g. CESM1.2; Lunt et al., 2020).   224 

 225 

2.1.2. Dsurf-2 226 

GMST estimates are calculated using the method described in Farnsworth et al. (2019), in 227 

which a transfer-function is used to calculate global mean temperature from local proxy 228 

temperatures.  The transfer function is generated from a pair of early Eocene climate model 229 

simulations, carried out at two CO2 concentrations.  The first simulations are the same 2x CO2 230 

and 4x CO2 HadCM3L Eocene simulations from Farnsworth et al (2019).  The second 231 

simulations are the x 4CO2 and 8x CO2 CCSM3 simulations of Huber and Caballero (2011), 232 

also discussed in Lunt et al (2012). The two models are configured for the Eocene with 233 

different paleogeographies (Supplementary Table S1). We provide a final estimate based on 234 

the mean of our two models.   235 

The principal assumption of this approach is that global temperatures scale linearly 236 

with local temperatures, and that a climate model can represent this scaling correctly (see 237 

below). The resulting GMST estimate is therefore independent of the climate sensitivity of the 238 

model but dependent on the modelled spatial distribution of temperature.  For a single given 239 

proxy location with a local temperature estimate (Tproxy), Farnsworth et al. (2019) estimate 240 

global GMST (<T>inferred) as: 241 

  242 
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<T>
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

 = <𝑇𝑙𝑜𝑤> +(𝑇𝑝𝑟𝑜𝑥𝑦-𝑇𝑙𝑜𝑤)
<𝑇ℎ𝑖𝑔ℎ> - <𝑇𝑙𝑜𝑤>

𝑇ℎ𝑖𝑔ℎ - 𝑇𝑙𝑜𝑤    (1) 243 

 244 

where <Tlow> and <Thigh> are the global means of a low- and high-CO2 model simulation 245 

respectively, and Tlow and Thigh are the local temperatures (same location as the proxy) from 246 

the same simulations. Tlow and Thigh represent local modelled SSTs or local modelled near-247 

surface LATs (in contrast to Farnsworth et al. 2019, who only used local modelled near-surface 248 

LATs to calculate Tlow and Thigh, even if Tproxy was SST). If the proxy temperature is greater 249 

than Thigh or cooler than Tlow, then the inferred global mean is found by extrapolation rather 250 

than by interpolation and is therefore more uncertain (Figure 3). This will be sensitive to the 251 

choice of model simulation; models that simulate less polar amplification (e.g. HadCM3L) are 252 

more likely to obtain <T>inferred (i.e. GMST) via extrapolation. We repeat this process for each 253 

proxy data location (Figure 4) and take an average over all proxy locations as our best estimate 254 

of global mean temperature.   255 

 Recent work has demonstrated that CESM1.2 and GFDL model simulations offer a 256 

major improvement over earlier models (Zhu et al., 2019; Lunt et al., 2020). As such, we also 257 

calculated GMST using CESM1.2 (3x and 6x CO2; Zhu et al., 2019; Table S1) and GFDL (3x 258 

and 6x CO2; Hutchinson et al., 2018; Lunt et al., 2020; Table S1). We find that all four 259 

simulations (i.e. HadCM3L, CCSM3, CESM1.2 and GFDL) yield similar GMST estimates. For 260 

example, GMST during the PETM ranges between 32.3 and 34.5°C (Supplementary 261 

Information). This demonstrates that Dsurf-2 is not overly sensitive to the climate model 262 

simulation. However, as CESM1.2 and GFDL have greater polar amplification than other 263 

models (e.g. HadCM3L), GMST is more likely to be found by interpolation (c.f. extrapolation). 264 

To explore whether GMST scales linearly with local temperatures, we used CESM1.2 to re-265 

calculate GMST using the same method as above but using the 9x CO2 simulation in place of 266 

the 6x CO2 simulation. We find that GMST estimates are very similar (±0.4°C). This is 267 

because, although the relationship between GMST and CO2 is non-linear (Zhu et al, 2019), 268 

the relationship between local and global temperature is relatively constant.  In the following 269 
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sections, we employ CCSM3 and HadCM3 simulations to avoid circularity if the results from 270 

this paper are used to evaluate more recent simulations (e.g. CESM1.2, GFDL; Lunt et al., 271 

2020).   272 

 273 

2.1.3. Dsurf-3  274 

For Dsurf-3, GMST estimates are calculated using Gaussian process regression (Figure 5; 275 

Bragg et al., in prep). In this method, temperature is treated as an unknown function of location, 276 

f(x). Many possible functions can fit the available proxy dataset. By using a Gaussian process 277 

model of the unknown function, we assume that temperature is a continuous and smoothly 278 

varying function of location, and once fitted to the data, the posterior mean of the model gives 279 

the most likely function form for the temperature. We use a Gaussian process prior and update 280 

it using the proxy data to obtain the posterior model which we can then use to predict the 281 

surface temperatures on a global grid. Prior specification of the model is via a mean function 282 

E(f(x)) = m(x), and a covariance function Cov(f(x), f(x’)) =k(x,x’) (which tells us how correlated 283 

f(x) is with f(x’)). We also specify the standard deviation of the observation uncertainty about 284 

each data point (σ
2
i). If 𝒇 = (𝑓(𝑥1), … 𝑓(𝑥𝑛))

𝑇
 is a vector of temperature observations at each 285 

location 𝑥𝑖, then the model is: 286 

 287 

𝒇 ~𝒩(𝜇, Σ)       (2) 288 

 289 

where 𝜇𝑖 = 𝑚(𝑥𝑖) and Σ𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) + 𝕀𝑖=𝑗𝜎𝑖
2. The proxy temperatures are expressed as 290 

anomalies to either the marine or terrestrial present-day zonal mean temperature at the 291 

respective paleolatitude. We subtract the mean temperature anomaly (weighted by the 292 

paleolatitude) for each time period and core experiment prior to the analysis and therefore fit 293 

the model to the residuals. This means the predicted field will relax towards the mean surface 294 

warming in areas of no data coverage. The covariance function – which considers the 295 
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clustering of proxy locations – describes the correlation between f(xi) and f(xj) in relation to the 296 

distance of xi and xj. We use a squared-exponential covariance function with Haversine 297 

distances replacing Euclidean distances so that correlation is a function of distance on the 298 

sphere.  299 

A heteroscedastic noise model is used to weight the influence of individual proxy data 300 

by their associated uncertainty, i.e. the model will better fit reconstructions with a smaller 301 

reported error. Proxy uncertainties are taken from Hollis et al., (2019). Standard deviations for 302 

TEX86, Mg/Ca and δ18O records are derived from the reported 90% confidence intervals (Hollis 303 

et al., 2019). A minimum value of 2.5°C for the standard deviation is assumed for all other 304 

methods. The output variances and length scale of the covariance function are estimated 305 

using their maximum likelihood values, obtained with the GPy Python package (GPy, 2012). 306 

We apply the method to the marine and terrestrial data separately and combine the masked 307 

fields afterwards to prevent mutual interference. We further constrain the lower bound of the 308 

lengthscale parameter to 2000 km to always fit a reasonably smooth surface, even in some 309 

continental areas with noisy proxy data (e.g. western North America). We note that our choice 310 

of the minimum lengthscale and the separation of land and ocean temperatures influence the 311 

predicted regional surface temperature patterns but do not significantly change our GMST 312 

estimates.  313 

The Gaussian process approach provides probabilistic predictions of temperature 314 

values, i.e., uncertainty estimates of the predicted field. The uncertainty reported for an 315 

individual GMST estimate is calculated via random sampling. We generate 10,000 surfaces 316 

from a multivariate normal distribution based on the predicted mean and full covariance matrix 317 

and calculate the GMST for each sample. Uncertainty of the mean estimate is then defined as 318 

the standard deviation of the 10,000 random samples. Regional model uncertainty (expressed 319 

as standard deviation fields) is typically highest in areas with sparse data coverage (e.g. the 320 

Pacific Ocean and Southern Hemisphere landmasses; Figure S2). The lower uncertainty for 321 

the latest Paleocene relative to the PETM and EECO is related to the smaller reported 322 
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uncertainties in the proxy dataset rather than enhanced data coverage. The large spread in 323 

reconstructed terrestrial temperatures for North America during the PETM and EECO (Figure 324 

S2) propagates through into relatively large uncertainties in the GMSTs estimates for these 325 

intervals. 326 

 327 

2.1.4. Dsurf-4 328 

For Dsurf-4, GMST estimates are calculated using a simple function of latitude (θ), tuned to 329 

best fit the proxy data: 330 

 331 

𝑇(𝜃) ≈ 𝑎 + 𝑏𝜃 + 𝑐 cos 𝜃     (3) 332 

 333 

where T(θ) is the Eocene zonal-mean temperature, and the coefficients a, b, and c are chosen 334 

to minimize the sum of the squared residuals relative to Dsurf (i.e. the SST and LAT data from 335 

Hollis et al. 2019). This new model represents T(θ) well in the modern climate (Figure S3) 336 

when supplied with similar number of data points as are in the Hollis et al (2019) dataset, and 337 

it ensures a global solution that is consistent with the physical expectation that temperature 338 

should decrease - and the meridional gradient in temperature should increase - from the 339 

tropics toward the poles (Figure S3). 340 

For each data point, we account for three types of uncertainty (i.e. temperature, 341 

elevation, latitude). For temperature, we assume a skew-normal probability distribution based 342 

on the stated 90% confidence intervals. Where uncertainty estimates are not given, we 343 

assume a (symmetric) normal distribution with a 90% confidence interval of ±5K. For elevation, 344 

we assume a skew-normal distribution with a 90% confidence interval equal to the lowest and 345 

highest elevations of adjacent grid points in the paleotopography data set of Herold et al. 346 

(2014), with a lower bound of zero.  347 
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T(θ) was estimated by sampling temperature, elevation, and latitude from their 348 

respective distributions at each location (Figure S4) and a lapse-rate adjustment of 6°K/km 349 

was applied. Then, using a standard Monte Carlo bootstrapping method, the same number of 350 

data points were resampled via replacement, and the coefficients in Equation 3 were found 351 

that best fit the sub-sampled data. This procedure was repeated 10,000 times to find a 352 

probability distribution of T(θ). The uncertainty associated with an individual GMST estimate 353 

is the standard deviation. 354 

 355 

2.2. Dataset Ddeep 356 

Dataset Ddeep consists of benthic foraminiferal δ18O-derived bottom water temperatures 357 

(BWTs) for the latest Paleocene, PETM and EECO. The benthic foraminiferal δ18O dataset is 358 

based on previous compilations (Dunkley Jones et al., 2013; Cramer et al., 2009), updated to 359 

include more recently published datasets (Sexton et al., 2011; Littler et al., 2014; Laurentano 360 

et al., 2015; Westerhold et al., 2018; Barnet et al., 2019). The EECO dataset is sourced from 361 

eleven sites, providing spatial coverage of both the Pacific, Atlantic and Indian Oceans 362 

(DSDP/ODP Sites 401, 550, 577, 690, 702, 738, 865, 1209, 1258, 1262, & 1263). The PETM 363 

and latest Paleocene datasets are sourced from a compilation of nine and seven sites, 364 

respectively, differing from Dunkley-Jones et al. (2013) in that: i) more recent datasets were 365 

added, and ii) PETM sites with a muted CIE magnitude (< 1.5 ‰) were excluded as these 366 

datasets may be missing the core PETM interval (Table S2). Benthic foraminifera δ18O values 367 

are adjusted to Cibicidoides following established methods (Cramer et al., 2009), allowing 368 

temperature to be calculated using Eq. 9 of Marchitto et al (2014):  369 

 370 

(δcp – δsw + 0.27) = -0.245 ±0.005t + 0.0011 ±0.0002t2 + 3.58 ±0.02  (4) 371 

 372 
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where t is bottom water temperature in Celsius, δcp is δ18O of CaCO3 on the Vienna-373 

Pee Dee Belemnite (VPDB) scale, and δsw is δ18O of seawater on the Standard Mean Ocean 374 

Water (SMOW). δsw is defined in accordance with the DeepMIP protocols (−1.00 ‰; see Hollis 375 

et al., 2019).  376 

 377 

2.2.1. Ddeep-1 378 

For Ddeep-1, GMST estimates are calculated following the method of Hansen et al. (2013), 379 

which utilises only the deep ocean benthic foraminifera δ18O dataset, and we refer the reader 380 

to that study for a detailed justification of the approach. Briefly, for time periods prior to the 381 

Pliocene, GMST is scaled directly to deep ocean temperature. Specifically, ΔGMST = ΔBWT 382 

prior to ~5.3 Ma, where early Pliocene BWT and GMST was calculated following Eq. 3.5, 3.6, 383 

and 4.2 of Hansen et al. (2013). As such, the calculations presented here differ from those of 384 

Hansen et al. (2013) only in that: i) we use the revised benthic δ18O compilation described 385 

above rather than that of Zachos et al. (2008), and ii) a different equation (Eq. 4) to convert 386 

δ18O to temperature.  387 

 388 

2.3. Dataset Dcomb 389 

Dataset Dcomb uses a combination of (tropical) surface- and deep-water temperature 390 

estimates. The deep ocean dataset (Ddeep) is identical to that described in Section 2.2. The 391 

tropical SST dataset utilises all relevant surface ocean proxy data from the DeepMIP 392 

database, i.e. those with a palaeolatitude in the magnetic reference frame within 30° of the 393 

equator. An expanded (relative to modern) definition of the tropics is used because tropical 394 

SST reconstructions are relatively sparse; 30° was chosen because it retains tropical SST 395 

data from several proxies for all three intervals whilst SST seasonality remains relatively low 396 

within these latitudinal bounds.  397 

 398 



 

UOB Open 

2.3.1. Dcomb-1 399 

For Dcomb-1, GMST estimates are calculated for each time interval based on the difference 400 

between tropical SSTs and deep-ocean BWTs (Evans et al., 2018), such that: 401 

 402 

𝐺𝑀𝑆𝑇 = 0.5(𝑡𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑆𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐵𝑊𝑇̅̅ ̅̅ ̅̅ ̅)    (5) 403 

 404 

The fundamental assumptions of this approach are that: 1) GMST can be approximated by 405 

global mean SST, 2) global mean SST is equivalent to the mean of the tropical and high 406 

latitude regions, 3) benthic temperatures are representative of high latitude surface 407 

temperatures and 4) that the temperature gradient between the abyss and high latitude SST 408 

is fixed through time (c.f. Sijp et al., 2011). To test these assumptions from a theoretical 409 

perspective, we modelled the shape of the latitudinal temperature gradient using a simple 410 

algebraic function (Figure S5). These results suggest that Dcomb-1 may underestimate GMST 411 

by 0.75 to 1.25 °C in the modern. We also compared GMST from the EO3 and EO4 model 412 

simulations of Cramwinckel et al. (2018) to that calculated using Dcomb-1 (Figure S5) and find 413 

a similar cold bias during the Eocene (~1 to 3°C). However, we note that these findings depend 414 

on the accuracy of the modelled deep ocean temperatures. 415 

 Probability distributions for each time interval were computed as follows. In the case 416 

of the tropical SST data, 1000 subsamples were taken, following which a random normally 417 

distributed error was added to each data point in the DeepMIP compilation, including both 418 

calibration uncertainty and variance in the data where multiple reconstructions are available 419 

for a given site and time interval. Mean tropical SST was calculated for each of these 420 

subsamples. To provide a BWT dataset of the same size as the subsampled tropical SST 421 

data, 1000 normally distributed values were calculated for each time interval, based on the 422 

mean ±1SD variation of the pooled benthic δ18O data from all sites including calibration 423 

uncertainty.  424 
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 425 

3. Results and Discussion 426 

3.1. Comparison of surface- and bottom water temperature-derived GMST estimates 427 

The following section discusses our ‘baseline’ GMST estimates calculated on the mantle-428 

based reference frame only. During the latest Paleocene and PETM, GMST estimates derived 429 

from Dsurf-baseline average ~27 and 33°C, respectively (Table 3; Figure 6). These values are 430 

consistent with previous studies analysing the latest Paleocene (~27°C; Zhu et al., 2019) and 431 

PETM (~32°C; Zhu et al., 2019). During the EECO, GMST estimates calculated using Dsurf 432 

average ~27°C (Figure 6). These values are up to 3°C lower compared to previous estimates 433 

from similar time intervals (ca. 29 to 30°C; Huber and Caballero, 2011; Caballero and Huber, 434 

2013; Zhu et al., 2019). This is likely because we use an expanded LAT dataset (n = 80) 435 

compared to previous studies (n = 51; Huber and Caballero, 2011). Several of these proxies 436 

saturate between ~25 and 29 °C (e.g. leaf fossils, pollen assemblages and brGDGTs; see 437 

Hollis et al., 2019 and ref. therein) and/or are impacted by non-temperature controls (e.g. 438 

paleosol climofunctions; see below) and could skew GMST estimates towards lower values. 439 

To confirm this, we calculated GMST values using LAT proxies only (Supplementary 440 

Information). We show that LAT-only GMST estimates are up to 6°C lower than our ‘baseline’ 441 

(SST + LAT) calculations, suggesting that EECO GMST estimates (Dsurf-baseline) may 442 

represent a minimum temperature constraint. 443 

GMST estimates for the latest Paleocene, PETM and EECO, calculated using Ddeep, 444 

are 25.8°C (±1.4°C), 31.1 (± 2.9°C) and 28.0°C (±1.3°C) respectively (Table 3; Figure 6). 445 

These estimates are comparable to those derived from surface temperature proxies alone 446 

(Table 3). GMST estimates from the EECO are also comparable to previous estimates based 447 

on globally distributed benthic foraminifera data (~28°C; Hansen et al., 2013). As benthic 448 

foraminifera are less susceptible to diagenetic alteration than planktonic foraminifera (e.g. 449 

Edgar et al., 2013), this implies that benthic foraminiferal δ18O values could be used to provide 450 

the ‘fine temporal structure’ of Cenozoic temperature change (e.g. Lunt et al., 2016; Hansen 451 
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et al., 2013). However, we also urge caution as this approach scales GMST directly to BWT 452 

prior to the Pliocene and assumes that the characteristics of polar amplification are constant 453 

through time (c.f. Evans et al., 2018; Cramwinckel et al., 2018). Changes in ice volume may 454 

also influence the benthic foraminiferal δ18O signal (see Hansen et al., 2013) and additional 455 

corrections are required before applying this method to other time intervals (e.g. the Eocene-456 

Oligocene transition). Ddeep also implies that vertical ocean stratification is fixed, even though 457 

vertical ocean stratification has been proposed to change dramatically in the past (e.g. Sijp et 458 

al., 2013; Goldner et al., 2014) and may shift the slope and/or intercept of the relationship 459 

between BWT and GMST.  460 

GMST estimates for the latest Paleocene, PETM and EECO, calculated using Dcomb, 461 

are 21.6°C (±1.2°C), 26.6 (± 2.1°C) and 22.8°C (± 1.0°C), respectively (Figure 6). These 462 

estimates are consistently lower (up to 5°C) than GMST estimates derived using Dsurf and 463 

Ddeep. Although Dcomb-1 can estimate modern GMST within ~1 to 2 °C of measured values, 464 

whether this approach can be applied in greenhouse climates remains to be confirmed. As 465 

described above, we used CESM1 simulations (EO3 and EO4 from Cramwinckel et al., 2018) 466 

to compare the “true” model simulation GMST to that calculated using Dcomb-1 (Supplementary 467 

Information). We find that Dcomb-1 underestimates GMST by 1°C during the Eocene when the 468 

model high latitude SST is used a proxy for the deep-ocean, and 2-3°C when the model deep 469 

ocean temperature is used. As such, we suggest that Dcomb-1 may reflect a minimum GMST 470 

constraint. We suggest that variable weighting of the deep ocean and tropics could improve 471 

the Dcomb method in future studies (Eq. 5 gives an equal weighting to each). 472 

 473 

3.2. Influence of different proxy datasets upon Dsurf-derived GMST estimates 474 

To explore the importance of the proxies themselves upon Dsurf-derived GMST estimates, we 475 

conducted a series of illustrative subsampling experiments relative to Dsurf-baseline (Table 2). 476 

This was performed for methods Dsurf-1, -2, -3 and -4. In the first subsampling experiment 477 

(Dsurf-Frosty; Table 2), we include δ18O SST estimates from recrystallized planktonic 478 
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foraminifera. This yields lower GMST estimates (<1 to 4°C; e.g. Figure S6-8) and is consistent 479 

amongst all four methods. This agrees with previous studies which indicate that δ18O values 480 

from recrystallized planktonic foraminifera are significantly colder than estimates derived from 481 

the δ18O value of well-preserved foraminifera (Pearson et al., 2001; Sexton et al., 2006; Edgar 482 

et al., 2015), foraminiferal Mg/Ca ratios (Creech et al., 2010; Hollis et al., 2012) and clumped 483 

isotope values from larger benthic foraminifera (Evans et al., 2018).   484 

The removal of TEX86 results in lower GMST estimates (~1 to 4 °C; e.g. Figure S6-8) 485 

across all methodologies (Dsurf-NoTEX; Table 2). This is consistent with previous studies which 486 

indicate that TEX86 gives slightly higher SSTs than other proxies, especially in the mid-to-high 487 

latitudes (e.g. Hollis et al., 2012; Inglis et al. 2015). The functional response of TEX86 at higher-488 

than-modern SSTs remains relatively uncertain, which may explain why TEX86 gives slightly 489 

higher SSTs than other proxies (see discussion in Hollis et al., 2019). New indices or 490 

calibrations could help to reduce the uncertainty associated with TEX86-derived SST estimates 491 

beyond the modern calibration range. TEX86 values can also be complicated by the input of 492 

isoGDGTs from other sources (see discussion in Hollis et al., 2019). The DeepMIP database 493 

excludes samples with anomalous GDGT distributions (Hollis et al., 2019). However, a 494 

Gaussian process regression (GPR) model may help to better identify anomalous GDGT 495 

distributions in the sedimentary record using a nearest neighbour distance metric (Eley et al., 496 

2019). This methodology could be employed in future studies to further refine GDGT-based 497 

SST datasets, but this methodology is currently under review and is not considered here. 498 

Despite the caveats and concerns raised in previous work, the exclusion of TEX86 data shifts 499 

GMST by a relatively small amount. 500 

The input of brGDGTs from archives other than mineral soils or peat can bias LAT 501 

estimates towards lower values (Inglis et al., 2017; Hollis et al., 2019) and the exclusion of 502 

MBT(’)/CBT-derived LAT estimates could yield higher GMST values. Excluding MBT(’)/CBT 503 

in marine sediments does yield slightly warmer GMST estimates (0.5 to 1.0°C). However, the 504 

impact of excluding MBT(‘)/CBT values is relatively minor because there are other proxies 505 
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(e.g. pollen assemblages, leaf floral) which yield comparable LAT estimates in the regions 506 

where MBT(’)/CBT values are removed (e.g. the SW Pacific).  507 

The removal of δ18O values from paleosols/mammals and paleosol climofunctions 508 

(Dsurf-NoPaleosol; Table 2) also leads to slightly warmer GMST estimates (~0.5°C). This may 509 

be related to additional controls on paleosol and mammal δ18O values. This includes variations 510 

in the isotopic composition of rainfall (i.e. meteoric δ18O; Hyland and Sheldon, 2013), 511 

variations in soil water δ18O values (Hyland and Sheldon, 2013) and/or δ18O heterogeneity 512 

within nodules (e.g. Dworkin et al. 2005). Temperature estimates from paleosol climofunctions 513 

may also be prone to underestimation (e.g. Sheldon et al., 2009) and Hyland and Sheldon 514 

(2013) suggest that paleosol climofunctions are only applied as an indicator of relative 515 

temperature change. Intriguingly, Dsurf-1 method yields much higher GMST estimates during 516 

the EECO when δ18O values from paleosols/mammals and paleosol climofunctions are 517 

excluded (~3°C higher than Dsurf-baseline). This is attributed to the inclusion of two “cold” LAT 518 

estimates from the Salta Basin, NW Argentina (Hyland et al., 2017) which overly influence 519 

GMST (e.g. Figure 2). For Dsurf-1, a direct comparison of new and prior estimates (Caballero 520 

and Huber, 2013) can be made in which the only change has been the use of a newer data 521 

compilation. For our new estimate, the EECO is ~4.5°C colder than previous estimates 522 

(29.75°C; Caballero and Huber, 2013). Given that the floristic LAT estimates are identical 523 

between the DeepMIP compilation and the older compilation, the lower GMST estimates are 524 

largely due to the incorporation of additional LAT datasets (e.g. paleosol climofunctions).  525 

 526 

3.3. A combined estimate of GMST during the DeepMIP target intervals  527 

To derive a combined estimate of GMST during the latest Paleocene, PETM and EECO, we 528 

employ a probabilistic approach, using Monte Carlo resampling with full propagation of errors.  529 

Our combined estimates employs GMST estimates from each ‘baseline’ experiment (except 530 

Dsurf-1 for the EECO for which we use Dsurf-NoPaleosol; see discussion above). We generated 531 

1,000,000 iterations for each of the six methods, for each time interval (latest Paleocene, 532 
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PETM and EECO). In these iterations, the GMST estimates were randomly sampled with 533 

replacement within their full uncertainty envelopes, assuming Gaussian distribution of errors. 534 

As the different GMST estimates ultimately derive from the same proxy dataset, we do not 535 

consider them to be independent. The resulting 6,000,000 GMST iterations for each time 536 

period are thus simply added into a single probability density function, in order to fully 537 

represent uncertainty (Figure 7). This is equivalent to a linear pooling approach with equal 538 

weights (Genest and Zidek, 1986). From this probability distribution, the median value and the 539 

upper and lower limits corresponding to 66 and 90% confidence limits were identified (Table 540 

4). 541 

Sequential removal of one GMST method at a time (jackknife resampling) was 542 

performed to examine the influence of a single method upon the average GMST estimate. 543 

Jackknifing reveals that that no single method overly influences the mean GMST or 66% 544 

confidence intervals during the latest Paleocene, PETM or EECO (±1.5°C; Supplementary 545 

Information and Figure S9). However, the removal of Dsurf-2 (which has relative large error 546 

bars; Figure 6) reduces the 90% confidence interval (Supplementary Information). We also 547 

show that removing Dcomb-1 removes the bimodality of the temperature distribution (Figure 548 

S9). This is because Dcomb-1 is associated with consistently lower GMST estimates compared 549 

to other methods (see Section 3.1). 550 

During the latest Paleocene, the average GMST estimate is 26.3°C and ranges 551 

between 22.3 and 28.3°C (66% confidence interval; Table 4; Figure 7). During the PETM, the 552 

average GMST is higher (31.6°C) and ranges between 27.2 and 34.5°C (66% confidence 553 

interval; Table 4; Figure 7). Assuming a preindustrial GMST of 14°C, our average GMST 554 

estimates indicate that the latest Paleocene, and PETM are 12.3°C and 17.6°C warmer than 555 

pre-industrial, respectively. Our results indicate that GMST likely increased by ~4 to 6°C 556 

between the latest Paleocene and PETM (66% confidence), in keeping with previous 557 

estimates (Frieling et al., 2019; Dunkley Jones, 2013). During the EECO, the average GMST 558 

estimate is 27.0°C and likely ranges between 23.2 and 29.7°C (66% confidence interval; Table 559 
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4; Figure 7). Assuming a preindustrial GMST of 14°C, our average GMST estimate indicates 560 

that the EECO is 13.0°C warmer than pre-industrial. The GMST anomaly for the EECO is 561 

~2°C lower than previous studies (~15°C warmer than pre-industrial; Caballero and Huber, 562 

2013; Zhu et al., 2019) but the median falls within the range quoted previously in the IPCC 563 

AR5 (9 to 14°C warmer than pre-industrial). The EECO is approximately 4 to 5°C colder than 564 

the PETM (66% confidence). This is larger than previously suggested (~3°C; Zhu et al., 2019) 565 

and may related to a cold bias in EECO GMST estimates (see Section 3.1). 566 

 567 

3.4. Equilibrium climate sensitivity during the latest Palaeocene, PETM and EECO 568 

Equilibrium climate sensitivity (ECS) can be defined as the equilibrium change in global near 569 

surface air temperature, resulting from a doubling in atmospheric CO2.  Various “flavours” of 570 

ECS exist, some of which specifically exclude various feedback processes not always included 571 

in climate models, such as those associated with ice sheets, vegetation, or aerosols (Rohling 572 

et al., 2012).  ECS may also be state-dependent (Caballero and Huber, 2013) and there is no 573 

reason to expect that it has not changed with time or as a function of climate state (Farnsworth 574 

et al, 2019; Zhu et al., 2020). Therefore, direct comparison of ECS in the past to modern 575 

conditions is a fraught enterprise. For our purposes we define a “bulk” ECS (ECSbulk) as being 576 

a gross estimate of ECS, between our three intervals and preindustrial. i.e.  577 

 578 

ECSbulk = (ΔTCO2-vs-PI) / (ΔFCO2-vs-PI)     [6] 579 

 580 

where ΔTCO2-vs-PI is the temperature difference between pre-industrial and the time period of 581 

interest that can be attributed to CO2 forcing, and ΔFCO2-vs-PI is the CO2 forcing relative to 582 

preindustrial. The result is then normalised to a CO2 forcing equal to a doubling of CO2.  Such 583 

calculations have been performed previously (e.g. Anagnostou et al., 2016) and they provide 584 

some constraint on the range of climate sensitivity values that are relevant for near-modern 585 

prediction (Rohling et al., 2012). For example, Anagnostou et al. (2016) indicated that early 586 
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Eocene ECS (excluding ice sheet feedbacks) falls within the range 2.1–4.6 °C per CO2 587 

doubling with maximum probability for the EECO of 3.8 °C. These values (2.1–4.6 °C per CO2 588 

doubling) are similar to the IPCC ECS range (1.5–4.5 °C at 66% confidence). Here we 589 

calculate bulk ECS estimates using the change in GMST and CO2 in the latest Paleocene, 590 

PETM and EECO intervals with reference to the pre-industrial. Following the approach of 591 

Anagnostou et al. (2016) and using the forcing equation of Byrne and Goldblatt (2014), we 592 

first determine the relative change in climate forcing relative to pre-industrial (ΔFCO2-vs-PI): 593 

 594 

ΔFCO2-vs-PI = 5.32ln(Ct/CPI) + (0.39[ln(Ct/ CPI)]2   [7] 595 

 596 

where CPI is the atmospheric CO2 concentration during pre-industrial (278 ppm) and Ct refers 597 

to the CO2 reconstruction at a particular time in the Eocene. The mean proxy estimate of 598 

CO2 for the PETM is ~2200 ppmv (+1904/-699 ppmv; 95% confidence) (Gutjahr et al., 2017). 599 

The mean proxy estimate of CO2 for the LP is ~870 ppmv (Gutjahr et al., 2017). The 600 

uncertainty of latest Paleocene CO2 represents two standard deviations of pre-PETM CO2 601 

(Gutjahr et al. 2017), equal to ±400 ppm. The mean proxy estimate of CO2 for the EECO is 602 

~1625 ppmv (±750 ppmv; 95% confidence) (Anagnostou et al., 2016; Hollis et al., 2019). To 603 

calculate bulk ECS, we then use radiative forcing from a doubling of CO2 from Byrne and 604 

Goldblatt (2014) to translate CO2 into forcing relative to preindustrial (ΔFCO2): 605 

 606 

ECS = (ΔTCO2-vs-PI) /ΔFCO2-vs-PI * 3.875    [8] 607 

 608 

, where GMST (ΔT) distributions are based on output generated via our Monte Carlo 609 

simulations (see Section 3.3). Some of the temperature anomaly of the latest Paleocene, 610 

PETM, and EECO is caused not by CO2 but by the different paleotopography, 611 

paleobathymetry, and solar constant compared with preindustrial. Furthermore, we choose 612 
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here to calculate an ECS that explicitly excludes feedbacks associated with vegetation, ice 613 

sheets, and aerosols, i.e. S[CO2,LI,VG,AE] in the nomenclature of Rohling et al (2012). To account 614 

for these effects, we subtract a value of 4.5°C (Caballero and Huber, 2013; Zhu et al. 2019) 615 

from GMST; i.e.  616 

 617 

ΔTCO2-vs-PI = ΔGMST – 4.5°C      [9] 618 

 619 

Following Anagnostou et al. (2016), the uncertainty on the slow-feedback correction on 620 

ΔGMST follows a uniform ‘flat’ probability (±1.5°C). This value of 4.5°C is based upon a 621 

comparison of preindustrial and Eocene simulations (both 1x CO2) conducted with CESM1.2 622 

(Zhu et al., 2019), which incorporates the paleogeographic, solar constant, ice sheet, 623 

vegetation, aerosol, and ice sheet changes from preindustrial to Eocene. Our value is similar 624 

to previous studies which attribute ~4 to 6°C to the non-CO2 and non-aerosol forcings and 625 

feedbacks (Anagnostou et al., 2016; Caballero and Huber, 2013, Lunt et al., 2012). However, 626 

the sensitivity to these Eocene boundary conditions is likely model-dependant and this value 627 

may differ between model simulations. The uncertainties in our estimated ECS are the 628 

products of 10,000 realizations of the latest Paleocene, PETM and EECO CO2 values and the 629 

respective ΔGMST estimate (the mean estimate and propagated uncertainty) based on 630 

randomly sampling each variable within its 66% and 90% confidence interval uncertainty 631 

envelope 632 

S[CO2,LI,VG,AE] values (66% confidence) for the EECO and PETM average 0.80 (0.46 to 633 

1.15) and 0.92 (0.60 to 1.20), respectively. This yields ECS estimates (66% confidence) for 634 

the EECO and PETM compared to modern which average 3.1°C (1.8 to 4.4°C) and 3.6°C (2.3 635 

to 4.7°C), respectively (Figure 8). These are broadly comparable to previous estimates from 636 

the early Eocene which account for paleogeography and other feedbacks (~2.1 to 4.6°C; 637 

Anagnostou et al., 2016) They are also similar to those predicted by the IPCC (1.5 to 4.5°C 638 



 

UOB Open 

per doubling CO2). S[CO2,LI,VG,AE] values (66% confidence) during the latest Paleocene average 639 

1.16 (0.61 to 1.75), which is somewhat higher than the other DeepMIP intervals. This yields 640 

ECS estimates (66% confidence) for the latest Paleocene which average 4.5°C (2.4 to 6.8°C) 641 

(Figure 8). Higher ECS values are attributed to relatively high GMST estimates (~26°C) and 642 

relatively low CO2 values (~870ppm) during the latest Paleocene. As latest Paleocene CO2 643 

estimates remain highly uncertain (Gutjahr et al., 2017; see above), new high-fidelity CO2 644 

records are required to accurately constrain ECS during this time. 645 

ECS may be strongly state-dependant and model simulations indicate a non-linear 646 

increase in ECS at higher temperatures (Caballero and Huber, 2013; Zhu et al., 2019) due to 647 

changes in cloud feedbacks (Abbot et al., 2009; Caballero and Huber, 2010; Arnold et al., 648 

2012; Zhu et al., 2019). This implies caution when relating geological estimates to modern 649 

climate predictions (e.g. Rohling et al., 2012; Zhu et al., 2020) and it may be more appropriate 650 

to calculate ECS between different time intervals (e.g. latest Paleocene to PETM; Shaffer et 651 

al., 2016). To this end, we also calculate ECS between the transition from the latest 652 

Palaeocene to the PETM, assuming that non-CO2 forcings and feedbacks are negligible. This 653 

yields an ECS estimate of 3.6°C.  However, we note that early Paleogene CO2 estimates 654 

remain uncertain (Gutjahr et al., 2017) and well-synchronised, continuous and high-resolution 655 

CO2 records are required to accurately constrain ECS during the DeepMIP intervals. 656 

 657 

4. Conclusions 658 

Using six different methods, we have quantified global mean surface temperatures (GMST) 659 

during the latest Paleocene, PETM and EECO. GMST was calculated within a coordinated, 660 

experimental framework and utilised six methodologies including three different input 661 

datasets. After evaluating the impact of different proxy datasets upon GMST estimates, we 662 

combined all six methodologies to derive an average GMST value during the latest Paleocene, 663 

PETM and EECO. We show that the ‘average’ GMST estimate (66% confidence) during the 664 

latest Paleocene, PETM and EECO is 26.3°C (22.3 to 28.3°C), 31.6°C (27.2 to 34.5°C) and 665 
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27.0°C (23.2 to 29.7°C), respectively. Assuming a preindustrial GMST of 14°C, the latest 666 

Paleocene, PETM and EECO are 12.3°C, 17.6°C and 13.0°C warmer than modern, 667 

respectively. Using our ‘combined’ GMST estimate, we demonstrate that “bulk” ECS (66% 668 

confidence) during the latest Paleocene, PETM and EECO is 4.5°C (2.4 to 6.8°C), 3.6°C (2.3 669 

to 4.7°C) and 3.1°C (1.8 to 4.4°C) per doubling of CO2. Taken together, our study improves 670 

our characterisation of the global mean temperature of these key time intervals, allowing future 671 

climate change to be put into the context of past changes, and allowing us to provide a refined 672 

estimate of ECS.  673 
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Label in Fig. 1 Source Time  GMST (°C) Uncertainty (°C) Proxy system 

1a Farnsworth et al. (2019) EE 23.4 ±3.2 δ18O planktonic 

1b Farnsworth et al. (2019) EE 37.1 ±1.4 δ18O planktonic + TEX86 

2a Zhu et al. (2019) LP 27 n/a Multiple 

2b Zhu et al. (2019) EECO 29 ±3 Multiple 

2c Zhu et al. (2019) PETM 32 n/a Multiple 

3 Caballero and Huber 

(2013) 

EE 29.5 ±2.6 Multiple 

4 Hansen et al (2013) EE 28 n/a δ18O benthic 

5 Cramwinckel et al. (2018) EE 29.3 n/a Multiple 

 932 

Table 1: Previous studies that have determined GMST for the early Eocene (EE), EECO, 933 

PETM or latest Paleocene (LP). n/a indicates that no error bars were reported in the original 934 

publications.  935 
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Experiment Description 

Dsurf-Baseline All SST and LAT data compiled in Hollis et al. (2019) but excluding 

recrystallized planktonic foraminifera δ18O values 

Dsurf-Frosty Dsurf-baseline but including recrystallized planktonic foraminifera δ18O values 

Dsurf-NoTEX Dsurf-baseline but excluding TEX86 values 

Dsurf-NoMBT Dsurf-baseline but excluding MBT(‘)/CBT values from marine sediments 

Dsurf-NoPaleosol Dsurf-baseline but excluding mammal/paleosol δ18O values and paleosol 

climofunctions 

Table 2: Baseline and optional subsampling experiments applied to Dsurf 946 
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 GMST (°C) 

 Dsurf-1 Dsurf-2 Dsurf-3 Dsurf-4 Ddeep-1 Dcomb-1 

LP 26.6 (±1.3) 26.8 (±6.9) 27.6 (±1.5) 26.8 (±1.3) 25.8 (±1.4) 21.6 (±1.2) 

PETM 33.9 (±1.4) 33.4 (±10.3) 32.6 (±1.5) 30.7 (±1.6) 31.1 (±2.9) 26.6 (±2.1) 

EECO 27.2 (±0.7) 26.7 (±8.9) 29.8 (±1.5) 25.7 (±1.1) 28.0 (±1.3) 22.8 (±1.0) 

 961 

Table 3: Individual GMST estimates for latest Paleocene (LP), PETM and EECO. Reported 962 

GMST estimates utilise ‘baseline’ experiments except Dsurf-1 during the EECO which uses 963 

Dsurf-NoPaleosol. GMST estimates are based on the mantle-based reference frame. Error bars 964 

on each individual method are the standard deviation (1σ), except Dsurf-1 and Dsurf-2 which use 965 

the standard error (1σx̅). 966 
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GMST (°C) 

(Average) 

GMST (°C)  

(66% CI) 

GMST (°C)  

(90% CI) 

LP 26.3 22.3 – 28.3 21.3 – 29.1 

PETM 31.6 27.3 - 34.5 25.9 – 35.6 

EECO 27.0 23.2 – 29.6 22.2 – 30.7 

 980 

Table 4: ‘Combined’ GMST estimates (66% and 90% confidence intervals) during the: i) latest 981 

Paleocene (LP), ii) PETM, and iii) EECO. 982 
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 ECS (°C) 

(Average) 

ECS (°C) 

(66% CI) 

ECS (°C) 

(90% CI) 

LP 4.5 2.4 – 6.8 1.6 – 8.0 

PETM 3.6 2.3– 4.7 1.9 – 5.2 

EECO 3.1 1.8 – 4.4 1.3 – 5.0 

 997 

Table 5: Estimates of ECS (66% and 90% confidence) during the: i) latest Paleocene (LP), ii) 998 

PETM and iii) EECO. 999 
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Figure captions: 1015 

Figure 1: Published GMST estimates during the early Paleogene (57 to 48 Ma). Dots 1016 

represent average values. The horizontal limits on the individual dots represent the reported 1017 

error. y-Axis labels refer to previous estimates (see Table 1). 1018 

 1019 

Figure 2: An illustration of Method Dsurf-1 during the EECO.  (a) Modelled early Eocene 1020 

temperatures utilising CESM1.2 at 6x pre-industrial CO2, (b) Interpolated absolute SST 1021 

reconstructions, (c) Data-model difference between (a) and (b). 1022 

 1023 

Figure 3: An illustration of Method Dsurf-2 for 2 sites: (a) Big Bend LAT in the EECO as 1024 

diagnosed using HadCM3L, and (b) DSDP Site 401 SST in the PETM as diagnosed using 1025 

CCSM3.  The vertical dashed line shows < T >inferred and the horizontal dashed line shows 1026 

Tproxy, which intercept at the orange dot. The dark blue dots show the intercept of Tlow with < 1027 

Tlow >, and the red dots show the intercept of Thigh with < Thigh >.  1028 

 1029 

Figure 4: Inferred global mean temperature (< T >inferred) using Dsurf-2, for (a) each EECO-aged 1030 

LAT proxy as diagnosed using HadCM3L, and (b) each PETM-aged SST proxy as diagnosed 1031 

using CCSM3.  For (a) and (b), the final estimate of global mean temperature is the average 1032 

of all the individual sites.  The solid line shows the continental outline in each model, and the 1033 

dashed line shows the continental outline. 1034 

 1035 

Figure 5: Predicted surface warming by Gaussian process regression using Dsurf-3 for the (a) 1036 

latest Paleocene, (b) PETM and (c) EECO. Anomalies are relative to the present-day zonal 1037 

mean surface temperature. Circles (triangles) indicate all available SST (LAT) proxy data for 1038 
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the respective time slice that were used to train the model. Symbols for locations where 1039 

multiple proxy reconstructions are available are slightly shifted in latitude for improved visibility. 1040 

 1041 

Figure 6: GMST estimates during the (a) PETM, (b) EECO and (c) latest Paleocene for each 1042 

methodology. GMST estimates utilise ‘baseline’ experiments except Dsurf-1 during the EECO 1043 

which uses Dsurf-NoPaleosol. GMST estimates are based on the mantle-based reference 1044 

frame. Error bars on each individual method are the standard deviation (1σ), except Dsurf-1 and 1045 

Dsurf-2 which use the standard error (1σ).  1046 

 1047 

Figure 7: Probability density function of ‘combined’ GMST during the DeepMIP intervals with 1048 

full propagation of errors. GMST estimates are calculated on the mantle-based reference 1049 

frame.  1050 

 1051 

Figure 8: Probability density function of ‘bulk’ ECS during the latest Paleocene, PETM and 1052 

EECO that explicitly accounts for non-CO2 forcings of palaeography and solar constant, and 1053 

feedbacks associated with land ice, vegetation, and aerosols (Zhu et al., 2019), i.e. 1054 

S[CO2,LI,VG,AE] in the nomenclature of Rohling et al (2012). 1055 
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