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Summary

The authors propose an alternative statistical framework for exploiting emergent rela-
tionships between multiple climate models in order to constrain future climate. Several
advantages are claimed for the proposed method over existing methods, in particular
the ability to specify a prior for the quantity of interest directly and independently of
the predictive model, and consequently the ability to combine multiple data sources or
multiple emergent constraints in a straightforward way. Our view is that the statistical
reasoning is difficult to justify for the example of Equilibrium Climate Sensitivity, and
impossible for emergent constraints in general. That this is the case is difficult to dis-
cern from the current presentation as the model is not written nor justified specifically.
This review will attempt to write down the new assumptions and their implications for
emergent constraints. The authors make claims regarding the ability of the method to
account for model inadequacy, that we argue are not correct. Finally, we attempt to
reproduce the results given in the paper and fail for reasons we shall discuss.
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Statistical reasoning for emergent constraints

When analysing emergent constraints the aim is to obtain a prediction of some quantity
of interest Y ? in the real world, given computer simulations Y = (Y1, . . . , YM )′ of that
quantity, simulations X = (X1, . . . , XM )′ of some other quantity that we can observe in
the real world, and an observation X? of the real world. Mathematically we aim to form
the posterior predictive distribution

p(Y ? | X?,X,Y) =
∫
p(Y ?, θ | X?,X,Y)dθ.

where θ is a vector of unknown parameters. We omit observation uncertainty for
brevity.

Like any mathematical model, a statistical model should be the result of transparent
chain of logical reasoning. Unfortunately, the authors do not explicitly specify a proba-
bility model, and do not supply the reasoning they use to construct the implied model.
This makes it extremely difficult for a non-statistician to judge the claims made for the
proposed approach, and difficult even for an experienced analyst to reconstruct the un-
derlying reasoning. We attempt to do this here, as the modelling and assumptions are
absolutely critical to the emergent constraints debate and because both this approach
and the standard approach cannot be correct at the same time. If there is validity
in one of them, users need to have as much access to the assumptions and theory
underpinning each in order to work out which.

The standard model specified by Bowman et al. (2018), Williamson & Sansom (2019)
and used implicitly in every other emergent constraints study is

p(Y ?, θ | X?,X,Y) ∝ p(Y ? | X?, θ)p(Y | X, θ)π(θ).

In practice, if X? is not known precisely, then a prior π(X?) must also be specified.
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From the manuscript, it is possible to deduce that the implied alternative model is

p(Y ?θ | X?,X,Y) ∝ p(X? | Y ?, θ′)π(Y ?)p(X | Y, θ′)π(θ′).

The central feature of the proposed approach is to specify p(X? | Y ?) and p(X | Y )
rather than p(Y ? | X?) and p(Y | X). It is important to realise that these are two fun-
damentally different statistical models, they cannot both be valid at the same time, and
will inevitably result in different inferences for Y ?. Though both equations hold math-
ematically (as they are valid factorisations of the joint distribution), they imply different
conditional independencies in the modelling that need to be physically interpreted and
are certainly not interchangable. Therefore, one must consider carefully the underlying
reasoning before adopting one or the other. For emergent constraints, Y ? is usually a
measurable property of the future climate and X? an observable property of the cur-
rent or historical climate. Therefore it makes immediate sense to adopt the standard
model for emergent constraints, i.e., the future depends upon the past via p(Y ? | X?)
and p(Y | X). In those cases the proposed approach would make no sense because it
explicitly states that the past depends on the future via p(X? | Y ?) and p(X | Y ). Equi-
librium Climate Sensitivity (ECS) is operationally defined as “the temperature anomaly
reached at equilibrium following a instantaneous doubling of CO2”. To us, it seems nat-
ural to view this as a future climate quantity, and so it makes sense to adopt the stan-
dard model for ECS. We also point out that generally statistical reasoning demands
that we predict quantities of interest using observables as predictors, though tradition
is not as concrete an argument as the causal one.

It might be possible to justify the proposed model for certain quantities of interest,
but for an operationally defined future quantity, we would have to be willing to accept
the reversal of time’s arrow, i.e., past depends on future. It may be that the authors
have in mind some alternative definition or interpretation of ECS that renders time’s
arrow an illusion for this quantity in particular. We are statisticians and take no view on
the validity of such a physical argument, but we must strongly insist that the physical
argument behind the statistical model be made explicit, well defended, and open to
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the scrutiny of other researchers within the field. The models are different and the
inferences and conclusions will be different. We feel that transparency is ultimately key
to resolving differences.

We note that the given approach would render any claims of causality for emergent
constraints impossible, undermining efforts elsewhere in the community to put emer-
gent constraints on a firmer theoretical basis, e.g., Hall et al. (2019).

Results and reproducibility

The authors supply all the data used in the study in Table 1, and the observations and
priors are given in the text, making it possible to check some of the claims made. We
were interested to reproduce these results and compare with our approach. However
the statistical model is not stated explicitly in its entirety, nor are the models it is com-
pared to. For the sake of transparency, we interpret the model used by the authors to
be

Xm ∼ Normal(β0 + β1Ym, σ
2) for m = 1, . . . ,M

X? ∼ Normal(β0 + β1Y
?, σ2)

Z ∼ Normal(X?, σ2
Z)

where Z is the observed value of X? and σ2
Z is the observation uncertainty. The default

priors are

β0 ∼ Normal(0, 12)
β1 ∼ Normal(−1, 12)
σ ∼ Half-Cauchy(5)
Y ? ∼ Cauchy(2.5, 3) truncated at 0.
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For the Last Glacial Maximum z = −2.2 and σZ = 0.7/Φ−1(0.95) = 0.43, and for the
mid-Pliocene Warm Period z = 0.8 and σZ = 1.6/Φ−1(0.95) = 0.97, where Φ−1 is
the quantile function of the normal distribution. This is the model we implement and
it is trivial to do so using the Stan probabilistic programming language, however we
are unable reproduce many of the reported results. Our comparisons were based on
30 000 samples from four independent chains after discarding the first 5 000 samples
as warm-up for a total of 100 000 samples. The chains were checked for convergence
both visually and using Gelman-Rubin diagnostics. The medians are usually within be-
lievable sampling error, but there are often large discrepancies in the credible intervals.

In particular, for mPWP PlioMIP1 we obtain posterior median 2.5K (90% CI 0.4− 6.3K)
compared to 2.4K (90% CI 0.5 − 5.0K), and for mPWP PlioMIP1+PlioMIP2 we obtain
median 2.4K (90% CI 0.4 − 5.6K) compared to 2.4K (90% CI 0.4 − 5.0K). We are,
of course, open to the possibility that we have failed to interpret the manuscript text
and to implement the correct model, however the Python scripts that accompany the
manuscript suggest that we have, and our source code is included for transparency.
Examination of those same Python scripts reveals that four chains of only 2 000 sam-
ples each with no warm-up were used in the production of the reported results (a total
of only 8 000 samples). Both STAN and PyMC3 (used by the authors) implement the No
U-Turn Sampler (NUTS) variant of Hamiltonian Monte Carlo for efficient mixing and fast
convergence, so our results should be comparable The lack of warm-up / burn-in period
used by the authors is likely to lead to skewed estimates, even using NUTS. Further,
the inefficient use of importance sampling to account for the observation uncertainty
and the small total number of samples given notorious the difficulty of efficiently sam-
pling from the Cauchy distribution are all likely to contribute to the differences we see
when implementing their framework. Unless we have misunderstood their modelling
(and by itself this would be an argument for making it explicit in the manuscript), we
are not sure that the numbers given in the text actually represent the posteriors of their
alternative model faithfully.
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Bowman et al. (2018) include explicit expressions for projection using the Kalman filter
model (Equations 17 & 23). However using these expressions we are also unable to
reproduce the results for the Kalman filter quoted in Table 2 of the manuscript. Examin-
ing the Python script that accompanies this manuscript reveals an obvious error in the
expression for the posterior variance on Line 80. The authors should therefore revisit
the calculation of these credible intervals.

We were able to reproduce the Ordinary Least Squares (OLS) estimates and intervals.
However, in Section 2.1 the authors equate OLS with frequentist linear regression.
This is incorrect. As discussed in detail in Williamson & Sansom (2019), OLS is a
purely algorithmic method of parameter estimation in a mathematical model. The OLS
estimates of the mean parameters in a linear regression model are equal to those
obtained by frequentist maximum likelihood estimation, but OLS provides no estimate
of uncertainty in either the parameters or the prediction. Frequentist regression is
difficult to justify in a climate change context, but Bracegirdle & Stephenson (2011)
presented emergent constraints within a frequentist linear regression framework and
this approach has been adopted in many subsequent studies. However, the authors
present heuristic uncertainty estimates based on mean-squared errors and on lines
287-288 claim that “OLS” underestimates uncertainty compared to their method. In
fact, when standard frequentist regression is used, the inference for ECS in the LGM
PMIP2 experiment is very similar to the proposed model with median 2.8K and 90%
confidence interval 1.0–4.5K. As Williamson & Sansom (2019) point out, this is equal
to an equal tailed 90% Bayesian credible interval under reference priors. Credible
intervals from the reference model under the other experiments are less similar to the
proposed model, but wider than either the “OLS” or Kalman filter estimates.

C7

Treatment of model inadequacy

In the statistical reasoning above we omitted discussion of model inadequacy for
brevity. In lines 130–134 and lines 376–378 the authors claim that in their approach
model inadequacy can be entirely accounted for by specifying a larger residual vari-
ance for reality than the models and it is not necessary to consider differences in the
regression parameters. With a minor modification to the proposed model, the intercept
can be made independent of the slope, and therefore any additional uncertainty about
the intercept in the real world can safely be pushed into the residual since both sources
of uncertainty are independent of Y ?. However, any uncertainty in the slope leads to
uncertainty about X? that is dependent on Y ?, i.e, the width of the predictive interval
for X? increases with the distance of Y ? from the prior mean. Therefore any additional
uncertainty in the slope in the real world is also conditional on the value of Y ? and
not accounted for by the residual variance. This is a simple matter of geometry and is
therefore unavoidable. Williamson and Sansom (2019) developed a coherent elicita-
tion of the regression parameters and structural error that was designed to account for
these geometric considerations, and any emergent constraints framework that wishes
to account for structural error, whether using the authors approach or the standard one,
must grapple with the geometry.
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## Load libraries
library(rstan)

## Model fitting
fit.blm <- function(X, z, sigmaz,

chains = 4, iter = 3e4, warmup = 5e3, cores = 4) {

## Fit ‘‘Bayesian Linear Regression’’ with truncated Cauchy prior
data <- list(M = nrow(X), x = X$x, y = X$y, z = z, sigmaz = sigmaz)
blm <- sampling(object = blm.model, data = data, chains = chains,

iter = iter, warmup = warmup, cores = cores)
blm <- as.data.frame(blm)

## Return results
round(quantile(blm$ystar, c(0.50,0.05,0.95)), 1)

}

## STAN code for ‘‘Bayesian Linear Regression’’
blm.code <- "

data {
int<lower=0> M; // number of models
real x[M]; // predictand
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real y[M]; // predictor
real z; // observation
real sigmaz; // observation uncertainty

}
parameters {
real beta0; // intercept
real beta1; // slope
real<lower=0> sigma; // standard deviation
real xstar; // latent predictand state
real<lower=0> ystar; // latent predictor state

}
model {
// Priors
beta0 ~ normal( 0.0, 1.0);
beta1 ~ normal(-1.0, 1.0);
sigma ~ cauchy( 0.0, 5.0) T[0,];
ystar ~ cauchy( 2.5, 3.0) T[0,];
// Models
for (m in 1:M)

x[m] ~ normal(beta0 + beta1*y[m], sigma);
// Observations
z ~ normal(xstar, sigmaz);
// Reality
xstar ~ normal(beta0 + beta1*ystar, sigma);

}
"

## Compile STAN model
blm.model = stan_model(model_name = "blm", model_code = blm.code)
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##############################
## The Last Glacial Maximum ##
##############################

## Data
pmip2 <- data.frame(x = c(-2.70,-2.73,-2.16,-3.18,-2.42,-2.73,-1.37),

y = c(+4.00,+4.40,+2.70,+3.40,+2.30,+3.30,+1.80))
pmip3 <- data.frame(x = c(-2.56,-3.46,-2.41,-2.58,-1.68,-2.80,-3.15),

y = c(+3.20,+4.13,+4.67,+3.45,+3.25,+2.60,+3.37))
pmip4 <- data.frame(x = c(-2.06,-2.23),

y = c(+3.01,+2.66))

## Observations
z <- -2.2
sigmaz <- 0.7/qnorm(0.95)

## Results
pmip2.fit <- fit.blm(pmip2, z, sigmaz)
pmip3.fit <- fit.blm(pmip3, z, sigmaz)
pmip23.fit <- fit.blm(rbind(pmip2,pmip3), z, sigmaz)
pmip234.fit <- fit.blm(rbind(pmip2,pmip3,pmip4), z, sigmaz)

##################################
## The mid-Pliocene Warm Period ##
##################################
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## Data
pliomip1 <- data.frame(x = c(1.03,1.33,1.99,1.16,2.18,1.15,1.93,1.45,2.14),

y = c(3.20,3.40,4.05,2.80,4.10,3.20,3.30,2.10,3.37))
pliomip2 <- data.frame(x = c(0.92,2.12,1.37),

y = c(2.60,4.50,2.29))

## Observations
z <- 0.8
sigmaz <- 1.6/qnorm(0.95)

## Results
pliomip1.fit <- fit.blm(pliomip1, z, sigmaz)
pliomip12.fit <- fit.blm(rbind(pliomip1,pliomip2), z, sigmaz)
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