This document combines the published responses we made to our two reviewers, and the additional author comment we made available. We also include the “tracked changes” manuscript text and the “tracked changes” supplementary text.

We thank the Editor for the remaining comment regarding the comparison of different datasets for calculating pre-industrial anomalies. We had showed an additional comparison in our response to reviewer 2: we agree with the Editor that this would be well placed within the manuscript, and have included as an expanded Supplementary Figure 7.

In addition to addressing the reviewer’s comments we identified some minor errors during the editing process which have also been corrected (e.g. the numbering of graphics in the Supplemental). These edits are all visible in the “tracked changes” document.
Author comment

We thank both reviewers for their positive reviews and constructive comments. We have replied to each of their concerns in the accompanying replies.

Here we wish to provide two further updates to the manuscript, linked to the ongoing modelling efforts as part of the PlioMIP2 initiative.

(1) Since the submission of our manuscript, an error in the calculation of the sea surface temperature anomaly (SSTA) in the NorESM model was identified. This has been corrected in the revised manuscript. The EC-Earth3.1 model was also withdrawn, and the results of the EC-Earth3.3 and CESM2 models have been added. These changes to the modelling outputs have been incorporated into our figures and statistical analysis, but have not required changes to the manuscript text. The following figures have been adjusted from our original submission: Figures 3, 4, 5, S5, S6 and S7.

(2) In our original submission we also anticipated that the model outputs we were presenting had already been available elsewhere (Haywood et al., in review, 2020). However, this was not the case for all of the model data which we presented. As a result, we have included as new co-authors those who were responsible for the design and implementation of the PlioMIP2 model experiments, and who processed the outputs which were then used for both the statistical analysis and the data-model comparisons. The author list has therefore been extended to include those significant contributions (see below). All co-authors have contributed to the writing and editing of the manuscript.

Literature cited:

Additional co-authors and their affiliations (ordered according to the manuscript formatting):

13.NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, 5007 Bergen, Norway.
17. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
19. Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, 3584CC, The Netherlands.
20. Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (NCAR), Boulder, 80305, USA.
21. Department of Physics, University of Toronto, Toronto, M5S1A7, Canada.
22. Department of Geosciences, University of Connecticut, Storrs, 06033, USA.
23. Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
26. Centre for Earth Evolution and Dynamics, University of Oslo, Po. Box 1028 Blindern, 0315 Oslo, Norway.
27. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.
28. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
We thank the reviewer for the positive and constructive comments on the manuscript. In response to the minor comments raised by reviewer 1 (which are italicised):

1) The references for the original data for each Site are provided on the PlioVar webpage, which is a very informative tool. However, from past experience with "local" data bases, I am wondering for how long this link will be maintained, i.e. can the authors guarantee that this link still exists in 5 or 10 years. So I would like to see a "paper" version as Table S1, especially since the age model related information is not necessarily "hidden" in the references listed in Tables S3 and S4.

The reviewer raises a valid concern. After the submission of our data to PANGAEA, and whilst this review was in progress, we were subsequently required to provide full references for all data sources. As a result, the information stored on our PlioVAR webpage will also be available via PANGAEA if this manuscript is accepted for publication.

Our revised PANGAEA link is: https://doi.pangaea.de/10.1594/PANGAEA.911847

This has now been corrected in the placeholder statement in the submitted manuscript (line 482).

2) p. 5 line 152: correct site to state after saturation

This has been corrected.

3) p. 6 line 183: I suggest to include a short comment clarifying that the pre-industrial period selected has no overlap with the Little Ice Age.

There are several definitions in the literature for the timing of the Little Ice Age. Our selection of the years 1870-1899 CE as pre-industrial overlaps with the final decades of the most broadly defined LIA (1440-1920 CE; Owens et al., 2017), but after the time of the greatest cooling and before the onset of 20th century warming (Owens et al., 2017; PAGES2k Consortium, 2017). We have added a line to clarify this in the main text (lines 205-206).

4) p. 11 line 355: since there is evidence for the existence of Mediterranean Outflow Water (MOW) during the Pliocene along the southern Iberian margin, one should expect the Azores Current, whose existence is linked to the formation of MOW in the Gulf of Cadiz (see for example Oezgoekmen, T.M., Chassignet, E.P., Rooth, C.G.H., 2001. On the connection between the Mediterranean Outflow and the Azores Current. Journal of Physical Oceanography 31, 461-480), also to be present. Nowadays, the subtropical surface waters in the Gulf of Cadiz seem to be more derived from the Azores Current and its northern branches extending into the Gulf of Cadiz and towards the SW Iberian margin than the southward gyre recirculation (Portugal Current). So besides the southward recirculation you would also have the direct across-North Atlantic basin transport between 32 and 36N and those waters might be warmer than the southward recirculation. Most models do not resolve the MOW, so the (heat) transport
associated with the Azores Current might also not exist. I also suggest to include (Iberian margin) behind Gulf of Cadiz because not every reader will know where the Gulf of Cadiz is located.

Thanks to the reviewer for highlighting the link between the Azores Current, Mediterranean Outflow Water, and potential influences on the sea-surface temperatures at site U1387. We agree that the position and temperature of the Azores Current could be an important contributor to differences between model outputs and data, and future work could investigate similarities and differences between models for these two systems. We have edited the text to flag the potential influence of the cross-basin transport by the Azores Current, noting also here that our original statement about the local complexity of ocean circulation in this area still stands (lines 384-386).

We have clarified in the text that site U1387 is in the “Gulf of Cadiz, Iberian margin” (lines 385-385).

5) **Fig. S5:** mention in the figure caption what the gray envelope represents. This has been corrected (the gray envelope represents the range of sea-surface temperatures recorded at each latitude). This figure is S6 in the revised manuscript.

6) **Fig. S2 and S3:** with the start of IODP (2003-2013) program Site names include a letter to identify the platform with which they were drilled. So correctly, it should say U1313, U1337, U1387 and U1417. This has been corrected.

Literature cited:

We thank the reviewer for the positive and constructive comments on the manuscript. In response to the minor comments raised by reviewer 2 (which are italicised):

1) I suggest changing “a ~100 kyr window of relatively low benthic δ18O values” to “a ~100 kyr window of relatively depleted benthic δ18O values” to avoid the possible ambiguity of what “low” means to the reader.

This has been corrected (line 98). We have edited to ensure that the statement is clear about which isotope is depleted:

“...centred on a ~100 kyr window of relatively depleted benthic 18O values...”

2) P 7: “Thus, there is a broad, but complex, pattern of enhanced warming at the mid- and high-latitudes, reflecting a combination of regional influences on circulation patterns, and to some extent, proxy choice. This pattern is not explained by temporal variability nor sample density within the KM5c time interval: regardless of sample number per site, the standard deviation is <1.5oC (Figure S4). “ In light of the “complex pattern” and “temporal variability”, can the authors clarify what the standard deviation” refers to? I assume it’s the variation at a given site within the KM5c time bin? So I suggest adding “the standard deviation at any site within the time bin is < 1.5oC”

The reviewer is correct in his interpretation of the standard deviation plot. We have incorporated the reviewer’s suggested change to the text (lines 235-236).

3) P. 7: “Mg/Ca-SST anomalies are generally lower than for UK 37’, “. Since the authors have been pointing out differences in the interpretation of Uk’37 anomalies between using the Muller linear regression and the BAYSPLINE calibration, can they clarify whether the Mg/Ca anomalies are lower than BOTH calibrations or specifically the BAYSPLINE one or both? From context, given that 8 sites gave a negative KM5c anomaly (!!) It would seem that Mg/Ca deviates from both alkenone calibrations.

There is an inconsistent relationship between the alkenone SST anomalies and those from Mg/Ca. As we state, in general the Mg/Ca anomalies are lower than for UK’37, but at two sites we find Mg/Ca-SST anomalies which are greater than those of the model outputs (U1313 in the North Atlantic, Site 763 in the Indian Ocean). For both of these sites the original Mg/Ca calibration is lying closest to the Muller98 calibration output for sites in a similar latitude: but for Site 763 we note here that the ‘closest’ site by latitude is Site 1087 in the South Atlantic. This demonstrates the challenge we face for making direct comparisons between the proxy outputs: there are only three sites with both Mg/Ca and alkenone data available (which we stated in the same paragraph).

We recognise the reviewers concern that it would be useful to state this complexity more clearly. We have edited the text accordingly (lines 250-265):
Overall, the U^{37}_{K}-temperature anomalies lie within the range given by PlioMIP2 models (Figure 4). The Mg/Ca estimates are mainly from the low latitudes, and high-latitude (>60°N/S) Mg/Ca SST data are not available to calculate meridional gradients using foraminifera data alone (Figure 4). Mg/Ca-SST anomalies are generally lower than for U^{37}_{K}, and a cooler KM5c than pre-industrial is consistently (but not always) recorded in the low-latitudes by Mg/Ca regardless of calibration choice (Figure 4). As a result, combining U^{37}_{K} and Mg/Ca data leads to a cooler global mean SST (~2.3°C) than when using U^{37}_{K} alone (~3.2°C, Figure 3). At 8 sites, the negative KM5c SST anomalies in Mg/Ca disagree with both the U^{37}_{K} data and the PlioMIP2 model outputs (Figure 4). The disagreement is present regardless of whether the Müller98 or BAYSPLINE calibrations are applied, but the difference is larger in the low latitudes for BAYSPLINE because this calibration generates higher SST values here (Section 2.3.1). Only three sites have both U^{37}_{K} and Mg/Ca data (DSDP Site 609, IODP Sites U1313 and U1143) to enable direct comparison between Mg/Ca and alkenone SST data. Reconstructed SSTs for IODP Sites U1313 and U1143 are within calibration uncertainty. At Site U1313 (41°N) there is overlap between both alkenone outputs (Müller98 21.6°C, BAYSPLINE 20.9°C) and the original Mg/Ca reconstruction (22.2°C), whereas BAYMAG generates warmer SSTs (27.0°C). At Site 1143 (9°N), BAYSPLINE-SSTs are warmer (30.6°C) than from the Müller98 (28.9°C), original-Mg/Ca (27.7°C) and BAYMAG (27.1°C). In contrast, DSDP Site 609 (49°N) has colder Mg/Ca estimates (original 11.7°C, BAYMAG 12.5°C) than alkenones (Müller98 17.7°C, BAYSPLINE 17.1°C) or models (Figure 4).

4) p. 8: “KM5c is characterised by a surface ocean which is ~2.3 C (alkenones and Mg/ Ca) or ~3.2 C (alkenones-only) warmer than 240 pre-industrial, with a ~2.6 C reduction in the meridional SST gradient. “Which alkenone calibration was adopted for the “alkenones-only” estimate? What would be the difference of Muller vs BAYSPLINE? The alkenones-only global SST anomaly we stated was generated using only the Müller calibration. For clarity, we now indicate in the text (lines 288-289) the two values:

“...~3.2°C (alkenones-only, Müller 98) or ~3.4°C (alkenones-only, BAYSPLINE calibration)...”.

The abstract has also been edited to reflect this (line 56):

“...or by ~3.2-3.4°C (alkenones only).”

5) p. 11: I think there’s something funny about the NOAA-ERSST temperatures for the region. We have unpublished alkenone SST estimates from Site 1085 for the KM5c interval that show an anomaly of ~3 degrees when using the WOAA. My sense is that the large Benguela anomalies arise entirely from using the NOAA-ERSST atlas and that they would fall in line with expected values if other atlases were used. The authors should at a minimum consult other atlases and explore the possibility of a regional SST bias in the NOAA-ERSST estimates. I think this is a much more parsimonious explanation than the oceanographic ones proposed in lines 340-352. This in fact is my major suggestion: to examine whether that data base imposes a significant bias to the results here.
The reviewer raises a concern about the alkenone SST anomalies we show for the Benguela upwelling region, which far exceed the anomalies calculated from the models (Figure 4 in the main text, and below). We have compared the data anomalies generated using NOAA-ERSST or the World Ocean Atlas 2018 (Locarnini et al., 2018), and show the results. Using WOA18 reduces the two of the SST anomalies in the Benguela upwelling sites: Site 1082 (from +9.5°C to +8.0°C) and Site 1081 (from +8°C to +6.5°C). In contrast, at Site 1084 there is an increase in the SST anomaly by ~0.5°C when using WOA18. The reviewer queried whether the NOAA-ERSST database introduces a bias to the SST anomalies we generate: our comparison indicates that on the whole there are minor offsets between the two products. However, regardless of which database is used, the main Benguela upwelling sites in the Pliocene continue to show SST anomalies which far exceed the PlioMIP2 model output (see Figure below). We therefore prefer to keep our reflection on the possible oceanographic causes of this data-model offset on page 11.

The reviewer comments that he finds lower SST anomalies at Site 1085 than our main Benguela sites when using WOA18. We note here that the +3°C anomaly he states is comparable with Site 1087, where the difference in the SST anomaly between NOAA-ERSST and WOA18 is also less than 0.5°C. Both Site 1085 and Site 1087 lie in the Southern Benguela region, which is today under greater influence from the Benguela Current (and potentially the Agulhas retroflection) than the main cells to the north (Sites 1081, 1082 and 1084; Wefer et al., 1998). It has also been shown that during the mid-Pliocene, coastal upwelling in the Southern Benguela region was enhanced compared to today (e.g. Petrick et al., 2018), which may account for the similarities between Sites 1085 and 1087, and their differences to those sites located in the central and northern upwelling region.

![Figure 1: comparison of SST anomalies for the proxy data, using NOAA-ERSST5 (left, as undertaken in the original submission) and World Ocean Atlas 2018 (right, Locarnini et al., 2018). Sites from the Benguela upwelling region are annotated.](image-url)
Literature cited:

Lessons from a high CO\textsubscript{2} world: an ocean view from \textasciitilde3 million years ago

Erin L. McClymont1, Heather L. Ford2, Sze Ling Ho3, Julia C. Tindall4, Alan M. Haywood4, Montserrat Alonso-Garcia5,6, Ian Bailey7, Melissa A. Berke8, Kate Littler7, Molly Patterson9, Benjamin Petrick10, Francien Peterse11, A. Christina Ravelo12, Bjørg Risebrobakken13, Stijn De Schepper13, George E.A. Swann14, Kaustubh Thirumalai15, Jessica E. Tierney15, Carolien van der Weijst11,16 and Sarah White16, Ayako Abe-Ouchi17,18, Michiel L.J. Baatsen19, Esther Brady20, Wing-Le Chan17, Deepak Chandan21, Ran Feng22, Chuncheng Guo13, Anna S. von der Heydt19, Stephen Hunter4, Xiangyi Li13,23, Gerrit Lohmann24, Kerim H. Nisancioglu13,25,26, Bette L.Otto-Bliesner20, W. Richard Peltier21, Christian Stepanek24 and Zhongshi Zhang13,27,28.

1Department of Geography, Durham University, Durham, DH1 3LE, U.K.
2School of Geography, Queen Mary University of London, London, U.K.
3Institute of Oceanography, National Taiwan University, 10617 Taipei, Taiwan.
4School of Earth and Environment, University of Leeds, Leeds, LS29JT, U.K.
5Department of Geology, University of Salamanca, Salamanca, Spain.
6CCMAR, Universidade do Algarve, 8005-139 Faro, Portugal.
7Camborne School of Mines & Environment and Sustainability Institute, University of Exeter, Exeter, U.K.
8Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame IN 46656, USA.
9Department of Geological Sciences and Environmental Studies, Binghamton University SUNY, 4400 Vestal Pkwy E, Binghamton, New York USA.
10Max Planck Institute for Chemistry, Climate Geochemistry Department, 55128 Mainz, Germany.
11Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands.
12Department of Ocean Sciences, University of California, Santa Cruz, CA, USA.
13NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, 5007 Bergen, Norway.
14School of Geography, University of Nottingham, Nottingham, NG7 2RD, U.K.
15Department of Geosciences, The University of Arizona, Tucson, AZ 85721, USA
16Dept. of Earth and Planetary Sciences, University of California, Santa Cruz, USA.
17Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
18National Institute for Polar Research, Tachikawa, 190-8518, Japan.
19Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, 3584CC, The Netherlands.
20Climate and Global Dynamics Laboratory, National Center for Atmospheric Research (NCAR), Boulder, 80305, USA.
21Department of Physics, University of Toronto, Toronto, M5S1A7, Canada.
22Department of Geosciences, University of Connecticut, Storrs, 06033, USA.
23Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
24Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar and Meeresforschung (AWI), Bremerhaven, 27570, Germany.
25Department of Earth Science, University of Bergen, Allégaten 70, 5007 Bergen, Norway.
26Centre for Earth Evolution and Dynamics, University of Oslo, Po. Box 1028 Blindern, 0315 Oslo, Norway.
27Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.
28Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
Correspondence to: Erin L. McClymont (erin.mcclymont@durham.ac.uk), Heather L. Ford (h.ford@qmul.ac.uk), Sze Ling Ho (slingho@ntu.edu.tw).

Abstract. A range of future climate scenarios are projected for high atmospheric CO\textsubscript{2} concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205 +/- 0.01 Ma) when atmospheric CO\textsubscript{2} concentrations were higher than pre-industrial, but similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO\textsubscript{2}. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial, by ~2.3 °C for the combined proxy data (foraminifera Mg/Ca and alkenones), or by ~3.2-3.4°C (alkenones only). Compared to the pre-industrial, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values. Our results demonstrate that even under low CO\textsubscript{2} emission scenarios, surface ocean warming may be expected to exceed model projections, and will be accentuated in the higher latitudes.

1 Introduction

By the end of this century, projected atmospheric CO\textsubscript{2} concentrations range from 430 to >1000 ppmv depending upon future emission scenarios (IPCC, 2013). At the current rate of emissions, global mean temperatures are projected to exceed 1.5°C and 2°C above pre-industrial values in 10 and 20 years, respectively, passing the targets set by the Paris Agreement (IPCC, 2018). The geological record affords an opportunity to explore key global and regional climate responses to different atmospheric CO\textsubscript{2} concentrations, including those which extend beyond centennial timescales (Fischer et al., 2018). Palaeoclimate models indicate that climates last experienced during the mid-Piacenzian stage of the Pliocene (3.1–3.3 Ma) will be surpassed by 2030 CE under high emission scenarios (Representative Concentration Pathway, RCP8.5), or will develop by 2040 CE and be sustained thereafter under more moderate emissions (RCP4.5, Burke et al., 2018).

The late Pliocene thus provides a geological analogue for climate response to moderate CO\textsubscript{2} emissions. However, the magnitude of tropical ocean warming differs between proxy reconstructions (e.g. Zhang et al., 2014; O’Brien et al., 2014; Ford and Ravelo, 2019; Tierney et al., 2019a), and stronger polar amplification has been consistently recorded in proxy data compared to models (Haywood et al., 2013; Haywood et al., 2016a). Some of the disagreements may reflect non-thermal influences on temperature proxies (e.g. secular evolution of seawater Mg/Ca, Medina-Elizalde et al., 2008; Evans et al., 2016).
and/or seasonality in the recorded signals (e.g. Tierney and Tingley, 2018). It has also been proposed that previous approaches to integrating Pliocene sea-surface temperature (SST) data may have introduced bias to data-model comparison (Haywood et al., 2013). For example, the Pliocene Research Interpretation and Synoptic Mapping (PRISM) project generated warm peak averages within specified time windows (Figure 1) (outlined in Dowsett et al., 2016 and references therein). However, by integrating multiple warm peaks within the 3.1–3.3 Ma mid-Piacenzian data synthesis windows (Figure 1), regional and time-transgressive responses to orbital forcing (Prescott et al., 2014; Fischer et al., 2018; Hoffman et al., 2017; Feng et al., 2017) are potentially recorded in the proxy data, which may not align with the more narrowly-defined time interval being modelled (Haywood et al., 2013; Dowsett et al., 2016).

Here, we present a new, globally-distributed synthesis of SST data for the mid-Piacenzian stage, addressing two concerns. First, we minimise the impact of orbital forcing on regional and global climate signals by synthesising data from a specific interglacial stage, a 20-kyr time slice centred on 3.205 Ma (KM5c; see Figure 1). At 3.205 Ma, both seasonal and regional distributions of incoming insolation are close to modern, making this time an important analogue for 21st century climate (Haywood et al., 2013). The low variability in orbital forcing through KM5c minimises the potential for time-transgressive regional signals to be a feature of the geological data (Haywood et al., 2013; Prescott et al., 2014). Second, we provide a range of estimates from different SST proxies, taking into consideration the uncertainties in proxy-to-temperature calibrations and/or secular processes that may bias proxy estimates. This synthesis is possible due to robust stratigraphic constraints placed on the datasets by the PAGES-PlioVAR working group (see Methods).

2 Methods

2.1 The KM5c Interglacial

KM5c (also referred to as KM5.3) is an interglacial centred on a ~100 kyr window of relatively depleted low-benthic δ18O values, that immediately follows a pronounced δ18O peak during the glacial stage M2 (3.3 Ma; Figure 1). Minor changes to orbital forcing during KM5 enables a wider target zone (3.205 Ma +/- 20 kyr) for data collection, because the potential for orbitally-forced regional and time-transgressive climate signals is minimised (Haywood et al., 2013). A comparable approach has been adopted by the PRISM4 synthesis (3.190 to 3.220 Ma, Foley and Dowsett, 2019, see Figure 1). Here, we focus on a narrow time slice of 3.195-3.215 Ma, to span approximately one precession cycle. The reconstructed atmospheric CO2 concentrations from boron isotopes in KM5c are 360 ± 55 ppmv (for median boron-derived values (n=3), full range: 289-502 ppmv, Figure 1; Foster et al., 2017). A wider range of atmospheric CO2 concentrations has been reconstructed for the whole mid-Piacenzian stage (356 ± 65 ppmv for median values (n=36), full range: 185-592 ppmv, Foster et al., 2017).
2.2 Age models

The PAGES-PlioVAR working group agreed on a set of stratigraphic protocols to maximise confidence in the identification and analysis of orbital-scale variability within the mid-Piacenzian stage (McClymont et al., 2017). Sites were only included in the synthesis if they had either (i) ≤10 kyr resolution benthic δ¹⁸O data which could be (or had been) tied to the LR04 stack (Lisiecki and Raymo, 2005) or the HMM-Stack (Ahn et al., 2017); and/or (ii) the palaeomagnetic tie-points for Mammoth top (C2An.2n (b) at 3.22 Ma) and Mammoth bottom (C2An.3n (t) at 3.33 Ma). At one site (ODP Site 1090) these conditions were not met (see Supplement), but tuning to LR04 had been made using a record of dust concentrations under the assumption that higher dust flux occurred during glacials as observed during the Pleistocene (Martinez-Garcia et al., 2011). At ODP Site 806, uncertainty over age control resulted from the absence of an agreed splice across the multiple holes drilled by ODP, and a new age model has been constructed (see Supplement). For some sites (see online summary at https://pliovar.github.io/km5c.html), revisions to the published age model were made, for example if the original data had been published prior to the LR04 stack (Lisiecki and Raymo, 2005) or prior to revisions to the palaeomagnetic timescale (Gradstein et al., 2012). In total, data from 32 sites was compiled, extending from 46°S to 69°N (Figure 2).

2.3 Proxy sea-surface temperature (SST) data

A multi-proxy approach was taken, to maximise the information available on changing climates and environments during the KM5c interval. Two SST proxies were analysed: the alkenone-derived U⁴³⁷’ index (Prahl and Wakeham, 1987)(Müller et al., 1998) and foraminifera calcite Mg/Ca (Delaney et al., 1985). Both proxies have several calibrations to modern SST: here we explore the impact of calibration choice on KM5c SST data, by comparing and contrasting outputs between proxies and between calibrations. Although the TEX₈⁶ proxy (Schouten et al., 2002) has also been used to generate mid-Piacenzian SSTs (e.g. O’Brien et al., 2014; Petrick et al., 2015; Rommerskirchen et al., 2011), this data is not included here because it could not be confidently assigned to the KM5c interval either due to low sampling resolution and/or our age control protocol was not met.

2.3.1 Alkenone SSTs (the U⁴³⁷’ index)

The majority of the 23 alkenone-derived sea-surface temperature (SST) datasets included in the PlioVAR synthesis used the U⁴³⁷’ index, and applied the linear core-top calibration (60°S-60°N) (Müller et al., 1998) (hereafter Müller98; Tables S2 and S3). The Müller98 calibration applies the best fit between core-top U⁴³⁷’ and modern SSTs, recorded at the sea surface (0 m water depth, 60°S to 60°N) and consistent with haptophyte productivity in the photic zone. The sedimentary signal is proposed to record annual mean SST based on linear regression (Müller et al., 1998). Cultures of one of the dominant haptophytes, Emiliania huxleyi, generated only minor differences in the slope of the U⁴³⁷’-temperature relationship (Table S2), where growth temperature was used for calibration (Prahl et al., 1988). Several PlioVAR datasets were originally published using the Prahl et al. (1988) calibration (Table S3).
A recent expansion of the global core-top database (<70°N) was accompanied by Bayesian statistical analysis to assess the relationship(s) between predicted (from U37K') and recorded ocean temperatures (Tierney and Tingley, 2018). The revised U37K' calibration, BAYSPLINE, addresses non-linearity in the U37K'-SST relationship at the high end of the calibration, i.e. in the low-latitude oceans (Pelejero and Calvo, 2003; Sonzogni et al., 1997). BAYSPLINE also highlights scatter between predicted and observed SSTs at the high latitudes, and explicitly reconstructs seasonal SSTs >45°N (Pacific) and >48°N (Atlantic), and in the Mediterranean Sea (Tierney and Tingley, 2018).

To test the impact of different alkenone temperature calibrations on the quantification of mid-Piacenzian SSTs, we converted all U37K' data to SSTs using both the Müller98 calibration and the BAYSPLINE calibration. For most sites, BAYSPLINE was run with the recommended setting for the prior standard deviation scalar (pstd) of 10 (Tierney and Tingley, 2018). At high U37K' values (above ~24°C) it is recommended to use the more restrictive value of 5, to minimise the possibility of generating unrealistic SSTs (e.g. >40°C) given that the slope of the U37K'-temperature calibration becomes attenuated (Tierney and Tingley).

2.3.2 Foraminifera Mg/Ca

The magnesium-to-calcium ratio of foraminifera calcite can be used to reconstruct sea surface (surface dwelling), thermocline (subsurface dwelling) and deep (benthic) ocean temperatures (Delaney et al., 1985; Elderfield et al., 1996; Rosenthal et al., 1997). The PlioVAR dataset includes analysis from 12 sites, on surface-dwelling foraminifera Globigerinoides ruber, Trilobatus sacculifer, and Globigerina bulloides (Table S4). In the original publications, data were converted to SST using a range of calibrations as well as corrections for CaCO
subscript 3 dissolution in the water column and sediments, which leads to preferential removal of Mg from the CaCO
subscript 3 lattice (generating cooler SSTs than expected; Dekens et al., 2002; Regenberg et al., 2006; Regenberg et al., 2009). Evolution of the Mg/Ca of seawater (Mg/Ca\textsubscript{seawater}) over geological timescales may also impact Mg/Ca-based palaeo-temperature reconstructions (Brennan et al., 2013; Coggon et al., 2010; Fantle and DePaolo, 2005; Gothmann et al., 2015; Horita et al., 2002; Lowenstein et al., 2001). Changes in Mg/Ca\textsubscript{seawater} impacts the intercept and potentially the sensitivity of palaeotemperature equations (Evans and Müller, 2012; Medina-Elizalde and Lea, 2010), but there remains uncertainty over the magnitude of Mg/Ca\textsubscript{seawater} changes in the late Pliocene (O'Brien et al., 2014; Evans et al., 2016).

To test the impact of different foraminifera Mg/Ca SST calibrations on mid-Piacenzian SSTs, we compare published SSTs with the recently developed BAYMAG calibration (Tierney et al., 2019b). We use published SSTs because the original researchers used their best judgement to choose a particular Mg/Ca-SST calibration, given that it (i) fitted modern (regional) core-top values; (ii) accounted for known environmental impacts (e.g. [CO\subscript 3\textsuperscript 2-] correction); (iii) was developed within a particular research group; and/or (iv) fitted conventional wisdom at the time. BAYMAG uses a Bayesian approach that incorporates laboratory culture and core-top information to generate probabilistic estimates of past temperatures. BAYMAG
assumes a sensitivity of Mg/Ca to salinity, pH and saturation state at each core site, and also accounts for Mg/Ca evolution through a linear scaling (i.e. there is no change in the sensitivity of the palaeo-temperature equation as Mg/Ca evolves) (Tierney et al., 2019b). For each site with Mg/Ca data, we computed SSTs using BAYMAG’s species-specific hierarchical model. In the absence of knowledge concerning changes in salinity, pH, and saturation state in the Pliocene, we assumed that these values were the same as today. We drew seasonal sea-surface salinity from the World Ocean Atlas 2013 product (Boyer et al., 2013), and pH and bottom water saturation state from the GLODAPv2 product (Lauvset et al., 2016; Olsen et al., 2016). We used a prior standard deviation of 6°C for all sites.

2.4 Climate models

The model outputs used here were generated from the 15 models that contribute to the Pliocene modelling intercomparison project, Phase 2 (PlioMIP2) (Haywood et al., submitted in review, 2020). The boundary conditions for the experiments, and their large-scale results for Pliocene and pre-industrial climates are detailed elsewhere (Haywood et al., submitted in review, 2020; Haywood et al., 2016b), so are briefly outlined here.

The Pliocene simulations are intended to represent KM5c (~3.205Ma) and were forced with PRISM4 boundary conditions (Haywood et al., 2016b). Atmospheric CO₂ concentration was set at 400 ppmv (Haywood et al., submitted in review, 2020), in line with the upper estimates of atmospheric CO₂ from boron isotope data (Figure 1; Foster et al., 2017). Lower estimates from the alkenone carbon isotope proxy (Figure 1) are likely to reflect an insensitivity of this proxy to atmospheric CO₂ in the Pliocene (Badger et al., 2019). All other trace gases, orbital parameters and the solar constant were specified to be consistent with each model’s preindustrial experiment. The Greenland Ice Sheet was confined to high elevations in the Eastern Greenland Mountains, covering an area approximately 25% of the present-day ice sheet. The Antarctic ice sheet has no ice over Western Antarctica. The reconstructed PRISM4 ice sheets have a total volume of 20.1×10^6 km3, equating to a sea-level increase relative to present day of less than ~ 24 m (Dowsett et al., 2016).

Modelling groups had some choices regarding exact implementation of boundary conditions, however 14 of the 15 models used the ‘enhanced’ PRISM4 boundary conditions (Dowsett et al., 2016) which included all reconstructed changes to the land/sea mask and ocean bathymetry. Key ocean gateway changes relative to modern are closure of the Bering Strait and Canadian archipelago, and exposure of the Sunda and Sahul shelves (Dowsett et al., 2016). Initialisation of the experiments varied between models (Haywood et al., submitted in review, 2020). Some models were initialised from a pre-industrial state while others were initialised from the end of a previous Pliocene simulation or another warm state. The simulations reached equilibrium towards the end of the runs as per PlioMIP2 protocol. The integration length of the simulations was between 500 and 4000 years.
2.5 Statistical analysis (calculating of global means / gradients)

For all anomaly calculations we obtain pre-industrial SST from the NOAA-ERSST5 dataset for years 1870–1899 CE (Huang et al., 2017), ensuring alignment between the KM5c proxy data and the KM5c model experiments (Haywood et al., submitted in review, 2020). This pre-industrial time window excludes the largest cooling linked to the Little Ice Age and pre-dates the onset of 20th century warming (Owens et al., 2017; PAGES2k Consortium, 2017). The global mean SST anomaly from the proxy data was obtained as follows: firstly, the SST anomaly between the proxy data and the NOAA-ERSST5 data was obtained for each location, and the data collated into bins of 15° of latitude. It is assumed that the average of all the data in each bin represents the average SST anomaly for that latitude band. Next, the area of the ocean surface for each bin is obtained. The average SST anomaly is then the average of all the bins weighted by the ocean area in the relevant latitude band.

Meridional gradients were obtained in a similar way. A low-latitude SST anomaly was obtained as the weighted average of all the bins containing low-latitude SSTs (for example the 4 × 15° bins containing latitudes of 30°S - 30°N), and a high-latitude SST anomaly was obtained as the weighted average of all bins containing high latitude SSTs (>60°N, because there were no proxy data points >60°S). As only the Atlantic Ocean contained data points poleward of 65°N, the high latitude region used in the gradient calculations for both proxies and models was focused on the longitudinal window from 70°W-5°E. The meridional gradient SST anomaly is then the low-latitude SST anomaly minus the high-latitude SST anomaly, relative to the pre-industrial.

There are some uncertainties in this calculation of the global mean SST, in particular, the fact that the proxy data is not evenly distributed throughout a latitude bin, and also that some bins contain very few data points. There is a higher density of data in the Atlantic Ocean, compared to the Indian Ocean and Pacific Ocean, and no high-latitude data is available to consider a Southern Ocean response (Figure 2). Nevertheless, this method of calculating averages does attempt to account for unevenly distributed data and provides a SST anomaly (SSTA) that is comparable with model results. The impact of proxy choice was examined in the calculation of the global means and meridional SST gradients. As no Mg/Ca data were available >50°N or >30°S, we calculated global mean SST and the meridional SST gradients either including or excluding the Mg/Ca data; both results are outlined below and shown in Table 1.

3 Results

Relative to the pre-industrial, the combined U^37^" and Mg/Ca proxy data, using the original calibrations, indicate a KM5c global mean SST anomaly of +2.3°C and a meridional SST gradient reduced by 2.6°C (Figure 3). The amplitude of the global SST mean anomaly in the combined proxy data exceeds those indicated in 10 of the PlioMIP2 models, but is lower than the global SST anomaly from six models, all but three of the PlioMIP2 models, whereas the meridional temperature gradient anomalies are more comparable (Figure 3). If only the U^37^" data is used, the global mean SST anomaly from proxies is higher
than all but three of the PlioMIP2 models, and the $U^{K_{37}}$ meridional gradient calculations are smaller than all models (BAYSPLINE) or one model (original calibration; Figure 3).

Overall, the proxy data show the lowest temperature anomalies in the low latitudes, regardless of proxy (from +3°C to -4°C for sites <30°N/S). A larger range of temperature anomalies is reconstructed in the mid- and high-latitudes (from +9°C to -2°C for sites >30°N/S) (Figure 4). Thus, there is a broad, but complex, pattern of enhanced warming at the mid- and high-latitudes, reflecting a combination of regional influences on circulation patterns, and to some extent, proxy choice. This pattern is not explained by temporal variability nor sample density within the KM5c time interval: regardless of sample number per site, the standard deviation at any site within the KM5c time bin is <1.5°C (Figure S4). We note that of the 32 sites examined here, 7 provided a single data point for the KM5c interval (Figure S2, alkenones: ODP Sites 907, 1081, U1337, U1417; Figure S3, foraminifera Mg/Ca: DSDP Sites 214, 709, 763); the sites are geographically well distributed, however, and so unlikely to significantly impact our global mean / gradient calculations.

Calibration choice has a small impact over the reconstructed patterns of KM5c SST anomalies (Figure 4, and Figures S2 and S3). Below 24°C, absolute $U^{K_{37}}$ SSTs using Müller98 are <1°C lower than those using BAYSPLINE. At high temperatures the non-linearity in the BAYSPLINE calibration means that BAYSPLINE-SSTs can be up to 1.67 °C ± 0.01°C higher than when using Müller98 (Figure S2). The low latitude offset between Müller98 and BAYSPLINE has two effects: it elevates the global mean SST (Figure 3, Table 1) and increases the KM5c meridional SST gradient towards pre-industrial values (Figures 3 and 4, Table 1). The calibration offsets are less systematic for Mg/Ca. There is a wider range of offsets between BAYMAG and published SST values (from -4 to +5°C, Figure S3 Table S3), although the smallest KM5c SST anomalies continue to be reconstructed in the low-latitudes, regardless of which Mg/Ca calibration is applied (Figure 4).

Overall, the $U^{K_{37}}$-temperature anomalies lie within the range given by PlioMIP2 models (Figure 4). The Mg/Ca estimates are mainly from the low latitudes, and high-latitude (>60°N/S) Mg/Ca SST data are not available to calculate meridional gradients using foraminifera data alone (Figure 4). Mg/Ca-SST anomalies are generally lower than for $U^{K_{37}}$, and a cooler KM5c than pre-industrial is consistently (but not always) recorded in the low-latitudes by Mg/Ca regardless of calibration choice (Figure 4). As a result, combining $U^{K_{37}}$ and Mg/Ca data leads to a cooler global mean SST (~2.3°C) than when using $U^{K_{37}}$ alone (~3.2°C with Müller98, ~3.4°C with BAYSPLINE, Figure 3 and Table 1). At 8 sites, the negative KM5c SST anomalies in Mg/Ca disagree with both the $U^{K_{37}}$ data and the PlioMIP2 model outputs (Figure 4). The disagreement is present regardless of whether the Müller98 or BAYSPLINE calibrations are applied, but the difference is larger in the low latitudes for BAYSPLINE because here this calibration generates higher SST values (Section 2.3.1). Only three sites have both $U^{K_{37}}$ and Mg/Ca data (DSDP Site 609, IODP Sites U1313 and U1143) to enable direct comparison between Mg/Ca and alkenone SST data. Reconstructed SSTs for IODP Sites U1313 and U1143 are within calibration uncertainty. At Site U1313 (41°N) there...
is overlap between both alkenone outputs (Müller98 21.6°C, BAYSPLINE 20.9°C) and the original Mg/Ca reconstruction (22.2°C), whereas BAYMAG generates warmer SSTs (27.0°C). At Site 1143 (9°N), BAYSPLINE-SSTs are warmer (30.6°C) than from the Müller98 (28.9°C), original-Mg/Ca (27.7°C) and BAYMAG (27.1°C). While In contrast, DSDP Site 609 (49°N) has colder Mg/Ca estimates (original 11.7°C, BAYMAG 12.5°C) than alkenones (Müller98 17.7°C, BAYSPLINE 17.1°C) or models (Figure 4).

4 Discussion

4.1 SST expression of the KM5c interglacial

KM5c is characterised by a surface ocean which is ~2.3°C (alkenones and Mg/Ca), ~3.2°C (alkenones-only, Müller98 calibration) or ~3.4°C (alkenones-only, BAYSPLINE calibration) warmer than pre-industrial, with a ~2.6°C reduction in the meridional SST gradient. The global mean SST anomaly is higher than the 1.7°C previously calculated for the wider mid-Piacenzian warm period (3.1-3.3 Ma), regardless of proxy choice (IPCC, 2014b). Previous analysis of a suite of models suggested that a climate state resembling the mid-Piacenzian was likely to develop and be sustained under RCP4.5 (Burke et al., 2018). The PlioMIP2 ensemble (Haywood et al., in review, 2020) multi-model mean indicates that best estimates for mid-Piacenzian warming in surface air temperatures (1.7-5.2°C) are more comparable to projections for the RCP4.5 to 8.5 scenarios RCP6.0 by 2100 CE (RCP4.5 = 1.8±0.5°C, RCP8.5 = 3.7±0.7°C (IPCC 2013) (Haywood et al., submitted). Our proxy-based mean global SST anomaly is larger than most PlioMIP2 models (Figure 3); because air temperature increases are larger over land than over the ocean in PlioMIP2 models (Haywood et al., submitted in review, 2020), our results suggest that the global annual surface air temperature anomaly for KM5c likely exceeds the PlioMIP2 multi-model surface air temperature mean of 2.8°C. The higher global SST mean recorded in the KM5c proxy data, compared to the PlioMIP2 models, occurs despite the available atmospheric CO₂ reconstructions indicating values below the ~400 ppmv used in the PlioMIP2 models (Figure 1). Our synthesis of SST data thus indicates that with atmospheric CO₂ concentrations ≤400 ppmv (comparable to RCP4.5), the surface ocean warming response will likely be larger than indicated in models. Further work is required to increase the temporal resolution of the atmospheric CO₂ reconstructions through KM5c, to improve our understanding of the reconstructed SST response to CO₂ forcing, including whether (or by how much) the reconstructed atmospheric CO₂ differ from model boundary conditions, and whether other changes in the model boundary conditions also influence SST patterns (e.g. gateway changes outlined in section 2.4).

Proxy choice, calibration choice, and site selection, all have all had an impact on the magnitude of the change in meridional SST gradient for KM5c compared to the pre-industrial (Table 1). Focussing only on a Northern Hemisphere SST gradient leads to higher gradient anomalies than when all of the low-latitudes are included (30°S-30°N), because it excludes the high SST anomalies of the Benguela upwelling sites (20-25°S, discussed below, Figure 4). Smaller meridional SST gradient
anomalies occur using BAYSPLINE (+0.03 to -1.66°C) than the Mueller98 calibration for $U^{K,37}$ (-1.18 to -3.00°C, Table 1), due to the increased low-latitude SST anomalies generated by BAYSPLINE (Figure 4). Due to several (but not all) low-latitude sites recording negative SST anomalies for KM5c using foraminifera Mg/Ca, the inclusion of Mg/Ca data leads to a larger difference in the meridional SST gradient relative to the pre-industrial (-2.19 to -4.08°C). Further work is required to fully understand the negative KM5c SST anomalies in some of the low-latitude sites (discussed further below), given their impact on the meridional SST gradients. However, a robust pattern emerging from the data is that the KM5c proxy data detail smaller low-latitude SST anomalies than those of the mid- and high-latitudes SST anomalies (Figure 4), leading to a reduction in the meridional SST gradient relative to the pre-industrial. Enhanced mid- and high-latitude warming has been observed in other warm intervals of the geological past, including the last interglacial and the Eocene (Evans et al., 2018; Fischer et al., 2018), and is a feature of future climate under elevated CO$_2$ concentrations (IPCC, 2014a).

There is complexity in the amplitude of the KM5c SST anomaly by latitude and basin, which may reflect patterns of surface ocean circulation. In the Northern Hemisphere, relatively muted warming in the East Greenland Current (ODP Site 907, 69°N) may reflect the presence of at least seasonal sea-ice cover from c.4.5 Ma (Clotten et al., 2018). In contrast, relatively high SST anomalies at ODP Sites 642 (67°N) and 982 (58°N) track northward flow of the North Atlantic Current, accounting for the enhanced warming relative to North-east Pacific IODP Site U1417 (57°N; Figures 4 and 5). The large North Atlantic SST anomalies also contribute to an enhanced Northern Hemisphere meridional SST gradient of up to 4°C (>60°N minus 0–30°N; Table 1). For the Southern Hemisphere, a signal of polar amplification is less clearly identified than for the Northern Hemisphere (Figure 4), although we recognise that all sites are <46°S. Low KM5c SST anomalies (<2°C) at DSDP Sites 593 and 594 (41 °S and 46 °S, respectively) might be accounted for by a similar positioning of the Subtropical Front close to New Zealand during KM5c as today (McClymont et al., 2016; Caballero-Gill et al., 2019). Antarctic Intermediate Water (AAIW) temperatures were also only ~2.5°C warmer than pre-industrial during KM5c, suggesting a small warming in subantarctic waters where AAIW forms (McClymont et al., 2016). In contrast, large anomalies at ODP Sites 1125 (43°S, Pacific) and 1090 (43°S, Atlantic) reflect a greater sensitivity to expanded subtropical gyres during KM5c, contrasting with the Pleistocene equatorward displacement (and enhanced cooling) of subpolar water masses (e.g. Martinez-Garcia et al., 2010) which today places both of these sites poleward of the Subtropical Front.

Given that our proxy data meridional SST gradient calculations use only two sites to calculate the high-latitude SSTs (ODP Sites 907 and 642), which are also both from the Nordic Seas (Figure 2), we explored the impact of expanding our high-latitude band into the mid-latitudes. We also explored narrowing the low-latitude band so that it does not include the Benguela upwelling sites, which have a significant data-model offset (Figure 4) and may be influenced by localised circulation changes (see section 4.2). Previous calculations of Pliocene meridional SST gradients have also considered differences between the mid and low latitudes through time (Fedorov et al., 2015). Despite adding 4 more sites by expanding the high-latitude band to 45°N/S, the meridional SST gradients are reduced by <0.4°C, from -1.18 to -1.56°C using the original $U^{K,37}$ data (Table 1).
However, it is clear from the distribution of sites (Figure 2) that our reconstructed KM5c SSTs (and thus the global mean and meridional gradients) have a strong signal from the Atlantic Ocean. There is a relative scarcity of sites from the Indian Ocean, Pacific Ocean and Southern Ocean, but it is difficult to ascertain what impact this may have had on our global analysis. Further work is required to increase the spatial density of SST data for KM5c and the wider mid-Piacenzian stage, to better evaluate the magnitude of the warming and gradient changes outlined here.

4.2 Proxy data-model comparisons for mid- and high-latitude sites

For the mid- and high-latitudes, we find broad proxy data/model agreements for most sites. In the North Atlantic Ocean, reconstructed SST KM5c anomalies from $U^{K_{37}'}$ fall within the ranges provided by the PlioMIP2 models (Figure 4) for all but one site (IODP Site U1387, 37°N). The overall $U^{K_{37}'}$-model agreement for the North Atlantic Ocean suggests that, as proposed by Haywood et al. (2013), a focus on a specific interglacial within the mid-Piacenzian provides an improved comparison to the climate being simulated by the PlioMIP2 models. Thus, some of the data-model mismatch in previous mid-Piacenzian syntheses (e.g. Dowsett et al., 2012) may have been due to the averaging of warm peaks which may not have been synchronous in time between sites and/or with the interval being modelled. Disagreements occur between proxies (North Atlantic Ocean) and between proxies and models (Benguela upwelling, Gulf of Cadiz, Mediterranean Sea) (Figure 4). Here, we explore the potential causes for these offsets in turn.

The largely $U^{K_{37}'}$-derived data from the North Atlantic Ocean tend to align with the warmest model outputs (Figure 4), and the $U^{K_{37}'}$-SST anomalies also tend to be larger than those from Mg/Ca. A challenge for understanding the cause(s) of the $U^{K_{37}'}$-Mg/Ca differences is that only two sites have data from both proxies, and these do not show a consistent signal. There is good correspondence between $U^{K_{37}'}$ and the original published Mg/Ca SSTs for IODP Site U1313 (41°N), whereas at ODP Site 609 Mg/Ca SSTs (both calibrations) are between 4.6-6.1°C cooler than $U^{K_{37}'}$. It has also been shown that the $U^{K_{37}'}$-Mg/Ca SST offset at Site 609 is not constant with time for the late Pliocene (Lawrence and Woodard, 2017). When using BAYMAG, warmer KM5c SSTs are reconstructed than the original published data at DSDP Site 603 and IODP Site U1313 (35°N and 41°N, Figure 4), but BAYMAG reconstructs SSTs only 0.8°C warmer than from the original published SSTs at Site 609. These mid-latitude North Atlantic Mg/Ca data are provided by G. bulloides, which may calcify at depth in the water column (e.g. Mortyn and Charles, 2003; Schiebel et al., 1997), and account for those sites where Mg/Ca reconstructions give lower reconstructed SSTs than from $U^{K_{37}'}$ (Bolton et al., 2018; De Schepper et al., 2013). Alternatively, an offset between alkenones and Mg/Ca might be accounted for if there is a seasonal bias to the $U^{K_{37}'}$ calibration (e.g. Conte et al., 2006; Schneider et al., 2010). Despite documented seasonality in alkenone production at high latitudes, it has been proposed that mean annual SSTs continue to be recorded by $U^{K_{37}'}$ in sediments (Rosell-Melé and Prahl, 2013), as indicated by the original $U^{K_{37}'}$ calibration (Müller et al., 1998). In contrast, BAYSPLINE explicitly assumes an autumn signal is recorded in Atlantic sites >45°N (Tierney and Tingley, 2018). Despite these differences in interpretation, BAYSPLINE values for KM5c are <0.7°C cooler than the
original published $U^{K_{37}}$ data (Figure S2). Although all of the North Atlantic $U^{K_{37}}$ data align with range of the mean mean annual SST anomalies generated by the PlioMIP2 models (Figure 4), three of the sites show alignment between $U^{K_{37}}$-SSTs and the July-November values from the multi-model means (Figure 5). In contrast, Site 907 aligns with cool spring temperatures in the models, perhaps reflecting production after sea ice melt.

The large data-model discrepancy at 30°S reflects 3 sites which today sit beneath the Benguela upwelling system in the South-East Atlantic (20-26°S, Figure 4). Part of the data-model discrepancy in the KM5c anomaly can be attributed to the models over-estimating pre-industrial SSTs in the northern Benguela sites (NOAA-ERSST5 SSTs are 2–5°C below the pre-industrial model range), and suggests that models are not fully capturing the local dynamics of the coastal upwelling today (Small et al., 2015). Realistic representations of the Benguela upwelling system today are proposed to require realistic wind stress curl and high-resolution atmosphere and ocean models (<1°, Small et al., 2015). Most of the PlioMIP2 simulations use lower resolution atmosphere and ocean models (Haywood et al., submitted in review, 2020). An increased density of proxy data reconstructing KM5c atmospheric circulation, as well as application of high-resolution models, may help to understand the observed KM5c data-model discrepancy. Furthermore, there was a deep thermocline during the Pliocene (as reconstructed in the Equatorial Pacific+ (Ford and Ravelo, 2019; Ford et al., 2015; Steph et al., 2006; Steph et al., 2010); and theorized globally (Philander and Fedorov, 2003)), so that warmer subsurface waters than today were upwelled, enhancing local warming. However, warming of ~3.4°C in subsurface waters (Ford and Ravelo, 2019) and ~2.5°C in intermediate waters (McClymont et al., 2016) for Pliocene interglacials suggest that Pliocene upwelling of warmer waters is unable to fully account for the 7–10°C SST anomalies in Benguela sites for KM5c. Changes to the distribution of export productivity and SSTs indicate that an overall poleward displacement of the Benguela Upwelling system occurred during the Pliocene, so that the main zone of upwelling likely sat close to ODP Site 1087 at 31°S (Etourneau et al., 2009; Petrick et al., 2018; Rosell-Melé et al., 2014). As the northern and southern Benguela regions are today marked by differences in the seasonality of the upwelling, a temporal shift in upwelling intensity may also account for some of the large SST anomaly (Haywood et al., submitted in review, 2020). Thus, the data-model disagreement may be accounted for by a combination of displaced upwelling and warmer upwelled waters, giving large SST anomalies in Benguela proxy data, alongside the challenges of modelling both the pre-industrial and KM5c upwelling system and its associated SSTs.

Data-model disagreement also occurs at two northern hemisphere sites where $U^{K_{37}}$-SST anomalies exceed those given by the range of model predictions (Figure 4). Punto Piccola (Sicily, 37°N) is located within the Mediterranean Sea, whereas IODP Site U1387 (37°N, Iberian margin) records the influence of the waters sourced from the Azores Current and southward flow of the subtropical gyre in the Gulf of Cadiz. The data-model disagreement for KM5c reflects warmer SST estimates from the proxy data compared to the models, despite the good agreement for the pre-industrial suggesting that locally complex ocean circulation in these near-shore and marginal marine settings may have been captured in the models. The data-model offset is also likely to be a minimum, because BAYSPLINE Mediterranean SSTs explicitly record November-May temperatures
(Tierney and Tingley, 2018), and alkenone production below the sea surface has also been proposed (Ternois et al., 1997): both scenarios would act to raise mean annual SSTs further from those simulated in the PlioMIP2 models (Figure 4). Further multi-proxy investigation is required to identify whether the data-model disagreements in Benguela upwelling, Gulf of Cadiz, and Mediterranean Sea reflect challenges in modelling near-shore or complex oceanographic systems and/or biases in the temperature signal recorded by the proxy data.

4.3 Data-model comparisons for low-latitude sites

The low-latitude $U^{K37\prime}$-SST anomalies for KM5c align well with the PlioMIP2 models (Figure 4). At ODP Sites 806 and 959, the Mg/Ca anomalies using the original calibrations are both +0.3°C range between +0.2 to +1.3°C—compared to the pre-industrial (Figure 4) and also align with the PlioMIP2 models. At Site 806 the BAYMAG KM5c anomaly (+1.7°C) also aligns with the PlioMIP2 models. Only one low-latitude site has both $U^{K37\prime}$ and Mg/Ca SST data: ODP Site 1143 (9°N) records KM5c anomalies of +0.8 to +2.5°C ($U^{K37\prime}$) or -0.47 to -1.39°C (Mg/Ca). Although the $U^{K37\prime}$ data align with the model outputs for Site 1143, the negative anomaly in Mg/Ca lies outside the model range for mean annual SST (Figure 4).

Six of the low-latitude sites have negative low-latitude SST anomalies in KM5c from foraminifera Mg/Ca; these occur regardless of whether the original or BAYMAG calibrations are applied, and for both G. ruber and T. sacculifer-based reconstructions. The negative KM5c Mg/Ca-SST anomalies lie beyond those shown across the PlioMIP2 model range (Figure 4), despite the absolute Mg/Ca-SSTs reconstructed from these sites for KM5c falling within the model range for all but two of the sites (ODP Sites 999 (13°N) and 1241 (6°N); Figure S5). However, the absolute SST values reconstructed for KM5c from Mg/Ca tend to align with the colder model outputs (Figure S5).

Mg/Ca-SST calibration choice has no consistent impact on the KM5c anomalies (across all latitudes, Figure 4). Therefore, the corrections for secular seawater Mg/Ca change and/or non-thermal influences over Mg/Ca, which are accounted for in BAYMAG (Tierney et al., 2019b) do not account for these cold tropical KM5c anomalies. For example, for ODP Site 806 in the Western Pacific warm pool, BAYMAG SST estimates for KM5c are ~1°C warmer than the published Mg/Ca record (Wara et al., 2005). For Site 999 in the Caribbean Sea, BAYMAG SST estimates for KM5c are ~0.5°C cooler than the published Mg/Ca record (De Schepper et al., 2013). This also suggests the impact of Mg/Ca$_{\text{seawater}}$ change on SST is small on warm pool sites. The Mg/Ca$_{\text{seawater}}$ correction used in BAYMAG is conservative, drawing on multiple lines of physical evidence (corals, fluid inclusions, calcite veins, etc) (Tierney et al., 2019b). Given the variable directions of the offsets between published and BAYMAG SSTs shown here, the Mg/Ca$_{\text{seawater}}$ correction is unable to account for the data-model offsets observed for the low latitudes.
CaCO₃ dissolution in the water column and sediments could lead to a cool bias on the Mg/Ca-SSTs (Dekens et al., 2002; Regenberg et al., 2006; Regenberg et al., 2009). However, the cool KM5c anomalies also occur if the forward-modelled core-top Mg/Ca SSTs from BAYMAG are used as the pre-industrial ‘reference’ (Figure S6). The cold low-latitude anomalies for KM5c could reflect an increase in the calcification depth of the foraminifera, since the surface-dwelling foraminifera analysed here calcify at a range of depths, particularly in the tropics where the thermocline is deep in comparison to mid- to high-latitudes (Fairbanks et al., 1982; Curry et al., 1983). The negative anomalies are broadly smaller for *G. ruber* (-0.4 to -1.2°C) than for *T. sacculifer* (-0.6 to -3.5°C), consistent with a deeper depth-habitat for the latter (Curry et al., 1983), although at Site 959 the *G. ruber* anomaly using BAYMAG is -3.8°C. There is therefore a lack of consistency between sites, which is difficult to resolve when single species have been analysed for each of the sites through KM5c.

Where there are very large differences between BAYMAG and published Mg/Ca SST estimates, regardless of latitude (e.g. North Atlantic, Figure 4), we suggest that some combination of calibration difference, Mg/Ca_seawater change and/or other environmental factors including seasonality and calcification depth may offer an explanation. To fully investigate the cause(s) of offsets in Mg/Ca SST reconstructions requires future multi-species analysis for Mg/Ca for each site, and multi-proxy analysis for each site. Such an approach would enable exploration of a wider range of potential influences over both the Mg/Ca and U³⁷⁸⁷° SST reconstructions, and a reduction in the uncertainties of the reconstructed SSTs and their anomalies. Alongside foraminifera Mg/Ca and U³⁷⁸⁷° analyses, additional proxies which are likely to add valuable information about water column structure and seasonality could include TEX₈⁶ (Schouten et al., 2002), long-chain diols (Rampen et al., 2012), and clumped isotopes (Tripathi et al., Zaarur et al., 2010-03). Previous research has demonstrated that even within a single site there can be offsets between proxies which are not continuous through time (e.g. Lawrence and Woodard, 2017; Petrick et al., 2018), so that high resolution and multi-proxy work is required to fully understand the offsets we have identified here. Resolving the causes of the different proxy-proxy and proxy-model offsets is important, because it impacts the calculation of the global mean SST anomaly relative to pre-industrial; however, even with inclusion of the overall cooler Mg/Ca data, the combined KM5c proxy data still indicate a global mean SST anomaly which is larger than most models from the PlioMIP2 experiments (Figure 3).

5 Conclusions
This study has generated a new multi-proxy synthesis of SST data for an interglacial stage (KM5c) from the Pliocene. By selecting an individual interglacial, with orbital forcing similar to modern, we are able to focus on the SST response to atmospheric CO₂ concentrations comparable to today and the near-future (~400 ppmv), but elevated relative to the pre-industrial. Using strict stratigraphic protocols we selected only those data which could be confidently aligned to KM5c. By comparing different calibrations and two different proxy systems (*U*³⁷⁸⁷° and Mg/Ca in planktonic foraminifera) we identified several robust signals which are proxy-independent. First, global mean SSTs during KM5c were warmer than pre-industrial. Second, there was a reduced meridional SST gradient which is the result of relatively small low-latitude SST anomalies and a
larger range of warming anomalies for the mid- and high-latitudes. Overall, there is good data-model agreement for both the absolute SSTs and the anomalies relative to the pre-industrial, although there are complexities in the results. Further work is required to generate multi-proxy SST data from single sites, accompanied by robust reconstructions of thermocline temperatures using multi-species foraminifera analysis, so that the range of factors explaining proxy- and calibration-offsets can be explored more fully.

The choice of proxy for SST reconstruction impacts the overall calculation of global mean SST and the meridional gradients. The negative anomalies in Mg/Ca-SSTs in six of the sixteen low-latitude sites lowers the global mean SST of KM5c from ~3.2-3.4°C (UK37’-only) to ~2.3°C (combined UK37’ and Mg/Ca). The meridional SST gradient anomalies are decreased to -2.6°C (combined UK37’ and Mg/Ca) relative to the pre-industrial, although a more muted reduction (up to -1.18°C) occurs with UK37’ alone. A number of factors may lead to a cool bias in the foraminifera Mg/Ca SSTs, which require further investigation through multi-proxy and multi-species analysis, particularly in low-latitude sites.

We identify the strongest warming across the North Atlantic region. The results are consistent with the PlioMIP2 models, although the largely UK37’ data sit at the high end of the calculated model anomalies. Although seasonality may play a role in the proxy data signal, these results also suggest that many models may under-estimate high-latitude warming even with the moderate CO\textsubscript{2} increases identified in KM5c relative to the pre-industrial. More data points are required to fully explore these patterns: for seven sites only one data point lay within KM5c, and more than half of the analysed sites (18/32) recorded Atlantic Ocean SSTs.

Both the PlioMIP2 models (Haywood et al., submitted in review, 2020) and future projections (IPCC, 2018) indicate that warming is higher over land than in the oceans in response to higher atmospheric CO\textsubscript{2} concentrations. Our synthesis of KM5c thus likely represents a minimum warming to be expected with atmospheric CO\textsubscript{2} concentrations of ~400 ppmv. Even under low CO\textsubscript{2} emission scenarios, our results demonstrate that surface ocean warming may be expected to exceed model projections, and will be accentuated in the higher latitudes.

6 Data availability

Most of the original datasets used here can be downloaded from the NOAA (www.ncdc.noaa.gov) and PANGAEA (www.pangaea.de) data repositories. Full details of data sources can be accessed at https://pliovar.github.io/km5c.html. The combined proxy data (absolute SST reconstructions and anomalies to Pre-industrial) will be available at https://doi.pangaea.de/10.1594/PANGAEA.911847 www.pangaea.de (awaiting confirmation of the data URL, December 2019).

7 Supplement link
Additional information on proxy calibrations and their impact on the SST reconstructions can be accessed at (link from CPD).

8 Author contribution

ELM, HLF and SLH designed the data analysis and led the data compilation. JCT and AMH processed outputs from the suite of PlioMIP2 models, and calculated global means and meridional SST gradients using the proxy data. Proxy data were compiled and their age models reviewed by ELM, HLF, MA-G, IB, KL, MP, BP, ACR, BR, SDS, GEAS, KT, and SW. Proxy calibrations were reviewed and applied by ELM, MAB, HLF, SLH, FP, JET, and CvdW. PlioMIP2 model experiments were designed, run, and the outputs processed by AA-O, MLJB, EB, W-LC, DC, RF, CG, AMH, AvdH, SH, XL, GL, KHN, BLO-B, WRP, CS, JCT and ZZ. ELM, HLF and SLH prepared the manuscript with contributions from all co-authors.

9 Competing interests

The authors declare they have no conflict of interest.

10 Acknowledgements

This work is an outcome from the several workshops sponsored by Past Global Change (PAGES) as contributions to the working group on Pliocene Climate Variability over glacial-interglacial timescales (PlioVAR). We acknowledge PAGES for their support and the workshop participants for discussions. Funding support has also been provided by NERC (NE/I027703/1 and NE/L002426/1 to ELM, NERC NE/N015045/1 to HLF), Leverhulme Trust (Philip Leverhulme Prize, ELM), and the Research Council of Norway (BR and ELM (221712), SDS (229819)). MLJB, AvdH, FP and CvdW are part of the Netherlands Earth System Science Centre (NESSC), financially supported by the Dutch Ministry of Education, Culture and Science (OCW). MAG acknowledges support from FCT (SFRH/BPD/96960/2013, PTDC/MAR-PRO/3396/2014 and CCMAR UID/Multi/04326/2019). This research used samples and/or data provided by the International Ocean Discovery Program (IODP), Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP). WRP and DC were supported by Canadian NSERC Discovery Grant A9627 and they wish to acknowledge the support of SciNet HPC Consortium for providing computing facilities. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund – Research Excellence, and the University of Toronto. GL and CS acknowledge funding by the Helmholtz Climate Initiative REKLIM and the Alfred Wegener Institute’s research programme PACES2. WLC and AAO acknowledge funding from JSPS KAKENHI grant 17H06104 and MEXT KAKENHI grant 17H06323, and JAMSTEC for use of the Earth Simulator supercomputer. BLO-B, ECB and RF acknowledge the CESM project, which is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. This
research used samples and/or data provided by the International Ocean Discovery Program (IODP), Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP).

References

Fedorov, A. V., Burls, N. J., Lawrence, K. T., and Peterson, L. C.: Tightly linked zonal and meridional sea surface temperature gradients over the past five million years, Nature Geoscience, 8, 975-980, 10.1038/ngeo2577
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nature Communications, 8, 14845, 10.1038/ncomms14845
https://www.nature.com/articles/ncomms14845#supplementary-information, 2017.

Hoffman, J. S., Clark, P. U., Parnell, A. C., and He, F.: Regional and global sea-surface temperatures during the last interglaciation, Science, 355, 276-279, 10.1126/science.aai8464, 2017.

O’Brien, C. L., Foster, G. L., Martinez-Boti, M. A., Abell, R., Rae, J. W. B., and Pancost, R. D.: High sea surface temperatures in tropical warm pools during the Pliocene, Nature Geosci, 7, 606-611, 10.1038/ngeo2194

Figure 1: the KM5c interglacial during the late Pliocene (3.195-3.215 Ma). Upper panel: benthic oxygen isotope stack (solid line: LR04 (Lisiecki and Raymo, 2005); dashed line and grey shading: Prob-stack mean and 95% confidence interval, respectively, (Ahn et al., 2017)). Selected Marine Isotope Stages (KM2 through M2) are highlighted. The KM5c interval of focus here is indicated by the shaded blue bar. Previous Pliocene synthesis intervals are also shown: PRISM3 (3.025–3.264 Ma) and PRISM4 (isotope stages KM5c-M2; (Dowsett et al., 2016)); (c) reconstructed atmospheric CO$_2$ concentrations (Foster et al., 2017). Points show mean reported data (except white crosses: median values from Martinez-Boti et al., 2015), shading shows reported upper and lower estimates. Past and projected atmospheric CO$_2$ concentrations highlighted by arrows: PlioMIP2 simulations are run with CO$_2$ at 400 ppmv (Haywood et al., submitted in review, 2020) close to the annual mean in 2018 (NOAA), Pre-Industrial values from ice cores (Loulerge et al., 2008) and projected representative concentration pathways (RCP) for 2100 CE (IPCC, 2013).
Figure 2: Locations of sites used in the synthesis. A full list of the data sources and proxies applied per site can be accessed at https://pliovar.github.io/km5c.html.
Figure 3: Comparison of KM5c SST data relative to pre-industrial (NOAA-ERSST5) for global mean SST anomalies (SSTA) and the change in meridional SST gradient, constructed using proxy data and the suite of PlioMIP2 models. Details of the model experiments are outlined in Table 1 of Haywood et al. (2020, in review). The meridional SST gradient is calculated as 30°S-30°N minus 60°N-75°N, so that a more negative change in the gradient reflects a larger warming anomaly at high latitudes relative to low latitudes. As we only had data points poleward of 65°N in the Atlantic Ocean, the high latitude region for both proxy and model gradient calculations focuses on the longitudinal window from 70°W-5°E. Proxy data calculations were made using either all proxy data (UK$_{37}$’ and Mg/Ca using their original calibrations), or using only UK$_{37}$’ data and comparing the original and BAYSPLINE calibrations. No Mg/Ca data is available >60°N so we were unable to calculate Mg/Ca-only gradients (Figure 3). The impact of changing the low- and high-latitude bands is explored in Table 1.
Figure 4: reconstructed and modelled SST anomalies plotted by latitude. SST reconstructions using the original published data and two Bayesian approaches (BAYSPLINE, BAYMAG) are shown. The anomalies are calculated with reference to the NOAA-ERSST5 data for the years 1870-1899 CE at each site. Vertical red lines show the range of modelled annual SSTs from all PlioMIP2 experiments (Haywood et al., submitted in review, 2020) calculated at the grid boxes containing each site.
Figure 5. Investigating the potential seasonal signature recorded in high latitude Northern Hemisphere sites (>50ºN), ordered by increasing latitude from left to right. Note that Site U1417 is from the North Pacific, where BAYSPLINE explicitly assumes a summer signal is recorded >48ºN. All other sites are from the Atlantic Ocean/Nordic Seas, where BAYSPLINE assumes an autumn signal >45ºN. The original calibration by Müller et al. (1998) proposes that mean annual SSTs are recorded. Standard deviations of the multi-model means are shown for August (red) and April (yellow), which tend to be the maxima and minima, respectively.
Table 1: Comparison of the magnitude of the global SST anomaly and meridional SST gradients between KM5c and pre-industrial, depending on proxy combination, and the latitudinal bands used for the gradient calculations.

<table>
<thead>
<tr>
<th>Proxy</th>
<th>Global mean SST anomaly, °C</th>
<th>Meridional SST gradient anomaly, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30°S-30°N minus >60°N</td>
</tr>
<tr>
<td>U^K_{37'} (original)</td>
<td>3.24</td>
<td>-1.18</td>
</tr>
<tr>
<td>U^K_{37'} (BAYSPLINE)</td>
<td>3.41</td>
<td>0.03</td>
</tr>
<tr>
<td>U^K_{37'} (original) + Mg/Ca</td>
<td>2.32</td>
<td>-2.61</td>
</tr>
<tr>
<td>U^K_{37'} (BAYSPLINE) + Mg/Ca (BAYMAG)</td>
<td>2.28</td>
<td>-2.21</td>
</tr>
</tbody>
</table>
Supplemental Information

Age model update for ODP Sites 1090 and 806

At ODP Site 1090, following initial publication of the SST data (Martínez-Garcia et al., 2010) an alternative orbitally-tuned age model was generated using \(n \)-alkane concentrations as a proxy for dust inputs, and an anticipated continuation of the Pleistocene relationship of high dust with high \(\delta^{18}O \) i.e. during glacial stages (Martínez-Garcia et al., 2011). This \(n \)-alkane age model aligns KM5c with high \(n \)-alkane concentrations and low SSTs, whereas the reverse pattern might be expected (Figure S1). If the cold interval is re-aligned to KM4, SSTs during KM5c at ODP 1090 are elevated by 0.5°C (Figure S1). Given current stratigraphic information for ODP 1090 it is not possible to determine which of these scenarios is correct; thus, we present the SST anomalies according to the original age model, noting that there could be an additional increase in those anomalies of up to 0.5°C depending upon the choice of sample ages.

At ODP Site 806, uncertainty over age control resulted from the absence of an agreed splice across the multiple holes drilled by ODP. High-resolution benthic foraminifera \(\delta^{18}O \) records were generated on Hole 806B (Bickert et al., 1993; Karas et al., 2009). Here we update the age model using the HMM-Stack Matlab code (Lin et al., 2014), which aligns to the Prob-stack (Ahn et al., 2017). Additionally, we created a modified meters composite depth (mcd). Using the depth scale generated by Karas et al., (2009) to account for core expansion, we amend Holes 806A and 806C to this depth scale (Matlab code is provided as a supplement). The KM5c interval is muted in Prob-stack in comparison to LR04 (Ahn et al., 2017). Given the variability in the Site 806 benthic \(\delta^{18}O \) record (Figure 1), it is difficult to identify the KM5c interval and we rely on the probabilistic alignment of HMM-Match. If we tied the record to LR04 between M2 and KM2 and assumed a linear sedimentation rate, however, the age model in practice would be similar.

Alkenone calibrations

The majority of the alkenone-derived sea-surface temperature (SST) datasets included in the PlioVAR synthesis used the \(U^{K_{37}'} \) index, and applied the core-top calibration (60°S–60°N) by Müller et al. (1998) (hereafter Müller98; Tables S2 and S3). Several PlioVAR datasets were originally published using the laboratory culture calibration of *Emiliania huxleyi* by Prahl et al. (1988) (Table S3); these data were converted to Müller98 so that all sites used the same linear global calibration. The Bayesian \(U^{K_{37}'} \) calibration (BAYSPLINE) was then applied to all sites. Whilst the Müller98 calibration indicates mean annual SSTs for high latitudes, at sites >45°N (Pacific) and >48°N (Atlantic), and in the Mediterranean Sea, BAYSPLINE explicitly reconstructs seasonal SST (Tierney and Tingley, 2018).

Table S3 and Figure S2 compare the reconstructed SST anomalies for KM5c (relative to pre-industrial) for the 23 sites which provided alkenone data. In the mid- and high-latitudes, Müller98 tends to generate warmer SSTs compared to BAYSPLINE, with the difference ≤0.9 °C (Table S3). There is relatively little variability in the offset (± 0.15 °C) although that may reflect low sample numbers for some sites (Figure S2). In the low latitudes, where SSTs exceed ~24.5°C (applying Müller98), the non-linearity of the BAYSPLINE calibration has its biggest impact (Figure S2). For most low-latitude sites SSTs are ~1°C warmer using BAYSPLINE, but the difference can be as high as 1.67 °C ± 0.01°C (ODP 1143). The warmer low-latitudes in BAYSPLINE reduce the meridional temperature gradient, but both Müller98 and BAYSPLINE are consistent in showing enhanced warming at mid- and high-latitudes.
Foraminifera Mg/Ca calibrations

A range of foraminifera species, Mg/Ca-SST calibrations, and corrections for non-thermal impacts on Mg/Ca had been employed for the original published data (Table S4). We present the data as published, recognising the choices made by the original researchers in identifying the best approach for their site. The Bayesian calibration, BAYMAG, was then applied to all data following the settings detailed in the Methods.

Table S4 and Figure S3 compared the reconstructed SST anomalies for KM5c (relative to pre-industrial) for the 12 sites which provided foraminifera Mg/Ca data. A wide range of offsets is recorded, both positive and negative, and there is no clear pattern in terms of latitude or species.
Table S1. Sites used in the PlioVAR synthesis, their age constraints and SST proxies, can be accessed at https://pliovar.github.io/km5c.html.

Table S2. Alkenone indices and temperature calibrations discussed in the text. \([C_{37:x}]\) refers to the concentration of the C\(_{37}\) alkenone with \(x\) unsaturations.

<table>
<thead>
<tr>
<th>Alkenone index</th>
<th>Calibration to ocean temperature</th>
<th>Sample type; Interpretation</th>
<th>Calibration reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{37}' = [C_{37:2}] / ([C_{37:2}] + [C_{37:3}]))</td>
<td>(U_{37}' = 0.034T + 0.039)</td>
<td>Emiliania huxleyi cultures; Growth temperature</td>
<td>Prahl et al. (1998)</td>
</tr>
<tr>
<td>(U_{37}') (as above)</td>
<td>(U_{37}' = 0.033T + 0.044)</td>
<td>Core tops, 60°S to 60°N; Mean annual SST</td>
<td>Mühlller et al. (1998)</td>
</tr>
<tr>
<td>(U_{37}') (as above)</td>
<td>Bayesian calibration (BAYSPLINE)</td>
<td>Core tops, 60°S to 70°N; Mean annual SST, except seasonal SST in high latitudes (>48°N) and Mediterranean</td>
<td>Tierney and Tingley (2018)</td>
</tr>
</tbody>
</table>
Table S3: The impact of applying two alkenone calibrations on the PlioVAR SST reconstructions for KM5c (3.195–3.215 Ma), sorted by basin and latitude (from N to S). All data were converted to the Müller et al. (1998) calibration prior to analysis. The recommended prior standard deviation scalar (pstd) of 10 was applied to all sites, excluding for high U\(^{K_{37}}\) values where the more restrictive value of 5 was used, as recommended in the BAYSPLINE calibration (Tierney and Tingley, 2018).

<table>
<thead>
<tr>
<th>Site</th>
<th>Original calibration</th>
<th>Original reference(s)</th>
<th>T difference (BAYSPLINE 50% level - Müller 98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Ocean and Mediterranean Sea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>907</td>
<td>Müller et al. (1998)</td>
<td>Herbert et al. (2016)</td>
<td>-0.34 °C ((n = 1))</td>
</tr>
<tr>
<td>642</td>
<td>Müller et al. (1998)</td>
<td>Bachem et al. (2016)</td>
<td>-0.66 °C ± 0.02 °C</td>
</tr>
<tr>
<td>982</td>
<td>Prahl et al. (1998)</td>
<td>Herbert et al. (2016), Lawrence et al. (2009)</td>
<td>-0.70 °C ± 0.01 °C</td>
</tr>
<tr>
<td>U1313</td>
<td>Müller et al. (1998)</td>
<td>Naafs et al. (2010)</td>
<td>-0.74 °C ± 0.01 °C</td>
</tr>
<tr>
<td>607</td>
<td>Prahl et al. (1998)</td>
<td>Lawrence et al. (2010)</td>
<td>-0.74 °C ± 0.02 °C</td>
</tr>
<tr>
<td>999</td>
<td>Müller et al. (1998), Sonzogni et al. (1997)</td>
<td>Badger et al. (2013), Seki et al. (2010)</td>
<td>+0.87 °C ± 0.16 °C ((BAYSPLINE pstd = 5))</td>
</tr>
<tr>
<td>662</td>
<td>Müller et al. (1998)</td>
<td>Herbert et al. (2010)</td>
<td>+1.25 °C ± 0.08 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>U1387</td>
<td>Müller et al. (1998)</td>
<td>Tzanova & Herbert (2015)</td>
<td>+0.34 °C ± 0.28 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>Punto Piccola</td>
<td>Müller et al. (1998)</td>
<td>Herbert et al. (2015)</td>
<td>-0.19 °C ± 0.08 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>609</td>
<td>Müller et al. (1998)</td>
<td>Lawrence and Woodard (2017)</td>
<td>-0.71 °C ± 0.02 °C</td>
</tr>
<tr>
<td>625</td>
<td>Müller et al. (1998)</td>
<td>Van der Weijst and Peterse (unpublished)</td>
<td>+0.92 °C ± 0.16 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>1081</td>
<td>Müller et al. (1998)</td>
<td>Rosell-Melé et al. (2014)</td>
<td>-0.47 °C ((n = 1))</td>
</tr>
<tr>
<td>1082</td>
<td>Müller et al. (1998)</td>
<td>Etourneau et al. (2009)</td>
<td>-0.19 °C ± 0.15 °C</td>
</tr>
<tr>
<td>1084</td>
<td>Müller et al. (1998)</td>
<td>Rosell-Melé et al. (2014)</td>
<td>-0.51 °C ± 0.07 °C</td>
</tr>
<tr>
<td>1087</td>
<td>Müller et al. (1998)</td>
<td>Petrick et al. (2015)</td>
<td>-0.86 °C ± 0.01 °C</td>
</tr>
<tr>
<td>1090</td>
<td>Müller et al. (1998)</td>
<td>Martínez-Garcia et al. (2011;2010)</td>
<td>-0.39 °C ± 0.01 °C</td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1143</td>
<td>Müller et al. (1998)</td>
<td>Li et al. (2011)</td>
<td>+1.67 °C ± 0.01 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>U1417</td>
<td>Müller et al. (1998)</td>
<td>Sánchez-Montes et al. (2019)</td>
<td>-0.59 °C ((n = 1))</td>
</tr>
<tr>
<td>846</td>
<td>Müller et al. (1998)</td>
<td>Lawrence et al. (2006)</td>
<td>-0.23 °C ± 0.09 °C ((BAYSPLINE pstd=5))</td>
</tr>
<tr>
<td>U1337</td>
<td>Müller et al. (1998)</td>
<td>Li et al. (2019)</td>
<td>+1.65 °C ((n = 1))</td>
</tr>
<tr>
<td>593</td>
<td>Müller et al. (1998)</td>
<td>McClymont et al. (2016)</td>
<td>-0.70 °C ± 0.02 °C</td>
</tr>
<tr>
<td>594</td>
<td>Müller et al. (1998)</td>
<td>Caballero-Gill et al. (2019)</td>
<td>-0.64 °C ± 0.01 °C</td>
</tr>
<tr>
<td>1125</td>
<td>Müller et al. (1998)</td>
<td>Caballero-Gill et al. (2019)</td>
<td>-0.74 °C ± 0.01 °C</td>
</tr>
<tr>
<td>Indian Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>722</td>
<td>Müller et al. (1998)</td>
<td>Herbert et al. (2010)</td>
<td>+0.91 °C ± 0.08 °C (BAYSPLINE pstd=5)</td>
</tr>
</tbody>
</table>
Table S4: Comparison of published Mg/Ca calibration and BAYMAG for PlioVAR SST reconstructions for KM5c (3.195–3.215 Ma), sorted by basin and latitude (from N to S). The original Mg/Ca SST calibrations (and any corrections) used in the published datasets are shown.

<table>
<thead>
<tr>
<th>Site</th>
<th>Species</th>
<th>Original calibration</th>
<th>Original reference(s)</th>
<th>T difference (BAYMAG – published calibration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atlantic Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>G. bulloides</td>
<td>Mashiotta et al. (1999)</td>
<td>Bartoli et al. (2005)</td>
<td>+0.80 °C ± 0.83 °C</td>
</tr>
<tr>
<td>U1313</td>
<td>G. bulloides</td>
<td>Elderfield and Ganssen (2000)</td>
<td>Hennissen et al. (2014)</td>
<td>+4.75 °C ± 0.23 °C</td>
</tr>
<tr>
<td>603</td>
<td>G. bulloides</td>
<td>Elderfield and Ganssen (2000)</td>
<td>De Schepper et al. (2009)</td>
<td>+4.73 °C ± 0.74 °C</td>
</tr>
<tr>
<td>999</td>
<td>T. sacculifer</td>
<td>Nürnberg et al. (2000)</td>
<td>De Schepper et al. (2013)</td>
<td>-0.47 °C ± 0.09 °C</td>
</tr>
<tr>
<td>959</td>
<td>T. sacculifer</td>
<td>Dekens et al. (2002), which includes a dissolution correction, with Evans et al. (2016) Mg/Ca<sub>sw</sub> correction</td>
<td>Van der Weijst and Peterse (unpublished)</td>
<td>-4.12 °C ± 0.24 °C</td>
</tr>
<tr>
<td>516</td>
<td>T. sacculifer</td>
<td>Anand et al. (2003)</td>
<td>Karas et al., (2017)</td>
<td>+1.26 °C ± 0.24 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pacific Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1143</td>
<td>G. ruber</td>
<td>Dekens et al. (2002), which includes a dissolution correction,</td>
<td>Tian et al., (2006)</td>
<td>-0.57 °C ± 0.17 °C</td>
</tr>
<tr>
<td>1241</td>
<td>T. sacculifer</td>
<td>Nürnberg et al. (2000)</td>
<td>Groeneveld et al. (2006)</td>
<td>+2.73 °C ± 0.37 °C</td>
</tr>
<tr>
<td>806</td>
<td>T. sacculifer</td>
<td>Dekens et al. (2002), which includes a dissolution correction,</td>
<td>Wara et al. (2005)</td>
<td>+1.46 °C ± 0.04 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indian Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>709</td>
<td>T. sacculifer</td>
<td>Anand et al. (2003) with Regenberg et al. (2006) dissolution correction</td>
<td>Karas et al. (2011)</td>
<td>+0.29 °C (n = 1)</td>
</tr>
<tr>
<td>214</td>
<td>T. sacculifer</td>
<td>Anand et al. (2003) with Regenberg et al. (2006) dissolution correction</td>
<td>Karas et al. (2009)</td>
<td>-1.05 °C (n = 1)</td>
</tr>
<tr>
<td>763</td>
<td>T. sacculifer</td>
<td>Anand et al. (2003) with Regenberg et al. (2006) dissolution correction</td>
<td>Karas et al. (2011)</td>
<td>+1.34 °C (n = 1)</td>
</tr>
</tbody>
</table>
Figure S1: Age control for ODP 1090. *n*-Alkane concentrations and SSTs plotted on the original age scale of Martínez-Garcia et al. (2011), whereby the Pleistocene relationship of high *n*-alkane concentrations during glacial stages was applied. The KM5c window adopted in the main text is indicated by the vertical yellow bar. An alternative alignment of the published KM5c *n*-alkane peak and SST minimum into KM4 or the final stages of KM5c (dashed lines) leads to an increase in KM5c SSTs of up to 0.5°C (grey box).
Figure S2: the impact of applying either the non-linear BAYSPLINE (Tierney and Tingley, 2018) or linear Müller et al. (1998) calibrations for the alkenone $U^{\text{K}_{37}^\text{r}}$ index for the KM5c interval. Temperature anomaly information is also provided in Table S3. Sites are ordered by latitude as shown in Figure 4 of the main text (594 at 46°S through to 907 at 69°N). Four sites contain only one data point for the KM5c interval (1081, 1337, 1417 and 907).
Figure S3: impact of applying BAYMAG to original (published) Mg/Ca temperature calibrations. Temperature anomaly information is provided in Table S4. Sites are ordered by latitude as shown in Figure 4 of the main text (516 at -30°S to 609 at 50°N). Three sites contain only one data point for the KM5c interval (763, 214, 709).
Figure S4: The impact of the numbers of data points within KM5c (#sample) on the temporal variability of SST data (standard deviation; SD). For most sites, SD is <1°C (and closer to 0-0.5 °C).
Figure S54: impact of changing high/low latitude bands on meridional SST gradient calculations. The high-latitude box is expanded from >60°N/S (Figure 3) to include sites between 45-60°N/S, and the low-latitude box is restricted to 15°S-15°N. This adds a further 4 sites to the original 2 included in the high-latitude box, and removes the possible influence of the Benguela upwelling sites from the low-latitude SST calculations, given data-model mismatch (Figure 4). Although there is minimal change in the proxy data meridional T gradient anomaly (2.8°C here compared to 2.6°C in Figure 3), the data no longer agree with the PlioMIP2 models.
Figure S65: Absolute SSTs for each site, for modern (World Ocean Atlas, 2018 (Boyer et al., 2018)) and for KM5c (proxy data and models as for Figure 4). Grey shading represents the range of SSTs recorded at each latitude for WOA18 (the zonal mean is shown by the solid black line).
Figure S67: Impact of pre-industrial choice on the anomaly calculation. Top: ERSSTv5 (as shown in Figure 4 of the main text); middle: the anomalies using the nearest available core-top data (for alkenones) and the forward-modelled ‘core-top’ from BAYMAG (Tierney et al., 2019), which uses World Ocean Atlas SST data (Locarnini et al., 2013); bottom: the anomalies calculated against World Ocean Atlas 2018 (Locarnini et al., 2018). For site information see https://pliovar.github.io/km5c.html.
Supplement reference list

