
Dear Chantal Camenisch, 

 

Besides the suggested changes by the reviewers, we additionally corrected Eq. 6 and renamed 

the reduction of error skill score to root mean squared error skill score (based on comments of 

another paper of us). The number of used time series in 1842 is also corrected from seven to 

six. 

Best regards, 

Veronika Valler 

mailto:chantal.camenisch@hist.unibe.ch?subject=cp-2019-137


REVIEWER #1 

 

General comments 
 

This paper discusses a new method for creating a monthly paleoclimate reconstruction by 

assimilating precipitation data in the form of monthly precipitation accumulation or number 

of wet days per month. Experiments are performed over a 55-year time period. Performance is 

judged relative to a separate gridded reconstruction, and results are compared with a model-

only simulation and with a reconstruction created by assimilating only the conventional 

observations of temperature and pressure. While there are some mixed results, the overall 

conclusion is that this method would be worthwhile to continue pursuing. I am particularly 

interested in one of the final statements in the conclusions regarding limiting the effects of 

precipitation on assimilation, presumably to decrease the influence of precipitation when sea 

level pressure or temperature observations are dense, with an asymmetric localization 

function. Overall, the paper is clear and concise. The methods are explained well and the 

results are shown clearly. I have only minor scientific and technical comments. 

 

We thank the Reviewer for the careful revision of the manuscript and for improving the 

English of the manuscript. We will follow his/her recommendations to clarify the specified 

cases. 

 

 Specific comments 

1. Lines 40-43: Could you give some quantification of what a “dense network” is in this 

context? 

 

Based on the correlation figures in the paper by Gómez-Navarro et al. (2015) high 

correlations (>0.8) are found close to the pseudoproxies which drop to values <0.2 within a 

few hundred kilometers with seasonal dependency.  

 

The localization length scale parameter of precipitation (450 km) that is used in this study and 

was previously calculated by Franke et al. (2017) is in agreement with the findings of Gómez-

Navarro et al. (2015). 

 

We added: They found that the skill of the precipitation reconstruction increases close to the 

proxy locations (correlations  > 0.8):independently from the method used. However within a 

few hundred kilometers correlation values drop  below 0.2  (with seasonal dependency),  

implying:precipitation is not reconstructed accurately anymore at these distances. 

 

 

2. Line 50: A short discussion of the necessary density of proxies for successful 

reconstruction here would help to link with the previous paragraph. 

 

The EKF400 atmospheric paleo-reanalysis (EKF400; Franke et al., 2017) predominantly 

shows skill over the Northern Hemisphere land areas, in the vicinity (up to a few thousand 



kilometers) of assimilated data. However, in regions where no observations are available the 

reconstructions are identical to the model simulations.  

 

We added: In the EKF400 atmospheric paleo-reanalysis skillful temperature and sea-level 

pressure reconstruction can be expected a few thousand kms away from observations, whereas 

precipitation fields show limited skill (Franke et al., 2017). Reasons are the high spatial 

heterogeneity of precipitation and that no precipitation data has been assimilated. 

 

 

3. Line 157-158: Why did you choose this order to assimilate observations (temperature, 

then pressure, then precipitation)? 

 

The reviewer is correct because the order in which the observations are assimilated may 

influence the results in the case of serial assimilation with localization. We kept the same 

assimilation order used in previous reconstruction (Franke et al, 2017), that is assimilating 

temperature data first then pressure measurements. We assimilated precipitation data last due 

to the bigger uncertainties characterizing precipitation measurements. Precipitation data also 

affect the reconstruction within a smaller region. A similar procedure was applied in the 

generation of the 20CRv3 (Slivinski et al., 2019). 

 

We added: We kept the same assimilation order used in previous reconstruction (Franke et al., 

2017), that is  assimilating temperature data first then pressure measurements. Precipitation 

data were assimilated last due to the bigger uncertainties characterizing precipitation 

measurements. 

 

 

4. End of sections 4.1 and/or 5.1: It might be worthwhile to discuss the tradeoffs in more 

detail. When precipitation is assimilated, is the improvement in precipitation skill worth 

the loss of skill in SLP and temperature? 

 

We agree with the reviewer that it is an important question. Ideally we would like to avoid or 

minimize the negative effect of assimilating precipitation information and our results suggest 

that assimilating the number of wet days is preferable compared to assimilating precipitation 

amounts, especially in summer. In future experiments, in order to reduce the negative impact 

of assimilating precipitation information on other reconstructed fields (e.g., sea-level 

pressure), the effect of ignoring/limiting its cross-covariance updates will be tested.  

 

We made a new figure (Fig. S08) and added at the end of Section 4.1: To further assess the 

impacts of assimilating precipitation data in regions with dense observations such as Europe, 

the distribution of skill metrics were analyzed. The reconstructed temperature fields of the 

three experiments have very similar skill over Europe (Fig. S8). Over Europe a loss of skill in 

sea-level pressure and temperature is seen for the RMSESS in both seasons, especially in 

summer, when skill of exp_TPR and exp_TPW are compared to exp_TP (Fig. 6). If the 

RMSESS is calculated for all three experiments using the model simulation as xf , the 

distributions over Europe indicate that the skill loss in sea-level pressure is smaller than the 

gain in precipitation for exp_TPR and exp_TPW (Fig. S8). 

 

 



5. Section 4.2 and related figures: It may be useful to add the observation locations from 

20CRv3 to Figure 7 so that the reader has an idea of what the observational network 

looks like in 1842 over Europe.  

 

We added the location of available observations to Figure 7 in the first column, the 6 time 

series from GHCN and the observations from ISPDv4.7 used in 20CRv3.  

 

 

In addition, it would be useful to mention that the 20CRv3 analysis is an ensemble mean, 

and thus comes with an ensemble spread that can provide an idea of the confidence in 

the reanalysis at any time and location. It could be useful to add maps showing this 

spread, or at least add the observation locations to Fig 7 along with a few sentences 

noting that the reanalysis will be less reliable in locations with no observations, than in 

regions of dense observations.  

 

Thank you for the recommendation. We extended the description of 20CRv3 as: 

In 20CRv3 only pressure measurements are assimilated into a model with prescribed sea 

surface temperatures, sea ice concentrations, and radiative forcings. The 20CRv3 reanalysis 

has 80 ensemble members which provide an idea of the confidence in the reanalysis at any 

time and location. In 1842 data  are available from 39 distinct locations, where the reanalysis 

is more relaible compared  to  regions with no available observations. The monthly 

precipitation anomaly fields of 20CRv3 are calculated from the 1836-1877 time period. The  

presented results compare the 20CRv3 ensemble mean with the ensemble mean of the above 

described experiments. 

 

Finally, Figures 7 and S7 might be clearer if difference fields are shown. As it is, the 

reader is left to judge by eye which of the experiments matches the reanalysis or 

reconstruction best. 

 

We added the additional difference figures: Fig. S09 and Fig. S10.  

 

 

 

Technical corrections 

 
The suggested technical corrections were applied. 

 

1. Line 34: “fist” should be “first”  

 

2. Line 48: change to “…based on the covariances between the observed and unobserved 

variables.”  

 

3. Line 50: “such as” should be “in the form of”  

 

4. Line 57: “other” should be “others”  

 

5. line 87: “change to …with a correlation function that decreases as distance increases”  

 

6. line 104: maybe replace “rains” with “drizzles”, since light precipitation is overestimated.  

 



7. Line 117: replace “considered as a wet day” with “considered wet days”)  

 

8. Line 126: change to “…using the following procedure for both precipitation amounts and 

wet days:”  

 

9. Line 129: replace “precipitation and wet days” with “station”  

 

10. Line 139 should be “If more than one station is available…”  

 

11. Line 149: “A set of experiments was conducted…”  

 

12. Line 170: Please add: “In 20CRv3 only pressure measurements are assimilated into a 

model with prescribed sea surface temperatures, sea ice concentrations, and radiative 

forcings.”   

Also, could you expand on what “globally 39 observations data” means? Are there 39 distinct 

observation locations in 1842, or are there 39 instantaneous pressure reports within all of 

1842? D 

 

A sentence concerning assimilated observations in 20CRv3 was added: In 1842 data are 

available from 39 distinct locations.   

 

13. Line 172: please replace “besides” with “In addition,”  

 

14. Line 181: Is CRU TS3.10 completely independent from the experiments or does it use 

some of the same data? 

The CRU TS3.10 dataset is not completely independent from the experiments, since there is 

an overlap between e.g., the assimilated temperature data and the temperature data used in the 

CRU TS3.10 dataset. However, for instance when only the number of wet days are 

assimilated the reconstructed temperature field is completely independent from the CRU 

TS3.10 temperature field.  

 

15. Line 183 to 185: maybe change to “In Section 4.1, we show the differences between the 

correlations calculated from…”  

 

16. Line 186: change “skills” to “skill”  

 

17. Line 189-190: change to “on the anomalies from the…”  

 

18. Line 197: remove “season”  

 

19. Line 229-230: Change “increased localization” to “increased localization distance” or 

“decreased localization”, since localization itself usually refers to the method of limiting 

spurious correlations.  

 

20. Lines 240-242 are unclear as written; maybe change to “The regions over central South 

America and South Africa that were negatively affected in the exp_W experiment show 

worsening skill in the exp_W_2L experiment (Fig. S4).”  

 

21. Line 245: remove “as it should be done in the real application of the method in the 

future”, or describe what you mean by “real application”.  



 

22. Line 249: change “besides not assimilating” to “except that it does not assimilate”  

 

23. Line 251: add “…the skill of the exp_TPR and exp_TPW analyses are compared…”  

 

In line 151, we already mention that both experiments are compare to exp_TP. “In the case of 

exp_TPR and exp_TPW experiments, the xf is replaced with the ensemble mean of the 

analysis from the exp_TP experiment.” 

 

We added it again when the discussion of exp_TPW starts in line 262: “The experiment was 

repeated with the number of wet days added instead of precipitation amounts (exp_TPW)” 

and similarly as a reference the exp_TP experiment was used. 

 

24. Line 296: change “weather forecast” to “weather forecasting”  

 

25. Line 298: change “in some data assimilation methods” to “for many data assimilation 

methods”  

 

26. Line 299: change “normality” to “Gaussian”.  

 

27. Line 303: add a reference for the Shapiro Wilk test. Which ensemble was this test 

performed on? 

 

We added the reference: DS Wilks (2011) - Statistical Methods in the Atmospheric Sciences 

It was performed on the model ensemble. 

 

28. Line 307: Add “The hypothesis of normality in the number of wet days…”  

 

29. Line 310: maybe add “…to be assimilated successfully.”?  

 

30. Line 322: change “for example” to “such as”  

 

31. Line 327: change “using the number…” to “assimilating the number…”  

 

32. Line 335: change to “Assimilating precipitation amount or the number of wet days has a 

small impact…”  

 

33. Line 343: add “assimilating precipitation amounts… performs worse than assimilating wet 

days…”  

 

34. Figures S.1-S.2: Are the columns different months? Please label. 

 

We added the labels. 



REVIEWER#2 

 
 

This is a good paper that is relatively straight-forward. I think the result about 

assimilating wet days vs precipitation amount is particularly useful. I only have a few 

suggestions for clarification and improving the presentation of the results. 

 

We thank the Reviewer for his/her positive feedback and for the recommendations where to 

improve the manuscript. 

 

 

 

l.89 Could you clarify that this is the traditional Gaspari-Cohn localization function with 

a specific cut-off length (i.e., it is zero beyond some specified distance)? 

 

We implemented the Gaussian localization function as described by Gaspari and Cohn (1999), 

but without compact support. The elements of the localization functions are only getting close 

to zero, but were not set to exactly zero beyond a specified distance. 

 

We added: Therefore, Pb was multiplied elementwise with a correlation functio that decreases 

as distance increases. 

 

l.156-158 What’s the justification for assimilating the observation types in this order? 

I would have guessed that one would assimilate the observations with the longest 

localization length first (i.e., pressure)? 

 

We agree with the Reviewer that the order of assimilated observations can have an influence 

on the result. We kept the assimilation order as was used in previous reconstructions (Franke 

et al., 2017). However, further testing could reveal more optimal assimilation order.  

 

We added: We kept the same assimilation order used in previous reconstruction (Franke et al., 

2017), that is  assimilating temperature data first then pressure measurements. Precipitation 

data were assimilated last due to the bigger uncertainties characterizing precipitation 

measurements. 

 

 

l.172 Replace "Besides" with "In addition" 

 

We have replaced it. 

 

Discussion of Figs. 3 & 4 I found it difficult to assess some of the comparative statements 

made about these results based on the data present in the figures. The maps give an idea 

of what the data values are, but unless they are compared with something like box plots 

then it’s hard to tell which option/experiment is better or best. For example, statements 

are made about one choice of localization length being better than another, but I 

couldn’t tell if that was really the case given only the maps; the distributions of the data 

values need to be compared more quantitatively. 

 



Thank you for the suggestion. We added a new figure summarizing the skill of the 

experiments as box plots over the extratropical Northern Hemisphere (Fig. S05). 

 

Figs. S1 & S2 Can you label which columns are which months?  

We added additional labels to the figures. 
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Abstract. Data assimilation approaches such as the ensemble Kalman filter method have become an important technique for

paleoclimatological reconstructions and reanalysis. Different sources of information from proxy records and documentary data

to instrumental measurements were assimilated in previous studies to reconstruct past climate fields. However, precipitation

reconstructions are often based on indirect sources (e.g., proxy records). Assimilating precipitation measurements is a chal-

lenging task because they have high uncertainties, often represent only a small region and generally do not follow Gaussian5

distribution. In this paper, a set of experiments are conducted to test the possibility of using information about precipitation in

climate reconstruction with monthly resolution by assimilating monthly instrumental precipitation amounts or the number of

wet days per month, solely or in addition to other climate variables such as temperature and sea level pressure, into an ensemble

of climate model simulations. The skill of all variables (temperature, precipitation, sea-level pressure) improved over the pure

model simulations when only monthly precipitation amounts were assimilated. Assimilating the number of wet days resulted10

in similar or better skill compared to assimilating precipitation amount. The experiments with different types of instrumental

observations being assimilated indicate that precipitation data can be useful, particularly if no other variable is available from a

given region. Overall the experiments show promising results because with the assimilation of precipitation information a new

data source can be exploited for climate reconstructions. Especially the wet day records can become an important data source

in future climate reconstructions because many existing records date several centuries back in time and are not limited by the15

availability of meteorological instruments.

1 Introduction

Precipitation is one of the key components of the climate system. Understanding its variability is fundamental due to its impact

on the ecosystem and on human society. Instrumental observations are the main data source for studying its spatio-temporal

variability. However, instrumental measurements are often insufficient because long time series are rarely available and their20

spatial distribution is rather sparse, especially further back in time. To examine the decadal variability of precipitation longer

time series are needed. This is often done by analyzing proxy records, documentary data or model simulations.

Simulations suggest, for instance, that the tropical monsoon regions are characterized by the largest interannual variability

of annual precipitation and the interannual variability exhibits significant changes on the multi-decadal scale (Yang and Jiang,

1
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2015). Precipitation reconstructions are needed to validate such results. Their number increased in the recent years on all25

scales from local to large-scale. To reconstruct local millennial long hydroclimate variability, tree-ring series were used for

example in southern-central England (Wilson et al., 2013), and in southern Scandinavia (Seftigen et al., 2017). Pauling et al.

(2006) reconstructed a 500-year long seasonal precipitation field over Europe back to 16th century, by using instrumental

measurements, documentary data, and proxy records. A reconstruction of Northern Hemispheric hydroclimate variability from

multi-proxy records and documentary data is available between the 9th and 20th century (Ljungqvist et al., 2016). A similar30

reconstruction was also produced for southern South America for the last 500 years (Neukom et al., 2010). Besides, centuries-

long tree-ring drought atlases are available for North America (Cook et al., 2010b), Asia (Cook et al., 2010a), Europe (Cook

et al., 2015) and eastern Australia and New Zealand (Palmer et al., 2015) to study long-term hydroclimate variability. Steiger

et al. (2018) produced the fist
:::
first

:
global hydroclimatic reconstructions at annual and seasonal resolutions by combining

multiproxy data with the Community Earth System Model Last Millenium Ensemble model simulations (Otto-Bliesner et al.,35

2016) over the last two millennia. A multi-century global reconstruction making use of observational precipitation data is still

missing.

One challenge in global reconstructions is the required observation network density. To test how dense a network for a

climate field reconstruction needs to be, pseudo proxy experiments can be performed. A set of such experiments were con-

ducted by Gomez-Navarro et al. (2015) to reconstruct precipitation over Europe with three climate field reconstruction methods40

(Canonical Correlation Analysis, Analog Method, Bayesian hierarchical method). They found that the skill of the precipita-

tion reconstruction increases close to the proxy locations
::::::::::
(correlations

::::::
> 0.8)

:
independently from the method used. However,

further away
:::::
within

::
a

:::
few

:::::::
hundred

:::::::::
kilometers

::::::::::
correlation

:::::
values

:::::
drop

:::::
below

:::
0.2

:::::
(with

::::::::
seasonal

:::::::::::
dependency),

::::::::
implying

:
pre-

cipitation is not reconstructed accurately
:::::::
anymore

::
at

:::::
these

::::::::
distances. Therefore, they conclude that a dense network of proxy

records, in accordance with the high spatio-temporal variability of precipitation, is essential for successful reconstructions.45

Thanks to the introduction of new techniques in the field of paleoclimatology, nowadays spatially complete and physically

consistent reconstruction can be derived. Paleoclimate data assimilation provides a framework in which observational data and

model simulations are optimally combined to obtain global, 3-dimensional climate fields. Using the data assimilation approach

is advantageous, because by assimilating only one type of climatic variable (e.g., temperature), we can gain information from

other climatic fields present in the model simulation based on their covariances
::::::
between

:::
the

::::::::
observed

:::
and

::::::::::
unobserved

:::::::
variables.50

Monthly instrumental temperature and sea-level pressure data, documentary temperature data, as well as tree-ring proxy records

have been successfully used with the ensemble Kalman Fitting (EKF) method to reconstruct past climate fields (Franke et al.,

2017).
:
In

:::
the

::::::::
EKF400

::::::::::
atmospheric

:::::::::::::
paleo-reanalysis

::::::
skillful

:::::::::::
temperature

:::
and

:::::::
sea-level

::::::::
pressure

:::::::::::
reconstruction

::::
can

::
be

::::::::
expected

:
a
:::
few

::::::::
thousand

::::
kms

:::::
away

::::
from

:::::::::::
observations,

:::::::
whereas

:::::::::::
precipitation

:::::
fields

::::
show

::::::
limited

::::
skill

:::::::::::::::::
(Franke et al., 2017)

:
.
:::::::
Reasons

:::
are

::
the

:::::
high

::::::
spatial

::::::::::::
heterogeneity

::
of

::::::::::
precipitation

::::
and

:::
that

:::
no

::::::::::
precipitation

::::
data

:::
has

:::::
been

::::::::::
assimilated.55

In this paper, monthly precipitation information such as
::
in

:::
the

::::
form

:::
of precipitation amounts or the number of days with

precipitation in each month (wet days) are assimilated with the EKF method (Franke et al., 2017) to reconstruct monthly climate

fields. Early instrumental precipitation measurements are available since the 17th century (New et al., 2001). Descriptive

weather journals were kept by scholars even before the instrumental era, usually including the number of wet days. Example

2



of such weather diaries exist for example for Kassel (Germany) by Uranophilus Cyriandrus covering 1621–1650 (Lenke,60

1960), for Zürich (Switzerland) by Wolfgang Haller between 1545–1576 (Pfister et al., 1999), or for Savanna-la-Mar (Jamaica)

by Thomas Thistlewood from 1750 to 1786 (Chenoweth, 2003). In future reconstructions, these documentary records and

numerous other
:::::
others

:
could add valuable information to the limited instrumental measurements data to assess the natural

variability of precipitation. Here, we investigate the possibility of using these new observation sources in a climate context

by conducting and evaluating a set of experiments over the 1950-2004 time period. The skill of the reconstructions with the65

assimilation of precipitation amount versus wet days records are compared. Precipitation amount and wet days records are

assimilated together with other instrumental measurements to study their combined effect.

This paper is structured as follows: In Section 2 an overview of the EKF techniques is given and the model simulation and

the observations are introduced. Section 3 describes the experimental framework and the skill metrics used for evaluation. In

Section 4 the results are presented and are discussed in Section 5. We conclude how monthly precipitation information can be70

assimilated best in Sect. 6.

2 Methods

2.1 Ensemble Kalman fitting

To reconstruct climate fields by assimilating monthly precipitation amounts and the number of wet days per month, the en-

semble Kalman fitting (EKF) data assimilation technique was used (described in detail in Bhend et al. (2012) and Franke et al.75

(2017)). The EKF is used in an offline manner, that is only the update step of the Kalman filter is implemented. In the update

step of the EKF precomputed model states (see in Section 2.2) are updated with observational information as:

xa = xb +K
(
y−Hxb

)
(1)

x′a = x′b + K̃
(
Hx′b

)
(2)

where the analysis ensemble mean (xa) and the deviation from it (x′a) are updated separately. xb is the background state80

vector, that is provided by the model simulation. H is the forward operator, by which the model value is transformed to

observation value. In our setup H is linear. K and K̃ denote the Kalman gain matrix and the reduced Kalman gain matrix,

which are weighting the model and observation information based on their error estimates:

K = PbHT (HPbHT +R
)−1

(3)

K̃ = PbHT
((√

HPbHT +R
)−1)T

×
(√

HPbHT +R+
√

R
)−1

(4)85

where Pb is the background-error covariance matrix and R is the observational-error covariance matrix. In ensemble-based

Kalman filter methods, Pb is calculated from the ensemble members (Evensen, 2003). The estimation of the observational error

is discussed later in Section 2.3.2. Gaussian statistics in the errors are assumed.
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The EKF is implemented serially, that is, observations are assimilated one-by-one, which makes the assimilation process

computationally more efficient. The localization of Pb is necessary if the covariances are calculated from a much smaller90

ensemble size than the model dimension (discussed among others in Kepert (2009)). Therefore, Pb was multiplied element-

wise with a correlation function to eliminate spurious correlations from Pb
:::
that

:::::::::
decreases

::
as

:::::::
distance

::::::::
increases. The correlation

function was represented with the isotropic Gaussian function:

G= exp

(
− z2

2L2

)
(5)

where z denotes the distance between two grid boxes and L is the length scale parameter (Gaspari and Cohn, 1999). In95

most of the experiments of this study, we use the localization length scale parameters determined by Franke et al. (2017). The

localization length scale parameter for temperature is 1500km, for pressure is 2700 km and for precipitation is 450 km. In

the case of the number of wet days, the localization length scale parameter is set to 450 km. Between two different variables

always the smaller L is used for localization.

2.2 Model simulation100

The Chemical Climate Change over the Past 400 years (CCC400) model simulations serve as model background. They were

produced with the ECHAM4.5 model (Roeckner et al., 2003) and have 30 ensemble members (Bhend et al., 2012). CCC400 is

a forced model simulation of the atmosphere that was performed at T63 horizontal resolution with 31 layers in the vertical (for

more details see Bhend et al. (2012), and Franke et al. (2017)). CCC400 was used in previous climate studies (Franke et al.,

2017; Valler et al., 2019), but here an additional climate field (wet days) was added to the already existing monthly model fields.105

Hence, in this study the background state vector (xb) has the following monthly climate fields: temperature, precipitation,

sea-level pressure, and wet days. Previous climate model evaluation studies showed that precipitation characteristics such as

frequency and intensity are often over- or underestimated in the model simulations (e.g., Sun et al., 2006; Koutroulis et al.,

2016). The fraction of light precipitation is overestimated by the models, that is it rains
::::::
drizzles

:
too frequently (Sun et al.,

2006). Therefore, in this study the threshold for wet day was set to ≥ 1 mm day-1. The precomputed model states cover the110

period between 1601 and 2004. However, in this study we mainly focus on the period between 1950 and 2004.

2.3 Observation

2.3.1 Observation dataset

Precipitation observation data are obtained from the Global Historical Climatology Network - Daily database (GHCN-Daily

v3.2.2; Menne et al., 2012). Before 1950, the number of available station data in GHCN-Daily drastically decreases in large115

part of the world (Menne et al., 2012). Therefore, we only use time series from the 1950–2005 period. Furthermore, to ensure

homogeneous data completeness and spatial coverage, we kept only those stations that fulfill the following criteria: 1) at least

50 years of data are available; 2) the distance between two stations is at least 200 km. After the selection process, 432 stations
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remained (Fig 1a). In the extratropical Northern Hemisphere the station network is dense and equally distributed. However, in

the Southern Hemisphere, outside Australia only very few stations data are available.120

The daily precipitation sums were converted to monthly totals. For the conversion of daily precipitation sums into the number

of wet days, a threshold of 1 mm was used (i. e., days with precipitation < 1 mm were not considered as a wet day
::
wet

:::::
days).

2.3.2 Representativity error

Rain gauge measurements are subject to systematic, random, and representativity errors (e.g., Lopez, 2013). The representativ-

ity error, in particular, arises when comparing point measurements to area averages such as grid points in model simulations.125

For precipitation, it is arguably the largest error source due to the high spatial variability of this variable.

To estimate the representativity error, we analyzed all GHCN-Daily station data over the contiguous United States and

adjacent territories (lat: 24◦-48◦ N, lon: 126◦-68◦ W) in the 1961–1990 period. This region has the required network density

and covers several climatic zones, which makes it a good subset to estimate global errors in monthly precipitation amount and

number of wet days.130

The representativity error was estimated using the following procedure
::
for

::::
both

:::::::::::
precipitation

:::::::
amounts

:::
and

::::
wet

::::
days: 1) An

average value for all months between 1961 and 1990 was calculated at each single grid box from the stations located within one

grid box according to the resolution of the CCC400 model simulation. 2) The spatially averaged monthly time series of each

grid box were subtracted from all precipitation and wet days
::::::
station series within the grid box. 3) The standard deviation of the

resulting series was calculated. 4) The median value of the standard deviation was taken as the representivity error. Figure 2135

shows the distribution of the standard deviations. The median of standard deviation of precipitation and number of wet days

are 24.63 mm (equivalent to 28% error) and 1.49 days (equivalent to 21% error), respectively.

3 Experiments

3.1 Experiment design

An important feature of our assimilation process is that only anomalies are assimilated. Both model and observation data are140

transformed into anomalies, using a moving 70-year time window around the current year (this window is shorter at the edges

of the available period, from which the anomalies are calculated). Working with anomalies alleviates the problem of model

biases (see Franke et al., 2017).

If more than one stations are
:::::
station

::
is
:
available within the same grid box, then the average of the observation anomalies was

assimilated. As in previous studies (e.g., Franke et al., 2017) the length of the assimilation window is 6 months. Therefore, in145

xb 6 monthly fields of different variables are combined. The assimilation windows cover the period between October-March

and April-September, which were chosen due to growing seasons of trees if tree-ring proxy data get assimilated. We eventually

aim at assimilating precipitation data in combination with proxy data. Hence, the half-yearly assimilation scheme was kept the

same.
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When data of 6 months are combined together in xb for one assimilation step, the assimilated observations can influence all150

the variables of the 6 months. However, Valler et al. (2019) found that in the case of multiple months combined into one state

vector, the analysis improved when time localization was applied, that is observation can only affect the current month. Hence,

time localization was applied in all experiments described in this paper.

A set of experiments were
:::
was conducted, which are summarized in Table 1. In our first experiment we analyze the skill of the

reconstruction when assimilating monthly instrumental precipitation amount in the period 1950–2004 (exp_R). In the second155

experiment we assimilate the monthly number of wet days instead of the precipitation amount (exp_W). Both experiments were

repeated with an extended spatial localization distance in order to make better use of the available observations (exp_R_2L

and exp_W_2L). The length scale parameter both for precipitation amount and wet days was doubled from 450 km to 900

km, based on calculation of decorrelation distance of precipitation in the model space. In two further experiments, we added

instrumental temperature and pressure data to the assimilated precipitation amount or to the wet days records (exp_TPR and160

exp_TPW, respectively) to study the combined influences of various variables (Fig. 1b). Due to the localization of Pb, the

sequence of assimilated observations can affect the analysis (xa) (Greybush et al., 2011). Hence, we assimilated
:::
We

::::
kept

::
the

:::::
same

:::::::::::
assimilation

:::::
order

::::
used

::
in

::::::::
previous

::::::::::::
reconstruction

:::::::
(Franke

::
et

:::
al,

:::::
2017),

::::
that

::
is
:::::::::::
assimilating temperature data first

, followed by pressure and precipitation (or the number of wet days)
::::
then

:::::::
pressure

:::::::::::::
measurements.

:::::::::::
Precipitation

::::
data

:::::
were

:::::::::
assimilated

:::
last

::::
due

::
to

:::
the

::::::
bigger

:::::::::::
uncertainties

::::::::::::
characterizing

:::::::::::
precipitation

::::::::::::
measurements. The assimilated temperature and165

pressure time series are described in Franke et al. (2017). In all experiments, we used an observational error of 30% or at least

10 mm for precipitation amount, and of 2 days for wet days. These values were chosen in agreement with our estimation of the

representativity error (Sect. 2.3.2). For temperature and pressure we applied the observational errors of
√
0.9 K and

√
10 hPa,

respectively (Valler et al., 2019).

Finally, an additional experiment was conducted to reconstruct a severe drought event in Europe, in order to demonstrate the170

potential of assimilating precipitation data. Seven
:::
Six available stations from GHCN-Daily were used to reconstruct the extreme

drought year of 1842 (Brázdil et al., 2019, and references therein). Brázdil et al. (2019)
:::::::::::::::::::::::::::::::::::
(Brázdil et al., 2019, and references therein)

:
.
:::::::::::::::::
Brázdil et al. (2019) collected several documentary data sources from diaries through newspapers to scientific papers to an-

alyze the severity of the drought. Besides documentary data, instrumental measurements were also examined. The year 1842

was characterized by low water levels in many countries from the Netherlands to western Ukraine and from Italy to Sweden175

affecting shipping, availability of drinking water and agriculture. We looked how this drought event is captured in an inde-

pendent reconstruction, using the Twentieth Century Reanalysis version 3 (20CRv3; Slivinski et al., 2019). In 20CRv3 only

pressure measurements are assimilated and in
:::
into

::
a
:::::
model

::::
with

:::::::::
prescribed

:::
sea

::::::
surface

:::::::::::
temperatures,

:::
sea

:::
ice

::::::::::::
concentrations,

::::
and

:::::::
radiative

:::::::
forcings.

::::
The

:::::::
20CRv3

:::::::::
reanalysis

:::
has

::
80

::::::::
ensemble

::::::::
members

:::::
which

:::::::
provide

::
an

::::
idea

::
of

:::
the

:::::::::
confidence

::
in

:::
the

:::::::::
reanalysis

:
at
::::
any

::::
time

:::
and

::::::::
location.

::
In

:
1842 globally

::::
data

::
are

::::::::
available

:::::
from 39 observations data were used

::::::
distinct

::::::::
locations,

::::::
where

:::
the180

::::::::
reanalysis

::
is

:::::
more

::::::
relaible

:::::::::
compared

::
to

::::::
regions

:::::
with

::
no

::::::::
available

:::::::::::
observations. The monthly precipitation anomaly fields of

20CRv3 are calculated from the 1836-1877 time period. Besides
:::
The

::::::::
presented

::::::
results

:::::::
compare

:::
the

::::::::
20CRv3

::::::::
ensemble

:::::
mean

::::
with

:::
the

::::::::
ensemble

::::
mean

:::
of

:::
the

:::::
above

::::::::
described

:::::::::::
experiments.

::
In

:::::::
addition, we compared our exp_R experiment with a seasonal

high-resolution precipitation reconstruction over Europe (Pauling et al., 2006). Pauling et al. (2006) used various data types (in-
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strumental, documentary, proxy) and principal component regression techniques to reconstruct precipitation between 1500 and185

2000. From their dataset, we calculated the seasonal relative precipitation anomalies of 1842, dividing the absolute anomaly

with the 71-year climatology, centred on 1842. Relative precipitation anomalies were used for monthly field comparison as

well.

3.2 Evaluation

In order to evaluate the skill of the sensitivity experiments two commonly used skill metrics — correlation and the reduction of190

error (RE, Cook et al., 1994)
::::
root

::::
mean

:::::::
squared

::::
error

::::
skill

:::::
score

:::::::::
(RMSESS)

:
— are calculated over the 1950–2004 time period.

The CRU TS3.10 dataset (Harris et al., 2014) was chosen as a reference dataset to evaluate the precipitation, temperature and

sea-level pressure reconstructions. The CRU TS3.10 is a gridded dataset, which is relaxed to the 1961-1990 climatology in the

case of no available observation. Correlation is calculated between the absolute values of the ensemble mean of the analysis

and the reference series; it expresses the covariability between the two series, but does not measure biases. In Section 4.1,195

the analyzed correlation results show the correlation
::
we

:::::
show

:::
the

:
differences between the correlations calculated from the

analysis-reference data and from the model-reference data. We show the correlation differences because the CCC400 model

simulations are transient, forcing-dependent simulations and already have skills. The RE
::::
skill.

::::
The

::::::::
RMSESS

:
skill metric is

calculated as:

RMSESS = 1−

√
1
n

∑n
i=1(x

u
i −xref

i )2√
1
n

∑n
i=1(x

f
i −xref

i )2
(6)200

where, xu is the reconstruction, xf is the model simulation, xref is the reference dataset and i refers to the time step. In

those experiments when only precipitation amount or the number of wet days are assimilated, the RE
::::::::
RMSESS

:
is calculated

on the anomaly level
::::::::
anomalies

:
from the ensemble mean of the analysis and the ensemble mean of the model simulation and

compared to the reference dataset. In the case of exp_TPR and exp_TPW experiments, the xf is replaced with the ensemble

mean of the analysis from the exp_TP experiment. The two skill metrics measure different properties, therefore the skill of the205

reconstruction also depends on the analyzed skill metrics (Franke et al., 2019). When for example only the number of wet days

are assimilated then the temperature reconstruction is fully independent from the reference dataset. However, in other cases

the skill of the reconstruction can be overestimated (see also in Franke et al., 2019). Monthly skill metrics are discussed for

the exp_R experiment, while for the other experiments the seasonal skill metrics – calculated from seasonal averages (winter:

October-March, summer: April-September) – are analyzed. Both seasons are discussed later but only the results of summer210

season are shown in the paper
::::::
(figures

:::
for

::::::
winter

:::
are

::::::
shown

::
in

:::
the

::::::::::
supplement).
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4 Results

4.1 Skill scores analysis

Assimilating monthly precipitation amount data (exp_R) led to improved precipitation skill compared to the existing correlation

between the CCC400 model simulation ensemble mean and the reference dataset. The monthly correlation differences of215

precipitation show clear improvement (winter: Fig. S1, summer: Fig. S2). The correlation differences between the analysis

and the model simulation are almost always positive in the case of temperature and sea-level pressure in all months (Fig. S1,

Fig. S2). In terms of RE
::::::::
RMSESS values, during boreal winter the monthly precipitation fields show reduced skill in the high

northern latitudes and in Siberia (Fig. S1). The skill of the precipitation reconstruction gradually decreases from October to

March over Siberia (Fig. S1). The negative RE
:::::::
RMSESS

:
values remain present in April and to a less extent in May over220

northern North America and Siberia; while the RE
::::::::
RMSESS values are mainly positive throughout June and September in the

Northern Hemisphere (Fig. S2). The precipitation reconstruction has mixed skill over Australia. Mostly negative RE
::::::::
RMSESS

values characterize the northern, north-western regions, while positive skill is seen in the southern and eastern parts (Fig. S2).

The RE
:::::::
RMSESS

:
values of the winter monthly temperature fields are in general positive, except Australia (Fig. S1). However,

the skill of the temperature reconstruction is negative in large parts of North America and Europe especially from June to225

August (Fig. S2). In the winter sea-level pressure fields, an improvement can be seen mainly over Europe and Asia (Fig. S1),

while in the summer months the effect of precipitation on the pressure fields is mixed (Fig. S2). The winter seasonal skills of

exp_R are shown in the supplementary material (Fig. S3 and Fig. S4), while summer seasonal skills are shown in Fig. 3 and

Fig. 4.

The assimilation of wet days (exp_W) resulted in mainly positive correlation differences of all the three variables (Fig. 3,230

Fig. S3). The correlation skill of the exp_W analysis is very similar to the skill of exp_R, in which precipitation amounts were

assimilated. However, the skill of the reconstructions shows a different picture when the RE
::::::::
RMSESS values are analyzed.

The precipitation field shows improved skill almost everywhere in summer (Fig. 4c), and in winter the RE
::::::::
RMSESS

:
values

are negative only in the high northern latitudes and over west and central North Asia (Fig. S4). The negative skill over Europe

seen in the summer temperature field when assimilating precipitation amounts (Fig. 4e) is diminished by using the number235

of wet days (Fig. 4g). However, the negative RE
::::::::
RMSESS

:
values over the central Siberian region seen in summer in the

exp_R experiment did not change with the assimilation of wet days (Fig. 4d). In general, the assimilation of wet days (exp_W)

has higher skill than the assimilation of precipitation amounts (exp_R), when temperature fields are compared. The positive

effect of assimilating the number of wet days instead of precipitation amount is also evident in the RE
::::::::
RMSESS

:
values of the

sea-level pressure fields (Fig. 4k, Fig. S4). The sea-level pressure analysis of exp_W has positive skill over Europe in both240

seasons.

Doubling the correlation length scale parameter of precipitation resulted in very similar correlation skill of precipitation

(Fig. 3b, Fig. S3) as in the exp_R experiment. Increasing the correlation length scale parameter mainly positively affected

the sea-level pressure reconstruction (Fig. 3j). The same holds for the temperature correlation (Fig. 3f). While the increased

localization
:::::::
distance positively affected the correlation of the reconstructed fields, it had a more mixed impact on the other245
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skill metric. The RE
:::::::
RMSESS

:
values of precipitation decreased in the high northern latitudes, over North America and in

the Mediterranean region (Fig. 4b, Fig. S4). This negative effect of the increased localization length scale is also seen in the

sea-level pressure primarily in summer (Fig. 4j). The temperature reconstruction is affected differently in the two seasons. In

winter the RE
::::::::
RMSESS

:
skill mainly increased in the Northern Hemisphere (Fig. S4), while in summer larger areas are affected

negatively (Fig. 4f).250

The same experiment with doubled localization length scale parameter was conducted with the assimilation of the number

of wet days. Correlation coefficients of precipitation in the exp_W_2L experiment remained high (Fig. 3d, Fig. S3) similar to

what was obtained with a more strict localization scheme in the exp_W experiment. Both sea-level pressure and temperature

reconstructions benefited from the larger localization length scale, except a few grid boxes (Fig. 3h,l; Fig. S3). The precipitation

reconstruction shows similar skill to the exp_R experiment in terms of RE
::::::::
RMSESS

:
values. However, the increase of the255

localization length scale had a positive impact on the sea-level pressure fields over Europe in both seasons (Fig.4l, Fig. S4).Over

:::
The

::::::
regions

::::
over

:
central South America and South Africa , that were negatively affected in the exp_W experiment , the region

with negative RE values increased
::::
show

:::::::::
worsening

::::
skill

:
in the exp_W_2L experiment (Fig. S4). Similarly to the sea-level

pressure field, in some regions the temperature reconstruction became more skillful, while in others the skill decreased (Fig. 4h,

Fig. S4).260

:::
The

:::::::::::
distributions

::
of

::::
skill

:::::::
metrices

::
of

:::
the

::::::::
presented

::::::::::
experiments

::::
over

:::
the

:::::::::::
extratropical

:::::::
Northern

:::::::::::
Hemisphere

::
are

:::::::::::
summerized

::
as

:::
box

:::::
plots

::::
(Fig.

::::
S5).

:::::::::
Increasing

::
the

::::::::::
localization

::::::
length

::::
scale

:::::::::
parameter

::::::::
positively

:::::::
affected

:::
the

:::::::::::
reconstructed

::::::::::
temperature

::::
and

:::::::
sea-level

:::::::
pressure

:::::
fields

::
in

:::::
terms

::
of
::::::::::

correlation,
:::::::::
especially

::
in

:::::
boreal

::::::
winter.

::::
The

::::::::
sea-level

:::::::
pressure

:::
and

::::::::::
temperature

:::::::::
RMSESS

:::::
values

:::
are

:::
less

:::::::
affected

:::
by

:::
the

::::::
applied

:::::::::::
localization.

::::::::
However,

:::
the

::::::::
RMSESS

::
of

:::
the

::::::::::
precipitation

::::::::::::
reconstruction

:::::::::
decreased

::
in

:::
the

::::::::::
experiments

::::
with

:::::::
doubled

::::::::::
localization

::::::
length,

:
if
:::::::::::
precipitation

:::::::
amounts

:::::
were

::::::::::
assimilated.265

In the next experiment different observation types such as temperature, sea-level pressure and precipitation amounts were

combined (Fig. 1b)as it should be done in the real application of the method in the future. In previous studies, monthly in-

strumental temperature and sea-level pressure data were already successfully assimilated (Franke et al., 2017; Valler et al.,

2019). Here we added precipitation measurements to the assimilated variables. To see the effect of assimilating precipita-

tion data an experiment using only temperature and sea-level pressure data was carried out over the 1950–2004 time period270

(exp_TP), which resembles the original setup in Franke et al. (2017) besides not assimilating
:::::
except

:::
that

::
it
::::
does

:::
not

:::::::::
assimilate

any proxy information. In the exp_TPR experiment, first the temperature, then the sea-level pressure data and finally the pre-

cipitation amounts were assimilated. As mentioned above, in this experiment the skill of the exp_TPR analysis is compared to

the exp_TP analysis mean. Precipitation correlations show a marked improvement over the exp_TP in both seasons (Fig. 5b,

Fig. S5
::
S6), as expected. Temperature and sea-level pressure correlations are not changed in most part of the world (Fig. 5e,275

h; Fig. S5
::
S6). The positive influence of assimilating precipitation amount on the precipitation reconstruction is not only seen

in the correlation but also in the RE
:::::::
RMSESS

:
values. The exp_TP experiment has positive RE

::::::::
RMSESS values mainly over

Europe in both seasons (Fig. 6a, Fig. S6
::
S7). Adding precipitation amount to the assimilated observations (exp_TPR) increased

the precipitation reconstruction RE
::::::::
RMSESS skill in winter for example, across Europe to the Urals (Fig. S6), while in summer

the skill tends to be more positive from the Ural to North and East Asia (Fig. 6b). The temperature reconstruction in terms280
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of RE
::::::::
RMSESS

:
values mainly show slight improvement in winter (Fig. S6

::
S7) but in summer the skill is negatively affected

by the assimilated precipitation amount in North America and Europe (Fig. 6e). The impact of precipitation amount on the

sea-level pressure reconstruction is mixed. In Europe many pressure records are available and it is over Europe where the

skill decrease the most in both season (Fig.6h, Fig. S6
::
S7). Besides Europe, North America is also negatively affected, espe-

cially in summer (Fig. 6h). The experiment was repeated with the number of wet days added instead of precipitation amounts285

(exp_TPW)
:::
and

::::::::
similarly

::
as

::
a

::::::::
reference

:::
the

:::::::
exp_TP

:::::::::
experiment

::::
was

::::
used. The correlation differences of all three variables

are very similar to the differences seen between exp_TPR and exp_TP (Fig. 5, Fig. S5
::
S6). The precipitation RE

::::::::
RMSESS

values also show a similar pattern to the exp_TPR experiment, but for instance over Australia in boreal winter the skill tend to

be higher (Fig. S6
::
S7). The summer season temperature reconstruction of exp_TPW is in some regions more skillfull than the

exp_TP experiment (Fig. 6). The sea-level pressure fields of exp_TPW depict negative RE
::::::::
RMSESS skill over Europe (Fig. 6i,290

Fig. S6).
::::
S7).

::
To

::::::
further

:::::
assess

:::
the

:::::::
impacts

::
of

::::::::::
assimilating

::::::::::
precipitation

::::
data

::
in

::::::
regions

::::
with

:::::
dense

:::::::::::
observations

::::
such

::
as

:::::::
Europe,

::
the

::::::::::
distribution

::
of

::::
skill

:::::::
metrics

::::
were

::::::::
analyzed.

::::
The

:::::::::::
reconstructed

::::::::::
temperature

:::::
fields

::
of

:::
the

::::
three

::::::::::
experiments

:::::
have

::::
very

::::::
similar

:::
skill

::::
over

:::::::
Europe

::::
(Fig.

::::
S8).

:::::
Over

::::::
Europe

:
a
::::
loss

::
of

::::
skill

::
in

::::::::
sea-level

:::::::
pressure

:::
and

::::::::::
temperature

::
is
::::
seen

:::
for

:::
the

:::::::::
RMSESS

::
in

::::
both

:::::::
seasons,

::::::::
especially

:::
in

:::::::
summer,

:::::
when

::::
skill

:::
of

::::::::
exp_TPR

:::
and

:::::::::
exp_TPW

:::
are

:::::::::
compared

::
to

:::::::
exp_TP

::::
(Fig.

:::
6).

::
If
:::
the

:::::::::
RMSESS

::
is

::::::::
calculated

:::
for

::
all

:::::
three

::::::::::
experiments

:::::
using

:::
the

::::::
model

:::::::::
simulation

::
as

:::
xf ,

:::
the

:::::::::::
distributions

::::
over

::::::
Europe

:::::::
indicate

:::
that

:::
the

::::
skill

::::
loss295

::
in

:::::::
sea-level

:::::::
pressure

::
is

::::::
smaller

::::
than

:::
the

::::
gain

::
in

:::::::::::
precipitation

:::
for

::::::::
exp_TPR

:::
and

:::::::::
exp_TPW

::::
(Fig.

::::
S8).

4.2 Case study: 1842 drought

Seven
:::
Six

:
stations in the GHCN-Daily dataset in Europe fulfilled the requirement to have

:::::::::
continuous

:
data in 1842. These sta-

tions, with their starting year in parenthesis are the following: Prague (1804), Jena (1826), Hohenpeissenberg (1781), Bologna

(1813), Genoa (1833), Mantova (1849), and Armagh (1835). Using all available data in the 71-year time window centred on300

1842 the precipitation amounts and the number of wet days were converted to anomalies. We calculated the relative precipita-

tion anomalies for the months between April and September from exp_TP, exp_R, exp_W and 20CRv3.

In the exp_R experiment (when only precipitation amount was assimilated) the period between April and August in central

Europe is characterized with negative relative precipitation anomalies (Fig. 7b). The experiment was repeated by assimilating

the number of wet days (exp_W) instead of the precipitation amounts. The monthly relative precipitation anomaly fields are305

similar to the exp_R precipitation fields, but the deviations from the climatology is smaller (Fig. 7c). However, in May the

South of France and Northern Italy are wetter than the climatology in the wet days experiment (Fig. 7c), while in the exp_R

experiment these regions are drier/closer to the climatology (Fig. 7b). We also investigated, how this drought event is repre-

sented in the exp_TP experiment when no direct precipitation data were assimilated. The relative anomalies of precipitation

indicate a dry period over Central Europe from June to August, with the largest precipitation deficit in August (Fig. 7a).310

These monthly relative anomaly fields were compared to the 20CRv3 reanalysis. As mentioned above, no precipitation data

were used in 20CRv3. The relative precipitation anomaly fields of 20CRv3 and exp_R show similar precipitation patterns

over the central region from France to western Ukraine. A precipitation deficit from April to August and a wet September is

reproduced in 20CRv3 (Fig. 7d).
:::
The

:::::::
20CRv3

:::::::::
reanalysis

::::::::
ensemble

:::::
mean

:::
was

:::::::::
remapped

::
to

:::
the

::::::::
resolution

:::
of

:::::::
EKF400

::
in

:::::
order
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::
to

::::::
present

:::
the

:::::::::
differences

::
of

:::::::
relative

::::::::::
precipitation

:::::::::
anomalies

:::::::
between

:::
the

::::::::::
experiments

::
in

::::
this

::::
study

::::
and

:::::::
20CRv3

::::
(Fig.

::::
S9).

::::
The315

:::::::::
differences

:::::::
between

:::
the

::::::::::
experiments

::::
and

:::::::
20CRv3

:::
are

::
all

::::::::
negative

::
in

::::::
August

:::
and

:::::::::
September

::::
over

:::::::
Central

:::::::
Europe,

:::::
while

::
in

:::
the

::::
other

::::::
months

::::::::
generally

::::::
wetter

:::::::::
conditions

::
are

:::::::
present

::
in

:::::::
exp_TP;

:::::
exp_R

::::
and

::::::
exp_W

:::
are

::
in

:::::
closer

:::::::::
agreement

::::
with

:::
the

:::::::::
reanalysis.

The drought over Europe in exp_R stands out even better on a seasonal time scale (June–July–August) (Fig. S7
::::
S10). Except

northern North Europe, Spain and the southern part of France and Italy, negative relative precipitation anomalies define Europe320

(Fig. S7
::::
S10). Despite assimilating precipitation amount data from only seven

::
six

:
stations the obtained precipitation pattern is

very similar to the reconstruction made by Pauling et al. (2006) which is based on several precipitation series, documentary

data and proxy records (Fig. S7
:::
S10). However, there are regional differences. In their reconstruction, a larger area with more

negative anomalies is present over Central Europe, while we find the strongest relative anomaly in exp_R over the north part

of Central Europe. The sign of the precipitation anomaly differs over the Eastern Mediterranean region, but in exp_R no data325

is used from this area.

5 Discussion

5.1 Skill scores analysis

In weather forecast
:::::::::
forecasting, there have been many attempts to make use of precipitation measurements from radar (e.g.,

Lopez, 2011), satellite (e.g., Lien et al., 2016), and rain gauges (e.g., Lopez, 2013). However, the usage of variables with non-330

Gaussian distribution — such as precipitation — is a challenging task in some
:::
for

:::::
many data assimilation methods; therefore,

different transformation techniques have been tested (e.g., Lien et al., 2016). Monthly data have the advantage of being closer

to normality
:
a
::::::::
Gaussian

:::::::::
distribution, as a consequence of the central limit theorem. In the case of precipitation, however, this

only applies to sufficiently wet climates, where several precipitation events occur each month.

Hence, the question remains whether the errors of precipitation amounts and the number of wet days are normally distributed,335

a fundamental assumption of the EKF. In Fig. 8, we show the outcome of a Shapiro-Wilk test for normality
::::::::::::
(Wilks, 2011)

applied to the deviations of the
:::::
model ensemble members from the

:::::
model ensemble mean, which represent our best estimation

of the background error. On the one hand, we see that the distributions in arid climates or seasons are significantly different

from a normal distribution: in these conditions the assimilation of precipitation by means of the EKF can not provide the

optimal solution. On the other hand, large parts of the mid-latitudes show errors close to a normal distribution, particularly340

in winter. The number of wet days
::::::::
hypothesis

::
of

:::::::::
normality is less often rejected than precipitation

::
in

:::
the

:::::::
number

::
of

:::
wet

:::::
days

:::
data

::::
than

::
in

:::::::::::
precipitation

:::::::
amounts

::::
data, indicating that the former is more suitable for assimilation. This is probably one of the

reasons why the skill of the reconstruction is much better in Europe when using wet days, although the climate of Southern

Europe is too dry in summer for either variable to be assimilated
::::::::::
successfully.

Another advantage of the number of wet days over precipitation amounts is its lower representativity error (see Sect. 2.3.2).345

The observation error of the number of wet days is also arguably lower, because it is less affected by undercatch. Yang et al.

(1999) showed that unshielded manual rain gauges underestimate solid precipitation by 10 to 50% on average, depending on
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location. The impact of the undercatch on the number of wet days is much smaller, since it only affects days with precipitation

between 1-2 mm (assuming a 50% undercatch).

Assimilating monthly precipitation information such as precipitation amounts and the number of wet days, in general,350

show positive improvements in all variables compared to the CCC400 model simulations, when correlation is analyzed. The

RE
::::::::
RMSESS

:
skill of precipitation from both exp_R and exp_W experiments is negative at the high northern latitudes and

over large part of Asia, especially in the winter season. As discussed earlier, precipitation observations are not error free.

Prein and Gobiet (2017) compared different gridded precipitation datasets over Europe and found large differences between

them, comparable to uncertainties seen between regional climate model simulations. They defined several possible sources355

of observational uncertainties, for example
:::
such

:::
as precipitation undercatch correction or station densities. The North Asia

region prior to 1957 shows the largest differences between different datasets in the Northern Hemisphere (Harris et al., 2014).

Hence, it is difficult to evaluate the skill of the precipitation reconstruction from the exp_R and the exp_W experiments in this

region. Using an ensemble of observational datasets for evaluation of the reconstruction could provide a better strategy (Prein

and Gobiet, 2017). The RE
:::::::
RMSESS

:
skill of temperature and sea-level pressure from exp_R and exp_W experiments is not360

always positive, which suggests that the variance of the reconstructions is different from the chosen reference series. However,

using
:::::::::
assimilating

:
the number of wet days instead of the precipitation amounts greatly improved the RE

::::::::
RMSESS skill of both

temperature and sea-level pressure reconstructions over Europe, especially in summer.

In addition to assimilating only precipitation amounts or only the number of wet days, the effect of assimilating them

in combination with other types of instrumental measurements was also tested. Correlation and RE
::::::::
RMSESS

:
skill metrics365

were calculated, using the reconstruction based on temperature and sea-level pressure data (exp_TP) as a baseline. The exp_TP

experiment show a clear positive impact on the correlation values of all the three variables in both seasons. Due to the high skill

of temperature and sea-level pressure reconstructions, further improvements with the assimilation of precipitation amounts or

the number of wet days are mainly seen in the precipitation field. Precipitation amount and
:::::::::::
Assimilating

::::::::::
precipitation

:::::::
amount

::
or

:::
the number of wet days data have

:::
has

::
a small impact on the temperature and sea-level pressure correlation skills. If only370

precipitation information is available from a given region, they affect more the reconstruction of the other fields; for example

over North and West Australia, where no temperature observations are assimilated, precipitation information improved the skill

of the temperature field in boreal winter (Fig. S4). The RE
::::::::
RMSESS skills of all variables from exp_TPR and exp_TPW are

very similar in winter, indicating that both precipitation data perform similarly. Moreover, assimilating precipitation amount

or wet day records have mainly positive effect in the regions where temperature observations are absent. However, sea-level375

pressure fields suggests that with the assimilation of precipitation observations the skill of the pressure reconstruction decreased

in the regions of available sea-level pressure measurements. In general,
::::::::::
assimilating

:
precipitation amounts (exp_TPR) performs

worse than wet day records
::::::::::
assimilating

:::
wet

::::
days

:
(exp_TPW) in summer. The better performance of wet days in summer is

expected due to their lower spatial variability. However, even wet days records have a negative effect on the sea-level pressure

RE skill
:::::::
RMSESS, especially in Europe.

::
To

:::::::::
minimize

:::
this

:::::::
negative

::::::
effect,

::::::::
ignoring

::
or

:::::::
limiting

:::
the

::::::::::::::
cross-covariance

:::::::
updates380

:::::::
between

::::::::::
precipitation

::::
and

::::
other

::::::::
variables

::::
will

::
be

:::::
tested

::
in

:::::
future

:::::::::::
experiments.

:
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5.2 Case study: 1842 drought

A case study was conducted to test how well precipitation amounts and wet day records are able to reproduce a severe drought

event in Europe. Only a sparse network with 7
:
6 stations provided data from 1842. In the model simulations (CCC400) the

precipitation anomalies are much smaller compared to the reconstructed precipitation fields in exp_R and exp_W experiments,385

indicating that with the assimilation of 7
:
6
:
stations this drought event is reconstructed. The reconstructed precipitation anomaly

fields are very similar in the case of both precipitation amounts and the number of wet days (Fig. 7), which is promising, since

in the past more wet day records are available. In the exp_TP experiment the dry event is also present, especially in August;

however, the number of temperature and pressure observations which were assimilated are much higher than the seven
:::
six

available precipitation stations.390

Based on the historical sources gathered by Brázdil et al. (2019)
:::::::::::::::::
Brázdil et al. (2019) a significant precipitation deficit was

reported in Bohemia from April to December, causing forest fire in June. Similarly, a very dry period was recorded in Prague

between April and August, with extreme dryness in August. Besides the Czech Lands, several documentary data between April

and August describe similar conditions in Germany, like fire in Hamburg, the lack of drinking water, low water level on the

River Danube, and praying for rain. In the GHCN-Daily dataset there are observation measurements from these regions and in395

the exp_R and exp_W experiments notable negative relative precipitation anomalies are apparent from April to August (Fig. 7),

with August being the most severe in accordance with the documentary data. In the 20CRv3 the relative precipitation anomaly

in August does not appear to be as large over this part of Europe; however, no pressure data is included from East-Central

Europe. A larger precipitation deficit is depicted over Northern Europe in August in 20CRv3, which can be supported with

documentary data about forest fires in Norway (Brázdil et al., 2019)
:::::::::::::::::
(Brázdil et al., 2019). Several other documentary records400

across Europe from France to Transylvania describe extraordinary drought, which is reflected with varying intensity in the

precipitation anomalies fields of exp_R and exp_W experiments and in the 20CRv3 reanalysis.

6 Conclusions

As the application of data assimilation techniques have become more widespread in the field of paleoclimatology, more and

more different observational sources such as early instrumental measurements, documentary records, and various types of405

proxy records have been used in the assimilation process. In this paper, new observation data sources — precipitation amounts

and number of wet days — were tested in an offline ensemble-based Kalman filter framework. The experiments in which

only precipitation amounts (exp_R) and only wet day records (exp_W) are assimilated performed similarly in winter, but in

summer exp_W has better skill in the case off all three examined variables. Moreover, the results of the exp_W_2L experiment

suggest that the localization used for wet days could be increased, by which a better use of observation data can be achieved.410

In exp_TPR and exp_TPW experiments, the skill of the two reconstructions were compared to exp_TP, to examine the effect

of adding precipitation data to the assimilated observations. In general, both precipitation amounts and the number of wet days

had rather positive impact on the temperature reconstructions in winter, while in summer only the number of wet days had

an overall positive effect on temperature. The skill metrics of sea-level pressure clearly indicate that precipitation data should
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be used if pressure measurements are not available from a given region. Therefore, it might be better to limit how precipita-415

tion data can update the other fields of the state vector, for example with the implementation of an asymmetric localization

function, in forthcoming experiments. The reconstructed monthly precipitation fields of the severe 1842 drought in Europe are

mostly in agreement with documentary data, showing that precipitation amounts or wet day records can be useful sources in a

paleoclimate data assimilation framework.
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et al.: The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements., Climate of the

Past, 15, 2019.

Brázdil, R., Demarée, G. R., Kiss, A., Dobrovolný, P., Chromá, K., Trnka, M., Dolák, L., Řezníčková, L., Zahradníček, P., Limanowka, D.,
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b)

a)

Figure 1. The location of precipitation observations (a) used in exp_R, exp_W, exp_R_2L, and exp_W_2L experiments. The location of

instrumental precipitation (blue), temperature(red), sea-level pressure (green) observations (b) assimilated in exp_TPR and exp_TPW exper-

iments.
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Figure 2. The distribution of representativity error of precipitation (a) and the number of wet days (b). The red line indicates the median.
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Figure 3. Summer season correlation differences of precipitation (a, b, c, d), of temperature (e, f, g, h), and of sea-level pressure (i, j

k, l) between the analyses and the CCC400 model simulation ensemble means by assimilating only precipitation amounts (a, e, i), only

precipitation amounts with doubled localization length scale parameter (b, f, j), only number of wet days (c, g, k), and only number of wet

days with doubled localization length scale parameter (d, h, l).
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Figure 4. Summer season RE
:::::::
RMSESS

:
values of precipitation (a, b, c, d), of temperature (e, f, g, h), and of sea-level pressure (i, j k, l) by

assimilating only precipitation amounts (a, e, i), only precipitation amounts with doubled localization length scale parameter (b, f, j), only

number of wet days (c, g, k), and only number of wet days with doubled localization length scale parameter (d, h, l).
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Figure 5. Summer season correlation differences between the analysis of exp_TP and the CCC400 model simulation ensemble means:

precipitation (a), temperature (d), sea-level pressure (g). In the middle column (b, e, h) the correlation differences between the analyses

ensemble mean of the exp_TPR and exp_TP are shown; while in the right column (c, f, i) the correlation differences between the exp_TPR

and exp_TP analyses ensemble mean are depicted.
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Figure 6. Summer season RE
:::::::
RMSESS values of exp_TP (a, d, g), exp_TPR (b, e, h) and exp_TPW (c, f, i). xf is the ensemble mean of the

CCC400 model simulations when the RE
:::::::
RMSESS values calculated for the exp_TP experiment, while xf was replaced with the analysis

mean of the exp_TP for the other two experiments.
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Figure 7. Relative precipitation anomalies over Europe in 1842. Monthly relative precipitation anomaly fields between April and September

from exp_TP (a), exp_R (b), exp_W (c), and 20CRv3 (d) are depicted. Note that the anomalies are calculated from 1807-1877 period for

exp_TP, exp_R, and exp_W, and from 1836-1877 for 20CRv3.
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Figure 8. Outcome of the Shapiro-Wilk test for normality for precipitation (a,b) and number of wet days (c,d) in January (a,c) and in July

(b,d). The grey area show where the null hypothesis of normality is rejected (p < 0.05).
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Table 1. Summary of experiments and their setups.

Name Assimilated observation Localization Time period

exp_R precipitation amount L 1841-1842, 1950-2004

exp_R_2L precipitation amount 2L 1950-2004

exp_W wet days L 1841-1842, 1950-2004

exp_W_2L wet days 2L 1950-2004

exp_TP temperature, pressure L 1841-1842, 1950-2004

exp_TPR temperature, pressure, precipitation amount L 1950-2004

exp_TPW temperature, pressure, wet days L 1950-2004
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