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Abstract.

Proxy records represent an invaluable source of information for reconstructing past climatic variations, but they are asso-

ciated with considerable uncertainties. For a systematic quantification of these reconstruction errors, however, knowledge is

required not only of their individual sources but also of their auto-correlation structure, as this determines the timescale depen-

dence of their magnitude, an issue that is often ignored until now. Here a spectral approach to uncertainty analysis is provided5

for paleoclimate reconstructions obtained from single sediment proxy records. The formulation in the spectral domain, rather

than the time domain, allows for an explicit demonstration as well as quantification of the timescale dependence that is inherent

in any proxy-based reconstruction uncertainty. This study is published in two parts.

In this first part, the theoretical concept is presented and analytic expressions are derived for the power spectral density of the

reconstruction error of sediment proxy records. The underlying model takes into account the spectral structure of the climate10

signal, seasonal and orbital variations, bioturbation, sampling of a finite number of signal carriers, uncorrelated measurement

noise, and it includes the effects of spectral aliasing and leakage. The uncertainty estimation method, based upon this model,

is illustrated by simple examples. In the second part of this study, published separately, the method is implemented in an

application-oriented context, and more detailed examples are presented.

1 Introduction15

The central issues of climate sciences include the estimation, understanding and prediction of climatic variations, across ranges

of space and timescales that are relevant to the specific field of study. From an inductive perspective, such studies are necessarily

based on observational data which the variability may be estimated from, whereas from a deductive perspective observational

data are needed in the course of validation of theories and models. For certain fields of study instrumental or satellite data

may provide a useful data source. Nonetheless, once processes are studied that involve climate states or variations at times20

before the instrumental era, or that involve timescales longer than this, reconstructions obtained from paleoclimate proxies

become indispensable. Such proxy records reveal imprints of past climatic conditions, created by, for example, impacts on the

calcification of the shells of marine organisms (Nürnberg et al., 1996), now preserved in sea sediments, on terrestrial pollen
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assemblages archived in lake sediments (Birks and Seppä, 2004), or on stable water isotopes that can be recovered from ice-

cores (Jouzel et al., 1997). Proxy-based reconstructions, however, are associated with notable uncertainties that are often much25

larger than those of instrumental data (Münch and Laepple, 2018; Reschke et al., 2019), and which can emerge from a variety

of sources—they are essentially highly noisy and distorted observations of selected climate variables. Hence, an important task

of the paleoclimate research field is to provide thourough quantitative estimates of these reconstruction uncertainties.

Possible sources of reconstruction uncertainties include, but are not limited to, measurement errors occurring in the labora-

tory (Rosell-Melé et al., 2001; Greaves et al., 2008), errors induced by smoothing processes like bioturbation affecting sediment30

archives (Berger and Heath, 1968; Goreau, 1980) or diffusion within ice-cores (Johnsen, 1977; Whillans and Grootes, 1985),

aliasing of variability from higher than the resolved frequencies (e.g., from ENSO or the seasonal cycle; see, for example,

Thirumalai et al., 2013; Laepple et al., 2018), proxy seasonality (Jonkers and Kučera, 2015), potentially interacting with mod-

ulations of the seasonal cycle amplitude caused by slow orbital variations (Huybers and Wunsch, 2003; Laepple et al., 2011),

uncertainties in the understanding of the climate-proxy relationship (including calibration errors; Tierney and Tingley, 2014),35

and others, depending on the type of proxy used.

It turns out that a careful and systematic investigation of these reconstruction uncertainties is indispensable, if we are to

properly exploit the source of information contained in proxy archives, for such important issues like the estimation of the

future evolution of natural and forced climate variability. Until now, however, reconstruction uncertainty estimates often lack

the required accuracy (Lohmann et al., 2013; Reschke et al., 2019). In particular, one issue that deserves more detailed consid-40

eration is the timescale dependence of the reconstruction uncertainties (Amrhein, 2019). Although some of their sources like

measurement errors will often be independent and, thus, uncorrelated between individual measurements, others like smoothing

processes and orbital variations, in conjunction with proxy seasonality, have the potential to create serially correlated uncer-

tainties (i.e., they are auto-correlated in the time domain). Thus, some uncertainty components may be described by white

noise, while others may have the properties of red noise or an even more complex auto-correlation structure. The direct, and45

practically relevant, implication of this is the fact that, when averaging the proxy-based climate reconstruction over some time

interval (e.g., by applying a moving average filter), the uncertainties may shrink at a different rate than if they were purely

white noise.

One possibility to estimate the auto-correlation structure of reconstruction uncertainties consists in the application of proxy

forward models that generate proxy time series from climate (model) time series (see, for example, Evans et al., 2013; Dee50

et al., 2015; Dolman and Laepple, 2018). Specifically, the auto-correlation structure may then be inferred from ensembles of

such simulated proxy time series. This approach is flexible regarding the complexity of the uncertainty-generating processes

included in the model, but the insights gained from its application are limited by the fact that it represents a try-and-error

strategy. Moreover, the involved numerical simulations easily become computationally expensive. Therefore, it is useful and

desirable to complement this by an alternative approach that allows for a systematic understanding of the auto-correlation55

structure of the reconstruction error components from an analytic point of view.

Accordingly, the aim of this paper is to provide a conceptual approach and, based thereon, an analytically derived method

to estimate timescale-dependent reconstruction uncertainties, for the example of sediment archives. Specifically, the method
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yields uncertainty estimates, given a set of parameters that specify (i) the spectral structure of a supposed true climate signal,

(ii) seasonal and orbital variations, (iii) proxy seasonality, (iv) bioturbation, (v) archive sampling parameters, (vi) sampling of60

a finite number of signal carriers, (vii) uncorrelated measurement noise, and it takes into account the effects of spectral aliasing

and leakage. The fact that archive smoothing is represented by bioturbation limits the validity of the method in its current form

to proxy archives from sea and lake sediments. However, it has the potential to be generalized to other sedimentary archives

such as ice-cores, by modifying the smoothing operator to represent isotopic diffusion.

The pivotal idea of our approach to address the timescale dependence of the uncertainty consists in the derivation of its power65

spectrum, as the spectrum is directly related (by the Wiener-Khintchine theorem, see Priestley, 1981) to the auto-correlation

structure which, in turn, determines how the uncertainty scales with timescale (e.g., the length of an averaging interval). The

convenience of the obtained mathematical expressions for the uncertainty power spectrum is twofold: (a) They can be used to

acquire a qualitative understanding of the effects and relative importance of the various sources of uncertainty. (b) They can

serve to obtain quantitative uncertainty estimates for specific practical applications in paleoclimate science.70

Part I of this study provides the theoretical basis of the uncertainty estimation method. In section 2 the underlying recon-

struction uncertainty model is defined in the time domain. Section 3 translates the model into the spectral domain by deriving

the corresponding uncertainty power spectrum. Section 4 summarizes the results and demonstrates how timescale-dependent

uncertainties can be obtained from the spectrum. The method and its limitations are discussed in section 5, followed by the

final conclusions in section 6. Part II of this study, published separately (see Dolman et al., 2019), demonstrates the practical75

applicability of the method and also provides a software implementation for practical uncertainty estimation purposes, the

so-called Proxy Spectral Error Model (PSEM).

2 Reconstruction uncertainty model

Before we can formulate our timescale-dependent uncertainty estimation method, we have to provide a precise definition of the

underlying reconstruction uncertainty model, including our assumptions and simplifications that allow for an analytic treatment80

of the problem. Specifically, in order to define the uncertainty model, we need to

– suppose a structure of the true climate signal, which the final uncertainty estimates will be based upon, because some

uncertainty components and their timescale dependence are subject to that structure

– make simplifying assumptions regarding the archive formation, concerning proxy seasonality, the climate-proxy rela-

tionship, the sediment accumulation rate and the effects of bioturbation mixing85

– specify the archive sampling and measurement procedure

– define the reconstruction error as the difference between the obtained climate reconstruction and a suitable reference

climate

– define the reconstruction uncertainty in terms of the expected value of the squared reconstruction error.
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Table 1. Parameters of the reconstruction uncertainty model, as defined in section 2.

Parameter Symbol

Seasonal cycle variance σ2
c

Seasonal cycle frequency νc

Expected seasonal cycle phase 〈φc〉φc

Seasonal phase uncertainty ∆φc

Amplitude modulation variance σ2
a

Amplitude modulation frequency νa

Amplitude modulation phase φa

Proxy abundance timescale τp

Bioturbation timescale τb

Sediment sampling timescale τs

Sampling interval ∆t

Length of proxy record T

Number of signal carriers N

Measurement error variance σ2
µ

Reference climate averaging timescale τr

Accordingly, the reconstruction uncertainty model can be thought of, conceptually, as an operator that takes as its arguments90

the supposed structure of the true climate signal and a set of parameters that appear in the mathematical formulation of the

above assumptions. The remainder of this section is concerned with the details of the above five steps, including an explanation

of the involved parameters. A complete list of the model parameters is provided by Table 1. For possible sources and specific

choices of parameter values, see Part II of this study (Dolman et al., 2019) and, in particular, their Table 1. Note, that the

reconstruction uncertainty model defined in this section is closely related to the proxy forward model of Dolman and Laepple95

(2018).

2.1 Climate signal

We assume that the supposed true climate signal consists of two components: a stochastic signalX(t), that represents the signal

to be reconstructed from the proxy record, and a deterministic signal Y (t), that represents the seasonal cycle, the amplitude

of which is modulated by slow orbital variations. In addition, we make the simplifying assumption that X(t) and Y (t) are100

stochastically independent.

The stochastic signalX(t) is modelled as a zero-mean stochastically continuous stationary random process, with infinite and

continuous time parameter t, and that has a purely continuous power spectrum (i.e., the spectrum has no discrete components).

The actual structure of X(t) is to be specified in the spectral domain (see section 3), and the uncertainty estimation method

is constructed such that any spectral structure can be specified as long as it is consistent with the abovementioned properties105
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of X(t). An illustration of one realization of such a random process is given by the gray-red line in Fig. 1b (obtained from a

surrogate time series that obeys a simple power-law frequency scaling). It can be thought of as a time series of anomalies of a

climate signal after removal of the climatological seasonal cycle.

The deterministic signal Y (t) is modelled as a single harmonic oscillation, that represents a simplified seasonal cycle, which

is amplitude modulated by another single harmonic oscillation with a much longer period. Thus, Y (t) has a purely discrete110

power spectrum. Such a deterministic signal can be written as

Y (t) = σc
√

2cos(φc + 2πνct)
[
1 +σa

√
2cos(φa + 2πνat)

]
, (1)

where νc = (1 yr)−1 and νa� (1 yr)−1 are the frequencies of the seasonal cycle and of its slow amplitude modulation, respec-

tively, σ2
c and σ2

a are the corresponding variances of those oscillations, and φc and φa are their phases. The square bracket term

represents the amplitude modulation factor that specifies the time-varying envelope of the seasonal cycle oscillation. Note, that115

σc has the same units as X(t) and Y (t), whereas σa is dimensionless, as it determines the fraction by which the amplitude of

the seasonal cycle varies. In particular, σc
√

2 is the half-amplitude of the unmodulated seasonal cycle, and σa
√

2 is the fraction

by which the seasonal cycle amplitude changes over an orbital modulation cycle. Furthermore, it is required that σa
√

2< 1,

or equivalently σ2
a < 1/2, to avoid flipping seasons by a negative amplitude modulation factor (which would correspond to

unrealistically strong effects of orbital variations). The deterministic signal is illustrated by the gray-red line in Fig. 1c. Note,120

that only for the purpose of illustration the modulation frequency has been set to νa = (130 yr)−1 in this figure, although a

realistic value would be νa = (23 kyr)−1, for example, if it were to represent an idealized planetary precession cycle.

2.2 Archive formation

To reflect proxy seasonality, we assume a seasonally confined time window during which the proxy is abundant. Thus, the

climate signal, and, in particular, the seasonal cycle, is recorded only during those seasons. The length of this proxy abundance125

window is specified by the parameter τp, and the timing of the center of this window with respect to the seasonal cycle

is specified by φc, as it appears in (1). Accordingly, if φc = 0, then the abundance window is centered at the maximum of

the seasonal cycle (i.e., the summer season, if the climate signal X(t) +Y (t) represents temperature, for example), setting

φc =±π/2 centers the window at either of the zero-crossings (spring or autumn), φc = π at the minimum (winter), and likewise

for all other phases. The seasonality parameters are required to fulfill the relations τp ≤ 1 yr and −π < φc ≤ π. If τp = 1 yr,130

there is no seasonality and the parameter φc has no effect. Since in this formulation τp and φc are fixed, the above assumptions

imply that we are neglecting any changes of proxy seasonality, caused by, for example, habitat tracking. Specifically, there is

no adaptation of proxy seasonality to changes in the seasonal cycle amplitude, nor to variations of the stochastic component

of the climate signal at any timescales. The effect of proxy seasonality defined in this way is illustrated, in Figs. 1b and c, by

the red line segments, highlighting that part of the signal that is recorded by the proxy. In this example the proxy abundance135

window is set to cover the seasons around the maximum of the seasonal cycle.
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Figure 1. Schematic illustration of the reconstruction uncertainty model. (a) Probability density function (as a function of time lag) that

describes the combined effects of bioturbation (with timescale τb), of sediment sample thickness, and of proxy seasonality. (b) Stochastic

component X(t) of the climate signal, gray line, with dates highlighted in red that fall into the proxy abundance window (of length τp),

to reflect proxy seasonality. Blue rectangles indicate time intervals of length τs, covered by the sediment slices. From each slice a finite

number of signal carriers (N = 3 in this example) are retrieved from random positions within the slice, indicated by the blue dots, each of

which carries the signal from the time at which it settled down on the surface of the sediment, before it was mixed to its current position by

bioturbation (indicated by black arrows for the central slice). Green squares indicate the reference climate signal, obtained by averagingX(t)

over intervals of length τr , indicated by the green line for the central point. (c) Same as (b), but for the deterministic component Y (t), that

represents the amplitude modulated seasonal cycle. (d) Total reconstructed signal (blue), obtained by averaging over the N signal carriers

from each slice, reference climate signal (green), and the difference between them (magenta) that represents the reconstruction error; at a

sampling interval ∆t. Measurement errors are neglected in this illustration. Timescale parameters are set to τb = 10 yr, τs = 5 yr, τr = 9 yr,

∆t= 9 yr, τp = 1/3 yr.
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In the following we also neglect any uncertainties regarding the climate-proxy relationship, including calibration errors.

Furthermore, we assume a known and constant sediment accumulation rate. Thus, we will treat all signals simply as a function

of time, and assume that the constant depth-time relationship is given as an independent information.

Signal smoothing by sediment mixing caused by bioturbation is assumed to occur instantly and uniformly within the upper-140

most layer of the sediment. The thickness of this layer, the bioturbation depth, can be divided by the sediment accumulation

rate to obtain the corresponding bioturbation timescale τb. Under the aforementioned assumptions the effects of bioturbation

can be described by a probability density function (PDF) of the form (Berger and Heath, 1968)

fb(ε) =

 τb
−1 exp[(ε− τb)/τb] if ε≤ τb

0 otherwise
, (2)

where ε has units of time. This PDF specifies at which probability a single signal carrier, retrieved from the archive at position145

t= t0, has settled down on the surface of the sediment and, thus, has recorded the climate signal at a given time t= t0 + ε.

Essentially, it states that a signal carrier retrieved at t= t0 cannot have its origin at times later than t= t0 + τb, but that it

can have its origin arbitrarily far in the past relative to t0, although with exponentially decreasing probability. Thus, ε can be

interpreted as the timing error, caused by bioturbation, that is associated with the signal recorded by an individual signal carrier.

In Figs. 1b and c, the effect of bioturbation is illustrated by the black arrows, indicating the net mixing paths (i.e., the timing150

errors ε) of three selected signal carriers (blue dots).

2.3 Sampling and measurement procedure

We assume that the archive is sampled by taking slices of sediment, the thickness of which corresponds to time intervals of

length τs, and which are taken at distances (measured from center to center) corresponding to a sampling interval ∆t. This

sampling procedure is illustrated in Figs. 1b and c by the blue rectangles, indicating individual sediment slices. The total length155

of the record is denoted by T . For mathematical reasons that become apparent in section 3, it is required that T is a multiple of

∆t, and that ∆t and τs are multiples of 1 year. Setting τs <∆t corresponds to discontinuous sampling, τs = ∆t to continuous

sampling, and τs >∆t to sampling with overlap. The effects of these cases are discussed by Amrhein (2019).

Because signal carriers are retrieved from arbitrary positions within each slice, the effect of the sediment sample timescale τs

can be described by convolving the bioturbation PDF, fb(ε), with a slice PDF that has the shape of a moving average window,160

fs(ε) = τ−1
s Π(ε;τs), (3)

and which is essentially blurring the edge of fb(ε); where the symbol Π(t;τ) denotes the rectangle function

Π(t;τ) =

 1 if −τ/2< t≤ τ/2
0 otherwise

. (4)

Thus, the PDF of the timing errors, which describes the combined effects of bioturbation and of sampling slices of sediment,

can be written as165

fbs(ε) = fs(ε) ∗ fb(ε), (5)

7



Hence, if there were no bioturbation (τb→ 0) and if single signal carriers were retrieved from infinitesimally thin slices (τs→
0), then this PDF would reduce to a Dirac delta function, fbs(ε)→ δ(ε), in which case the above sampling procedure would

yield the discrete climate signalXn+Yn =X(tn)+Y (tn), where tn = n∆t (with n= 0,±1,±2, . . .). In the general case with

τb > 0 and τs > 0, we can express the result of the sampling procedure as a discrete signal with jittered sampling,170

X(j)
n +Y (j)

n =X(tn + ε(j)n ) +Y (tn + ε(j)n ), (6)

with ε(j)n ∼ fbs(ε), where ε(j)n represents the sampling jitter and fbs(ε) the jitter PDF. In the above terminology, ε(j)n represents

the timing error of a single signal carrier (labelled j) retrieved from a slice centered at t= tn.

Finally, we need to include the effect of proxy seasonsality as defined in the previous subsection. This is accomplished

through multiplying fbs(ε) by a proxy seasonality function p(ε), that is given by the convolution of the Dirac comb function175

III(ε;ν−1
c ) with the rectangle function (τpνc)

−1Π(ε;τp), that is,

p(ε) = (τpνc)
−1Π(ε;τp) ∗ III(ε;ν−1

c )

= (τpνc)
−1

∞∑
k=−∞

Π(ε− kν−1
c ;τp);

(7)

where the Dirac comb function III(t;τ) is defined as a series of Dirac delta functions δ(t),

III(t;τ) =

∞∑
k=−∞

δ(t− kτ). (8)

It turns out that in the limit of vanishing proxy seasonality (τp→ 1 yr), the proxy seasonality function becomes constantly one,180

p(ε)→ 1, whereas in the limit of maximum proxy seasonality (τp→ 0), the proxy seasonality function reduces to the Dirac

comb function, p(ε)→ III(ε;ν−1
c ). From the above, the discrete climate signal, obtained from the sampling procedure, may

still be written as in (6), but with the sampling jitter

ε(j)n ∼ p(ε)fbs(ε) (9)

now being drawn from the full jitter PDF, p(ε)fbs(ε), which describes the combined effects of bioturbation, of sampling slices185

of sediment, and of proxy seasonality. The proof that the full jitter PDF defined in this way integrates to unity follows in

section 3. The structure of the full jitter PDF is illustrated by Fig. 1a.

In practice a finite number N ≥ 1 of signal carriers is retrieved from each sediment slice, rather than just a single signal

carrier, and subsequently a single proxy measurement is performed in the laboratory on the collection of those N signal

carriers, representing an average proxy value. This can be expressed as190

X̄n + Ȳn =
1

N

N∑
j=1

[
X(j)
n +Y (j)

n

]
. (10)

In addition, we assume that the involved sampling jitter, ε(j)n , is uncorrelated (i.e., white) in terms of both, n and j,

Cor
(
ε(j)n , ε

(j′)
n′

)
= 0 if n 6= n′ or j 6= j′, (11)
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which reflects our assumption that the bioturbation mixing paths of the individual signal carriers within the sediment do not

affect each other. Furthermore, it is required that ε(j)n is a stationary process, to reflect our assumptions of a fixed bioturbation195

depth and a constant sediment accumulation rate. Finally, we take ε(j)n as independent of X(t) and Y (t), corresponding to the

assumption that bioturbation does not depend on the climate.

In general, each laboratory measurement is associated with a measurement error µn, the magnitude of which may be charac-

terized in terms of its variance σ2
µ. Thus, the final reconstruction time series is given by X̄n + Ȳn +µn, although we will omit

µn in the following as it is assumed to be white noise and, thus, it can easily be added at the very end of the entire uncertainty200

estimation procedure.

2.4 Definition of reconstruction error

The reconstruction error can now be defined as the difference between the obtained climate reconstruction (10) and a suitable

reference climate

X̃n + Ỹn = X̃(tn) + Ỹ (tn), (12)205

where

X̃(t) + Ỹ (t) = τ−1
r Π(t;τr) ∗ [X(t) +Y (t)] (13)

is the supposed true climate signal smoothed with a moving average filter with timescale τr, which is then subsampled at the

same discrete times tn. Here we require that τr is a multiple of 1 year, such that Ỹn = 0 because it is then an average over a

number of complete seasonal cycles. Thus, we obtain the reconstruction error time series as210

En = EX,n +EY,n, (14)

with the error components

EX,n = X̄n− X̃n and EY,n = Ȳn. (15)

An example of one realization of the discrete climate reconstruction (10), reference climate (12), and reconstruction error time

series (14) is illustrated by Fig. 1d.215

2.5 Definition of reconstruction uncertainty

The so defined reconstruction error En refers only to a single realization of the stochastic processes X and ε, which are

specified in terms of their power spectral density and PDF, respectively. Thus, to obtain a suitable measure of the reconstruction

uncertainty that characterizes the magnitude of possible errors, under the specified stochastic properties of X and ε, we define

the root-mean-square (RMS) reconstruction error En by220

E2
n =

〈〈
E2
n

〉
X

〉
ε
, (16)
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where 〈·〉X and 〈·〉ε denote the expected value operators with respect to X and ε, respectively. Then substitution from (14)

yields

E2
n =

〈〈
(EX,n +EY,n)2

〉
X

〉
ε

=
〈〈
E2
X,n

〉
X

〉
ε
+
〈
E2
Y,n

〉
ε
, (17)

because X and Y are assumed to be independent, and because X is a zero-mean process, that is, 〈X〉X = 0 and, thus,225

〈〈EX,n〉X〉ε = 0.

As will be shown in section 3, EX,n can be decomposed into two uncorrelated zero-mean stationary components as EX,n =

FX,n +WX,n, such that FX,n can be expressed as the result obtained by bandpass filtering the signal X(t) in time, and then

subsampling it at the discrete times tn, and WX,n is a white noise process. Furthermore, it will be shown that EY,n can be

decomposed into two uncorrelated and generally non-stationary components as EY,n = FY,n +WY,n, such that FY,n can be230

expressed as the result obtained by filtering and then subsampling the signal Y (t), and WY,n is a zero-mean white noise

process. Thus, we can write

E2
n =

〈〈
F 2
X,n

〉
X

〉
ε
+
〈〈
W 2
X,n

〉
X

〉
ε
+F 2

Y,n +
〈
W 2
Y,n

〉
ε
, (18)

where FY,n is a deterministic signal.

In addition to the uncertainty caused by the stochasticity of X and ε, we can in principle equip any of the model parameters235

with its own uncertainty, and investigate how this contributes to the obtained reconstruction uncertainty. In the following we

apply this procedure to the seasonal phase φc, as the seasonal timing of the proxy abundance is often a poorly constrained

parameter. For this purpose, we need to specify a corresponding PDF of the seasonal phase. For simplicity, we choose the

wrapped uniform PDF

fφc(φc) =

1∑
k=−1

∆−1
φc

Π(φc−〈φc〉φc + 2πk;∆φc), with −π < φc ≤ π, (19)240

with the expected seasonal phase −π < 〈φc〉φc ≤ π, and the seasonal phase uncertainty 0≤∆φc < 2π. Note, that setting

∆φc = 2π does not imply vanishing proxy seasonality (as this is expressed by setting τp = 1 yr), but merely means that the

seasonal timing of the proxy abundance window is completely unknown. The model parameters to be specified are now 〈φc〉φc

and ∆φc
(see also Table 1), rather than the single parameter φc which is treated as unknown according to fφc

(φc). Now, to

include the effect on the reconstruction uncertainty, we redefine the RMS reconstruction error En by applying the additional245

expected value operator 〈·〉φc
, with respect to φc, to the right-hand side of (16), or likewise (18). Since X does not depend on

φc, we obtain

E2
n =

〈〈〈
E2
n

〉
X

〉
ε

〉
φc

(20)

=
〈〈
F 2
X,n

〉
X

〉
ε
+
〈〈
W 2
X,n

〉
X

〉
ε
+
〈
F 2
Y,n

〉
φc

+
〈〈
W 2
Y,n

〉
ε

〉
φc
. (21)

Hence, by noting that 〈F 2
Y,n〉φc

= 〈FY,n〉2φc
+ Var(φc)(FY,n), we can finally write250

E2
n = B2

n +U2
n, (22)
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with the squared reconstruction bias

B2
n =

〈
FY,n

〉2
φc
, (23)

and the squared reconstruction uncertainty

U2
n = U2

(1) +U2
(2) +U2

(3),n +U2
(4),n, (24)255

the components of which are given by

U2
(1) = Var(X,ε)(FX,n) , U2

(2) = Var(X,ε)(WX,n) , U2
(3),n = Var(φc)(FY,n) , U2

(4),n =
〈
Var(ε)(WY,n)

〉
φc
. (25)

Note, that from U2
(1) and U2

(2) the time index n has been dropped to indicate the stationarity of these uncertainty components.

It turns out that E2
n represents the expected power of the reconstruction error at a given time tn, which, according to (22), is

decomposed into the power B2
n contained in the reconstruction bias, and the variance U2

n that quantifies the scatter around the260

bias.

The individual components are to be interpreted as follows: The component U(1) quantifies the reconstruction uncertainty

that arises from the difference between (i) the smoothing effect on X(t) caused by bioturbation and by sampling from slices

of sediment, and (ii) the smoothing effect on X(t) caused by the moving average window used to obtain the reference climate.

Since the two smoothing effects represent low-pass filters with different cut-off frequencies, they act together as a bandpass265

filter on X(t) (as shown by Amrhein, 2019). This uncertainty component represents the total smoothing effect in the limit of

infinitely many signal carriers being retrieved from each slice of sediment (N →∞). If only a finite number of signal carriers

is retrieved from each slice, there is an additional residual that is not averaged out in this case. This residual is quantified

by the component U(2). Likewise, the component U(4),n quantifies the additional residual that arises from sampling only a

finite number of signal carriers, but now pertaining to the deterministic signal Y (t). This residual component also depends on270

the timing uncertainty of the seasonal proxy abundance, as specified by (19), because of the non-linear relation between the

variance, aliased from the seasonal cycle, and the seasonal timing. Because the seasonal cycle amplitude is modulated over

time by orbital variations, this uncertainty component is non-stationary. On the other hand, in the limit of infinitely many signal

carriers, the smoothing effects on Y (t) leave nothing but a deterministic bias that obtains its only uncertainty, quantified by

U(3),n, from the seasonal timing uncertainty. Finally, when averaging this bias across all possible seasonal timings, that are275

allowed according to (19), a purely deterministic error component is obtained which is quantified by the reconstruction bias

Bn. Further clarification of these interpretations will emerge from section 3.

Now, in order to formulate our timescale-dependent uncertainty estimation method, we need a spectral representation of the

expected power E2
n. We will achieve this by deriving the power spectral density of the reconstruction error En, separately for

its individual components, to obtain spectral representations of the squared reconstruction uncertainty components U2
(1), U

2
(2),280

U2
(3),n, U2

(4),n, and of the squared reconstruction bias B2
n. This task is addressed in the following section. The reader who does

not intend to follow the entire derivation may proceed directly with section 4 which summarizes the main results of section 3,

and then illustrates the method, based thereon, for estimating timescale-dependent reconstruction uncertainties.
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3 Spectral representation of reconstruction uncertainty

The reconstruction uncertainty model, defined in the previous section, is now translated into the spectral domain. Since the two285

components of the supposed true climate signal have different properties, in the sense that X(t) is a stationary random process

with a continuous power spectrum, whereas Y (t) is an non-stationary deterministic signal with a discrete power spectrum,

the two components require separate mathematical treatment. Accordingly, the derivation of the power spectral density of the

reconstruction error En is accomplished separately, in the following two subsections, for the components of EX,n that are

based on the stochastic signal X(t), and for those of EY,n that are based on the deterministic signal Y (t).290

3.1 Stochastic signal: Continuous climate spectrum

A spectral representation of the stochastic signal component X(t), with infinite and continuous time parameter t, is given by

the Riemann-Stieltjes integral (see Priestley, 1981, section 4.11)

X(t) =

∞∫
−∞

ei2πνtdZ(ν), (26)

where Z(ν) is a complex-valued stochastic process, such that the power spectral density of X(t) is given by295

SX(ν) =
〈
|dZ(ν)|2

〉
X
/dν, (27)

and where the dZ(ν) are zero-mean, orthogonal increments. Note, that a conventional Fourier representation of X(t) does not

exist because of the stochastic nature of the signal, and that it is dZ(ν)/dν, rather than Z(ν), which formally plays the role of

the Fourier transform in the above representation (Priestley, 1981). Likewise, the signal Xn =X(tn), sampled at the discrete

times tn = n∆t, has the spectral representation300

Xn =

∞∫
−∞

ei2πνtndZ(ν), (28)

and the signal with jittered sampling, X(j)
n =X(tn+ε

(j)
n ), as defined by (6), can be expressed as (Moore and Thomson, 1991)

X(j)
n =

∞∫
−∞

ei2πν(tn+ε(j)n )dZ(ν). (29)

Following the approach of Balakrishnan (1962), we consider its auto-covariance function
〈〈
X

(j)
n

?
X

(j)
n′

〉
X

〉
ε
, where (·)?

denotes the complex conjugate. By substitution from (29), and expressing the product of integrals as a double integral, we305

obtain (see Priestley, 1981, pp. 249–250, where the same is shown for the case without sampling jitter)

〈〈
X(j)
n

?
X

(j)
n′

〉
X

〉
ε

=

〈〈 ∞∫
−∞

∞∫
−∞

e−i2πν(tn+ε(j)n )ei2πν
′(tn′+ε

(j)

n′ )dZ?(ν)dZ(ν′)

〉
X

〉
ε

(30)
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=

∞∫
−∞

∞∫
−∞

ei2πtn(ν′−ν)ei2πν
′(tn′−tn)

〈
ei2π(ν′ε

(j)

n′ −νε(j)n )
〉
ε

〈
dZ?(ν)dZ(ν′)

〉
X
, (31)

where we have used the independence of ε(j)n andX(t). Now, from the orthogonality of the dZ(ν), it follows that
〈
dZ?(ν)dZ(ν′)

〉
X

=

0 whenever ν 6= ν′. Thus, the contribution to the integral (31) is non-zero only for ν = ν′, and the auto-covariance function can310

then be expressed by the single integral [also using (27)]

〈〈
X(j)
n

?
X

(j)
n′

〉
X

〉
ε

=

∞∫
−∞

ei2πν(tn′−tn)Cn,n′(−ν,ν)SX(ν)dν, (32)

with the characteristic function

Cn,n′(ν1,ν2) =
〈
ei2π(ν1ε

(j)
n +ν2ε

(j)

n′ )
〉
ε
. (33)

Note, that without sampling jitter (i.e., with ε(j)n = 0), expression (32) reduces to the Wiener-Khintchine theorem (see Priestley,315

1981, for example), which states that the auto-covariance function of a signal and its power spectral density are a Fourier

transform pair. Because ε(j)n is white, we have
〈
ei2πν(ε

(j)

n′ −ε(j)n )
〉
ε

=
〈
ei2πνε

(j)

n′
〉
ε

〈
e−i2πνε

(j)
n

〉
ε

if n 6= n′ and, thus,

Cn,n′(−ν,ν) =

 1 if n= n′

|C(ν)|2 if n 6= n′
, (34)

where

C(ν) =
〈
ei2πνε

(j)
n
〉
ε

(35)320

is the characteristic function (or the complex conjugate of the Fourier transform) of the jitter PDF, p(ε)fbs(ε), since using the

definition of the expected value yields

C(ν) =

∞∫
−∞

ei2πνεp(ε)fbs(ε)dε (36)

= p̂(ν) ∗ f̂?bs(ν) (37)

=

∞∑
k=−∞

sinc(kνcτp)f̂
?
bs(ν+ kνc). (38)325

Here x̂(ν) denotes the Fourier transform of a function x(t), and we are using the fact that the Fourier transform of Π(t;τ) is

given by τ sinc(ντ), and the Fourier transform of III(t;τ) by τ−1 III(ν;τ−1), and fbs(ε) and p(ε) are defined by (5) and (7),

respectively. The cardinal sine function is defined as

sinc(x) =

 1 if x= 0

sin(πx)/(πx) if x 6= 0
, (39)
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and for the steps from (36) to (38) the convolution theorem is used. Expression (38) represents a series of amplitude modulated330

and shifted versions of the function f̂?bs(ν), which is obtained by taking the Fourier transform of (5),

f̂?bs(ν) = sinc(ντs)
[
1 + i2πντb

]−1
exp(i2πντb), (40)

and, thus,

|f̂?bs(ν)|2 = sinc2(ντs)
[
1 + (2πντb)

2
]−1

, (41)

which is the product of a squared sinc-function and a Lorentzian function. In the following we assume that [max(τb, τs)]
−1�335

νc, such that the characteristic width of the functions f̂?bs(ν+kνc) is much less than the shift increment νc. Then these functions

have negligible overlap and we can write

|C(ν)|2 =

∞∑
k=−∞

sinc2(kνcτp)|f̂?bs(ν+ kνc)|2. (42)

The structure of |C(ν)|2 is illustrated by Fig. 2a, and it represents the squared modulus of the Fourier transform of the jitter

PDF shown in Fig. 1a. Since it is shown for τb = 10 yrs and τs = 5 yrs, we have [max(τb, τs)]
−1 = 1/(10 yrs)� νc and, thus,340

the |f̂?bs(ν+ kνc)|2-peaks are well separated along the frequency axis.

The proof that the jitter PDF p(ε)fbs(ε), as defined by (9), does indeed integrate to unity is equivalent to showing that

C(0) = 1, as can be seen from (36) with ν = 0. To demonstrate this, we evaluate C(0) using (38), noting (i) that the term with

k = 0 is equal to one at ν = 0, because f̂?bs(0) = 1, according to (40), and (ii) that the remaining terms with k 6= 0 are all equal

to zero at ν = 0, because f̂?bs(kνc) = 0, since sinc(kνcτs) = 0 according to the requirement τs be a multiple of 1 year (see345

section 2.3).

To obtain the power spectral density of the reconstruction error components of EX,n, we rewrite the integrand of (29) as

ei2πνtnei2πνε
(j)
n and split the jitter factor ei2πνε

(j)
n into its expected value, C(ν), and the deviation thereof, ei2πνε

(j)
n −C(ν), as

in Moore and Thomson (1991). Then we can decompose X(j)
n as

X(j)
n = Un +V (j)

n , (43)350

with the components

Un =

∞∫
−∞

ei2πνtnC(ν)dZ(ν) (44)

and

V (j)
n =

∞∫
−∞

ei2πνtn
[
ei2πνε

(j)
n −C(ν)

]
dZ(ν). (45)

From this we obtain, by analogy with the steps from (30) to (32), the auto-covariance functions of Un and V (j)
n as well as their355

cross-covariance function,

〈
U?nUn′

〉
X

=

∞∫
−∞

ei2πν(tn′−tn)|C(ν)|2SX(ν)dν, (46)
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Figure 2. (a) Squared modulus of the characteristic function (or of the Fourier transform) of the jitter PDF, |C(ν)|2, given by (42) (solid

line), for the same parameters as used in Fig. 1 (i.e., τb = 10 yrs, τs = 5 yrs, τp = 1/3 yr); and the envelope function sinc2(ντp) (dashed

line). (b) Squared modulus of the error transfer function, |C(ν)− sinc(ντr)|2, as it appears in (58), and with τr = 9 yr; dashed line as in (a).

The frequency axis is normalized by the seasonal cycle frequency νc = (1 yr)−1.

〈〈
V (j)
n

?
V

(j)
n′

〉
X

〉
ε

=

∞∫
−∞

ei2πν(tn′−tn)
[
Cn,n′(−ν,ν)− |C(ν)|2

]
SX(ν)dν, (47)

〈〈
U?nV

(j)
n′

〉
X

〉
ε

=

∞∫
−∞

ei2πν(tn′−tn)C?(ν)
〈
ei2πνε

(j)
n −C(ν)

〉
ε
SX(ν)dν. (48)

Since the term
〈
ei2πνε

(j)
n −C(ν)

〉
ε

in (48) is zero, the cross power spectral density of Un and V (j)
n vanishes at all frequencies360

and, thus, the two processes are uncorrelated. Accordingly, the sum of their auto-covariance functions, (46) and (47), equals

the auto-covariance function of X(j)
n , given by (32). Furthermore, (32) with n= n′ shows that Var(X,ε)(X

(j)
n ) = Var(X)(X).

Note, that the square bracket term in (47) represents the auto-covariance function of the jitter factor ei2πνε
(j)
n , and (34)

implies that

[
Cn,n′(−ν,ν)− |C(ν)|2

]
=

 1− |C(ν)|2 if n= n′

0 if n 6= n′
. (49)365

Thus, the auto-covariance function of V (j)
n is non-zero only at lag zero (n= n′) and zero at all other lags (n 6= n′) and, hence,

V
(j)
n is a white noise process. On the other hand, Un can be seen as the result of linearly filtering the signal X(t) with the

jitter PDF, p(ε)fbs(ε), and then subsampling it at the discrete times tn, with |C(ν)|2 in (46) being interpreted as the squared
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Figure 3. Schematic illustration of the auto-covariance function of the discrete process X(j)
n (black circles), as given by (32), normalized by

the variance of X(t); and the auto-covariance contribution from Un (red lines), as given by (46), and from V
(j)
n (green lines), as given by

(47), with green dots indicating zero contribution.

modulus of the spectral transfer function. Since neither the linear filter nor the subsampling alters the expected value, we have〈
Un
〉
X

=
〈
X

(j)
n

〉
X

=
〈
X
〉
X

= 0, and from (43) it follows that also
〈
V

(j)
n

〉
X

=
〈
X

(j)
n −Un

〉
X

= 0. Finally, the stationarity370

of X and ε implies that Un and V (j)
n are stationary. The structure of the auto-covariance function of X(j)

n , given by (32),

is illustrated schematically by Fig. 3, highlighting its decomposition into the respective contributions from Un and V (j)
n . In

particular, it turns out that the magnitude of the variance of the white noise component V (j)
n is obtained by extrapolating the

auto-covariance function from non-zero lags towards lag zero. This separates the full variance into two components (indicated

in the figure by the transition in color at lag zero), such that, by setting n= n′ in (46), (47) and (49), and substituting from (49)375

into (47),

Var(X,ε)(V
(j)
n ) = Var(X)(X)−Var(X)(Un). (50)

This is the key idea of the approach of Balakrishnan (1962), and we will return to this idea in section 3.2 in the context of the

deterministic signal component Y (t).

With these properties of the above components Un and V (j)
n , we can now rewrite the error componentEX,n, defined by (15),380

also using the X-component of (10), as

EX,n = FX,n +WX,n, (51)

with

FX,n = Un− X̃n (52)

and385

WX,n =
1

N

N∑
j=1

V (j)
n , (53)
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where FX,n and WX,n represent the components of EX,n explained in section 2.5, that is, a component obtained by filtering

the signal X , and a white noise component, respectively.

By analogy with (28), a spectral representation of the X-component X̃n of the reference climate signal, defined by (12) and

(13), is given by390

X̃n =

∞∫
−∞

ei2πνtn sinc(ντr)dZ(ν), (54)

also using the convolution theorem, and where the sinc-function represents the Fourier transform of the moving average

window in (13). Then the auto-covariance function of FX,n is obtained from (44), (52) and (54) as

〈
F ?X,nFX,n′

〉
X

=

∞∫
−∞

ei2πν(tn′−tn)|C(ν)− sinc(ντr)|2SX(ν)dν. (55)

Since, by analogy with (48), it can be shown that the cross power spectral density of X̃n and V (j)
n vanishes at all frequencies,395

the same holds for the error components FX,n and WX,n in (51) and, thus, the power spectral density of their sum equals the

sum of their spectral densities. Finally, because ε(j)n is also white in terms of j, we have, from (50) and (53),

Var(X,ε)(WX,n) =
[
Var(X)(X)−Var(X)(Un)

]
/N (56)

=
1

N

∞∫
−∞

[
1− |C(ν)|2

]
SX(ν)dν, (57)

where the second step may be obtained directly, from (53), by subtituting from (49) into (47) with n= n′.400

From this we can now obtain a spectral representation of the squared reconstruction uncertainty components U2
(1) and U2

(2),

respectively, as defined by (25), by writing the power spectral density of FX,n, denoted by SU(1)(ν), and the power spectral

density ofWX,n, denoted by SU(2)(ν). Specifically, from (55) we obtain (also taking into account spectral aliasing and leakage,

see Priestley, 1981, for example)

SU(1)(ν) = III(ν;∆t−1) ∗
{
T sinc2(νT ) ∗

[
|C(ν)− sinc(ντr)|2SX(ν)

]}
, (58)405

with −ν∗ < ν ≤ ν∗. Here, ν∗ = (2∆t)−1 denotes the Nyquist frequency, ∆t the sampling interval between the discrete sam-

pling times tn = n∆t, and T the length of the proxy record (being a multiple of ∆t). Likewise, by confining the variance of

the white noise process WX,n, given by (57), to the same frequency interval, we obtain the constant spectral density

SU(2)(ν) =
∆t

N

∞∫
−∞

[
1− |C(ν′)|2

]
SX(ν′)dν′, (59)

with −ν∗ < ν ≤ ν∗. To understand the structure of SU(1)(ν), note, that the term |C(ν)− sinc(ντr)|2 in (58), referred to as the410

squared modulus of the error transfer function, acts as a linear filter on the stochastic component X(t) of the supposed true
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climate signal. Its structure is illustrated by Fig. 2b, under the additional assumption that τ−1
r � νc. It turns out that it represents

a multi-bandpass filter, with the low-frequency band being confined between [max(τb, τs)]
−1 and τ−1

r (this corresponds to the

frequency band of the transfer function discussed by Amrhein, 2019, see his Fig. 2), whereas each high-frequency band is

confined to an interval bounded by kνc± [max(τb, τs)]
−1, with k =±1,±2, . . ., according to (42). The consequences of this415

particular filter structure, in conjunction with the effects of spectral aliasing, are discussed in section 4. Finally, according

to the finite length of the proxy record, we need to subsample the above power spectral densities at the discrete frequencies

νm =m∆ν (with m= 0,±1,±2, . . . and ∆ν = 1/T ), which yields

SU(1),m = SU(1)(νm) (60)

and420

SU(2),m = SU(2)(νm). (61)

Since FX,n and WX,n have zero cross power spectral density, the power spectral density of EX,n is then given by

SU(1,2),m = SU(1),m +SU(2),m. (62)

3.2 Deterministic signal: Discrete orbital spectrum

The deterministic signal Y (t), defined by (1), can be expressed as425

Y (t) = Yc(t)
[
1 +Ya(t)

]
, (63)

with the seasonal cycle oscillation

Yc(t) = αc
[
Y −c (t) +Y +

c (t)
]

(64)

and the amplitude modulating orbital oscillation

Ya(t) = αa
[
Y −a (t) +Y +

a (t)
]
, (65)430

where

Y ±c (t) = e±i(2πνct+φc), Y ±a (t) = e±i(2πνat+φa) (66)

and

αc = σc/
√

2, αa = σa/
√

2. (67)

Then we can rewrite the signal (63) as a complex Fourier series,435

Y (t) = Y−(t) +Y+(t), (68)
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with

Y±(t) = αcαaY
±
c (t)Y ∓a (t) +αcY

±
c (t) +αcαaY

±
c (t)Y ±a (t), (69)

such that Y+(t) = [Y−(t)]?. Thus, the right-hand side of (68) is the sum of six Fourier modes, two of which occur at the

frequencies ±νc (the carrier wave in amplitude modulation terminology) and four of which occur at the frequencies ±νc± νa440

(representing the sidebands of ±νc).
Again following the approach of Balakrishnan (1962), and by analogy with section 3.1, we evaluate

〈
Y

(j)
n

?
Y

(j)
n′

〉
ε
, where

Y
(j)
n = Y (tn + ε

(j)
n ), as defined by (6). However, this is not the auto-covariance function in this case, because sampling the

seasonal cycle oscillation Yc(t) at an average interval of ∆t may leave a non-zero bias, as ∆t is a multiple of 1 year (= ν−1
c ).

Thus, in general, we may have
〈
Y

(j)
n

〉
ε
6= 0, and it turns out that445 〈

Y (j)
n

?
Y

(j)
n′

〉
ε

=
〈
Y (j)
n

〉?
ε

〈
Y

(j)
n′

〉
ε
+ Cov(ε)

(
Y (j)
n

?
,Y

(j)
n′

)
, (70)

where Cov(ε)(Y
(j)
n

?
,Y

(j)
n′ ) is the non-stationary auto-covariance function of Y (j)

n . We now decompose this signal as

Y (j)
n =An +B(j)

n , (71)

with the components

An =
〈
Y (j)
n

〉
ε

(72)450

and

B(j)
n = Y (j)

n −
〈
Y (j)
n

〉
ε
, (73)

by analogy with the components Un and V (j)
n , respectively, in section 3.1, such that we can rewrite (70) as〈

Y (j)
n

?
Y

(j)
n′

〉
ε

=A?nAn′ + Cov(ε)

(
B(j)
n

?
,B

(j)
n′

)
. (74)

The above also implies that An and B(j)
n are uncorrelated.455

The structure of An is obtained from (68), by replacing t in the exponential terms in (66) by n∆t+ ε
(j)
n and then applying

the expected value operator. Note, that because ∆t is a multiple of 1 year, the modes at ±νc become aliases of ν = 0, the

modes at ±νc− νa become aliases of ν =−νa, and those at ±νc + νa become aliases of ν = νa. Then considering phase

interference caused by the aliasing, using (35), (38) and (40), noting that e±i2πνcn∆t = 1, and exploiting the symmetry property

C(−kνc + ν) = C(kνc + ν), we obtain460

An = 2αc cos(φc)sinc(νcτp)A
′
n, (75)

with

A′n = 1 +αa

(
f̂?bs(−νa)e−i(2πνatn+φa) + f̂?bs(νa)ei(2πνatn+φa)

)
. (76)
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If we explicitly express the argument and the modulus of f̂?b (νa) as

φb1 = arg
[
f̂?b (νa)

]
= 2πνaτb− arctan(2πνaτb) (77)465

and

Mb1 = |f̂?b (νa)|=
[
1 + (2πνaτb)

2
]−1/2

, (78)

respectively, then we can rewrite (75), (76) as

An = σc
√

2cos(φc)sinc(νcτp)A
′
n (79)

with470

A′n = 1 +σa
√

2Mb1 sinc(νaτs)cos(2πνatn +φa +φb1). (80)

It turns out that, as long as we take the seasonal phase φc as fixed, An represents a deterministic bias caused by uneven

sampling of the seasonal cycle due to proxy seasonality, and that this bias varies in time because the amplitude of the seasonal

cycle is modulated by orbital variations. Since σa
√

2< 1, the term A′n is always positiv and, thus, the sign of the bias An is

determined only by the seasonal phase φc. Note, that the phase component φb1 of the oscillation results from the asymmetry of475

the bioturbation PDF, fb(ε), defined by (2), which creates a time lag caused by bioturbation. However, if τb� ν−1
a , we have

φb1 ≈ 0 and the time lag vanishes.

To understand the structure ofB(j)
n we consider its variance, given by the auto-covariance function at lag zero, Cov(ε)(B

(j)
n

?
,B

(j)
n′ )|n=n′ .

From this we find, as is shown in the appendix, that B(j)
n is a non-stationary zero-mean white noise process. In particular, the

variance has a stationary component, and two time-varying components oscillating at the frequencies νa and 2νa, respectively,480

see (A12). To illustrate this behaviour, we consider the following three simplified cases.

First, if there is no amplitude modulation of the seasonal cycle (σ2
a = 0), the variance of B(j)

n is stationary and is given by

Var(ε)

(
B(j)
n

)
= σ2

c

{
1− sinc2(νcτp) + cos(2φc)

[
sinc(2νcτp)− sinc2(νcτp)

]}
. (81)

The dependence of this variance on the width of the proxy abundance window, τp, and its seasonal timing, φc, is illustrated by

Fig. 4. If τp = 0, the white noise variance vanishes because each year the same value is sampled from the seasonal cycle. If485

τp = 1 yr, the white noise variance equals the seasonal cycle variance σ2
c . For intermediate values of τp the white noise variance

depends on the seasonal phase. Note, that for phases around |φc|= π/2 the white noise variance can exceed the seasonal cycle

variance by up to 22%.

Second, if the seasonal cycle is modulated by orbital variations (0< σ2
a < 1/2), and we set τp = 0 (and, for simplicity, we

choose (i) τb = 0 so as to avoid any additional phase lags, φb1 = φb2 = 0, and (ii) φc = 0 for a maximum effect of proxy490

seasonality), then the variance of B(j)
n is given by

Var(ε)

(
B(j)
n

)
= 2σ2

cσ
2
a

{
1− sinc2(νaτs) + cos(4πνatn + 2φa)

[
sinc(2νaτs)− sinc2(νaτs)

]}
. (82)
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Figure 4. The white noise variance Var(ε)(B
(j)
n ) that is sampled from the seasonal cycle, normalized by the seasonal cycle variance σ2

c ,

for the simplified case without amplitude modulation by orbital variations. The variance is shown as a function of the width of the proxy

abundance window τp and of the seasonal phase φc, which together characterize proxy seasonality. Values greater than one are indicated by

gray shading.

Note the analogy with (81), but with νcτp and φc being replaced by νaτs and φa, respectively. This is because the white noise

variance is now sampled from the orbital oscillation. Also it has now a time-varying component with frequency 2νa.

Third, if we consider the same case but with τp = 1 yr, we obtain495

Var(ε)

(
B(j)
n

)
= σ2

c

{[
1 + 2σa

√
2sinc(νaτs)cos(2πνatn +φa)

]
+σ2

a

[
1 + sinc(2νaτs)cos(4πνatn +φa)

]}
. (83)

In this case, the white noise variance has two time-varying components with frequencies νa and 2νa, respectively, because

the amplitude modulation factor has the basic structure 1 + cos(2πνat), the square of which, as it appears in the variance, is

1 + 2cos(2πνat) + cos2(2πνat). Note, that the seasonal phase φc has no effect in this case with τp covering the full seasonal

cycle.500

With these properties of the above componentsAn andB(j)
n , we can now rewrite the error component EY,n, defined by (15),

also using the Y -component of (10), as

EY,n = FY,n +WY,n, (84)

with

FY,n =An, (85)505

because Ỹn = 0, and

WY,n =
1

N

N∑
j=1

B(j)
n . (86)
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Then we obtain the reconstruction bias, defined by (23), as

Bn =
〈
An
〉
φc

= σc
√

2γ1A
′
n, (87)

with510

γ1 = cos(〈φc〉φc)sinc(∆φc/2π)sinc(νcτp), (88)

where the seasonal phase uncertainty ∆φc
and the expected seasonal cycle phase 〈φc〉φc

are defined by (19), and A′n by (80).

With this, the third squared reconstruction uncertainty component, defined by (25), can be expressed as

U2
(3),n =

〈
A2
n

〉
φc
−
〈
An
〉2
φc

= σ2
cγ2A

′2
n . (89)

with515

γ2 =
{

1− sinc2(∆φc
/2π) + cos(2〈φc〉φc

)
[
sinc(2∆φc

/2π)− sinc2(∆φc
/2π)

]}
sinc2(νcτp). (90)

Finally, from (86), and because ε(j)n is white in terms of j, we have

Var(ε)(WY,n) = Var(ε)(B
(j)
n )/N (91)

and, thus, the fourth squared reconstruction uncertainty component is obtained as

U2
(4),n =

1

N

〈
Var(ε)

(
B(j)
n

)〉
φc

, (92)520

with Var(ε)(B
(j)
n ) given by (A12), and where applying the expected value operator 〈·〉φc

amounts to replacing each instance of

cos(2φc), as it appears multiple times in the components of (A12), according to

cos(2φc)
repl.−→ cos(2〈φc〉φc

)sinc(2∆φc
/2π). (93)

Note, that sinc(2∆φc
/2π) = 0 if ∆φc

= π or 2π, in which case the expected value in (92) simplifies, because all terms in the

components of (A12) that are multiplied by cos(2φc) vanish.525

To obtain spectral representations of B2
n and U2

(3),n, we consider first the power spectral density of the signal A′n, limited to

a finite time interval of length T (centered at t= 0), interpreted as the length of the proxy record. Specifically, we can express

this discretized power spectral density as

S0,m =
∣∣F[Π(tn;T/∆t)A′n

]
(νm)

∣∣2/T, (94)

given at the discrete frequencies νm =m∆ν (with m= 0,±1,±2, . . . and ∆ν = 1/T ). In the above,530

F [xn](ν) =

nh∑
n=−nh

e−i2πνn∆txn∆t
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denotes the discrete time Fourier transform of a sequence xn (with −ν∗ < ν ≤ ν∗), and the discrete rectangle function acts

as a window to confine A′n to the finite time interval, and T/∆t is the number of sampling times tn = n∆t, with n=

0,±1,±2, . . . ,±nh, where nh = (T/∆t− 1)/2, for odd numbers of sampling times.

The discrete time Fourier transform of the rectangle function is given by the Dirichlet kernel (see Priestley, 1981, p. 437)535

which can be expressed as T -times the aliased (or periodic) sinc-function, defined by

asinc(ν;T,∆t) =

 1 if ν = 0

sin(πνT )/[sin(πν∆t)T/∆t] if ν 6= 0
, (95)

within the interval −2ν∗ < ν < 2ν∗. With this, and if we express the discrete time Fourier transform of A′n as a series of Dirac

delta functions, we obtain from (76),

F
[
Π(tn;T/∆t)A′n

]
(ν) = T asinc(ν;T,∆t) ∗

{
δ(ν) +αa

[
δ(ν+ νa)f̂?bs(−νa)e−iφa + δ(ν− νa)f̂?bs(νa)eiφa

]}
. (96)540

Then from (94), also considering phase interference between the asinc-functions, using (77) and (78), and noting that the

central asinc-function centered at ν = 0 has its zeros at the discrete frequencies νm, we have

S0,m = T (Sc,m +Sca,m +Sa,m), (97)

with

Sc,m = δm, Sca,m = δmσa
√

2Mb1 sinc(νaτs)2ξ(0)cos(φa +φb1), (98)545

and

Sa,m = (σ2
a/2)M2

b1 sinc2(νaτs)
{
ξ2
+(νm) + ξ2

−(νm) + 2ξ+(νm)ξ−(νm)cos
[
2(φa +φb1)

]}
, (99)

and where

ξ±(ν) = asinc(ν± νa;T,∆t), (100)

and δm denotes the single-argument Kronecker delta, with δm=0 = 1 and δm 6=0 = 0.550

With (97) we obtain, by analogy with (87) and (89), the spectral representation of B2
n, given by

SB,m = 2σ2
cγ

2
1S0,m, (101)

with −ν∗ < νm ≤ ν∗, and the spectral representation of U2
(3),n, given by

SU(3),m = σ2
cγ2S0,m. (102)

with −ν∗ < νm ≤ ν∗. Since WY,n, given by (86), is white noise, we can express the spectral representation of U2
(4),n as555

SU(4),m =
∆t

N

〈
Var(ε)

(
B(j)
n

)〉
φc

, (103)
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with −ν∗ < νm ≤ ν∗, and where Var(ε)(B
(j)
n ) is given by (A19). Note, that, as in (92), applying the expected value operator

〈·〉φc
amounts to applying the replacement (93) to the components of (A19). From the above, the power spectral density of

EY,n is then given by

SB,U(3,4),m = SB,m +SU(3),m +SU(4),m. (104)560

Hence, we obtain the spectral representation of the squared error equation (22) that relates the RMS reconstruction error En,

defined by (20), to the reconstruction bias Bn and the reconstruction uncertainty Un,

SE,m = SB,m +SU,m, (105)

where SU,m = SU(1),m+SU(2),m+SU(3),m+SU(4),m, the first two components of which are given by (60) and (61), respectively,

at the end of section 3.1. Thus, SE,m is the power spectral density (given at the discrete frequencies νm) of the reconstruction565

error En (given at the discrete times tn).

4 Timescale-dependent reconstruction uncertainty

The reconstruction uncertainty components U(1), U(2), U(3),n, U(4),n and the reconstruction bias Bn, defined in section 2.5,

can now be quantified using the expressions derived in section 3. Specifically, given the set of parameters of the reconstruction

uncertainty model (see Table 1), including the specifications of the deterministic component of the supposed true climate signal,570

and given the power spectral density of the stochastic signal component, we obtain

– the uncertainty component U(1) that arises from the various smoothing processes affecting the stochastic signal com-

ponent X(t), in the limit of infinitely many signal carriers retrieved from each slice of sediment (N →∞). From (60),

or from (58), noting that for stochastic signals spectral aliasing and leakage do neither generate nor destroy, but only

redistribute power spectral density, we have575

U2
(1) =

mh∑
m=−mh

SU(1),m∆ν (106)

=

∞∫
−∞

|C(ν)− sinc(ντr)|2SX(ν)dν, (107)

with mh = (T/∆t− 1)/2, for odd numbers of sampling times, and C(ν) is given by (38). This uncertainty component

depends on the timescale parameters τb, τs, τr, τp, and on SX(ν).
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– the white noise uncertainty component U(2) that arises from sampling only a finite number N of signal carriers from580

each slice of sediment. From (61), or likewise from (59), we obtain

U2
(2) =

mh∑
m=−mh

SU(2),m∆ν (108)

=
1

N

∞∫
−∞

[
1− |C(ν)|2

]
SX(ν)dν. (109)

This uncertainty component depends on the timescale parameters τb, τs, τp, and on SX(ν) and N .

– the reconstruction bias Bn, its uncertainty U(3),n, caused by the imperfectly known seasonal timing of the proxy abun-585

dance, and the white noise uncertainty component U(4),n that arises from sampling only a finite number of signal car-

riers, which are readily given in the time domain by (87), (89) and (92), respectively. These components depend on the

timescale parameters τb, τs, τp, on the seasonal phase parameters 〈φc〉φc
, ∆φc

, and on the specifications of the determin-

istic signal component, σc, σa, νc, νa and φa. The white noise component U(4),n also depends on N . The time averages

of the squares of these components, over the length of the proxy record T , can be obtained directly from their spectral590

representations, given by (101), (102) and (103), respectively, as

B2
n =

mh∑
m=−mh

SB,m∆ν, U2
(3),n =

mh∑
m=−mh

SU(3),m∆ν, U2
(4),n =

mh∑
m=−mh

SU(4),m∆ν, (110)

which then also depend on T .

Since all of the above uncertainty components as well as the bias depend on a number of timescale parameters, the RMS

reconstruction error En, in this sense, already represents a timescale-dependent uncertainty measure. However, we may extend595

the concept of uncertainty timescale dependence as follows.

In practice, during the process of data analysis, climate reconstructions are often smoothed by some linear filter, either

because one is explicitly interested in time averages of the reconstructed climate variable, or because one may hope to reduce

the reconstruction uncertainty by averaging out short-timescale noise. However, the extent to which the uncertainty actually

shrinks depends on the auto-correlation structure of the reconstruction error, which, by the Wiener-Khintchine theorem, is600

directly related to the power spectral density of the error. Thus, from the expressions of the error power spectral densities,

derived in section 3, we can directly quantify the uncertainty reduction that is achieved by applying a linear filter, as is shown

in the following for the uncertainty components U(1) and U(2), as an example.

If the reconstruction error time series is smoothed, for simplicity, by a discrete moving average filter of width τ0 (being a

multiple of ∆t), then the squared uncertainty, obtained after smoothing, is given by605

U2
(1,2)(τ0) =

mh∑
m=−mh

asinc2(νm;τ0,∆t)SU(1,2),m∆ν, (111)

where the squared asinc-function represents the squared modulus of the discrete time Fourier transform of the filter window,

acting as a spectral transfer function, and the asinc-function is defined by (95). Note, that if τ0 = ∆t (i.e., no smoothing),
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then this transfer function is constantly one across all frequencies, and if τ0 = T , then it is equal to one at frequency zero,

and zero at all other frequencies. Thus, in the latter case the uncertainty of the time average over the entire proxy record610

is obtained. Fig. 5 illustrates the above for some choice of parameters, designed to exmplify as many aspects as possible

of the uncertainty estimation procedure in a single example, at the expense of using somewhat unrealistic parameter values.

More realistic application examples of the method follow in Part II of this study (Dolman et al., 2019). Specifically, we set

τb = 10 yrs, τs = τr = 6 yrs, τp = (1/3) yr, ∆t= 6 yrs, T = 23∆t= 138 yrs, τ0 = 3∆t= 18 yrs, andN = 100. For the power

spectral density of X(t) we assume a Lorentzian shaped AR(1) red noise spectrum, given by SX(ν) = 2α/[(2πν)2 +α2], with615

the characteristic timescale α−1 = (1/10) yr, such that the process X is only weakly red.

This power spectral density is shown in Fig. 5a by the gray line. According to the reconstruction uncertainty model, defined

in section 2, SX(ν) is decomposed into two components: (i) |C(ν)|2SX(ν), shown by the red line, the integral of which

equals the variance of Un, defined by (44), where |C(ν)|2 (shown in Fig. 2a) acts as a spectral transfer function on SX(ν); (ii)

[1−|C(ν)|2]SX(ν), the integral of which, indicated by the green area, equals the variance of the white noise component V (j)
n ,620

defined by (45). If SX(ν) is multiplied by the squared modulus of the error transfer function (shown in Fig. 2b), the component

|C(ν)− sinc(ντr)|2SX(ν), shown by the blue line, is obtained, the integral of which equals the variance of FX,n, defined by

(52).

This component (blue dots) as well as the white noise component (green dots) are shown again in Fig. 5b, but after spectral

aliasing and leakage have been applied, according to the sampling and measurement procedure described in section 2.3. These625

components represent the discretized power spectral densities SU(1),m and SU(2),m, respectively. Note, that the broad peaks at

non-zero frequencies in Fig. 5b are direct images of the low-frequency peaks in Fig. 5a (blue line), whereas the bump centered

at ν = 0 represents the summed aliases of the high-frequency peaks in Fig. 5a (blue line) at ±kνc. Without proxy seasonality

(τp = 1 yr) those peaks do not exist and, thus, the SU(1),m power spectrum in Fig. 5b falls off to near zero at ν = 0. Only

spectral leakage may then lead to non-zero SU(1),m at ν = 0, although in the example shown here the effect of the leakage is630

small (cyan dots). However, in cases with small T (implying large ∆ν) spectral leakage can provide a relevant contribution of

power at ν = 0, as the power from the neighboring broad spectral peaks is then effectively redistributed to the center of the

frequency domain. This contribution is particularly important if the uncertainty of the time average over the entire proxy record

is computed, by setting τ0 = T in (111), as in this case it is the only contribution to U2
(1)(τ0).

Finally, the sum of the above components, given by SU(1,2),m, is shown by the magenta dots in Fig. 5c. Multiplying this635

summed power spectral density by the spectral transfer function of the discrete moving average window, mentioned above, and

then integrating, yields the squared reconstruction uncertainty after smoothing, U2
(1,2)(τ0), defined by (111), and shown by the

magenta area in Fig. 5c.

Likewise, one can define other timescale-dependent uncertainty metrics. For example, one might be interested in the uncer-

tainty of the difference between the time averages over two periods of length T1 and T2, which are separated in time by the640
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Figure 5. Illustration of the method for estimating timescale-dependent reconstruction uncertainties in the spectral domain; shown for the

uncertainty components U(1) and U(2) which are based on the stochastic component X(t) of the supposed true climate signal. (a) Power

spectral density SX(ν) (gray line) of this signal component, defined on a continuous and infinite frequency axis, normalized by the seasonal

cycle frequency νc = (1 yr)−1; together with the product |C(ν)|2SX(ν) (red line); and the product |C(ν)− sinc(ντr)|2SX(ν) (blue line).

The green area equals the integral
∫∞
−∞[1− |C(ν)|2]SX(ν)dν, as it appears in (59), which measures the variance of the white noise error

component caused by sampling only a finite number of signal carriers. (b) The same white noise variance (green area), but divided by N (the

number of signal carriers) and after spectral aliasing and leakage have been applied, to obtain the power spectral density SU(2),m (green dots),

defined by (61), on a finite and discrete frequency axis, now normalized by the Nyquist frequency ν∗ = (2∆t)−1; together with SU(1),m (blue

dots), defined by (60); and SU(1,2),m (magenta dots), defined by (62). Cyan dots indicate the same as blue dots, but neglecting the effect of

spectral leakage for comparison. (c) The product asinc2(νm;τ0,∆t)SU(1,2),m (magenta dots), the integral of which (magenta area) equals

the squared reconstruction uncertainty U2
(1,2)(τ0), defined by (111).

interval δt= (n′−n)∆t, measured from center to center. This can be expressed by the variance

Var
([
T−1

1 Π(tn;T1/∆t) ∗EX,n
]
−
[
T−1

2 Π(tn;T2/∆t) ∗EX,n+n′
])

=

Var
(
T−1

1 Π(tn;T1/∆t) ∗EX,n
)

+ Var
(
T−1

2 Π(tn;T2/∆t) ∗EX,n+n′
)

−2Cov
(
T−1

1 Π(tn;T1/∆t) ∗EX,n,T−1
2 Π(tn;T2/∆t) ∗EX,n+n′

)
, (112)
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if it were to be computed for the uncertainty components based on X(t), and where T1, T2 and δt are multiples of ∆t. Then,

using the Wiener-Khintchine theorem, we obtain the difference uncertainty metric

δU2
(1,2)(T1,T2, δt) =

mh∑
m=−mh

[
asinc2(νm;T1,∆t) + asinc2(νm;T2,∆t)

]
SU(1,2),m∆ν

− 2F−1
[
asinc(νm;T1,∆t)asinc(νm;T2,∆t)SU(1,2),m

]
(δt), (113)645

where F−1[xm](k∆t) =
∑mh

m=−mh
ei2πm∆νk∆txm∆ν denotes the inverse discrete Fourier transform of a sequence xm. Note,

that in this form the above difference uncertainty metric is valid only for stationary uncertainty components. If the seasonal

cycle amplitude is constant over time (i.e., no orbital variations), then all uncertainty components are stationary. If orbital

variations are taken into account, however, only U(1) and U(2) are stationary, as shown in section 3. For the components U(3),n,

U(4),n and Bn the difference metric, in this case, had to be computed directly from their time domain expressions, see (87),650

(89) and (92), respectively.

To conclude this section, we briefly present an example of the time series and power spectra of the reconstruction bias

Bn and of the reconstruction uncertainty components U(3),n and U(4),n. Specifically, we set τb = τs = 100 yrs, τp = (1/3) yr,

∆t= 100 yrs, T = 101∆t= 10100 yrs, and N = 5. Furthermore, the deterministic signal is specified, in this example, by

the parameters σc =
√

1/2, 〈φc〉φc = π/4, ∆φc = π/2, σa =
√

1/8, νa = (23 kyrs)−1, and φa = π/2, which implies that the655

amplitude of the seasonal cycle decreases during the 10100 years, as it is the case during the Holocene. According to the

proxy seasonality parameter values chosen here, the bias Bn is positive and exhibits a negative trend, as shown in Fig. 6a

(cyan line). Likewise the uncertainty components U(3),n and U(4),n also decrease over time (blue and green lines). Since the

orbital modulation frequency νa is located on the discrete frequency axis between ν0 and ν1, its power spectral density is

distributed by spectral leakage across all frequencies. This yields a highly red power spectrum of Bn and U(3),n, shown in660

Fig. 6b. Thus, at high frequencies the summed power spectral densities SU(3,4),m (dashed black line) and SB,U(3,4),m (dashed

gray line) are dominated by the white noise component, whereas at low frequencies they are dominated by the effect of

orbital variations. Hence, if we were to compute the timescale-dependent uncertainty metric (111), but for U(3),n and U(4),n,

denoted by U2
(3,4),n(τ0), the uncertainty would shrink only slowly for increasing values of τ0, because the orbital variations are

associated with a highly correlated error in time at long timescales.665

5 Discussion

To allow for an analytic treatment of the problem, the method for estimating timescale-dependent reconstruction uncertainties,

presented in sections 2 to 4, is necessarily based on a number of simplifying assumptions. Specifically,

– we assume a fixed proxy seasonality in the sense of applying every year the same seasonal timing of a prescribed proxy

abundance period, characterized by the parameters τp and φc. For this reason we have to separate the supposed true670

climate signal into a stochastic component X(t), and a deterministic component Y (t) that represents the seasonal cycle,

because proxy seasonality then implies an in-phase subsampling from Y (t) which, in turn, affects the amount of variance
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Figure 6. Example of the reconstruction uncertainty based on the deterministic component Y (t) of the supposed true climate signal. (a) Time

series of the reconstruction bias Bn (cyan line), of the uncertainty components U(3),n (blue line) and U(4),n (green line), of [U2
(3,4),n]1/2

(dashed black line), and [B2
n +U2

(3,4),n]1/2 (dashed gray line). (b) Power spectral densities of the corresponding error components, SB,m

(cyan line), SU(3),m (blue line), SU(4),m (green line), SU(3,4),m (dashed black line), and SB,U(3,4),m (gray line)

aliased from the seasonal cycle, U(4),n, and which may also lead to a reconstruction bias Bn and associated uncertainty

U(3),n. This scenario represents the extreme case where a seasonal abundance period is completely imposed on the proxy

by an external process (see, for example, Leduc et al., 2010), such as, for example, seasonally determined nutrient supply,675

possibly controlled by the seasonality of solar irradiance or oceanic upwelling. By contrast, in the opposite extreme case

where no seasonality is imposed at all, we do not need to separate the climate signal into X(t) and Y (t). In this case

the total climate signal is fully recorded by the proxy, but its total variance is reduced by some factor because of habitat

tracking if the habitat PDF of the proxy is narrower than the PDF of the climate signal. According to the idea of Mix

(1987), this factor can be obtained by multiplying the two PDFs, and it may possibly also be expressed as a frequency680
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dependent spectral transfer function. This scenario corresponds to setting τp = 1 yr in our method, and subsequently

multiplying the obtained error power spectrum by the aforementioned transfer function. Hence, if we introduce some

parameter, 0≤ s≤ 1, that measures the extent to which seasonality is imposed for a specific proxy record (with s= 0

indicating no imposition of seasonality), then we may express the actual uncertainty as a linear combination of the

uncertainties obtained from the above two extreme scenarios, weighted by s and by 1− s, respectively. Note, however,685

that the effects of seasonality can be rather complex (see, for example, Jonkers and Kučera, 2017), depending on the

type of proxy used, and, thus, the optimal strategy for modelling the associated uncertainties depends on the specific

application.

– we neglect calibration errors, representing uncertainties regarding the climate-proxy relationship. Assuming this rela-

tionship is linear and is obtained by linear regression, errors of this type may have two effects. Uncertainties in the690

intercept parameter will introduce a reconstruction uncertainty that is constant in time like the bias uncertainty U(3),n

(in the case without orbital variations). Uncertainties in the slope parameter, on the other hand, will introduce a fre-

quency independent uncertainty in the error variance. The mean of the possible error variances, however, might be close

to the variance obtained from our method, unless the PDF of the obtained error variances is strongly skewed. If the

climate-proxy relationship is non-linear, or if there are uncertainties regarding the linearity itself, modelling of the im-695

plied uncertainties might be more complex, although it should still be possible to decompose those errors into a bias and

a variance component.

– we assume a constant sediment accumulation rate and a constant bioturbation depth, and we also assume regular sampling

from the sediment core, and we neglect dating uncertainties, although relaxing these assumtions may generate additional

uncertainties of noticable magnitude. For example, the relevance of dating uncertainties is demonstrated by Goswami700

et al. (2014) and Boers et al. (2017). If these sources of uncertainty are treated in a stochastic sense, they could, in

principle, be included into our approach by allowing for correlated sampling jitter ε, the mathematical basis of which

is given by Balakrishnan (1962), see also Moore and Thomson (1991). More generally, these uncertainties could be

modelled by allowing for a variable depth-time relationship, and perhaps by also allowing for non-stationarity of the

uncertainty components U1 and U2 to represent variations of the smoothing timescales τb and τs.705

From the above it turns out that, in its current form, the method is neither complete, in terms of processes affecting the

reconstruction uncertainty, nor does it cover all possible reconstruction scenarios, in terms of proxy type and application

context. However, our formulation of the method outlines a conceptually and mathematically well-founded approach of how

timescale-dependent reconstruction uncertainties could, and probably should, be estimated—in particular, when systematic

and exact quantification is required. This latter point is highly relevant, for example, in the context of comparisons between710

circulation models and paleo-observations (e.g., Lohmann et al., 2013; Laepple and Huybers, 2014; Matsikaris et al., 2016),

or likewise for any reanalysis efforts (e.g., Hakim et al., 2016), if data obtained from proxy records are involved. Thus, the

fact that some of the neglected sources of uncertainty might be large compared to what is gained by our exact mathematical

treatment does not qualify our approach as overly precise. The approach rather demonstrates the directions for future efforts into
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quantitative uncertainty estimation. As discussed above, our current formulation of the method may indeed be extended beyond715

the simplifications made. But as mathematical complexity increases in such case, extended formulations should be tailored

to specific applications. In this sense, our formulation provides a minimal basis for the development of future uncertainty

estimation methods.

Furthermore, the timescale-dependent uncertainties obtained from our method depend explicitly on assumptions regarding

the structure of the supposed true climate signal X(t) +Y (t), although this climate signal is the unknown quantity to be720

reconstructed from the proxy record. However, it is an inevitable fact that the timescale-dependent reconstruction uncertainties

do actually depend on this structure, a fact that is made obvious by our method, and likewise by Amrhein (2019). One possible

approach towards solving this problem would be an iterative procedure. (i) Assume a specific structure for the supposed true

climate signal. (ii) Apply our method to obtain reconstruction uncertainties for a given proxy record. (iii) Check whether

the reconstructed signal is consistent, under the obtained uncertainties, with the assumed structure, given its spectral or auto-725

correlation properties. (iv) If this is not the case, update the assumptions and repeat these steps.

Finally, although our method provides an advancement in the quantification of reconstruction uncertainties, it also introduces

a number of model parameters which are associated with their own uncertainty. However, if we are to improve quantitative

uncertainty estimates, our reconstruction uncertainty model helps to identify those parameters which are most important and,

therefore, need to be determined at higher precision. For example, how much seasonality is imposed on a certain proxy at730

a given geographical location within a specific local ecological system? On the other hand, it is possible to investigate how

parameter uncertainties translate into reconstruction uncertainties, as was shown for the seasonal phase parameter φc. Nonethe-

less, the eventual benefit of uncertainty estimation methods like the one presented in this study, and of extensions based thereon,

has still to be worked out in the future by systematically applying such methods to real data.

6 Conclusions735

The present study introduces a method, the so-called Proxy Spectral Error Model (PSEM; see also Part II of this study by

Dolman et al., 2019), for estimating timescale-dependent uncertainties of paleoclimate reconstructions obtained from single

sediment proxy records. The method is based on an uncertainty model that takes into account proxy seasonality (together with

orbital variations of the seasonal cycle amplitude), bioturbation, archive sampling parameters, and the effects of measuring only

a finite number of signal carriers. For this model analytic expressions are derived for the power spectrum of the reconstruction740

error, from which timescale-dependent reconstruction uncertainties can be obtained. This approach is motivated by the fact

that the spectral structure of the error is equivalent to its auto-correlation structure which, in turn, determines how archive

smoothing, sampling and averaging timescales affect the uncertainties. Various timescale-dependent uncertainty metrics can

be defined and then be computed from the error power spectrum, by multiplying the spectrum by specific transfer functions

and then integrating. This corresponds, in the time domain, to additional postprocessing steps performed on the reconstructed745

time series. For example, it is possible to investigate the uncertainty reduction achieved by a lowpass filter with a given cut-off

timescale, or to quantify the uncertainty of the difference between two time averages with given averaging timescales.
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The method proves useful in different ways. First, it can serve to obtain quantitative uncertainty estimates for practical

applications in paleoclimate science. This is demonstrated in Part II of this study (Dolman et al., 2019) where a number

of application examples are presented. Second, the derived analytic expressions can be used to acquire a better qualitative750

understanding of the structure of the uncertainties. In particular, we can conclude that

– the reconstruction uncertainties can be decomposed into two components: (i) a component, the variance of which is ob-

tained by multiplying the power spectrum of the supposed true climate signal by a transfer function and then integrating.

This so-called error transfer function has a structure corresponding to a bandpass filter with its cut-off timescales given

by the longest applied archive smoothing timescale and by a suitably chosen reference smoothing timescale (by analogy755

with the transfer function discussed by Amrhein, 2019). Thus, multiplying the spectrum by the error transfer function

corresponds to applying that bandpass filter to the supposed true climate signal. (ii) A white noise component that scales

inversely with the number of signal carriers retrieved from each slice of sediment (and being subject to the same single

laboratory measurement). Thus, in the asymptotic limit of infinitely many signal carriers this component vanishes. In

the opposite limit, with only a single signal carrier being measured from each slice, the variance of this component760

equals the variance that is contained in the supposed true climate signal at timescales shorter than the longest applied

archive smoothing timescale. This component corresponds to what is referred to, by Dolman and Laepple (2018), as the

noise created by aliasing of variability from inter- and intra-annual timescales. Depending on geographical location and

climatic conditions, this white noise uncertainty component may be dominated by ENSO variability or by the seasonal

cycle, for example.765

– in the presence of proxy seasonality, such that the climate signal is recorded by the proxy only during a limited seasonal

window each year, the abovementioned error transfer function has additional high-frequency peaks at the seasonal cycle

frequency and its higher harmonics and, thus, corresponds to a multi-bandpass filter in this case. In consequence of this,

a certain amount of variance is reallocated from the above white noise uncertainty component to the first component,

although it appears there at the lowest frequencies because of spectral aliasing. Thus, proxy seasonality may generate770

uncertainties that are highly correlated in the time domain. In most cases this low-frequency uncertainty will be domi-

nated by the seasonal cycle and its amplitude modulation caused by orbital variations (as demonstrated by Huybers and

Wunsch, 2003, for example). Nonetheless, if the stochastic climate variablity is only weakly red such that it is associated

with notable power near the seasonal cycle frequency, it may also give rise to low-frequency uncertainties, in particular,

if the seasonal cycle is weak by comparison.775

– if, in addition, the proxy abundance window is known to have a preferred seasonal timing throughout the year, then

the contribution that the seasonal cycle signal (with its deterministic phase) makes to both of the above two uncertainty

components is further modified. The white noise component can be larger or smaller than for random seasonal timing

and, in particular, the first uncertainty component may include a (potentially time-varying) deterministic bias in this case.

Moreover, the sum of their variances may change because of the in-phase subsampling from a deterministic signal.780
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– uncertainties caused by laboratory measurement errors are independent of the above components and, thus, the associated

power spectral density can simply be added to the error power spectrum obtained from our method. In practice this

uncertainty component is assumed to be white noise, such that it scales inversely with any averaging timescale.

Another interesting and future application of the derived analytic expressions would be the inference of the power spectrum

of the true climate signal. Specifically, by setting the reference climate in our method to zero, and then repeating the entire785

derivation, one obtains the analytic expressions for the power spectrum of the climate reconstruction itself, rather than of its

error. Thus, one obtains an operator that transforms the power spectrum of the supposed true climate signal into a spectrum

subject to the distortions caused by the processes included in our reconstruction uncertainty model. Then, given all of the

parameters of the uncertainty model, and assuming a parametric form for the true climate signal, it might be possible to estimate

its parameters by means of a maximum likelihood approach (that investigates the likelihood, under a given set of parameters, of790

the power spectrum estimated from a specific proxy record). This essentially amounts to inverting the aforementioned operator,

similar to the correction technique used by Laepple and Huybers (2013) that is motivated by the anti-aliasing approach of

Kirchner (2005).

Appendix A: Non-stationary variance of the white noise component B(j)
n

The variance of B(j)
n is given by its auto-covariance function at lag zero, Cov(ε)(B

(j)
n

?
,B

(j)
n′ )|n=n′ . By substitution from (73)795

it can be shown, after some algebraic transformations, that

Cov(ε)

(
B(j)
n

?
,B

(j)
n′

)∣∣∣
n=n′

=R+R?, (A1)

with

R= α2
c(R1 +R2) + 4α2

cαa(R3 +R4) + 2α2
cα

2
a(R5 +R6 +R7 +R8), (A2)

where800

R1 =D1, R2 = e−i2φcD2, R3 = ei(2πνatn+φa)D3, R4 = cos(2φc)e
i(2πνatn+φa)D4,

R5 =D5, R6 = cos(2φc)D6, R7 = ei2(2πνatn+φa)D7, R8 = cos(2φc)e
i2(2πνatn+φa)D8, (A3)

and the characteristic function differences D1 to D8 are given by, also using definition (33),

D1 = Cn,n′(−νc,νc)|n=n′ −Cl,l′(−νc,νc)|l 6=l′

= 1− sinc2(νcτp), (A4)

D2 = Cn,n′(−νc,−νc)|n=n′ −Cl,l′(−νc,−νc)|l 6=l′805

= sinc(2νcτp)− sinc2(νcτp), (A5)
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D3 = Cn,n′(−νc + νa,νc)|n=n′ −Cl,l′(−νc + νa,νc)|l 6=l′

= f̂?bs(νa)
[
1− sinc2(νcτp)

]
, (A6)

D4 = Cn,n′(−νc + νa,−νc)|n=n′ −Cl,l′(−νc + νa,−νc)|l 6=l′

= f̂?bs(νa)
[
sinc(2νcτp)− sinc2(νcτp)

]
, (A7)810

D5 = Cn,n′(−νc− νa,νc + νa)|n=n′ −Cl,l′(−νc− νa,νc + νa)|l 6=l′

= 1− |f̂?bs(νa)|2 sinc2(νcτp), (A8)

D6 = Cn,n′(−νc− νa,−νc + νa)|n=n′ −Cl,l′(−νc− νa,−νc + νa)|l 6=l′

= sinc(2νcτp)− |f̂?bs(νa)|2 sinc2(νcτp), (A9)

D7 = Cn,n′(−νc + νa,νc + νa)|n=n′ −Cl,l′(−νc + νa,νc + νa)|l 6=l′815

= f̂?bs(2νa)− f̂?2bs (νa)sinc2(νcτp), (A10)

D8 = Cn,n′(−νc + νa,−νc + νa)|n=n′ −Cl,l′(−νc + νa,−νc + νa)|l 6=l′

= f̂?bs(2νa)sinc(2νcτp)− f̂?2bs (νa)sinc2(νcτp). (A11)

Since the auto-covariance contributions R3, R4, R7 and R8 depend on tn, the variance of B(j)
n is non-stationary. Furthermore,

it turns out that with n 6= n′ the characteristic function differences D1 to D8 are all zero and, thus, the auto-covariance con-820

tributions R1 to R8 are all zero. This implies that the auto-covariance function of B(j)
n is non-zero only at lag zero (n= n′)

and zero at all other lags (n 6= n′). Hence, B(j)
n is a white noise process, and from its definition (73) it follows that it has zero

mean. Note, that (A4) is identical to (49) in section 3.1, but with ν = νc, and so the above procedure follows the same key idea

(according to the approach of Balakrishnan, 1962) to extrapolate the auto-covariance function from non-zero lags towards lag

zero.825

From the above expressions, we can write the variance of B(j)
n as

Var(ε)

(
B(j)
n

)
= V(0)

B +V(1)
B,n cos(2πνatn +φa +φb1)

+V(2′)
B,n cos(4πνatn + 2φa +φb2) +V(2′′)

B,n cos(4πνatn + 2φa +φb1), (A12)

with the amplitude of the stationary variance component,

V(0)
B = σ2

c

{
1− sinc2(νcτp) + cos(2φc)

[
sinc(2νcτp)− sinc2(νcτp)

]}
+σ2

cσ
2
a

{
1−M2

b1 sinc2(νaτs)sinc2(νcτp) + cos(2φc)
[
sinc(2νcτp)−M2

b1 sinc2(νaτs)sinc2(νcτp)
]}
, (A13)
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the amplitude of the variance component oscillating at frequency νa,830

V(1)
B,n = 2σ2

cσa
√

2
{
Mb1 sinc(νaτs)

[
1− sinc2(νcτp)

]
+ cos(2φc)Mb1 sinc(νaτs)

[
sinc(2νcτp)− sinc2(νcτp)

]}
, (A14)

and the amplitudes of the variance components oscillating at frequency 2νa,

V(2′)
B,n = σ2

cσ
2
a

{
Mb2 sinc(2νaτs)

[
1 + cos(2φc)sinc(2νcτp)

]}
, (A15)

V(2′′)
B,n =−σ2

cσ
2
a

{
M2
b1 sinc2(νaτs)sinc2(νcτp)

[
1 + cos(2φc)

]}
, (A16)835

and where

φb2 = arg
[
f̂?b (2νa)

]
= 4πνaτb− arctan(4πνaτb) (A17)

and

Mb2 = |f̂?b (2νa)|=
[
1 + (4πνaτb)

2
]−1/2

, (A18)

and φb1 and Mb1 are defined by (77) and (78), respectively. The time average of this variance over an infinitely long time840

interval is then given by V(0)
B , provided that ∆t is not a multiple of ν−1

a . If the time average is taken over a finite time interval

of length T , centered at t= 0, the time mean variance is given by

Var(ε)

(
B(j)
n

)
= V(0)

B +V(1)
B,n cos(φa +φb1)sinc(νaT )

+V(2′)
B,n cos(2φa +φb2)sinc(2νaT ) +V(2′′)

B,n cos(2φa +φb1)sinc(2νaT ), (A19)

provided that ∆t� ν−1
a .
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