
Dear Editor,


We now provide a revised version of our manuscript, after some unfortunate delay whom we wish 
to apologise for. We hope the revisions will bring more clarity to our paper, as requested by the 
reviewers, and we also managed to expand our ensemble of PMIP4 models, which, we think, 
makes our paper more suitable for the PMIP4 special issue.

Additionally, we implemented in Appendix A a conjugate prior approach. Reviewer #2 has 
criticised the use of the complex Hamiltonian Monte Carlo method in our study, and although we 
do think that the flexibility given by the Markov Chain Monte Carlo methods is essential for our 
framework, we show that using and Inverse Gamma on sigma (and making the whole problem 
conjugate) leads to similar results for the posterior sensitivity.

In the following, the original comments from the reviewers (R) and short comments (C) are written 
in blue, while our replies (A) are in black.


Sincerely,

Martin Renoult


———————————————————

Reviewer #1


R: In this paper the authors develop a novel technique to combine emergent constraints. Their 
main step forward is reconsidering the emergent constraint regression as a likelihood model so 
that it can be combined with a prior, allowing for Bayesian updating. This is particularly important 
for estimates of climate sensitivity, whose IPCC range has barely changed since 1990, even 
though independent lines of evidence have strengthened. The technique is elegant, transparent 
and I wish I’d come up with it. The accompanying code is also clear.

I suggest the authors clarify some of their text and if available include more PMIP4 models.


A: During the revision process, 4 models (INM-CM4-8 and AWI-ESM for the LGM, EC-EARTH3.3 
and CESM2 for the mPWP) shared their outputs either on ESGF or directly with us, and therefore 
have been added to our study. Consequently, numbers, figures and list of authors have been 
changed. There were some interesting consequences in adding these models, as it reduced the 
correlation in the case of the LGM and increased it in the case of the mPWP. The overall storyline 
remains similar as during the first version of this paper. However, some details needed to be 
changed, in particular regarding the inclusion of PMIP4 / PlioMIP2 with the previous ensembles. 
These additions made us realise some typos in the Tables and Figures regarding some models: 
Mostly, some temperatures were erroneous (by only a few decimals, but the correct values were 
used in the code so there is no impact on the computations) and 2 models were wrongly plotted 
on the zonal mean plot (Fig. 1). This has been corrected in the revised version.


R:

Minor comments:

11: it’s not a 100% clear whether this is a combination of the restricted ensemble of the 
nonrestricted ensemble. Either clarify, or remove the unrestricted estimate altogether.


A: The words “using the restricted ensemble” have been added, as we considered this estimate 
rather important in the paper.


R: 16: I don’t quite understand the last half of the sentence: “higher bound by construction”


A: The whole sentence has been changed to “An interesting implication of this work is that OLS-
based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the 
lower end, an artifact due to a flatter regression line in case of lack of correlation.”


R: 104: I didn’t quite understand what “percentage of intervals to contain ..” means. Please clarify.


A: Changed to “The former is the representation of the number of random intervals to contain the 
true interval bounds (at 90% confidence, this would lead to 90 out of 100 random intervals to 
contain the true bounds), while Bayesian credible interval is an interval which we believe (with the 
given probability) to contain the truth.”




R: 126: typo: roles

139: “observation operator”. Operator is unnecessary jargon.


A: Both removed.


R: 169: A two line explanation of a (one step) Karman filter might benefit readers.


A: More details on the one-step process has been written, and the Kalman Filter section has been 
expanded. 


R: 182: Phase 4 of PMIP are used in the study. Please replace explanation by saying not much 
data is available instead of none.


A: Added.


R: 236-237: I don’t think it’s necessary to include this test any more.


A: The other MCMC tests have been removed.


R: 291: I’m quite surprised that OLS is more tight. Could you check code or provide an 
explanation?


A: The following explanation has been added: “As previously argued for the combination of PMIP2 
and PMIP3, the OLS produces a tighter posterior range. In the absence of a correlation, the 
Bayesian method relaxes to the prior, whereas the OLS method is heavily influenced by the range 
of the ensemble. However, we emphasise that this does not suggest that either range is closer to 
reality.”


Additionally, the number coming from OLS-based approaches have been updated to their 
predictive intervals values (minor changes which make them more consistent with previous 
studies).


R: 349-350: a logical extension of the methodology is to apply it to CMIP, where we find many 
emergent constraint on the same models. It would be nice if the authors could comment on 
whether they see this as a problem, given that these models may have similar systematic biases.


A: This is an interesting point which could lead to promising research in the future! The following 
text has been added in “Combining multiple constraints” : “A logical extension of the approach 
would be to apply it to the ensemble of models of CMIP, where multiple emergent constraints 
exist for the same models. In theory, this should be possible as long as the investigated 
relationships are physically plausible. This goes beyond the scope of our study, which uses the 
paleoclimates as an example for the method, and is left for future research.”


R: 337: merely → nearly or almost.


A: Changed to “nearly”


R: 374: add ‘in a systematic way’ or something similar. The principle behind emergent constraints 
relies on the fact that models deviate from reality, so that’s not the problem.


A: Added.


R: 386: pertinent → why not use simpler word such as relevant. 


A: Changed to “relevant”.


R: 406: ordinary least squares doesn’t require capitalization


A: Changed in the whole manuscript.




R: Fig1 caption: what is a ‘wide’ ensemble proxy?


A: Changed to “multi-proxy ensemble”


R: Fig2 – Fig9: in the pdf, the colour orange might imply to a tired reader that only PMIP3

is used from the figure on the left. Purple or other dark colour might be more clear. I’m not 
convinced that all figures are necessary for the paper. The summary in the table may suffice for 
more regressions, such as the one in Fig 9.


A: The colours were updated in the corresponding figures to have a more distinct differences. Fig. 
7 (“Latest version approach”) and Fig. 9 (“Model inadequacy”) were removed as it is summarised 
already in Table 1.


———————————————————

Reviewer #2


R: The paper by Renoult et al presents a new Bayesian method for dealing with emergent 
constraints for estimating climate sensitivity from palaeoclimate model simulations. I have little 
expertise in the use of emergent constraints so I will concentrate my comments on the statistical 
methodology used. For such a simple approach they have made their technique remarkably 
opaque. For this reason it is hard to recommend an editorial decision for this paper - I will leave it 
up to the other reviewers to determine novelty and suitability for this journal. However I think there 
needs to be a considerable improvement in the explanation of the mathematical approaches.

If we start with the OLS method, we have a data set Si,Ti, for i = 1,...,n simulators where we use 
the model:

Si = α ∗ Ti + β + ε

And obtain estimates of alpha, beta, and the residual standard deviation sigma. A user comes 
along and provides us with a new value T∗ and we obtain S∗ from the fitted model. Uncertainty 
arises from the potential uncertainties in the estimates of the parameters, and the choice of 
whether prediction or confidence intervals are used.

So far so good. The authors point out that the Bayesian approach is often superior to these 
traditional models because of its more sensible handling of uncertainty and the allowance of 
brining in external information in the form of prior distributions. I agree totally.

Unfortunately here is where things get a little more confusing. The authors then state that the 
model they want to fit is:

p(S|T ) = p(T |S)p(S)/p(T ),

i.e. a standard application of Bayes’ theorem which provides us with a posterior distribution of S 
given T. This is where the notation starts to get into a bit of a mess, because now we’re not told 
where the observations fit in to the model. My guess is that what the authors mean in the above 
equation (using my notation) is actually:

p(S ∗ |T ∗) = p(T ∗ |S∗)p(S∗)/p(T ∗)

Where the likelihood p(T*|S*) is actually integrated over the posterior set of parameters

from a new linear regression model

Ti = γ ∗ Si + δ + γ

Where I’ve named these new slopes/intercepts differently to highlight the different from

the previous OLS approach.

This is a more complicated model, and most of has come from guesswork because the authors 
haven’t provided enough information for me to work out exactly what is happening. I’d really 
appreciate the authors doing (the quite large job) of either clearing up their maths or making sure 
that my incorrect assumptions are not made by others.


A: First, as suggested in the last equation, the parameters of the OLS-based approach have been 
given different names, γ, δ and ζ, to emphasise the differences with the Bayesian framework, and 
also because their values are, indeed, different from α, β and ε.


A source of confusion, as pointed by Reviewer #2, were the annotations and the model not being 
explicit enough. We decided to change the name of the section “Bayesian Linear Regression” to 
“Bayesian Framework” to emphasise the 2-step Bayesian process we are using in the paper. 
Specifically, the Bayesian updating process which aims at computing the final posterior S is 




p(S|T^o_tropical) = p(T^o_tropical |S)p(S)/p(T^o_tropical)


The value T^o_tropical is then a reconstruction from proxy data of the tropical temperature of 
either the LGM or the mPWP and allows to compute a posterior S in the emergent constraints 
framework. As noted by Reviewer #2, here, the likelihood p(T^o_tropical |S) (noted P(T* | S*) by 
Reviewer #2) was an integration over the posterior S of the set of parameters α, β and ε, coming 
from the second Bayesian process, the Bayesian Linear Regression. This BLR process is 
constrained on the model ensemble and in particular their values S and T_tropical. Thus, the BLR 
model is defined as:


Ti_tropical = α * Si + β + ε, ε ~ N(0,σ^2)


Where the “i” refers to the index of one of the climate model used. In this way, we create a 
likelihood (the posterior of the BLR) P(T_tropical | S) by integrating over S, for the Bayesian 
updating process. We explicitly stated that P(T_tropical | S) is approximated as P(T_tropical = 
T^o_tropical | S) through an importance sampling method, allowing us to insert the proxy 
reconstruction and create a series of weights to update the prior P(S) into the posterior of interest, 
P(S | T^o_tropical). 


We hope this clarification will make the comprehension of our method easier than before. We 
decided to explicitly split the 2 Bayesian processes, as the BLR is only used to compute the 
likelihood necessary for the Bayesian updating. The Bayesian updating, in fact, is the only way of 
computing the climate sensitivity; Our implementation of emergent constraints in a Bayesian 
framework, however, requires both processes.


R: The paragraph in the intro which starts "Two recent papers have also addressed. . .” makes 
some odd statements about KFs. It points out that everything is Gaussian then states that “it is 
fairly difficult to generate posterior values which are outside of the prior range”. This seems 
surprising if everything is Gaussian. I haven’t read the other paper so perhaps explain more 
clearly? 


A: It has been changed to: “In particular, most of the posterior values would lie in the range 
covered by the ensemble of models if the observed value is either uncertain and/or close to the 
prior mean. This is a direct consequence of the joint probability distribution produced by the 
Kalman filter, which in the case of joint Gaussian distributions, will produce a tighter posterior 
Gaussian distribution. Because of that, it does not appear to correspond to the choice which is 
usually made, albeit implicitly.”


R: The first sentence in the methods section involves, a load of unnecessary commas, which, in 
my view, makes the sentence, and hence, the definition, of the key concept, of emergent 
constraints, very hard to understand. There must be a simpler way of writing it.


A: Changed to: “The general method of “emergent constraints” seeks a physically plausible 
relationship in the climate system between two model variables in an ensemble of results from 
different climate models. Consequently, an observation of one measurable variable (such as past 
tropical temperatures) could be used to better constrain the other investigated variable, usually 
unobserved and difficult to measure (such as climate sensitivity).”


Additionally, the following has been added later on in the same paragraph, as we think it is a 
source of confusion for our approach: “Although the unobserved variable is usually taken as a 
future variable, the emergent constraints theory can be used with two variables within the same 
time frame, as long as the relationship is plausible.” 


R: Also in that sentence it says ‘. . .’then an observation . . .’. An observation of what?

 
A: Changed to “an observation of one measurable variable (such as past tropical temperatures) 
could be used to better constrain the other investigated variable, usually unobserved and difficult 
to measure (such as climate sensitivity).”




R: L95 should be N(0, σ2) to match standard notation. This mistake is made throughout. There’s 
similarly a bizarre use of ∈ from set theory to write ε ∈ N(0,σ) which I think should be ε ∼ N(0,σ2) 
everywhere.


A: We matched standard notation by writing N(0, σ^2) in the text. We also wrote ε ∼ N(0,σ2) in the 
text.


R: There seems to be a kind of deeper issue that perhaps should be mentioned somewhere that 
these regression approaches really should involve measurement error (separate from model error 
as in the Williamson/Samson) paper. The literature on this is well-developed and is pretty easy to 
include in Bayesian models.


A: The following text has been added regarding observational errors. In particular, observational 
errors have been shown to have insignificant impact on the results in the case of this emergent 
constraints in a previous study on the mPWP (Hargreaves and Annan, 2016): 


“It is not clear if observational errors have always been adequately accounted for in previous 
emergent constraints research. Our approach provides a natural framework for this, as the 
likelihood can include the uncertainty of the observational process as we have done. However, we 
have ignored uncertainties in the calculation of the model values of S and T_tropical as, while they 
are poorly quantified, we believe them to be too small to materially affect our result. In fact, it has 
been argued for the case of the mPWP that observational errors on S and T_tropical are small 
compared to the structural differences responsible of the dispersion of the points around the 
regression line and thus can be neglected (Hargreaves and Annan, 2016)”


R: L158 the use of sequential updates appears for the first time but I can’t really see why this is 
relevant or used elsewhere?


A: Removed.


R: The Kalman filter method seems like a really important rival approach but despite being given a 
full subsection 2.3 this only has one paragraph and no mathematical definition. It would be nice to 
be able to compare the approaches more clearly


A: The mathematical definitions were added. Additionally, we added more references to the fact 
that we do not think the Kalman Filter is a relevant rival approach in that particular case, as it is 
too restrictive on its prior, and consequently, on its posterior S.


R: PlioMIP appears in L200 without being mentioned before


A: Corrected to “Pliocene Modelling Intercomparison Project (PlioMIP)”.


R: There really is very little need to use a complex Hamiltonian Monte Carlo method like NUTS on 
a simple linear regression problem. With a small change in prior from Cauchy to Inv-Gamma the 
whole problem would become conjugate and could be done exactly on a pocket calculator.


A: Adding more mathematical restrictions on the form of prior would make the problem less 
relatable to reality where prior choices may be physically motivated. However, in Appendix A, we 
have illustrated the result obtained by the reviewer’s suggestion. The differences are minimal.


R: L270 the posterior distributions of what?


A: Posterior distributions of S. This has been corrected in the text.


R: L273 and elsewhere. There are some weird mentions about Cauchy distributions having a finite 
integral whilst Uniform distributions do not. This makes no sense to me (the Uniform is only an 
improper prior if it has infinite limits). None of this is referenced so needs clarifying.




A: This has been removed/corrected. We still mention this once, but have explicitly stated that in 
our case, the prior can not be considered as improper since it is bounded. However, one could 
indeed choose a non-bounded Uniform prior to infer S, in which case the prior would be improper.


———————————————————

Short Comment #1


No changes were applied in the manuscript in response to SC#1. As we argued in the original 
answer, we do not think that the Kalman filter should be mentioned in the abstract to avoid an 
overload of information. Additionally, we did not wish to add other Bayesian approaches as it is 
beyond the scope of this paper. The initial online response was:


C: The paper’s criticism of the Kalman filter method (section 2.3), as implying – very likely 
unrealistically – that the model ensemble is a credible predictor before consideration of the 
observational constraint, almost ruling out posterior estimates outside the model range, is valid 
and in my view sufficiently important to warrant mentioning in the Abstract.


A: This, indeed, is a relevant point. As pointed out by Reviewer #2, the Kalman Filter could appear 
as a significant rival approach. However, we consider it too restrictive, for the reasons reminded 
here by the author of the comment. Nevertheless, the main scope of the study is not to criticise 
the Kalman filter method, but to present a Bayesian method which we think is more appropriate to 
the question of emergent constraints. Therefore, we do not consider adding references to the 
Kalman Filter in the abstract, mainly to avoid an overload of information that could mislead the 
reader.


C: However, a major weakness of the paper is that it fails to investigate, or even acknowledge the 
existence of, an objective Bayesian method that has been applied for a very similar purpose, or of 
the frequentist likelihood ratio method that has also been so applied (Lewis and Grunwald 2018). 
Objective Bayesian methods use a ’noninformative prior’ that reflects how the expected 
informativeness of the data about the parameter(s), derived from the likelihood function, varies 
over the parameter space, and where not all parameters are of interest may also reflect the 
targeted parameter(s). There is a huge statistical literature on objective Bayesian methods, as 
there also is on likelihood ratio methods.

Both the aforementioned objective Bayesian and likelihood ratio methods generate un- certainty 
distributions and ranges that that have been shown, in a perfect model test, to be well calibrated 
for combining, as well as evaluating separately, independent evidence (Lewis 2018). That is, the 
uncertainty ranges output by these two methods, although different in statistical nature, are both 
close to exact confidence intervals. Accordingly, in the long run probabilistic conclusions by an 
investigator employing either of these methods will on average be true statements, which is surely 
highly desirable for scientific investigations. That is not in general the case for subjective Bayesian 
methods (Fraser 2011, Lewis 2014).

Moreover, Bayesian updating does not in general produce satisfactorily calibrated inference when 
combining evidence, even if the related Bayesian inference from the separate pieces of evidence 
is well calibrated (Lewis 2013, Lewis 2018). Nor is Bayesian updating satisfactory as a method of 
incorporating probabilistic prior information, which can however be incorporated under the 
aforementioned objective Bayesian method. The appropriate way to do so is by treating the prior 
information not as a prior density to be used in Bayesian updating, but as equivalent to a notional 
observation with a certain probability density, from which a posterior density has been calculated 
using Bayes’ theorem with a noninformative prior (Hartigan 1965).

In order to achieve satisfactory inference about climate sensitivity when combining evidence, 
climate scientists need to move on from fundamentally flawed subjective Bayesian methods, and 
to cease ignoring the existence of objective Bayesian and frequentist (profile) likelihood ratio 
based methods that are both demonstrably superior.


A: Besides the title of “objective” Bayesian method, which we find confusing and misleading, 
there are several reasons why such methods are not investigated nor acknowledged in this study. 
One of the first reasons would be that this paper does not aim at being a summary of every 
possible Bayesian method, but solely introduces one method for the question of emergent 
constraints in comparison to other (non-Bayesian) methods used in the past.




Having said so, “non-informative” prior such as Jeffrey’s prior, are, in fact, very informative when 
dealing with a single problem which carry information by itself, such as the relationship between 
Sensitivity (S) and Temperature (T) in a defined ensemble of climate model. Actually, we do 
consider that informative priors are a valuable advantage of Bayesian methods (or updating), as it 
carries the knowledge, with a certain uncertainty, of the original problem (in that case, the 
plausible range of S). There is no reason for thinking that one prior would be more non-informative 
than others in every case - priors are more informative than others based on the problem. In the

 

case of this paper, we could consider that the uniform prior is more informative than the Cauchy 
prior towards high S. However, such affirmation could be completely different with a different set 
of climate system parameters. Thus, there is no reason for thinking that one specific Bayesian 
method would have more or less flaws than another.


———————————————————

Short Comment #2


A: The primary criticism of S&W is that our underlying model is different to that adopted in 
previous Emergent Constraint (EC) research. We agree that we are presenting a fundamental and 
perhaps radical point of departure from previous work and we will emphasise this more clearly in 
the text. In our view, it is entirely natural when attempting to estimate a parameter such as ECS, 
that we take a prior on ECS which is explicitly stated, and then ask how the evidence under 
consideration (in this example, a temperature observation and an ensemble of GCMs that exhibit 
a relationship between their ECS values and this temperature) can be used to update this prior. 
We believe that our approach, while unlike much previous work in EC, is actually much more 
closely aligned with the bulk of the research on Bayesian estimation of ECS, and our method 
allows for these data to be easily used to update any prior on ECS that might arise from a 
previous unrelated study. In contrast, as Sansom and Williamson showed so elegantly 
themselves, a Bayesian formulation of standard EC approach would be to take a prior over the 
measurand and infer ECS as a diagnostic of this. While this seems to work well for their 
“reference prior” case and they also discuss physically-motivated priors on the regression 
parameters, it does not seem so clear (and they do not discuss) alternative priors for the 
measurand and the implied predictive prior for ECS. Of course we do not insist that our view is 
the only correct one and must be adopted by others, but we believe strongly that it is reasonable 
and worthy of serious consideration.


C: The central feature of the proposed approach is to specify p(X⋆ | Y ⋆) and p(X | Y ) rather than 
p(Y ⋆ | X⋆) and p(Y | X). It is important to realise that these are two fundamentally different

statistical models, they cannot both be valid at the same time, and will inevitably result in different 
inferences for Y . Though both equations hold mathematically (as they are valid factorisations of 
the joint distribution), they imply different conditional independencies in the modelling that need to 
be physically interpreted and are certainly not interchangable. Therefore, one must consider 
carefully the underlying reasoning before adopting one or the other. For emergent constraints, Y ⋆ 
is usually a measurable property of the future climate and X⋆ an observable property of the current 
or historical climate. Therefore it makes immediate sense to adopt the standard model for 
emergent constraints, i.e., the future depends upon the past via p(Y ⋆ | X⋆) and p(Y | X). In those 
cases the proposed approach would make no sense because it explicitly states that the past 
depends on the future via p(X⋆ | Y ⋆) and p(X | Y ). Equilibrium Climate Sensitivity (ECS) is 
operationally defined as “the temperature anomaly reached at equilibrium following a 
instantaneous doubling of CO2”. To us, it seems natural to view this as a future climate quantity, 
and so it makes sense to adopt the standard model for ECS.

It might be possible to justify the proposed model for certain quantities of interest, but for an 
operationally defined future quantity, we would have to be willing to accept the reversal of time’s 
arrow, i.e., past depends on future. It may be that the authors have in mind some alternative 
definition or interpretation of ECS that renders time’s arrow an illusion for this quantity in 
particular.


A: We have to disagree with this comment for several reasons. In the definition of emergent 
constraints, there is strictly no assumption that one variable belongs to the future, nor that 
another variable belongs to the past. The theory of emergent constraints is solely based on a 
physically plausible relationship between two variables of the climate system. Having said so, 



Sansom & Williamson argue that ECS should be viewed as a future climate quantity, which is not 
the view we share. We interpret ECS as a parameter of the climate system which is independent 
of time. In particular, it is usually accepted that small forcing, such as the traditional 4 times CO2 
forcing used to compute ECS leads to weak non-linearity. Therefore, ECS can be approximated 
as a constant parameter of the climate system under a certain forcing, and has its own existence 
in the present time.


As written earlier for Reviewer #2, we added the following: “Although the unobserved variable is 
usually taken as a future variable, the emergent constraints theory can be used with two variables 
within the same time frame, as long as the relationship is plausible.”

We think this is a frequent source of confusion, when there is no restriction on the emergent 
constraint theory to be used with one past and one future variable. We also added physical 
arguments (see following comment) which explicitly states that ECS computed from 4xCO2 
experiment usually leads to weak non-linearity, and thus can be considered as a constant 
parameter of the climate system under certain forcing and be used within the LGM and mPWP 
framework.


C: we must strongly insist that the physical argument behind the statistical model be made 
explicit, well defended, and open to the scrutiny of other researchers within the field.


A: It is rather straightforward to find arguments for the two models. One way (where S is the 
predicted and T the predictand) was already introduced by Annan and Hargreaves (2016). Here, 
we stipulate that, with a certain knowledge about S, one could estimate a value of tropical T, 
accounting for a certain uncertainty coming from temperature changes non-related to S. Physical 
arguments have been added in the revised paper, as the following:


“It implies that S is able to give a prediction of T_tropical, with a certain uncertainty. This is 
physically plausible, as S is considered as one of the best metric to represent temperature 
change. In particular, S is often diagnosed in climate models from abrupt and sustained 
quadrupling of CO_2 from pre-industrial conditions (4xCO_2), which usually leads to weak non-
linearity similar to what shall be observed from LGM or mPWP climate dynamics. Therefore, it is 
possible to use 4xCO_2-computed S of climate models to predict T_tropical, assuming epsilon as 
a representation of all processes not related to S.”


C: However the statistical model is not stated explicitly in its entirety, nor are the models it is com- 
pared to. For the sake of transparency, we interpret the model used by the authors to be

Xm ∼ Normal(β0 +β1Ym,σ2) form=1,...,M

X⋆ ∼ Normal(β0 + β1Y ⋆, σ2)

Z ∼ Normal(X⋆,σZ2 )

Examination of those same Python scripts reveals that four chains of only 2 000 samples each 
with no warm-up were used in the production of the reported results (a total of only 8 000 
samples). Both STAN and PyMC3 (used by the authors) implement the No U-Turn Sampler (NUTS) 
variant of Hamiltonian Monte Carlo for efficient mixing and fast convergence, so our results 
should be comparable. The lack of warm-up / burn-in period used by the authors is likely to lead 
to skewed estimates, even using NUTS. Further, the inefficient use of importance sampling to 
account for the observation uncertainty and the small total number of samples given notorious the 
difficulty of efficiently sampling from the Cauchy distribution are all likely to contribute to the 
differences we see when implementing their framework. Unless we have misunderstood their 
modelling (and by itself this would be an argument for making it explicit in the manuscript), we are 
not sure that the numbers given in the text actually represent the posteriors of their alternative 
model faithfully.


A: There is a difference between the model above (which is a simple linear regression) and the 
model used in the paper. This is mainly due to a lack of clarification of the model as already 
pointed out by Reviewer #2 which has been corrected. Therefore, the non-reproducibility of the 
results shown by Williamson and Sansom is not due the amount of samples as commented here. 
This is mainly due to a mistake in the code which was posted online. All computations were 
performed with 200 000 samples (and not 2000) for a total of 800 000 samples. By default, the 
code came with 2000 samples for faster simulation, but was not meant to be published with this 
number. This mistake has been corrected and we thank the authors of the comment to have 



spotted it. Additionally, this comment made us think about the size of burn-in period, which has 
been increased. To check the convergence of the chains, each code comes with a Gelman-Rubin 
test, easily implemented by PyMC3.


Having said so, the model has been made more explicit as written above in the response to 
Reviewer #2. Additionally, the code provided has been changed to make them efficient but also 
slightly faster to run. By default, the BLR produces 100,000 samples (400,000 with 4 chains), and 
burn-in 10,000 samples. Importance sampling uses 800,000 samples. NUTS (PyMC3) comes by 
default with a substantial burn-in period, which is not originally written.


C: Bowman et al. (2018) include explicit expressions for projection using the Kalman filter model 
(Equations 17 & 23). However using these expressions we are also unable to reproduce the results 
for the Kalman filter quoted in Table 2 of the manuscript. Examining the Python script that 
accompanies this manuscript reveals an obvious error in the expression for the posterior variance 
on Line 80. The authors should therefore revisit the calculation of these credible intervals.


A: The code has been corrected, as a matrix multiplication was missing. The direct consequence 
of this is having a more constrained posterior range using the Kalman Filter (roughly 0.5 K more 
constrained on each bounds), which tend to show that the Kalman Filter is even more restrictive 
than expected.


C: We were able to reproduce the Ordinary Least Squares (OLS) estimates and intervals. However, 
in Section 2.1 the authors equate OLS with frequentist linear regression. This is incorrect. As 
discussed in detail in Williamson & Sansom (2019), OLS is a purely algorithmic method of 
parameter estimation in a mathematical model. The OLS estimates of the mean parameters in a 
linear regression model are equal to those obtained by frequentist maximum likelihood estimation, 
but OLS provides no estimate of uncertainty in either the parameters or the prediction. Frequentist 
regression is difficult to justify in a climate change context, but Bracegirdle & Stephenson (2011) 
presented emergent constraints within a frequentist linear regression framework and this 
approach has been adopted in many subsequent studies. However, the authors present heuristic 
uncertainty estimates based on mean-squared errors and on lines 287-288 claim that “OLS” 
underestimates uncertainty compared to their method. In fact, when standard frequentist 
regression is used, the inference for ECS in the LGM PMIP2 experiment is very similar to the 
proposed model with median 2.8K and 90% confidence interval 1.0–4.5K. As Williamson & 
Sansom (2019) point out, this is equal to an equal tailed 90% Bayesian credible interval under 
reference priors. Credible intervals from the reference model under the other experiments are less 
similar to the proposed model, but wider than either the “OLS” or Kalman filter estimates.


A: We might have taken a non-elegant shortcut here. The main idea was that OLS, at the opposite 
of Bayesian regression, does not require any prior knowledge, which makes it closer to frequentist 
philosophy. Nevertheless, this does not exclude OLS of being one of the most used method and 
therefore has a large interest for multi-study comparison. Our terminology may also have been a 
little sloppy. While we agree OLS per se does not provide uncertainty estimates, these are readily 
obtained from standard regression methods which are used for the OLS estimate. Finally, the 
uncertainty estimates were updated following the method of generating a predictive ensemble, as 
they are computed in the Bayesian methods and as they were computed in previous studies 
(Hargreaves et al., 2012; Schmidt et al., 2014; Hargreaves and Annan, 2016). As shown by the 
authors of the comment, the new intervals are slightly wider than the previous ones, but still much 
tighter than the Bayesian intervals in the case of low correlation, which was already the original 
argument of this method comparison.

We changed the terminology of OLS since it does not produce confidence intervals, but statistical 
models based on it will produce these intervals. 


C: Treatment of model inadequacy

In the statistical reasoning above we omitted discussion of model inadequacy for brevity. In lines 
130–134 and lines 376–378 the authors claim that in their approach model inadequacy can be 
entirely accounted for by specifying a larger residual variance for reality than the models and it is 
not necessary to consider differences in the regression parameters. With a minor modification to 
the proposed model, the intercept can be made independent of the slope, and therefore any 
additional uncertainty about the intercept in the real world can safely be pushed into the residual 



since both sources⋆ of uncertainty are independent of Y . However, any uncertainty in the slope 
leads to uncertainty about X⋆ that is dependent on Y ⋆, i.e, the width of the predictive interval for 
X⋆ increases with the distance of Y ⋆ from the prior mean. Therefore any additional uncertainty in 
the slope in the real world is also conditional on the value of Y ⋆ and not accounted for by the 
residual variance. This is a simple matter of geometry and is therefore unavoidable. Williamson 
and Sansom (2019) developed a coherent elicitation of the regression parameters and structural 
error that was designed to account for these geometric considerations, and any emergent 
constraints framework that wishes to account for structural error, whether using the authors 
approach or the standard one, must grapple with the geometry.


A: We disagree with this comment. Although accounting for model inadequacy is relevant to the 
question of emergent constraints, accounting for it on every regression parameters leads to 
creation of regression lines based on an ensemble of non-existing models. We are aware of the 
Williamson and Sansom approach which postulates a different regression line based on some 
hypothetical ensemble of future models, and while we agree with them that treatment of model 
inadequacy is important we don’t find their approach entirely compelling. In reality, there is one 
sensitivity value and one temperature observation, and it does not seem helpful to us to use 3 
additional parameters including a new regression line to describe this. In the limit of improved 
models (W&S Section 4b), we would expect them all to converge to the truth and it is not clear 
that a regression line and error term is particularly meaningful in this case. Furthermore, it might 
be reasonable to expect that in this limiting ensemble sigma^* should be rather smaller, instead of 
larger, than sigma for the existing ensemble.

We emphasise that our point here is not to criticise W&S who have made a set of judgments that 
they consider reasonable, but merely to explain why ours differ.

We think this discussion is somewhat beyond the scope of our study, which is focused on the use 
of an existing ensemble of climate models.
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Abstract.

In this paper we introduce a Bayesian framework, which is flexible and explicit about theexplicit about prior assumptions,

for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has

seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last

Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on Ordinary Least5

Squares ordinary least squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate

sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K

(1.1–4.80.6–5.2, 5–95 percentiles) using the PMIP2, PMIP3 and PMIP4 data sets for the LGM, and 2.4 K (0.4–5.02.3 K (0.5–

4.4) with the PlioMIP1 and PlioMIP2 data sets for the mPWP. Restricting the ensembles to include only the most recent version

of each model, we obtain 2.7 K (1.1–4.30.7–5.2) using the LGM and 2.4 2.3 K (0.4–5.1–4.5) using the mPWP. An advantage10

of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain

a slightly tighter constraint of 2.6 K (1.1–3.9) 2.5 K (0.8–4.0) using the restricted ensemble. We have explored the sensitivity

to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to

95% probability of climate sensitivity mostly below 5 and never K and only exceeding 6 K in a single and most uncertain

case assuming a large structural uncertainty. The approach is compared with other approaches based on OLS, a Kalman filter15

method and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints

on ECS generate tighter uncertainty estimates, in particular at the lower end, suggesting a higher bound by construction an

artifact due to a flatter regression line in case of weaker lack of correlation. Although some fundamental challenges related to

the use of emergent constraints remain, this paper provides a step towards a better foundation of their potential use in future

probabilistic estimation of climate sensitivity.20
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1 Introduction

In recent years, researchers have identified a number of relationships between observational properties and a future cli-

mate change, which was not immediately obvious a priori, but which exists across the ensemble of global climate models

(GCMs) (Allen and Ingram, 2002; Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2018) participating in the Climate Model

Intercomparison Project (CMIP). These relationships are generally referred to as ‘emergent constraints’ as they emerge from25

the ensemble behaviour as a whole rather than from explicit physical analysis.

Such emergent constraints have been broadly used to constrain properties of the Earth’s climate system which are not easily

or directly observable. These are usually presented in probabilistic terms, mostly based on Ordinary Least Squares (OLS)

methods. For example, studies have explored the constraint on equilibrium climate sensitivity (ECS), which is the global mean

equilibrium temperature after a sustained doubling of CO2 over pre-industrial levels, using model outputs from the Paleoclimate30

Model Intercomparison Project (PMIP) (Hargreaves et al., 2012; Schmidt et al., 2014; Hopcroft and Valdes, 2015; Hargreaves

and Annan, 2016). Because of their relatively strong temperature signal, paleoclimate states like the Last Glacial Maximum

(LGM) and the mid-Pliocene Warm Period (mPWP) are often considered as promising constraints for the ECS (Hargreaves

et al., 2012; Hargreaves and Annan, 2016), in particular at the high end.

Almost all emergent constraint studies have used OLS to establish the link between variables in the model ensembles.35

However, whether ECS or another climate parameter was investigated, the theoretical foundations for the calculations have not

previously been clearly presented. An additional problem arising from this is the resulting difficulty in synthesising estimates

of climate system properties generated by different statistical methods with different, and often not explicitly introduced,

assumptions. These methods include OLS but also alternative Bayesian approaches such as estimates of the climate sensitivity

using energy-balance models (Annan et al., 2011; Aldrin et al., 2012; Bodman and Jones, 2016).40

Two recent papers have also addressed the question of emergent constraints in different ways. Bowman et al. (2018) pre-

sented a hierarchical statistical framework which went a long way to closing the gap in theoretical understanding of emergent

constraints. Conceptually, it is very similar to a single step Kalman filter, where the iteration process is avoided to only keep a

single updating of a prior into a posterior. Specifically, it uses the model distribution (approximated as a Gaussian ) as a prior,

which is then updated using the observation to a posterior. However, such prior and the underlying assumptions attached to45

it could be seen as a restrictive choice to impose on the climate sensitivity area of research. In particular, it is fairly difficult

to generate posterior values which are outside of the prior range , even when the observation is outside the range covered by

modelsmost of the posterior values would lie in the range covered by the ensemble of models if the observed value is either

uncertain and/or close to the prior mean. This is a direct consequence of the joint probability distribution produced by the

Kalman filter, which in the case of joint Gaussian distributions, will produce a tighter posterior Gaussian distribution. Because50

of that, it does not appear to correspond to the choice which is usually made, albeit implicitly.

Another Bayesian statistical interpretation of emergent constraints has been recently presented by Williamson and Sansom

(2019) who extended the standard approach to account for more general sources of uncertainty including model inadequacy. A

key aspect of their approach is that they set a prior on the observational constraint rather than the climate system parameter(s)
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that we are primarily interested in this study, i.e. the climate sensitivity. Thus, their prior predictive distribution for the climate55

system parameter is not immediately clear and may not be so easily specified as in the approach we explore and which is

described belowhere.

We present an alternative Bayesian linear regression approach in which the regression relationship is used as a likelihood

model for the problem. This allows for the prior over the predictand to be defined separately from and entirely independently

of the model ensemble and emergent constraint analysis. Thus the likelihood arising from the emergent constraint could be60

used to update a prior estimate of the predictand that arose from a different source.

In Section 2 we provide an overview of the concept of emergent constraints, the previous methods used for these analyses,

introduce the Bayesian linear regression method framework as well as the models and data employed in the paper. Section 3

describes the results, starting with analysis of models and data from the Paleoclimate Intercomparison Project (PMIP) Phases

2 and 3 for the LGM and mPWP, that have previously been analysed for an emergent constraint on climate sensitivity (Schmidt65

et al., 2014; Hargreaves and Annan, 2016). We then incorporate some CMIP6/PMIP4 model outputs that have been made

available to us for these periods to illustrate how these outputs fit into the same analysis. We also use the LGM and mPWP

outputs to demonstrate how the method allows independent lines of evidence emergent constraints to be combined. Finally, we

discuss the influences of the prior and of model inadequacy on climate sensitivity in Sections 3.5 and 3.6, respectively.

2 Methods70

The general method , referred to as “emergent constraints”, suggests that if a relationship exists, in of “emergent constraints”

seeks a physically plausible relationship in the climate system between two model variables in an ensemble of results from

different climate models, between an observable model variable and another model variable that we seek to constrain . Conse-

quently, an observation of one measurable variable (such as climate sensitivity) then an observation past tropical temperatures)

could be used to better constrain that variablethe other investigated variable, usually unobserved and difficult to measure (such75

as climate sensitivity). This idea has been used in climate science to forecast variables estimate quantities of interest such as

snow albedo feedback (Hall and Qu, 2006), future sea ice extent (Boé et al., 2009; Notz, 2015), low-level cloud feedback (Bri-

ent et al., 2016), and to estimate the equilibrium climate sensitivity (Hargreaves et al., 2012; Schmidt et al., 2014; Cox et al.,

2018). Although the unobserved variable is usually taken as a future variable, the emergent constraints theory can be used with

two variables within the same time frame, as long as the relationship is plausible. A summary of several different emergent80

constraints on climate sensitivity was made by Caldwell et al. (2018). This approach using emergent constraints is meaningful

only if we believe that reality satisfies the same relationship, and it was not observed purely by chance in the model ensemble.

There is a risk in searching for such relationships in a small ensemble that we may find examples which are coincidental,

with no real predictive value (Caldwell et al., 2014). Spurious relationships could also be found because of model limitations

(Fasullo and Trenberth, 2012; Grise et al., 2015; Notz, 2015).85

In this study, we focus on the relationship between equilibrium climate sensitivity, defined here as S, and the temperature

change in the tropics which is observed at the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP),
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defined as Ttropical. We posit that a relationship between climate sensitivity and temperature change is physically plausible,

as we expect the long-term quasi-equilibrium temperature to be mainly influenced by radiative forcing, and past model en-

semblesin many model ensembles, variations in climate sensitivity have been dominated by tropical feedbacks, mostly arising90

from low-level clouds (Bony et al., 2006; Vial et al., 2013). Furthermore, since mixing with the deep oceans happens mostly at

high latitudes and equilibrating the deep ocean temperatures in a climate model takes several thousand years, there is the risk

that the temperature in these regions have not yet equilibrated to the same extent in all models. This can cause high latitude

temperature variations that are not related to climate sensitivity, but to how modelling centres conducted their experiments.

2.1 Ordinary Least Squares95

The most widely-used approach to emergent constraint analysis is to find an observable phenomenon that exhibits some rela-

tionship to the parameter of interest, and use this as a predictor in a linear regression framework. The Ordinary Least Squares

ordinary least squares (OLS) method has been widely used because of its simplicity, and so we also use it here as a benchmark

starting point for comparison with alternative statistical methods. In the context of constraining climate sensitivity, the param-

eter of interest (i.e. the ECS) is considered as a predicted variable (Hargreaves et al., 2012; Schmidt et al., 2014; Hargreaves100

and Annan, 2016). This may be written as

S = α×Ttropical +β+ ε (1)

where S is the climate sensitivity, α and β two unknown constants, Ttropicalγ and δ two unknown parameters, Ttropical the

temperature anomaly averaged over the tropical region for the given paleo-time interval, and ε ζ the residual term which is

drawn from a Gaussian distribution N(0,σ) N(0,σ2) and which accounts for deviations from the linear fit. When we use this105

approach, the unknown constants of the linear fit are estimated via ordinary least squares (OLS) using the (T i
tropical,S

i) pairs

representing the model ensemble (here i indexes the models) and then the equation is used to predict the true value of S for

the climate system, based on the observed value T o
tropical. A confidence interval for the predictor variable can be generated

by accounting for uncertainties in the fit and in the observed value through a simulation of an ensemble of prediction as

was demonstrated by Hargreaves et al. (2012). This procedure makes the assumption that reality satisfies the same regression110

relationship as the models, i.e. is likely to be at a similar distance from the line as the model points are.

Integrating the intrinsically frequentist OLS-based confidence intervals confidence intervals obtained from regression meth-

ods used for OLS estimates into a Bayesian framework is somewhat unclearchallenging. One issue is the misinterpretation

of frequentist confidence intervals as Bayesian posterior credible intervals, where the . The former is the representation of a

percentage of the number of random intervals to contain the fixed true value of the parametertrue interval bounds (at 90%115

confidence, this would lead to 90 out of 100 random intervals to contain the true bounds), while Bayesian credible interval is

the probability of the true value to be included within a given intervalan interval which we believe (with the given probability)

to contain the truth. For instance, if there is an observed Ttropical = 1 K, with an assumed Gaussian observational uncertainty

of σ = 0.25 at one standard deviation, then stating that there is a close-to-95% probability of having the true value of the
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parameter within the interval 0.5–1.5 K is a Bayesian credible interval interpretation. However, the latter is a common inter-120

pretation of frequentist-based studies. This confusion has inherent drawbacks on the analysis of posterior outputs, as shown in

various fields of science (Hoekstra et al., 2014) and more recently, for climate sensitivity computations (Annan and Hargreaves,

2019). Williamson and Sansom (2019) have presented a Bayesian interpretation of this approach using reference priors on ψ,

as defined by Cox et al. (2018) as a metric of global mean temperature variability, and the regression coefficients. However,

this approach does not appear to readily allow for the use of any arbitrary prior distribution for S which may either be desired125

for comparison with other research, or else have arisen through a previous unrelated analysis. The Bayesian linear regression

approach that we introduce in the next section avoids these problems.

2.2 Bayesian Linear RegressionFramework

The (subjective) Bayesian paradigm is based on the premise that we use probability distributions to describe our uncertain

beliefs concerning unknown parameters. We use Bayes’ Theorem to update a prior probability distribution function (pdf) for130

the equilibrium climate sensitivity via

P (S|T o
tropical) =

P (T o
tropical|S)P (S)
P (T o

tropical)
(2)

where P (S|Ttropical) P (S|T o
tropical) is the posterior estimate of S after conditioning on the datageological proxy data T o

tropical,

P (S) is the prior and P (Ttropical)P (T
o
tropical) is a normalisation constant. The likelihood P (Ttropical|S) P (T o

tropical|S) is a

function that takes any value of S and generates a probabilistic prediction of what we would expect to observe as Ttropical135

T o
tropical if that value was correct. The use of the Bayesian paradigm requires us to create such a function. Using the principles

of emergent constraint analyses in which a linear relationship between these two parameters, which was seen in the GCM

ensemble, is believed to apply also to reality, it is natural to use the regression relationship

Ttropical = α×S+β+ ε (3)

Where here, α, β and σ, the standard deviation of ε as ε∼N(0,σ2), are three a priori unknown parameters. Note that this140

reverses the rôles roles of predictor and predictand compared to the OLS-based approach (Eq. 1). The values of It implies that

S is able to give a prediction of Ttropical, with a given uncertainty. This is physically plausible, as S is considered as one of the

best metrics to represent temperature change. In particular, S is often diagnosed in climate models from abrupt and sustained

quadrupling of CO2 from pre-industrial conditions (4xCO2), which usually leads to weak non-linearity similar to what shall

be observed from LGM or mPWP climate dynamics. Therefore, it is possible to use 4xCO2-computed S of climate models to145

predict Ttropical, assuming ε as a representation of all processes not related to S.

The three parameters α, β and σ, where σ represents the standard deviation of ε as ε ∈N(0,σ), are estimated from σ

are conditioned on the model ensemble defined by its pairs of (T i
tropical,S

i) (with i indexing the models). We estimate them

via a Bayesian linear regression (BLR) procedure, which requires priors to be defined over these parameters. Consequently,

the likelihood P (Ttropical|S) for a given S (as required by Eq. 2) is an integration over the posterior distribution of Ttropical150
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predicted by the regression relation (convolved with observational uncertainty where appropriate) and conditioned on the model

ensemble through α, β and σ.

In this way, we create a statistical model , conditioned on the model ensemble, that can generate a predictive pdf for the trop-

ical temperature change at the LGM or at the mPWP P (Ttropical|S), for any given sensitivity. There is a structural difference

between this approach and that of Eq. 1, in that here the residual uncertainties ε ∈N(0,σ) ε∼N(0,σ2) represent our inability155

to perfectly predict the tropical temperature anomaly arising from a given sensitivity, and are probabilistically independent of

the latter rather than the former variable. The issue here is not a matter of which regression line is ‘correct’, but rather how,

given the model ensemble, we can create a plausible likelihood model for P (Ttropical|S).
The regression prediction for the temperature change as a function of sensitivity, together with the observed tropical tem-

perature change as estimated through analysis of proxy dataT o
tropical, naturally leads to a likelihood function for the sensi-160

tivity of the climate system It is important to note that Eq. 3 and the conditioning of parameters on the model ensemble

only relates to the generation of the likelihood. The emergent constraint calculation itself is then a second step that uses this

likelihood to calculate the posterior of interest P (S|T o
tropical) (Eq. 2). To apply the emergent constraints theory, it is required

to insert a geological observation T o
tropical estimated through proxy data, and obtain the likelihood P (T o

tropical|S) which leads

to the posterior P (S|T o
tropical) by Bayesian updating. We perform this step through a simple importance sampling algorithm165

by approximating P (Ttropical = T o
tropical|S). That is, for a any given sensitivity S, we can calculate the probability of the

observation of tropical temperature that we have, as the composition of the predictive pdf for actual tropical temperature,

together with the uncertain observation operator. In practice this is performed by a simple sampling algorithmuncertainty

associated with the observation itself. The emergent constraint theory is thus applied with a 2-stage Bayesian process, including

in first the BLR and in second, a Bayesian updating.170

A prior belief both on climate sensitivity (P (S)) in the Bayesian updating process, and on the parameters of the regres-

sion model in the BLR process, has to be assumed. There is no clearly uncontested choice for prior distribution for climate

sensitivity. However, Annan and Hargreaves (2011) argued that a Cauchy distribution has a reasonable behaviour with a long

tail to high values, but unlike the uniform prior, does not assign high probability to these values. Thus we adopt this prior for

our main analyses. In section 3.5 we test the sensitivity of the results to this choice and compare the results obtained using175

Gamma and uniform prior distributions. Priors for the parameters of the regression model are chosen with reference to the

specific experiment and are intended to represent our reasonable (albeit uncertain) expectation that models do indeed generate

a regression relationship as described.

An additional issue, that was briefly mentioned above, is that we may like to consider the probability that reality is qual-

itatively and quantitatively distinct distinguishable from all models. This issue, which was explicitly argued in the context180

of emergent constraint analysis by Williamson and Sansom (2019), seems reasonable since all models do share a theoretical

heritage and certain limitations. However, this issue remains challenging to quantify. It has not been considered in most previ-

ous studies which also makes it difficult to compare. We investigate this issue in Section 3.6. Whilst the proposed resolution

remains preliminary and although the concept is promising for understanding emergent constraints, we decide to omit it for the

rest of the bulk of our analysis to enable more direct comparisons with previous studies.185
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The Bayesian Linear Regression (BLR) method is more explicit than the standard OLS approach, as the prior assumptions

have to be given by the user. This transparency leads to more freedom and control of the statistical model. Moreover, it is less

sensitive has a reduced sensitivity to outliers as the prior on the regression coefficients provides a form of regularisation. This

should result in lead to lower variance in the results , particularly when, as in the examples studied here, we have compared to

results with wider priors on the parameters, particularly with small model ensembles.190

Additionally, the Bayesian method allows the user to add multiple lines of evidence by sequentially updating the chosen prior

for S. The method for combining independent constraints is reasonably simple, as it only requires us to calculate and store

the posterior of the first emergent constraint analysed, and use this distribution as the prior for the second emergent constraint.

Thus it is a direct form of sequential Bayesian updating. This process results in a posterior distribution which will generally be

narrower than either of the two posteriors that would have been generated from either of the emergent constraints separately.195

Although it may be tempting to simply combine all emergent constraints in this way, it is necessary to also consider possible

dependencies between the uncertainties in the different emergent constraints before this can be done with confidence (Annan

and Hargreaves, 2017).

It is not clear if observational errors have always been adequately accounted for in previous emergent constraints research.

Our approach provides a natural framework for this, as the likelihood can include the uncertainty of the observational process200

as we have done. However, we have ignored uncertainties in the calculation of the model values of S and Ttropical as, while

they are poorly quantified, we believe them to be too small to materially affect our result. In fact, it has been argued for the

case of the mPWP that observational errors on S and Ttropical are small compared to the structural differences responsible of

the dispersion of the points around the regression line and thus can be neglected (Hargreaves and Annan, 2016) .

2.3 Kalman Filter205

Bowman et al. (2018) recently presented a new interpretation of emergent constraint analysis. Their framework is essentially

a two-dimensional ensemble Kalman Filtering approach in which the prior, represented by the model ensemble, is updated

according to the observation, using the Kalman equation equations which approximates all distributions by a multivariate

Gaussian . Kalman (1960) . The Kalman equations are given by

K = P fHT
(
HP fHT +R

)−1
(4)210

xa = xf +K
(
z−Hxf

)
(5)

P a = (I −KH)P f (6)

where x is the mean, P its covariance, z the observations with associated observational uncertainty covariance matrix, R

and H the operator that maps the model state onto observations. The superscripts f and a by convention refer to the forecast

(i.e. the prior in this work) and analysis (the posterior) respectively. While in many applications, such as numerical weather215

prediction, this method is applied in an iterative fashion with the analysis being used as the starting point of the next forecast,

here it is only applied once as a way of implementing Bayesian updating to our prior in order to generate the posterior.
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Here we only have two dimensions for the Gaussian, these being the scalar predictor (e.g. sensitivity) and predictand (e.g.

tropical temperature change). While this approach is a natural and attractive option in many respects, it has the specific draw-

back of (in the context of this work) of using the distribution of model samples as a prior (for both mean and covariance).220

Existing literature on emergent constraints does not make this assumption and this could be seen as a limiting aspect of the

method, as it implies that the model ensemble is already a credible predictor even before consideration of the observational

constraint. Some implications of this approach are that the posterior estimate is will be equal to the model distribution in the

case that no observational constraint exists, either because there is in fact no relationship between observation and predictand,

or else when the observational uncertainty is excessively large. It is also The use of a Gaussian prior based on the ensemble225

range also means that it is difficult for the method to generate posterior estimates that include values significantly outside

the model range, even in the case where the observed value is outside the model spread. We present results generated with a

Kalman filter in Section 3.1 for comparison with our main analysis.

2.4 Climate Models and Data

The BLR Bayesian method may be applied to any emergent constraint. In this study, we use the model outputs and data230

syntheses arisen from phases 2 and 3 of PMIP (Braconnot et al., 2007; Haywood et al., 2011; Harrison et al., 2014), as well

as the few available models of the phase 4 (Haywood et al., 2016; Kageyama et al., 2017), summarised in Table 1. The Last

Glacial Maximum (19–23 ka) corresponds to the period of the last ice age where ice sheets and sea ice had their maximum

extent. Due to its temporal proximity, relative abundance of proxy data, and substantial radiative forcing anomaly, the LGM is

widely considered one of the best paleoclimate intervals for testing global climate models and has been featured in all of the235

PMIP consortium experiments. A representation of several model LGM simulations compared to the SAT reconstruction of

Annan and Hargreaves (2013) is shown in Fig. 1–(a).

Previous results from PMIP2 showed a significant correlation between LGM tropical temperatures and climate sensitivity in

the models (Hargreaves et al., 2012), although the equivalent calculation for the PMIP3 models found no significant correlation

(Schmidt et al., 2014; Hopcroft and Valdes, 2015). These two similar sized ensembles with contrasting characteristics are a240

good test-bed for exploring the properties of the different methods. For the tropical temperature anomaly relative to pre-

industrial we use a value from Annan and Hargreaves (2013), for 20◦ S to 30◦ N, a T o
tropical of -2.2 K with a Gaussian

observational uncertainty of ± 0.7 K (5–95% confidence interval). Several data compilations are presently in development as

part of PMIP4, but these have yet to be integrated into a global temperature field so revising the temperature estimate from

Annan and Hargreaves (2013) is a topic for future work.245

Interest in the mPWP (2.97–3.29 million years ago) as a more direct analogy for future climate change, has grown during the

past years. This is the most recent period with a sustained high level of greenhouse gases and concomitant warmth relative to

the pre-industrial period, however, the data are more sparse and uncertain. In Fig. 1–(b), the sea-surface temperature anomaly

of different climate models which performed a mPWP simulation is displayed, as well as the PRISM3 SST reconstruction

(Dowsett et al., 2009). Previous results for this period from the PlioMIP Pliocene Model Intercomparison Project (PlioMIP)250

experiment, which was part of PMIP3, indicated a fairly strong correlation between tropical temperature and climate sensitivity
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in the models, but the confidence with which this can be used to constrain climate sensitivity was low due to high uncertainty

in various observationally derived components as well as various compromises in the way the protocol was formulated (Har-

greaves and Annan, 2016). For the mPWP, a tropical temperature anomaly of 0.8 ± 1.6 K (5–95% interval) is taken from

Hargreaves and Annan (2016) for 30◦ S to 30◦ N, assuming the largest 5–95% uncertainty showed in that work. The recon-255

struction used here is the PRISM3 (Pliocene Research, Interpretation and Synoptic Mapping) SST anomaly field as described

in Dowsett et al. (2009).

The Last Interglacial (127 ka, referred as lig127k in CMIP6) and the mid-Holocene (6 ka) are part of the PMIP simulations

and also relatively warm climates. The forcings are, however, seasonal and regional in nature, mostly influencing the patterns

of climate change. The global change in temperature and the global climate forcing are both very small, and this coupled with260

the large uncertainty in paleoclimate data makes these intervals poor candidates for constraining climate sensitivity. We do not

explore these intervals further here.

Climate sensitivity has various definitions and there are also a number of different ways of approximating the value in

climate models that have not been run to equilibrium. For PMIP3 LGM the model values are mostly based on the regression

method of Gregory et al. (2004), but for the models which contributed to PMIP2 LGM and PlioMIP the exact definition and265

derivation used in each case is not always clear in the literature. In order to make comparisons with previous work, here we

use the same values as those used in Hargreaves et al. (2012), Schmidt et al. (2014) and Hargreaves and Annan (2016) with

two exceptions to ensure that only one value of sensitivity is used for identical versions of the same model across different

experiments. Specifically, for FGOALS-g2 we use the value of 3.37 K (Yoshimori, pers. comm.) for both PMIP3 LGM and

PMIP3 PlioMIP, and for HadCM3 we use 3.3 K (Randall et al., 2007) for both PMIP2 LGM and PMIP3 PlioMIP. Previous270

values used by Hargreaves and Annan (2016) for PMIP3 PlioMIP were 3.7 K for FGOALS-g2 (Zheng et al., 2013) and 3.1 K

for HadCM3 (Haywood et al., 2013). These changes are minor compared to the ensemble range of climate sensitivity and thus,

they have no significant effect on the posterior outputs.

In addition to the already published results from PMIP2 and PMIP3 we add to our ensembles the results that are currently

available from PMIP4 in section 3.3. While the LGM protocol (Kageyama et al., 2017) remains very similar to that in previous275

iterations of PMIP, the mPWP protocol (Haywood et al., 2016) has more significant differences which address several of the

limitations of the previous version. Most importantly, PlioMIP2 seeks to represent a specific quasi-equilibrium climate state in

the past rather than representing an amalgamation of different warm peak climates as had been the case for PlioMIP1. A priori

we are therefore less confident about combining the results from PlioMIP1 and PlioMIP2 and do so mostly to indicate where

the new models lie in the ensemble and to highlight the potential for future research in this area once more model results based280

on the PlioMIP2 protocol become available.

3 Applications and Results

In order to apply the Bayesian Linear Regression and compute the likelihood P (Ttropical|S)P (Ttropical|S∗), several priors

have to be established as initial conditions. Specifically, for both the LGM and the mPWP we use Eq. 3 as the basis for our
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likelihood function. The prior expectations of the three unknown parameters α, β and the standard deviation of the residual ε,285

referred to as σ, need to be defined. The relative complexity of the likelihood function with three a priori unknown parameters

requires the use of a sampling method for computational efficiency. In this study, we use the Markov Chain Monte Carlo

(MCMC) method NUTS as described by Hoffman and Gelman (2014). The NUTS method is also included in the MCMC

python package PyMC3 (Salvatier et al., 2016) which is applied here. Other MCMC methods which have been tested, such

as Metropolis sampling or Hamiltonian Monte Carlo, give equivalent The approach is alternatively described as a conjugate290

priors problem using the R package spBayes (Finley et al., 2013, 2014), described in Appendix A, and leads to similar results.

Depending on the strength of the correlation among the dataset, one could expect a sensitivity of the regression to the choice

of prior parameters. In the following sections, we first describe the physical arguments behind the choice of priors over α, β

and σ, and then present the outputs of the BLR for both the PMIP2 and PMIP3 dataset of the LGM and the PlioMIP1 dataset of

the mPWP. Then, we include the CMIP6 data in the BLR Bayesian framework for both paleo intervals, and present an approach295

of combining the two emergent constraints. Finally, we explore the sensitivity of the BLR Bayesian approach to the choice of

priors over the climate parameter of choice (i.e. the climate sensitivity) and to the hypothetical inadequacy of climate models.

3.1 The Last Glacial Maximum

From consideration of energy balance arguments and fundamental physical properties, such as the response of Earth to an

increase of CO2, we have a prior expectation of a relationship between sensitivity and global LGM temperature anomaly (e.g.300

Lorius et al., 1990), and model experiments of Hargreaves et al. (2007) as well as simple physical arguments about the spatial

distribution of forcing suggest that this relationship may be most clearly visible when we focus on the tropical region. While the

total negative forcing at the LGM is roughly twice as large as the positive forcing that would be caused by a doubling of CO2,

the temperature response at low latitudes is generally expected to be lower than the global mean, due to polar amplification and

the related presence of high latitude ice sheets. Thus we might reasonably expect the tropical temperature change at the LGM305

to be roughly equal to the global temperature rise under a doubling of CO2. It would also be unexpected if the correlation had

the opposite sign to that based on simple energy balance arguments, such that a more sensitive model had a lower temperature

change at the LGM. However we cannot justify imposing a precise constraint on the slope and therefore our choice of prior for α

isN(−1,1)N(−1,12). As for β, we expect the regression line to pass close to the origin, as a model with no sensitivity to CO2

would probably have little response to any other forcing changes, especially in the tropical region where the influence of ice310

sheets is remote. However, we do not expect a precise fit to the origin and therefore, the prior chosen for β is N(0,1)N(0,12).

Finally, we chose a wide prior for σ, a Half Cauchy with a scale parameter of 5. The Cauchy is fairly close to uniform for

values smaller than the scale parameter, decaying gradually for higher values.

Deviations from the regression line may be due to different efficacies of other forcing components, especially ice sheets or

dust. To take into account the uncertainty on the strength of the response, we performed two additional analyses where the315

prior response was smaller (α defined as N(−0.5,1)N(−0.5,12)) and larger (α defined as N(−2,1)N(−2,12)). We do not

see much difference in the results using the three priors over α: the difference is approximately 0.2 K of climate sensitivity for
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both the upper and lower percentiles quoted, giving us confidence in our choice of N(−1,1)N(−1,12). The computed 5–95%

posterior climate sensitivity ranges for different values of α are summarised in Table 2.

The MCMC algorithm samples the posterior distribution of regression parameters which is represented by the ensemble of320

predictive regression lines in Fig. 2. This ensemble is used to infer the climate sensitivity following the Bayesian inference

approach using the geological reconstruction of the LGM tropical temperature. The posterior distributions of S are computed

using a truncated-at-zero Cauchy prior with a peak of 2.5 and a scale of 3, which corresponds to a wide 5–95% prior interval

of 0.5–28.7 K. Such a prior was used previously by Annan et al. (2011) because it has a long tail, allowing for a substantial

probability of having high climate sensitivity while still maintaining some preference for more moderate values. Additionally,325

the Cauchy prior has a finite integral, unlike the uniform distribution (which is sometimes referred as an "improper prior" for

this reason). However, the sensitivity of Bayesian statistics to the choice of prior has often been noted. Thus, two alternative

priors, including the widely used uniform prior, and their corresponding posterior distributions, are investigated in Section 3.5.

To test the robustness of the method and also to compare it with the statistical methods used in previous studies, three cases

are investigated in which we use different combinations of the available model ensembles. The results are shown in Fig. 2 and330

Table 2.

For the PMIP2 ensemble, the correlation between tropical temperature and climate sensitivity was found to be reasonably

strong and in this study the resulting 905–95% range for inferred climate sensitivity is 1.0–4.5 K (Fig. 2–(b)). The range is

slightly better constrained at the lower end than the 0.5–4 K from Hargreaves et al. (2012), however we have used the revised

value for the LGM tropical anomaly of -2.2 ± 0.7 K rather than the value of -1.8 ± 0.7 K that was used by Hargreaves et al.335

(2012). The Bayesian-inferred value is similar to the OLS-inferred method with the revised version (Table 2), giving confidence

on the proximity of both methods in case of high correlation.

When all the models of PMIP2 and PMIP3 (see Table 1) were considered jointly the correlation became weaker and the

corresponding 5–95% range generated by the BLR Bayesian method is 0.7–4.8 K (Fig. 2–(d)). Schmidt et al. (2014) obtained

1.6–4.5 K using a similar ensemble although in that case multiple results obtained from the same modelling centre were com-340

bined by averaging. Using the OLS method on our ensemble we obtain 1.81.4–4.3.6 K. The BLR Bayesian method generates

a wider range here, particularly at the lower end, as the correlation is weaker and the prior starts to influence the posterior.

Finally, we consider the PMIP3 models in isolation. For this ensemble no correlation is found so for the BLR Bayesian

method the result is heavily dependent on our prior assumptions. We obtain a 5–95% range here of 0.7–5.5 K (Fig. 2–(f)).

Applying the OLS method on the PMIP3 dataset gives a 5–95% range of 2.2–4.71.3–5.6 K. As previously argued for the345

combination of PMIP2 and PMIP3, the OLS produces a tighter posterior range . It is also close to the at the lower end. In the

absence of a correlation, the Bayesian method relaxes to the prior, whereas the OLS method is heavily influenced by the range

of the initial ensemblebecause of the lack of correlation for this datasetensemble. However, we emphasise that this does not

suggest that either range is closer to reality.

The Kalman filtering approach presented by Bowman et al. (2018) has not previously been used for emergent constraint350

analyses in paleoclimate research. Thus, we also use this method to explore both PMIP2 and the combination of PMIP2 and

PMIP3 (Fig. 3). With the same geological reconstruction value, and a prior 5–95% range (based on the PMIP2 GCM ensemble)
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of 1.81.7–4.6.5 K, a posterior range of 1.3S of 1.8–4.6.1 K is inferred. By combining the PMIP2 and PMIP3 models, the prior

5–95% range becomes 2.0–4.5 K and the posterior range is 1.62.2–4.5.2 K. The increase in lower bound in these calculations

is the largest change compared to our Bayesian linear regression method. However, this is strongly forced by the underlying355

assumptions of a Kalman filter (Section 2.3) which uses the model ensemble as a prior, making it difficult to compute a

posterior range outside of the model range, in particular when the observed value is considered as excessively uncertain. Thus,

although the Kalman filtering method could be interesting, we do not consider it further, as we stipulate its assumptions are too

restrictive for the question of emergent constraints and therefore can not be a relevant method in its current form to efficiently

assess S and, in particular, its uncertainty.360

3.2 The mid-Pliocene Warm Period

As for the LGM, priors parameters have to be defined to perform the BLR with the mPWP data. In principle these may be

different to those used for the LGM experiment, since the total positive forcing of the mPWP is not as large as the negative

forcing of the LGM, but in practice we have adopted the same priors for our base case, apart from the obvious sign change for

α. Regarding the slope term α, the total positive forcing of the mPWP is not as large as the negative forcing of the LGM. There-365

fore, it seems reasonable to expect a roughly similar slope in the regression. We performed the same sensitivity experiments

as for the LGM, with three different priors over alpha: N(1,1), N(0.5,1), N(2,1)N(1,12), N(0.5,12), N(2,12). There was

only a small difference between the results using the three priors: the differences at the 5th percentile being less than than 0.1

K and the differences at the 95th percentile being approximately 0.3 K (see Table 2). Regarding β and σ, there is no physical

reason for them their priors to be substantially different than the ones chosen for the LGM. Indeed, although the mPWP is a370

warm climate, it should also be expected that there is little temperature change to other forcing if the climate sensitivity is null.

Thus, a N(0,1) N(0,12) prior for β is selected and the same prior for σ as for the LGM analysis is chosen.

The Bayesian inference method applied above for the LGM model outputs is now applied on the mPWP model outputs

(Fig. 4). With less abundant models and less well-constrained temperature data, we prefer to assume large uncertainties in the

mPWP SST reconstruction (0.8± 1.6 K, 5–95% confidence). We adopt the Cauchy prior on climate sensitivity as for the LGM375

analysis (5–95% interval of 0.5–28.7 K) and compute a 5–95% interval for the ECS of 0.5–5.0 K for the PlioMIP1 dataset.

Similar to the results for the LGM, the OLS method (Hargreaves and Annan, 2016) resulted in a slightly narrower 5–95% range

than the BLR Bayesian method (1.3–4.2 K, assuming 1.6 K of uncertainty on the data).

3.3 Inclusion of CMIP6 / PMIP4 data

The ongoing PMIP4 experiments have produced LGM and mPWP (PlioMIP2) simulations. Here we add those results to our380

ensembles. There are two model runs available for the LGM and three for the mPWP (see Table 2) on 1 May 2020.

For the LGM we have previously combined the PMIP2 and PMIP3 results, and the protocol for PMIP4 is not very different.

If we combine all three ensembles we obtain a 5–95% range for the ECS of 0.8–4.70.6–5.2 K using the BLR Bayesian method

(Fig. 5–(b)). The ensemble size is now 1618, but we note that this includes several models coming from the same modelling

centres. Past studies have investigated the proximity of models with hierarchical trees (Masson and Knutti, 2011; Knutti et al.,385
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2013) and the influence of their dependency on statistical methods (Annan and Hargreaves, 2017). Thus, although we believe

such dependencies exist in the ensemble, it is in reality difficult to quantify and correct for this. How to deal with this possible

duplication of information is therefore a subjective decision. In Schmidt et al. (2014) it was taken into account by averaging the

results from models from the same modelling centre. Here we take an alternative approach of including only the latest version

of each model. This gives an ensemble size of 9 models (Fig. ??–(a) ) and a rather well-constrained 11 models (Table 2) and a390

5–95% climate sensitivity range of 1.1–4.30.7–5.2K with the BLR method(Fig. ??–(b)). Bayesian method. The range here is

relatively wide and close to the range computed with the ensemble of PMIP2, PMIP3 and PMIP4. This is due to the removal

of almost all PMIP2 models in this restricted ensemble, which leaves mainly the poorly correlated PMIP3 ensemble and the

ensemble of PMIP4 together.

For PlioMIP PlioMIP1 and PlioMIP2 the situation is a little more complex as the protocol has been redesigned to represent395

a specific interglacial state rather than a generic warm climate, referred to as a "time slab" in the PlioMIP protocol. Thus there

could be a different regression relationship for these two ensembles. However, when we plot the PlioMIP1 ensemble members

(Fig. 5–(d)) we see that they do not look different to the PlioMIP2 ensemble members. The straight combination of PlioMIP1

and PlioMIP2 gives an ensemble range of 12 14 models and we computed a 5–95% range of 0.4–5.0 K(Fig. 5–(d)). 0.5–4.4 K.

Including only the most recent versions of models results in an ensemble size of 9 models (Fig. ??–(c) ) 11 models (Table400

2) and generates a merely nearly identical 5–95% climate sensitivity range of 0.4–5.1–4.5 K with the mPWP simulation(Fig.

??–(d)). Thus, for this period the inclusion of the PlioMIP2 models allows for a tighter constraint at the upper bound, much

aided by the larger spread of S in these new models.

3.4 Combining multiple constraints

As described in section 2.4, the mPWP and the LGM are very different climates. If the observational data are generated by405

unrelated analyses, we may be able to consider the two lines of evidence to be independent, and combine them using Bayes

theorem to create a new posterior which is likely to be narrower than that arising from either analysis alone. Assuming that

the uncertainties arising from the mPWP and the LGM analyses are independent of each other may be plausible as the proxy

reconstructions use different observations and analyses to estimate both the tropical temperatures and the other variables that

act as boundary conditions for the model experiments. Moreover, modelling uncertainties that influence the regression analysis410

are expected to arise from rather different sources, such as the response to ice sheets and a cold climate in one case, versus the

influence of a warmer climate in the other. Having said that, model biases influencing the simulation of one climate change

may also influence the other, which means that if similar models occur in both ensembles, this could lead to dependencies.

Using Bayes theorem to combine the constraints means that it is not necessary for the same set of models to be used for each

ensemble but, as we can see from Table 1, a few models do occur in both ensembles.415

It is straightforward to first compute the posterior estimate of S from the LGM analysis as previously described, and then

use this as a prior for the mPWP analysis. Priors over the regression coefficients are considered independent between the two

analyses. Because of the issues discussed above, we perform an analysis using both ensembles of latest model versions in the
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LGM and the mPWP as described in section 3.3. The posterior of the LGM is used as the prior for the mPWP analysis and the

resulting posterior from this process has a narrower 5–95% interval for S of 1.1–3.90.8–4.0 K (Fig. 6).420

A logical extension of the approach would be to apply it to the ensemble of models of CMIP, where multiple emergent

constraints exist for the same models. In theory, this should be possible as long as the investigated relationships are physically

plausible. This goes beyond the scope of our study, which uses the paleoclimates as an example for the method, and is left for

future research.

3.5 Alternative Priors on sensitivity425

A major strength of the Bayesian analysis developed here is the way that the prior on the parameter of interest, here climate

sensitivity, can easily be specified independently of all other aspects of the analysis. A uniform prior for S has been widely

used (e.g. Tomassini et al., 2007; Aldrin et al., 2012). However, it has also been argued that such prior could give an unreal-

istically high probability weight to high climate sensitivity (Annan and Hargreaves, 2011). Here we test our method with the

commonly-used uniform prior U[0;10] which has a 5–95% range of 0.5–9.5 K. The resulting posterior 5–95% range for climate430

sensitivity is 0.8–5.0 K when analysing the LGM PMIP2 models only, and 0.6–5.4 K with the LGM PMIP2 and PMIP3 mod-

els together. These posteriors are wider than the ranges previously computed with a Cauchy prior, particularly for the case of

combining PMIP2 and PMIP3 where the correlation is rather weak, meaning that in which case the prior has a relatively higher

influence. These results are shown in Fig. 7. Due to the questions which have arisen over the use of a uniform prior and the fact

that it has an infinite integral, unless bounded arbitrarily as done here, we also perform a comparison with an alternative prior435

which features a decaying tail and a finite integral. For this purpose, a Gamma prior is chosen with a shape parameter of 2 and a

scale of 2, which corresponds to a similar 5–95% prior range of 0.7–9.5 K. The posterior computed 5–95% range is 1.0–4.5 K

for LGM PMIP2 models and 0.9–4.8 K for the combination of PMIP2 and PMIP3, which is very close to the one computed

with the Cauchy prior. Although the Bayesian paradigm will inevitably involve such subjective choices, the sensitivity of the

results to a sensible choice of prior appears to be low as long as a reasonable correlation exists in the ensemble.440

3.6 Model Inadequacy

As previously explored and described by Williamson and Sansom (2019), we investigate the probability that all models deviate

in a systematic way from reality to a certain extent, mainly because of computational limitations and their shared technical

heritage. Statistically, this issue is best described by the terminology that while the models are considered ‘exchangeable’ with

each other, they are not exchangeable with reality. Williamson and Sansom (2019) provide further discussion on this point. In445

our methodology, this can simply be accounted for by considering that the regression prediction of S for reality has a larger

residual than that arising for the models themselves:

T t
tropical = α×St +β+ ε∗, (7)

where the superscript t indicates here that we are referring to the truth (i.e. the real climate system) and ε∗ has the distribution

N(0,σ∗) for some σ∗ > σσ∗2) for some σ∗2 > σ2. There can be various reasons why such an inadequacy, represented as ε∗ in450

14



Eq. 7, may be thought to exist. Models all share a common heritage and theoretical basis, which is certainly incomplete even if

not substantially wrong, and computational constraints limit their performance. Particularly in the paleoclimate context, there

may be biases in the experimental protocol and differences in number of feedbacks included in the different model systems,

e.g. interactive vegetation and prognostic dust. Such errors would lead to reality being some distance from the model regression

line, even if the models were otherwise perfect. Such issues are pertinent relevant to both the LGM, where there are significant455

uncertainties relating to dust and vegetation effects, and the mPWP where even the GHG forcing is somewhat uncertain, and

furthermore where the older simulations are designed as a general representation of interglacial warm periods rather than a

specific quasi-equilibrium climate state.

However, while we may anticipate reality deviating further from the regression line, it is difficult to quantify such deviation.

Here, we perform two sensitivity tests where we define σ∗ = 2σσ∗2 = (2σ)2, that is to say the distribution for the residual term460

ε∗ is defined as N(0,2σ) (2σ)2) for our predictions. We consider that this corresponds to a rather large inadequacy term. To

compare with our previous analysis, we investigate the effect of the model inadequacy using the data set of PMIP2 and PMIP3

combined for the case of the LGM, and the data set of PlioMIP1 for the case of the mPWP, and present them in Fig. ??.. For

the LGM, the 5–95% posterior range computed after doubling σ is 0.5–5.8 K(Fig. ??–(b)), while the 5–95% posterior range

for the mPWP is 0.5–5.4 K(Fig. ??–(d)). . When we consider the ‘latest model version’ approach outlined in Section 3.3 and465

take the same approach of doubling the estimated residual, the 5–95% posterior ranges increase to 0.7–5.10.5–6.3 K for the

LGM and a 5–95% posterior range of 0.4–5.7.0 K for the mPWP. Thus these sensitivity tests typically add involve a change of

around half a degree to the upper bound obtained, while having much less influence on the lower bounds in these examples.

4 Conclusions

Past climates are relevant sources of information on the properties of the climate system, specifically the equilibrium climate470

sensitivity, due to the quasi-equilibrium changes in response to external forcing, which are of similar magnitude to the projected

future climate changes. In this study, we have described a new statistical method based on Bayesian inference to approach the

question of emergent constraints. We believe this method provides a reasonable representation within the Bayesian paradigm

of the underlying structure of emergent constraint principles. This Bayesian method is designed to be as explicit and flexible

as possible. Previous work using Ordinary Least Squares ordinary least squares usually applied implicit assumptions. Because475

of these assumptions, OLS tends to generate tight posterior ranges, particularly on the lower end and when the correlation is

rather weak; something that may well be regarded an artifact of using OLS.

By applying the method to the LGM tropical temperature model ensemble used in Schmidt et al. (2014), which included 14

models from the PMIP2 and PMIP3 generations, we estimate the climate sensitivity to be 2.6 K (0.7–4.8, 5–95 percentiles).

Similarly, applying the method to the mPWP tropical temperature data set of Hargreaves and Annan (2016) gives a climate480

sensitivity of 2.4 K (0.5–5.0), but with the more uncertain ensemble of models which contributed to PlioMIP1.

With the new generation of climate models, the LGM and mPWP analyses have been widened by the addition of several

CMIP6 model outputs. By adding the PMIP4 LGM simulations, we computed a 5–95% interval for climate sensitivity of 0.8–
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4.70.6–5.2 K. We performed the same analysis by combining PlioMIP1 and PlioMIP2 models and obtained a 5–95% interval of

0.4–5.00.5–4.4 K. However, these results come with some caveats attached. In particular, combining the two model generations485

of the mPWP could lead to biased results, since the experimental protocol substantially changed in PlioMIP2. An alternative

approach is to consider solely the latest version of each model. By doing this we reduce expected redundancy in the ensemble,

and so improve our confidence in the result, despite the smaller ensemble sizes. This leads to a more tightly-constrained

similarly constrained climate sensitivity of 2.7 (1.1–4.30.6–5.2 5–95%) for the LGM simulations, and a less well-constrained

sensitivity 2.4 2.3 (0.4–5.1–4.5, 5–95%) for the mPWP simulations. Our experiment considering a substantial model inade-490

quacy term resulted in an increase of up to a degree in the upper bounds presented here, though this aspect is as yet poorly

understood and quantifiedAlthough most of the computed ranges are wider than the ranges obtained with both OLS or Kalman

filtering, the Bayesian framework avoids the underlying assumptions of both methods and in particular, makes us regard the

Kalman filtering approach in its current form as too restrictive for the question of emergent constraints.

Our Nevertheless, our results obtained by analysing the LGM or the mPWP in isolation are broadly consistent with results495

obtained by other statistical methods used in previous studies. The differences between the way the information is obtained

from the paleo record for the mPWP and the LGM and the different dominant climate features of the intervals suggest it may

be reasonable to consider these estimates to be statistically independent, given climate sensitivity. It is then possible to combine

them within the same Bayesian framework to compute a narrower range of climate sensitivity. By doing so, we evaluated the

climate sensitivity to be 2.6 K (1.1–3.92.5 K (0.8–4.0, 5–95%). NeverthelessHowever,this approach requires independence500

between the different combined emergent constraints.

It is, in principle, straightforward to include other independent emergent constraints into our Bayesian framework. As well

as evidence from historical or present day analyses, other past climates are starting to be explored by modellers and may be

potential candidates for future analyses, such as the Eocene, the Miocene and the last deglaciation. Over the next couple of

years we expect new outputs for models from CMIP6 and new data analyses to become available, which will enable these505

preliminary analyses to be compared with results from expanded LGM and mPWP ensembles and improved data estimates.

Code and data availability. The Python codes used for the different statistical methods are available from the Bolin Centre Code Repository

at https://git.bolin.su.se/bolin/renoult-2020 (https://doi.org/10.5281/zenodo.3838204). The data of the PMIP2 models can be obtained by

asking the corresponding modelling groups. The data of the PMIP3 and CMIP6 models can be downloaded from the ESGF Portal at CEDA,

located at https://esgf-index1.ceda.ac.uk/. The data of the PlioMIP1 models can be downloaded from Redmine at the School of Earth and510

Environment of the University of Leeds, located at https://www.see.leeds.ac.uk/redmine/public/. For username and password, email Alan

Haywood (a.m.Haywood@leeds.ac.uk). The PRISM3 SST reconstruction can be downloaded from the PRISM/PlioMIP web page, located

under “Experiment 1 AGCM version 1.0, Preferred Data” at http://geology.er.usgs.gov/egpsc/prism/prism_1.23/prism_pliomip_data.html,

files PRISM3_SST_v1.1.nc and PRISM3_modern_SST.nc. The LGM SAT geological reconstruction can be downloaded from the Supple-

mentary material of Annan and Hargreaves (2013), currently located at http://www.clim-past.net/9/367/2013/cp-9-367-2013-supplement.zip.515

For data of CMIP6 models which are not yet published on ESGF, please refer to the corresponding modelling groups.
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(a)

(b)

Figure 1. Latitudinal distribution of temperature changes relative to pre-industrial for both simulated climates for various climate models and

a proxy reconstruction. Dashed lines are models of the CMIP5 generation, while thick solid lines are models from the CMIP6 generation. All

model distributions correspond to 100-year zonal averages when possible; certain CMIP5 PlioMIP1 models were averaged over 30 years. (a),

SAT change of the LGM. The thicksolid black line is a wide multi-proxy ensemble proxy reconstruction taken from Annan and Hargreaves

(2013). (b), SST change of the mPWP. The thicksolid black line is the wide multi-proxy ensemble proxy reconstruction PRISM3 described

by Dowsett et al. (2009).
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Table 1. Models, tropical temperature (Ttropical) outputs and Climate Sensitivity (S) used in this study

Experiment Figure reference Model T ∗
tropical S S Reference

PMIP2 LGM 1 MIROC -2.70 -2.75 4.0 K-1 Model Developers (2004)

PMIP2 LGM 2 IPSL -2.73 -2.83 4.4 Randall et al. (2007)

PMIP2 LGM 3 CCSM -2.16 -2.12 2.7 Randall et al. (2007)

PMIP2 LGM 4 ECHAM -3.18 -3.16 3.4 Randall et al. (2007)

PMIP2 LGM 5 FGOALS -2.42 -2.36 2.3 Randall et al. (2007)

PMIP2 LGM 6 HadCM3∗∗ -2.73 -2.77 3.3 Randall et al. (2007)

PMIP2 LGM 7 ECBILT∗∗ -1.37 -1.34 1.8 Goosse et al. (2005)

PMIP3/CMIP5 LGM 8 CCSM4∗∗ -2.56 -2.6 3.2 Andrews et al. (2012)

PMIP3/CMIP5 LGM 9 IPSL-CM5A-LR∗∗ -3.46 -3.38 4.13 Andrews et al. (2012)

PMIP3/CMIP5 LGM 10 MIROC-ESM -2.41 -2.52 4.67 Sueyoshi et al. (2013)

PMIP3/CMIP5 LGM 11 MPI-ESM-P -2.58 -2.56 3.45 Andrews et al. (2012)

PMIP3/CMIP5 LGM 12 CNRM-CM5∗∗ -1.68 -1.67 3.25 Andrews et al. (2012)

PMIP3/CMIP5 LGM 13 MRI-CGCM3∗∗ -2.80 -2.82 2.6 Andrews et al. (2012)

PMIP3/CMIP5 LGM 14 FGOALS-g2∗∗ -3.15 3.37 Yoshimori, pers. comm.1

PMIP4/CMIP6 LGM 24 MPI-ESM1.2-LR∗∗ -2.06 3.01 Mauritsen et al. (2019)

PMIP4/CMIP6 LGM 25 MIROC-E2L∗∗ -2.23 2.66 Hajima et al. (2020)

PMIP4/CMIP6 LGM 26 INM-CM4-8∗∗ -2.43 1.81 This study

PMIP4/CMIP6 LGM 27 AWI-ESM-1-1-LR∗∗ -1.75 3.61 This study

PMIP3/CMIP5 PlioMIP1 15 CCSM4∗∗ 1.03 3.2 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 16 IPSLCM5∗∗ 1.33 3.4 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 17 MIROC4m∗∗ 1.99 4.05 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 18 GISS ModelE2-R 1.16 2.8 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 19 COSMOS∗∗ 2.18 4.1 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 20 MRI-CGCM2.3∗∗ 1.15 3.2 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 21 HadCM3∗∗ 1.93 3.3 Randall et al. (2007)

PMIP3/CMIP5 PlioMIP1 22 NorESM-L 1.45 2.1 Haywood et al. (2013)

PMIP3/CMIP5 PlioMIP1 23 FGOALS-g2∗∗ 2.14 3.37 Yoshimori, pers. comm.1

PMIP4/CMIP6 PlioMIP2 26 28 GISS-E2-1-G∗∗ 0.92 2.6 This study

PMIP4/CMIP6 PlioMIP2 27 29 IPSL-CM6A-LR∗∗ 2.12 4.50 This study

PMIP4/CMIP6 PlioMIP2 28 30 NorESM1-F∗∗ 1.37 2.29 Guo et al. (2019)

PMIP4/CMIP6 PlioMIP2 31 CESM2∗∗ 3.5 5.3 Gettelman et al. (2019)

PMIP4/CMIP6 PlioMIP2 32 EC-EARTH3.3∗∗ 2.94 4.3 Wyser et al. (2019)

*For the LGM simulations (generations PMIP2, PMIP3 and PMIP4), the tropical average was defined between 20◦ S and 30◦ N, where the correlation was

computed as the highest with climate sensitivity (Hargreaves et al., 2012). For the mPWP simulations (generations PlioMIP1 and PlioMIP2), the tropical average

was defined between 30◦ S and 30◦ N (Hargreaves and Annan, 2016). All temperature values are defined as changes compared to pre-industrial. **Latest version

of a model that was kept for the approach described in Section 3.3.
1Calculated using the Gregory method on 150 years of output making it consistent with the values of Andrews et al. (2012).
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Table 2. Summary of the methods and computed posterior sensitivities.

Experiment Method∗ 5–95% prior (K) 5–95% T o
tropical (K) Median (K) 5–95% posterior (K)

LGM PMIP2 BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.7 1.0–4.5

LGM PMIP2 BLR BF Gamma prior 0.7–9.5 -2.9 – -1.5 2.6 1.0–4.5

LGM PMIP2 BLR BF Uniform prior 0.5–9.5 -2.9 – -1.5 2.7 0.8–5.0

LGM PMIP2 OLS predicted CS n/a -2.9 – -1.5 2.8 1.51.0–4.1 .5

LGM PMIP2 Kalman filter 1.81.7–4.6 .5 -2.9 – -1.5 2.9 1.31.8–4.6 .1

LGM PMIP2 BLR BF α prior mean=-2 0.5–28.7 -2.9 – -1.5 2.7 1.0–4.4

LGM PMIP2 BLR BF α prior mean=-0.5 0.5–28.7 -2.9 – -1.5 2.7 0.9–4.6

LGM PMIP2+PMIP3 BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.6 0.7–4.8

LGM PMIP2+PMIP3 BLR BF Gamma prior 0.7–9.5 -2.9 – -1.5 2.6 0.9–4.8

LGM PMIP2+PMIP3 BLR BF Uniform prior 0.5–9.5 -2.9 – -1.5 2.7 0.6–5.4

LGM PMIP2+PMIP3 OLS predicted CS n/a -2.9 – -1.5 3.0 1.81.4–4.3 .6

LGM PMIP2+PMIP3 Kalman filter 2.0–4.5 -2.9 – -1.5 3.1 3.2 1.62.2–4.5 .2

LGM PMIP2+PMIP3 BLR BF α prior mean=-2 0.5–28.7 -2.9 – -1.5 2.6 0.8–4.7

LGM PMIP2+PMIP3 BLR BF α prior mean=-0.5 0.5–28.7 -2.9 – -1.5 2.6 0.7–4.8

LGM PMIP2+PMIP3 BLR BF Model inadequacy 0.5–28.7 -2.9 – -1.5 2.8 0.5–5.8

LGM PMIP3 BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.8 0.7–5.5

LGM PMIP3 OLS predicted CS n/a -2.9 – -1.5 3.4 2.2–4.7 1.3–5.6

LGM PMIP2+PMIP3+PMIP4 BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.7 0.8–4.7 0.6–5.2

LGM "Latest" models BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.7 1.1–4.3 0.7–5.2

LGM "Latest" models BLR BF Model inadequacy 0.5–28.7 -2.9 – -1.5 2.7 2.8 0.7–5.1 0.5–6.3

mPWP PlioMIP1 BLR BF Cauchy prior 0.5–28.7 -0.8 – 2.4 2.4 0.5–5.0

mPWP PlioMIP1 BLR BF α prior mean=2 0.5–28.7 -0.8 – 2.4 2.4 0.5–4.8

mPWP PlioMIP1 BLR BF α prior mean=0.5 0.5–28.7 -0.8 – 2.4 2.4 0.5–5.1

mPWP PlioMIP1 BLR BF Model inadequacy 0.5–28.7 -0.8 – 2.4 2.5 0.5–5.4

mPWP PlioMIP1+PlioMIP2 BLR BF Cauchy prior 0.5–28.7 -0.8 – 2.4 2.4 2.3 0.4–5.0 0.5–4.4

mPWP "Latest" models BLR BF Cauchy prior 0.5–28.7 -0.8 – 2.4 2.4 2.3 0.4–5.1 –4.5

mPWP "Latest " models BLR BF Model inadequacy 0.5–28.7 -0.8 – 2.4 2.5 2.4 0.4–5.7 .0

mPWP and LGM, "Latest" models BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.6 2.5 1.1–3.9 0.8–4.0

mPWP and LGM, with CMIP6 BLR BF Cauchy prior 0.5–28.7 -2.9 – -1.5 2.5 2.4 0.80.7–4.1

*BLR: Bayesian Linear Regressionframework . OLS: Ordinary Lleast Ssquares. Truncated-at-zero Cauchy prior: peak=2.5, scale=3. Gamma prior: peak=2, scale=2. Uniform prior: bounded

0–10. The "Latest" models ensembles are those created from the most recent versions of each model (see Section 3.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. LGM northern tropical (20° S–30° N) temperature versus climate sensitivity for the PMIP2 and PMIP3 models. On the left,

predictive regression lines sampled with the MCMC method. On the right, corresponding posterior climate sensitivity computed with a

Cauchy prior and inferred from a geological reconstruction taken from Hargreaves et al. (2012). (a) and (b), analysis done on the PMIP2

dataset; (c) and (d), analysis done on the PMIP2 and PMIP3 combined dataset; (e) and (f), analysis done on the PMIP3 dataset. The numbers

on each point refer to the models used as listed in Table 1.
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Figure 3. LGM northern tropical (20° S–30° N) temperature versus climate sensitivity of the PMIP2 and PMIP3 models. The Kalman

filtering is applied on the ensemble of both PMIP2 and PMIP3. The numbers on each point refer to the models used as listed in Table 1.
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(a) (b)

Figure 4. mPWP tropical (30° S–30° N) temperature versus climate sensitivity of the PlioMIP1 models. (a), predictive regression lines

sampled with a MCMC method. (b), corresponding posterior climate sensitivity computed with a Cauchy prior and inferred from a geological

reconstruction taken from Dowsett et al. (2009). The numbers on each point refer to the models used as listed in Table 1.
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(c) (d)

(a) (b)

Figure 5. Inclusion of the CMIP6 models into the Bayesian method for the LGM and the mPWP. (a), LGM northern tropical (20° S–30°

N) temperature versus climate sensitivity of the PMIP2, PMIP3 and PMIP4 models and (b), inferred climate sensitivity. (c), mPWP tropical

(2030° S–30° N) temperature versus climate sensitivity of the PlioMIP1 and PlioMIP2 models and (d), inferred climate sensitivity. For both

inferences, the prior used is a Cauchy distribution defined with a peak of 2.5 and a scale of 3. The numbers on each point refer to the models

used as listed in Table 1.
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Figure 6. Posterior distribution of climate sensitivity computed with a Cauchy prior by combining two assumed independent emergent

constraints. The method does not explicitly use both posteriors of the LGM and the mPWP, but use the LGM posterior as the mPWP prior.

However, the resulting combined posterior will usually be narrower than the two independent posteriors. For the LGM, the posterior is

computed by using the latest model versions of PMIP, including PMIP4. For the mPWP, the posterior is computed by using the latest model

versions of PlioMIP, including PlioMIP2.
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(a) (b)

Figure 7. Posterior distributions computed with different priors and dataset. (a), posteriors computed with the PMIP2 dataset (strong corre-

lation). (b), posteriors computed with the PMIP2 and PMIP3 dataset combined (weak correlation). The Cauchy prior is defined with a peak

of 2.5 and a scale of 3; The Gamma prior is defined with a peak of 2 and a scale of 2; The Uniform prior is bounded between 0 and 10.
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Appendix A: Conjugate priors approach

In section 3, we introduce the NUTS Markov Chain Monte Carlo method, used with the Python package PyMC3 (Salvatier

et al., 2016) to compute the posterior distributions of α, β and σ and obtain the likelihood P (Ttropical|S). However, the

likelihood model of the Bayesian Linear Regression is defined as Ti ∼N(α×Si+β,σ
2), where (Ti,Si) is the Ttropical and S670

of the i models. Thus, it is possible to choose conjugate priors in this specific case of emergent constraints to avoid using the

complex Hamiltonian-based NUTS method. We show here that both approaches lead to similar results.

For the case of the mPWP, we defined the priors α∼N(1,12), β ∼N(0,12) and σ ∼HalfCauchy(Scale= 5). Changing

the prior σ to another family of distribution, such as σ ∼ InvGamma(Shape= 1.5,Rate= 1) leads to a conjugate problem

and allows to generate a well-defined form for the posterior distributions of these parameters, while giving a relatively good675

approximate of the original Half Cauchy prior. To illustrate this approach, we use the R implementation bayesLMConjugate

(where LM stands for Linear Model) of the package spBayes. Running the code is significantly faster than the use of a MCMC

method, and both posterior outputs are compared in Fig. A1. The differences between both methods is minimal with respect to

the range of the posterior parameters and can be attributed to natural variability and differences between the Half Cauchy and

Inverse Gamma prior. Thus, both approaches lead to similar estimates of posterior S when they are inserted in the likelihood of680

the Bayesian updating process. If we take the full ensemble of PlioMIP1 and PlioMIP2 models simulating the mPWP, and using

the posterior distributions of α, β and σ from the conjugate prior method, we estimate a 95% S of 2.3 K (0.4–4.6), compared

to a value of 2.3 K (0.5–4.4) obtained with NUTS. For the case of the LGM PMIP2, PMIP3 and PMIP4, the conjugate prior

generates a 95% estimate of 2.8 K (0.9–4.9) while we obtain 2.7 K (0.6–5.2) with NUTS.

Although the choice of conjugate priors would simplify the computation, NUTS (or MCMC methods in general) have the685

advantage of allowing an explicit and flexible choice of priors for the users. Having such flexibility is a vital element for the

analysis presented in this paper. The example taken here to illustrate the Bayesian framework, i.e. the relationship of Ttropical

and S is a simple linear regression problem. However, we stipulate that such framework could be used in more complex cases,

such as higher complexity emergent constraints relationships, where the use of MCMC methods would become essential.
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Figure A1. Posterior distributions of the three parameters α, β and σ for the case of the combined PlioMIP1 and PlioMIP2 simulating the

mPWP. A re-sample of 4 chains of the MCMC method NUTS (in blue) is compared to the conjugate priors approach (in orange). Some

differences can be seen due to natural variability and differences on the prior of σ, but they result in only small differences on the computed

posterior S∗
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