
Answer to Anonymous Referee #2


We thank Referee #2 for pointing out sections of the paper that require clarification and providing 
suggestions and constructive criticism for improvements. In the following text, we answer all the 
points discussed by Referee #2, where Referee comments are written as R: and authors 
comments are written as A:.


R: The paper by Renoult et al presents a new Bayesian method for dealing with emergent 
constraints for estimating climate sensitivity from palaeoclimate model simulations. I have little 
expertise in the use of emergent constraints so I will concentrate my comments on the statistical 
methodology used. For such a simple approach they have made their technique remarkably 
opaque. For this reason it is hard to recommend an editorial decision for this paper - I will leave it 
up to the other reviewers to determine novelty and suitability for this journal. However I think there 
needs to be a considerable improvement in the explanation of the mathematical approaches.


If we start with the OLS method, we have a data set Si,Ti, for i = 1,...,n simulators where we use 
the model:

Si = α ∗ Ti + β + ε 

And obtain estimates of alpha, beta, and the residual standard deviation sigma. A user comes 
along and provides us with a new value T∗ and we obtain S∗ from the fitted model. Uncertainty 
arises from the potential uncertainties in the estimates of the parameters, and the choice of 
whether prediction or confidence intervals are used.

So far so good. The authors point out that the Bayesian approach is often superior to these 
traditional models because of its more sensible handling of uncertainty and the allowance of 
brining in external information in the form of prior distributions. I agree totally.

Unfortunately here is where things get a little more confusing. The authors then state that the 
model they want to fit is:

p(S|T ) = p(T |S)p(S)/p(T ),

i.e. a standard application of Bayes’ theorem which provides us with a posterior distribution of S 
given T. This is where the notation starts to get into a bit of a mess, because now we’re not told 
where the observations fit in to the model. My guess is that what the authors mean in the above 
equation (using my notation) is actually:

p(S ∗ |T ∗) = p(T ∗ |S∗)p(S∗)/p(T ∗)

Where the likelihood p(T*|S*) is actually integrated over the posterior set of parameters

from a new linear regression model

Ti = γ ∗ Si + δ + γ

Where I’ve named these new slopes/intercepts differently to highlight the different from

the previous OLS approach.

This is a more complicated model, and most of has come from guesswork because the authors 
haven’t provided enough information for me to work out exactly what is happening. I’d really 
appreciate the authors doing (the quite large job) of either clearing up their maths or making sure 
that my incorrect assumptions are not made by others.


A: We agree with Reviewer 2, as it led to some confusions also pointed out by Short Comment #2. 
The description of the model(s) by Reviewer #2 is, however, completely accurate and we thank 
them for giving us insights on how to clarify our study. 

Indeed, the likelihood is built as an integration over the parameters alpha, beta and epsilon. 
Therefore, the computation of the likelihood, and the updating of the prior, actually calls two 
different Bayesian processes. 


Following the notations of Reviewer 2, the model could be written as:

- The likelihood is a regression model defined by T = γS + δ + ε with the triple of uncertain 

parameters (γ, δ, ε) which are conditioned on the model ensemble, where T and S are 
respectively the temperature and sensitivity of a given climate model. Consequently, the 
likelihood p(T* | S*) for a given S* is an integration over the S* posterior distribution of T* 
predicted by this regression relation (convolved with observational uncertainty), (γ, δ, ε), 
conditioned on the model ensemble, where T* represents the observed (geological) value.


- The Bayesian updating of S corresponds then to:

	 p(S* | T*) = p(S*) * p(T* | S*)




As accurately described by Reviewer 2, the computation of the likelihood here does not take 
place within the computation of the emergent constraints model, but forms part of the Bayesian 
updating, which uses the emergent constraints model.


The notation in the paper will be revised and more clarifications and description of the two stages 
of the process will be added. 


R: The paragraph in the intro which starts "Two recent papers have also addressed. . .” makes 
some odd statements about KFs. It points out that everything is Gaussian then states that “it is 
fairly difficult to generate posterior values which are outside of the prior range”. This seems 
surprising if everything is Gaussian. I haven’t read the other paper so perhaps explain more 
clearly?


A: The words we used here were likely too vague. It is true that posterior values could lie outside 
the prior range. However, it is usually difficult if the observed value is rather uncertain and/or close 
to the prior mean (which is the case here). We should have rather said that most of the posterior 
values are generally within the prior range, and this will be clarified in the revised paper. 


We suggest the following correction:


“In particular, most of the posterior values would lie in the range covered by the ensemble of 
models if the observed value is either uncertain and/or close to the prior mean. This is a direct 
consequence of the joint probability distribution produced by the Kalman filter, which in the case 
of joint Gaussian distributions, will produce a tighter posterior Gaussian distribution.”


R: The first sentence in the methods section involves, a load of unnecessary commas, which, in 
my view, makes the sentence, and hence, the definition, of the key concept, of emergent 
constraints, very hard to understand. There must be a simpler way of writing it.


A: This sentence will be clarified to make it easier to understand. 


We suggest the following:


“The general method of “emergent constraints” seeks a physically plausible relationship in the 
climate system between two model variables in an ensemble of results from different climate 
models. Consequently, an observation of one measurable variable (such as past tropical 
temperatures) could be used to better constrain the other investigated variable, usually 
unobserved and difficult to measure (such as climate sensitivity).”


R: Also in that sentence it says ‘. . .’then an observation . . .’. An observation of what?


A: Here we refer to any kind of measurable quantity in the climate system. For instance, an 
“observation”, or shall we say a measure of the past temperature of the LGM. This will be made 
more explicit (see suggestion above).


R: L95 should be N(0, σ2) to match standard notation. This mistake is made throughout. There’s 
similarly a bizarre use of ∈ from set theory to write ε ∈ N(0,σ) which I think should be ε ∼ N(0,σ2) 
everywhere.


A: We argue here that σ2 could be confusing in some cases, as it implies the user to take the 
square root to know what σ is, which could make it difficult to estimate 2*σ range, or how many σ 
lies within a certain range. To match standard notation, we will explicitly write the variance as σ^2, 
i.e. if N(m, 0.5^2) rather than computing it as N(m, 0.25).

For the use of ∈, this will be changed to ∼.


R: There seems to be a kind of deeper issue that perhaps should be mentioned somewhere that 
these regression approaches really should involve measurement error (separate from model error 
as in the Williamson/Samson) paper. The literature on this is well-developed and is pretty easy to 
include in Bayesian models.




A: This is indeed a relevant point that will be mentioned in the text. We have in fact accounted for 
observational uncertainty in the natural way in the likelihood, although this was not clearly 
described in the text.

For the linear regression, it is true that uncertainties exist on S and T of the models, and should, in 
theory, be included in the Bayesian Linear Regression. However, these uncertainties come from 
computation methods and are in general very small. For instance, we estimate the measurement 
error on S to be close to 5% of each value and this is small compared to other uncertainties. In 
particular, observational errors on S and T from models are small compared to the structural 
differences that are responsible of the dispersion of the points around the regression line. This 
point was argued in Hargreaves and Annan (2016) regarding the use of S and T of the mid-
Pliocene, where the errors were shown to be small enough to be ignored without a significant 
impact on the outputs. 

Additionally, the strength of the Bayesian Linear Regression is that it does not create a single 
“best” line, but multiple lines that include all these uncertainties. For instance, it is very likely that 
multiple lines are already drawn within the range of measurement error of each model. 
Consequently, we expect the posterior outputs to display variations which could be much less 
than 0.5 K on both percentiles combined.


R: L158 the use of sequential updates appears for the first time but I can’t really see why this is 
relevant or used elsewhere?


A: Removed “sequentially”.


R: The Kalman filter method seems like a really important rival approach but despite being given a 
full subsection 2.3 this only has one paragraph and no mathematical definition. It would be nice to 
be able to compare the approaches more clearly


A: The paragraph about the Kalman filter will be extended to give more details, as also requested 
by Reviewer #1. However, we do not consider the Kalman filter presented here, i.e. a one-step 
Kalman filter, as an important rival approach, as we state using the climate model ensemble as a 
prior is in our opinion too strongly restrictive for the question of emergent constraints. We will 
emphasise this latter point.


R: PlioMIP appears in L200 without being mentioned before


A: Corrected.


R: There really is very little need to use a complex Hamiltonian Monte Carlo method like NUTS on 
a simple linear regression problem. With a small change in prior from Cauchy to Inv-Gamma the 
whole problem would become conjugate and could be done exactly on a pocket calculator.


A: There are (at least) three reasons behind the choice of NUTS. The first one is that we consider 
the Python package PyMC3 explicit and well-described, even for users without statistical 
background. Thus, using the by-default methods of PyMC3 such as NUTS allow future users to 
have access to a wide range of online help. The second reason is that the method presented in 
this study aims at being used in a wider context, i.e. more complex regression problems. The third 
reason is that using NUTS actually avoids using conjugate priors. We believe that adding more 
mathematical restrictions on the forms of prior would make the problem less relatable to reality 
where prior choices may be physically motivated.


R: L270 the posterior distributions of what?


A: Posterior distribution of S (sensitivity). Will be corrected (and other mentions thereafter).


R: L273 and elsewhere. There are some weird mentions about Cauchy distributions having a finite 
integral whilst Uniform distributions do not. This makes no sense to me (the Uniform is only an 
improper prior if it has infinite limits). None of this is referenced so needs clarifying.


A: This will be removed as it, indeed, makes little sense in the context.



