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The manuscript presents several reconstructions of climate fields in the North Atlantic
over the last centuries. The reconstructions are based on proxy data on the one hand
(oxygen isotope concentrations in Greenland ice cores and on European dendroclima-
tological data ) and on climate simulations with a isotope enabled climate model. Both
types of data are combined applying the analog method. The manuscript is mainly
focused on testing the sensitivity of the reconstructions on the number of ice cores, on
the definitions of the target seasons. The manuscript is less focused on the physical
results and the implications of these reconstructions. It is therefore rather technical manuscript. 
There are almost no results or dicussion on the physical mechanisms or
past climate variations. This is in principle fine, but the readers should be made aware
of this early on in the abstract and in the introduction. In my opinion, the manuscript
addresses interesting issues. For instance, the use isotopic data from ice cores in
combination with climate simulations to reconstruct the atmospheric circulation is an
interesting idea. However, being this a more technical manuscript, the description
of the methods applied leaves many open questions for the reader. This description
should be considerably improved. At some points it is so unclear that I had doubts
about the correct application of the method, although I hope that it is in the end correct.

• We are grateful for the very detailed and helpful comments by the reviewer, which has 
helped us to produce a much improved revised manuscript. The method used in this 
manuscript was first published in Sjolte et al. (2018). Therefore some aspects of the 
description of the methodology is less detailed. This is clearly not the right way to do it and 
we have worked on clarifying technical details and the motivation of our approach. We also 
agree the this is mainly a method paper. This is stated clearly in the abstract and 
introduction of the revised manuscript, and we have also changed the title.

Main points:
1. One main concern is the limited methodological description. The authors apply the
analog method after a pre-filtering by Principal Component Analysis, but it is not cleat
how this pre-filtering is actually conducted. Important questions that may impact the
results :
1.1 Are the PCs calculated from the covariance of correlation matrix?

• The PCs are calculated from the covariance matrix. This is specified in the revised 
manuscript

1.2 in Equation 1, are the PCS normalized to unit variance or has each PC the plat-
itude representing the corresponding explained variance. This is important because
this point represents two options: all PCs are equally weighted for the calculation of
the distance of the analogues, or each PCs is weighted according to the varianve it
represents. The selected analogues are different depending on the option chosen.

• The PCs are normalized to unit variance. This is specified in the revised manuscript. The 
approach of fitting the PCs is motivated by that we want to capture as much of the regional 
signal from ice cores as possible, but not overfit noise at individual sites. Fitting normalized
PCs allows us to capture the ‘average’ signal at all the ice core sites, while constraining this
signal with the regional variability between the cores. This is now described in the revised 
manuscript.



1.3 More importantly, for a correct application of the method, the EOFs patterns
(derived from ice-core records and from model grid cells) associated to each PC
in equation 1 must be the same . Otherwise, the PC-coordinates PC_{model} and
PC_{icecores} ) would not be linked to the same EOFs and therefore would represent
coordinates in different subspaces. The calculated distances would not be meaningful.
It may happen that the patterns of EOF_{model} and EOF_{icecores} are very similar,
in which case this problem would be minor. But this is not guaranteed. A way to ensure that the PCs
in equation 1 refer to the same EOF patterns is to use, for instance,
EOF_{model} for both data sets and calculate PC_{icecores} by projecting the ice core
anomalies onto EOF_{model} . (Or viceversa, use EOF_{icecores} for both data sets).
This is the point that most strongly worries me. If EOF_{model} and EOF_{icecore}
patterns are really different the whole application of the method is not correct, and all
results should be re-calculated.

• The EOFs of the model output and ice core data are indeed very similar. The map in Figure 
1 is to some extent showing this, although it can be hard to determine how close from a 
map. As shown in Sjolte et al. (2018) we actually use an additional step to test if the selected
model analogues fit the original ice core data (so, not the PCs), where we extract the 
reconstructed ensemble mean model d18O and correlate it to the ice core data. This step 
tests if the matching of the PCs works. We include a description of this step of the 
reconstruction method in the revision, and we have illustrated this in a new Supplementary 
Figure S2 showing the correlation between reconstructed d18O and ice core d18O for 
summer, winter and annual data.

2. Another unclear methodological point is how the dendro data are included for the
reconstruction. Here, I cannot make any useful suggestion because the authors ap-
proach remains unclear to me. This needs to be much better explained:
2.1 Are the analogues searched using ice-core and dendro data simultaneously, i.e. a
12-month-long model analog have to be close to the icecore data in the target season
and close to the dendro-reconstructed summer temperatures in the summer season?.
If yes, how is the EOF filtering implemented here? How many ’temperature’ EOFs are
used.
or
2.2 Do the selected analogues (using ice core data) undergo a secondary selection
procedure targeting the dendro-reconstructed temperatures ?

• It is a secondary selection as stated in L145 “we sort the 39 existing ensemble members 
based on the ice core selection”. The test with the tree-ring data is to see if we can constrain
the temperature further. This is not meant as a final reconstruction, but as a test of the 
common signal between Greenland and European proxy data. As the results show there is 
quite some common signal for ~20 of the analogues out of the 39 pre-selected analogues 
based on ice core data. The purpose and technical details connected to the use of tree-ring 
data has be clarified both in terms of methods and motivation.

2.3 In both cases, are the distances to the dendro-data and the distances to the ice
core data equally weighted ? How is this implemented if the number of EOFs for each
type of data sets is presumably not the same.

• See reply above.

3. The validation of the results is essentially made by calculating the correlation be-
tween reconstructions and 20CR reanalysis. However, the amplitude of the reconstruc-
tions is not validated. This may be important because the amplitude of reconstructed
variability may depend on the number of analogs selected: best-analog-selection (just
one analogue) will roughly produce the same amplitude of variations, although the



validation correlation will be lower; in contrast, using the mean of a larger number of
analogues subdues the variability, and this effect can be substantial when using 39 (?)
analogues. There is an unavoidable trade-off between better correlations and more
realistic amplitudes, as shown in Gomez-Navarro et al. Pseudo-proxy tests of the ana-
logue method to reconstruct spatially resolved global temperature during the Common
Era, Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, 2017 ).

• This point is discussed by Sjolte et al. (2018)  in terms of the amplitude of d18O for the 
method used here. There is a trade off, and some of the amplitude of the signal is smoothed 
out when using the ensemble approach. Comparing to the d18O amplitude in the ice cores 
data this is a minor effect, and some of the amplitude in the ice core data is in fact 
depositional noise, which we don’t want to fit the model data to.

• We do show the amplitude compared to SST data, where it is quite realistic for winter and 
annual variability. The underestimation of the SST amplitude for summer has more to do 
with the model biases and seasonal climate/proxy differences already discussed in the 
manuscript.

• We discuss this point further in a new paragraph in Discussion and Conclusions (L435-
447). We also include new Figures 5 and 15 relevant for this discussion, and refer to  
Gomez-Navarro et al. (2017). 

Particular points:

4. We test a range of climate reconstructs varying the definition of the seasons
climate reconstructions

• Corrected

5. The abstract does not mention the reconstruction method at all, despite the
manuscript being essentially methodological in nature.

• Corrected

6. best captured when defining the season December-February
the season as December-February

• Corrected

7. line 10 best captured when defining the season December-February due to the
dominance of large scale patterns, while for summer the weaker, albeit more strongly
auto-correlated, variability is better captured using a longer season of May-
This sentence becomes clearer later in the manuscript. Here, I would suggest to im-
prove its clarity, for instance, using ’more persistent in time’ instead of autocorrelated.

• Corrected

8. One point that sets the study by Sjolte et al. (2018) apart from the other studies
mentioned in this section, is the use of
delete comma after section

• Corrected

9. line 145 For the summer reconstructions also using tree-ring data we sort the 39
existing ensemble members
I am rather confused by this sentence. The number 39 is mentioned here for the first
time, if I am not mistaken. What are these ensemble members? are they the analogs previously 
selected targeting the ice-core data ?

• See reply to major point 2.2



10. line 155 In this study we follow the convention of using the term PCs for the time se-
ries of the main modes of variability, while using the term EOFs for the spatial patterns
of the modes. The method of Ebisuzaki (1997) is used to calculate the significance
when
this sentence should appear before equation 1, at the very least

• Corrected

11. line 163 A key factor in how well seasonal climate reconstructions can represent
climate itself, is the auto-correlation structure of atmospheric
climate itself ? I guess the authors mean to what extent can seasonal proxy data
represent annual means ?

• Corrected. It should have been “A key factor
• in how well seasonal proxy data can represent climate variability, is the sub-seasonal auto-

correlation structure of atmospheric variability. “ the second part of the sentence is 
important for context, and we added “sub-seasonal” to be more precise.

12. line 167 Figure 2 shows the monthly auto-correlation of each month of the PC-
based NAO calculated from the 20CR. These figures show that during the cold season
the
Which is the PC that represents the NAO ? Here, it is assumed that, for each month
the leading PC is the NAO. In summer this is not always the case, and it depends on
the geographical region selected to conduct the PCA.

• We checked the patterns and the leading PC is NAO for all months. However, as we write 
there is little consistency between the months of the secondary PCs.

13. line 180
circulation modes. We do this by performing monthly reconstructions for pressure and
evaluating the resulting main modes of circulation against the modes of the 20CR. This
is done using the same method as for the seasonal reconstructions,
what does ’evaluating the modes’ mean here ?. The spatial patterns (EOFs) result-
ing from an analog reconstructions can be very realistic irrespective of the skill of the
analog method. The analog method is just a resampling from a data pool. A random
resampling of SLP from the 20CR reanalysis or from a model run will produce the same
EOFs as the orginal data set, so even if the analog is wrongly implemented, the resulting EOFs may 
look correct. This is different for a temporal validation, e.g. correlation
between reconstructions and observations, where the skill of the analog selection is
critical. The authors should be here more specific.

• The resampling changes the major modes, so the modes do not simply come from the model,
and the modes are also reshuffled when the variability is resampled. We write this in L273-
276 of the original manuscript. We have further clarified this section in the revision.
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The manuscript by Sjolte et al. investigates a new innovation in the rapidly developing
field of paleoclimate data assimilation. Specifically, they investigate the potential of
reconstructing seasonal fields using subannually resolved ice-core (and to a lesser
extent, tree ring) data from the North Atlantic. The manuscript is well-written, well-
illustrated and generally well-organized, and the results are interesting, and suited to
Climate of the Past. I do however, have a few concerns and and suggested additions
to the manuscript that I’d like to see addressed.

• We thank the reviewer for the positive comments and interest in out manuscript, as well as 
the detailed comments which helped us greatly improve the manuscript.

Major Issues

In general, in my opinion, the primary weakness of the manuscript is that the explo-
ration of the reanalyses is rather limited. For example, in the authors subdivide the ice
cores into a group of 8 that extends from 1241-1970 and a larger group that is shorter
(1777-1970). However the reconstructions are only analyzed in the context of instru-
mental data. No results from prior to 1850 are shown in the manuscript or supplement,
except for figure S3, which is specifically focused on the tree ring sites. In evaluating
this technical approach, it is important for readers to be able to see how the longer
term variability compares to other reconstructions from the region, and to consider and
discuss how the seasonal assimilations affect long-term variability, and the potential cli-
matic implications of that. Given that this approach creates a field reconstruction; these
results could be compared to regional temperature reconstructions, NAO reconstruc-
tions, and more, and give the readers a better sense of how this approach compares
with previous efforts.

• We agree that an in-depth comparison to other reconstructions of the longer term variability
would be very interesting. For the DJF NAO reconstruction covering 1241-1970 this is 
already done by Sjolte et al. (2018). The purpose of this paper is to test detailed aspects of 
seasonal variability and which factors affect the skill of seasonal reconstructions. These 
tests are only possible with observation-based data where we have full control on the time 
scale and seasonality. Furthermore, a full-scale comparison to the long term variability of 
other reconstructions is a whole study in itself, and this manuscript is already crowded by 
many figures and results. As also pointed out by Referee #1 the scope of this study should be
better defined. We have done so in the revised manuscript, and also included a comparison 
to other reconstructions limited to two reconstructions that are completely independent from
ours. This is shown in a new section 4.3, including two new figures (Figure 14 and 15).

At present, the evaluation of the results is restricted to spatial comparison of the first
three PCs with instrumental data, temporal comparison of the same thing. I was glad
to see SSTs averaged and compared to instrumental data, but feel like the comparison
was ultimately very limited.

• Please note that we also compare to the station-based NAO (Figure 7c and 7d), as well as 
temperature data from Greenland and Iceland (Table 4). Again, the motivation for using 
only observation-based data is that this is the only data where there is no uncertainly with 
respect to sub-annual temporal resolution. We would like to point out that the correlation 



maps (Figure 3, 4, S7, S8, S9) are also temporal comparisons, although illustrating the 
spatial extent of the skill.

The other major weakness of the manuscript, that I believe should be able to ad-
dress, was the representation of uncertainty. The methodological approach to uncer-
tainty quantification; an ensemble based approach, is reasonable. I was disappointed
however that the results were not presented in the manuscript. Every figure in the
manuscript, except for the first two, could, and should, have uncertainty ranges (like 95

• We have expanded the discussion of the aspects of uncertainty with new text (L421-429) 
including the new Figure 5 showing Greenland coastal temperatures, including the 
ensemble spread and RMSE. In the new Figure 15 (NAO reconstruction comparison) we 
also show ensemble spread and RMSE and include this in the discussion of uncertainty. In 
summary we argue that the ensemble spread is a good measure of uncertainty, as it is 
comparable to the RMSE with respect to observations.

• In a new Supplementary Figure S16 we show the normalized RMSE together with the map 
for reconstructed DJF SLP, T2m and SST correlated against the 20CR. This is an alternative
way of showing the skill, taking into account the amplitude of the variability. However, we 
limit our selves to showing it for this subset of the reconstruction as an example, instead of 
crowding the study with even more figures. We also discuss Figure S16 in the new text for 
section 5, Discussion and conclusions.

Additional issues/notes
I’m a little confused about how the analog matching is working, based on figure 1.
Specifically, are any adjustments made to the model-output before calculating the
EOFs of δ 18 O? If not, I’m confused about how there is such fine spatial structure in
the model δ 18 O, given that it has 3.5 degree grid cells. In fact, I think it would be helpful to see 
the outlines of the gridcells on the lower half of Figure 1. Maybe there’s enough
resolution there, but I found it confusing. I’m also pretty surprised about how com-
parable the modeled and observed δ 18 O EOFS are, they’re nearly identical. I’m not
particularly familiar with this region and proxy, but model-proxy EOF comparisons this
similar are exceptionally rare, unless one was forced/derived from the other, and I’d be
interested to learn more about this.

• There are no adjustments made to the model output before comparing the EOFs in Figure 1.
This is the whole point – that we can match the modeled patters to ice core data without 
tuning/calibration.

• The model grid is relatively course, corresponding to ~400 km at the Equator. However, 
since the grid gets denser at higher latitudes, there are quite a few grid points covering 
Greenland. To illustrate this, we follow the Referee’s advise and have added the grid to 
Figure 1 d-f.

• The match of the model to the patterns is indeed very good, and without this the method 
would not work. The good match means that the average variability of the modeled d18O is 
realistic on the regional scale. In general ECHAM5-wiso has been found to score very high 
in model-data comparisons using isotope enabled models (e.g. Steen-Larsen et al. (2017).

• Following the comments of both reviewers we have provided a more detailed method 
description in the revised manuscript.

Here’s a suggestion that might be beyond the scope of this manuscript, but that I think
is interesting: have you considered trying to assimilate different proxies for different
seasons, but for the same assimilation? It would be really interesting to see what an
annual reconstruction looks like where tree rings were assimilated for summer, while
ice cores were simultaneously assimilated for winter – i.e., do the analog matching
differently for each season but find the years that match both optimally.



• This is certainly an interesting question, while it is beyond the scope of this study. It would 
require quite a lot of testing and also put strong constraints on the seasonal variability of 
the model and which model analogues that can be chosen. As indicated by Figure 2, there is
limited co-variability between the seasons, however there is potentially some additional 
information on the climate variability to be gained from this approach. In the study by 
Tardif et al. (https://doi.org/10.5194/cp-15-1251-2019) they use seasonal proxies to 
reconstruct the annual variability, however there is no analysis of seasonal reconstructions 
in that study, so it is hard to know to which extent they are successful. 

Minor issues:
Line 7. “Reconstructs” should be “Reconstructions” 

• Corrected

32: 18-O should have the standard superscript formatting
• Corrected

85: “extend” should be “extent”
• Corrected

328: “depended” should be “dependent”
• Corrected

385: “particularly” should be “particular”
• Corrected

Figure 7: Add some additional labels to the panels to help differentiate. It took me
awhile to figure out why c and d were separated.

• Corrected
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Abstract. The research area of climate field reconstructions has developed strongly during the past 20 years, motivated by the

need to understand the complex dynamics of the earth system in a changing climate. Climate field reconstructions aim to build

a consistent gridded climate reconstruction of different variables, often from a range of climate proxies, using either statistical

tools or a climate model to fill the gaps between the locations of the proxy data. In most cases
✿✿✿✿✿✿✿✿✿

Commonly,
✿

large scale climate

field reconstructions covering more than 500 years are of annual resolution. Here
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿

method
✿✿✿✿✿

study
✿

we investigate the5

potential of seasonally resolved climate field reconstructions based on oxygen isotope records from Greenland ice cores and an

isotope enabled climate model.
✿✿✿

Our
✿✿✿✿✿✿✿✿✿✿✿✿

analogue-type
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

matches
✿✿✿✿✿✿✿

modeled
✿✿✿✿✿✿

isotope
✿✿✿✿✿✿✿

patterns
✿✿

in
✿✿✿✿✿✿✿✿✿

Greenland
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

to
✿✿✿

the

✿✿✿✿✿✿

patterns
✿✿✿

of
✿✿

ice
✿✿✿✿

core
✿✿✿✿

data
✿✿✿✿✿

from
✿✿

up
✿✿

to
✿✿✿

14
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿✿

sites.
✿✿

In
✿

a
✿✿✿✿✿✿

second
✿✿✿✿

step
✿✿✿

the
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿

variables
✿✿✿

of
✿✿✿

the
✿✿✿

best
✿✿✿✿✿✿✿✿

matching
✿✿✿✿✿✿

model
✿✿✿✿✿

years

✿✿

are
✿✿✿✿✿✿✿✿✿

extracted,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

mean
✿✿

of
✿✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿

matching
✿✿✿✿✿

years
✿✿✿✿✿✿✿✿✿✿

comprising
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction.
✿

We test a range of climate reconstructs

✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿

varying the definition of the seasons and the number of ice cores used. Our findings show that the optimal10

definition of the seasons depends on the variability of the target season. For winter, the vigorous variability is best captured

when defining the season
✿✿

as December-February due to the dominance of large scale patterns, while for summerthe weaker
✿

.
✿✿✿

For

✿✿✿✿✿✿✿

summer,
✿✿✿✿✿

which
✿✿✿

has
✿✿✿✿✿✿✿

weaker
✿✿✿✿✿✿✿✿

variability, albeit more strongly auto-correlated,
✿✿✿✿✿✿✿

persistent
✿✿

in
✿✿✿✿✿

time,
✿✿✿

the variability is better captured

using a longer season of May-Oct. Motivated by the scarcity of seasonal data we also test the use of annual data where the year

is divided during summer, that is, not following the calendar year. This means that the winter variability is not split, and that15

the annual data then can be used to reconstruct the winter variability. In particularly when reconstructing the sea level pressure,

and the corresponding main modes of variability, it is important to take seasonality into account, because of changes in the

spatial patterns of the modes throughout the year. Targeting the annual mean sea level pressure for the reconstruction lowers

the skill simply due to the seasonal geographical shift of the circulation modes. Our reconstructions based on ice core data also

show skill for the North Atlantic sea surface temperatures, in particularly the northern latitudes during winter. In addition, the20

main modes of the sea surface temperature variability are qualitatively captured by the reconstructions. When testing the skill

1



of the reconstructions using 19 ice cores compared to the ones using 8 ice cores we do not find a clear advantage of using a

larger data set. This could be due to a more even spatial distribution of the 8 ice cores. However, including European tree-ring

data to further constrain the summer temperature reconstruction clearly improves the skill for this season, which otherwise is

more difficult to capture than the winter season.25

1 Introduction

Knowledge of past climate is essential to understand the range and processes of natural climate variability, impact of inter-

nal and external forcing, as well as serving as baseline to assess anthropogenic influences. The widespread implementation

of weather observations dates back to about 1850, with sparse coverage in the early years. In order to investigate changes in

weather and climate, as well as to evaluate climate models, so-called reanalysis data sets have been developed. Reanalysis data30

are gridded data products based on assimilation of weather observations using climate models. The use of reanalysis data sets

has seen a wide range of applications due to the gridded data format and global coverage. However, due to being limited to the

instrumental period, there is a strong incentive to develop similar products reaching further back in time.

In extratropical regions water stable isotopes from archives of paleo-precipitation are widely used as climate proxies for temper-

ature, however the variability of water isotopes in precipitation is also related to atmospheric circulation. As vapor condensates35

from an air parcel transported along its path, the water molecules incorporating heavy isotopes (18-O
✿✿✿

18O, D) condensate more

readily than lighter molecules. This means that the isotopic composition depends on the initial vapor content of the air parcel

as well as its condensation history. The co-variability of vapor content and temperature results in the correlation between local

temperature and the isotope composition of precipitation, while the dependency of the isotope content on the pathway results

in the connection to atmospheric circulation. The δ-notation is commonly used for the isotope ratio of a sample, giving the40

relative deviation from an isotopic standard (Craig, 1961).

Ice cores are some of the most important archives of the isotope composition of past precipitation. Some Greenland ice cores

offer seasonal resolution, and in some cases even higher resolution (Furukawa et al., 2017), however the average annual ice

accumulation must be larger than 0.2 m/year in order for the annual cycle of the isotope composition not to be completely

smoothed out by diffusion in the firn (Johnsen, 1977). If the annual cycle is partly preserved it can be reconstructed by math-45

ematical back-diffusion of the data. It has been shown that seasonal ice core data have high correlation to local temperature

and circulation patterns, and that the summer and winter data reflect distinctly different spatial and temporal climate variability

(Vinther et al., 2010). In particularly, Vinther et al. (2010) showed that the seasonal winter δ18O has better coherency with

annual mean temperature than annual mean δ18O. This is due to weaker connection of the summer δ18O with summer temper-

ature, and larger variability of both winter δ18O and temperature, which then dominates the annual signal Vinther et al. (2010).50

When studying climate further back than the earliest widespread weather observations, we rely on climate proxy data, such

as ice cores. Inherent uncertainties in proxy data include age model uncertainties, seasonality, and relationship to climate.

This means that proxy data sets must be carefully chosen and evaluated, and the data must be well-studied to understand

the relationship to climate before being incorporated in climate field reconstructions. Pioneering examples of climate fields
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reconstructions include Mann et al. (1998) who regressed climate patterns based on observations on a collection of climate55

proxy data to obtain a global gridded data set of temperature, and Luterbacher et al. (2001, 2004) who reconstructed European

sea level pressure and temperature with a similar regression technique, but also using early weather observations as well as

historical documentation of weather variability.

Inspired by the techniques used for weather forecasts and reanalysis data, recent climate field reconstructions employ assim-

ilation of climate proxy data using a climate model. The Last Millennium Reanalysis Project (LMR) (Hakim et al., 2016;60

Tardif et al., 2019) aims to make a global reanalysis using a wide range of proxy data. Their method includes proxy system

modeling to link the proxies to the variables of the climate model. The regional studies of Sjolte et al. (2018) and Klein et al.

(2019) are climate field reconstructions using Greenland and Antarctic ice core records, respectively. In the case of these two

studies an isotope enabled climate model was used for the assimilation of isotope records from ice cores, which eliminates

the step of calibrating the proxy records to a given environmental variable, such as temperature. These studies all use different65

statistical approaches when performing the assimilation procedure, where LMR employ a Kalman-filter, Klein et al. (2019) a

particle trajectory approach and Sjolte et al. (2018) a variation of the analogue method, where the matching of model output

to proxy data is done based on empirical orthogonal functions (EOFs). For a brief review of uses of the analogue method see

Bothe and Zorita (2019). Common to the studies named above is the use of a static model ensemble. The latter means that there

are no constraints on which model year can be chosen as analogy for a given year of the proxy data. This is mainly done for70

practical reasons since one avoids having to run ensemble simulations step-by-step as it is done for meteorological reanalysis

data. One point that sets the study by Sjolte et al. (2018) apart from the other studies mentioned in this section , is the use of

seasonal proxy data in order to focus on reconstructing the winter season only, as opposed to targeting the variability of the

annual mean. As mentioned above in connection with the study by Vinther et al. (2010), the Greenland ice core data shows

distinctly different variability between summer and winter. Such differences in variability may originate in the relation between75

climate proxies and climate variability, for example due to different climate sensitivity through the seasons, or due to climate

variability itself, for example the change of circulation regimes during the year (Hurrell et al., 2003). Due to these questions of

seasonality, climate field reconstructions of annual mean variability could by the nature of both the climate proxies and climate

variability therefore have limited skill, to a large extent depending on the definition of the year, and may be biased towards

specific seasons despite the use of annual data. This could be an issue in particularly when it comes to atmospheric circulation80

regimes. We shall return to the topic of seasonality later in this manuscript.

In this study we will investigate the
✿✿✿✿✿✿✿✿✿✿✿✿

methodological
✿✿✿✿✿✿✿✿✿✿

implication
✿✿

of
✿✿✿✿✿✿✿✿

extracting
✿

seasonal and annual climate information in
✿✿✿✿

from

Greenland ice cores using a coupled model-data approach. We will use the method by Sjolte et al. (2018) with an extended

data set to include
✿✿✿✿✿✿✿✿

including summer and annual data, and
✿✿✿✿✿✿

isotope
✿✿✿✿

data
✿✿✿✿✿

from
✿✿

ice
✿✿✿✿✿✿

cores,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿

tree
✿✿✿

ring
✿✿✿✿✿✿✿✿✿✿✿

chronologies
✿✿✿✿✿

from

✿✿✿✿✿✿

Europe.
✿✿

In
✿✿✿✿✿✿✿✿✿

combining
✿✿✿✿✿✿

model
✿✿✿✿✿

output
✿✿✿✿

with
✿✿✿✿✿

these
✿✿✿✿

data
✿✿✿

sets,
✿✿✿

we
✿

reconstruct sea level pressure (SLP), surface air temperature (T2m)85

and sea surface temperature (SST). We will test

– The influence the number of ice cores assimilated for the reconstruction

– If the definition of the seasons impact the skill and recorded climate variability in the reconstructions
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– If annual data can be used to reconstruct winter variability

– To which extend
✿✿✿✿✿

extent
✿

the governing atmospheric circulation modes can be reconstructed using summer, winter and90

annual data

– If
✿✿✿✿✿✿✿

including
✿✿✿✿

tree
✿✿✿✿

ring
✿✿✿

data
✿✿✿✿

can
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season
✿

–
✿

If
✿

the reconstructions capture variations in the North Atlantic SSTs, hereunder the main modes of the SST variability

2 Data

In this study we use the seasonal δ18O ice core data of Vinther et al. (2010). Of these data we use the data for summer (May-95

Oct), winter (Nov-Apr) and winter centered annual mean (Aug-Jul) as defined by Vinther et al. (2010). To achieve the longest

possible data set with the best regional coverage we chose 8 cores covering 1241-1970, and for the largest data set possible we

chose all 19 cores covering 1777-1970 (Supplementary Figure S1).

In addition to using the ice core data, we produce reconstructions for summer where tree-ring data is used to further constrain

temperature. Tree-ring chronologies using primarily maximum late wood density as climate proxy can have a strong sensitivity100

to summer temperature. Such records are compiled in Wilson et al. (2016). From this compilation we select tree-ring records

that cover the entire study period (1241-1970), and correlate well with local temperature. This leaves us with 8 tree-ring records

from Europe (Table 1).

We use the isotope enabled version of ECHAM5/MPI-OM (Werner et al., 2016) in T31L19 configuration, which corresponds

to 3.75o x 3.75o horizontal resolution using 19 vertical hybrid levels. The model includes isotope traces in a fully coupled105

hydrological cycle, with fractionation taken into account for all phase transitions. The simulation covers year 800-2005 with

natural and anthropogenic forcings, including greenhouse gases, volcanic aerosols, total solar irradiance, land use and orbital

forcing. See Sjolte et al. (2018) for full details on the model run.

To evaluate the skill of the reconstructions we use the 20th Century Reanalysis Version 2c (20CR) (Compo et al., 2011) for

the period 1851-1970, as well as the accompanying COBE SST data (Ishii et al., 2005). We mainly use 20CR to assess the110

skill in for spatial correlation patterns and assessing modes of variability. 20CR has well known biases (Reeves Eyre and Zeng,

2017) and care should be taken when performing detailed analysis using this data set. In addition to the evaluation using 20CR

we compare the reconstructions to the south west Greenland temperature data compiled by Vinther et al. (2006), which is

continuous 1874-1970, as well as data from Stykkisholmur, Iceland, which covers 1830-1970 (Jónsson, 1989). These data are

the longest running instrumental temperature data available relatively close to the ice core sites used here. Finally, the station-115

based record of the North Atlantic Oscillation (NAO) by Jones et al. (1997) is used for evaluating the reconstructed NAO for

the period 1824-1970.

✿✿✿

We
✿✿✿✿✿

follow
✿✿✿

the
✿✿✿✿✿✿✿✿✿

convention
✿✿✿

of
✿✿✿✿

using
✿✿✿

the
✿✿✿✿

term
✿✿✿✿

PCs
✿✿✿

for
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

of
✿✿✿

the
✿✿✿✿

main
✿✿✿✿✿✿

modes
✿✿

of
✿✿✿✿✿✿✿✿✿

variability,
✿✿✿✿✿

while
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿

EOFs

✿✿

for
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

modes.
✿✿✿✿

The
✿✿✿✿✿✿

method
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ebisuzaki (1997)
✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿

correlating

✿✿✿✿✿✿

filtered
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿

take
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-correlation
✿✿✿

into
✿✿✿✿✿✿✿✿

account.120
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3 Methods

3.1 Selection of model analogues based on ice core data

We use the reconstruction method of Sjolte et al. (2018) to produce a number of reconstructions of different length, different

definitions of the seasons as well as varying the number of proxy records in the data set. The reconstruction method can

be classified as assimilation of proxy data using the analogue method with a fixed model ensemble. This method identifies125

analogues, i.e. years, in a climate model simulation most closely matching the annual or season spatial pattern in a set of

proxy data. In order to capture the characteristic regional variability of Greenland δ18O, and to smooth out the noisy signal of

individual ice cores, the matching of the model output is done using EOFs. Conventionally, proxy data needs to be calibrated

to a given climate variable, e.g. temperature, in order to be compared to a climate model. The use of an isotope enabled climate

model makes it possible match the proxy data with modeled patterns without calibration, since the proxy itself is included in130

the model output. This important feature of the method means that we include the governing processes of the variability in the

proxy data, capturing the integrative nature of isotope proxies and the information that lies therein (see introduction). The work

flow of the reconstruction is to i) calculate the principal components (PCs)
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿

of the ice core

δ18O (PCicecore) and modeled δ18O (PCmodel) retaining the first three PCs, and evaluate the modeled patterns for a given

year (t′) against the ice core patterns (Figure 1) for each year (t) using Eq. 1 ii) sort the model simulation by comparing the135

isotope patterns each year of the model simulation to the isotope patterns each year of the ice core data,
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

normalized

✿✿✿

PCs
✿✿

to
✿✿✿✿✿✿✿

achieve
✿✿✿✿✿

equal
✿✿✿✿✿✿✿✿

weighting
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿

variability iii) define the best matching model years as ensemble member one,

the second best matching years as ensemble member two, and-so-on, and test how many ensemble members to retain (p < 0.01)

by calculating the Chi-square statistic between the modeled and the ice core PCs iv) extract the climate field variables from the

selected model ensemble and calculate the ensemble mean, which comprises the climate reconstruction.140

χ2
MatchMatch−IC

✿✿✿✿✿✿✿✿

(t) =
1

3

3∑

k=1

(PC(k,t′)model −PC(k,t)icecore)
2 (1)

The number of ensemble members (see Table 2) depends on the degrees of freedom, i.e., the length of the reconstruction, and

how many closely matched model analogues that are found.
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

assess
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

matching
✿✿✿✿✿✿✿

exercise
✿✿✿

we
✿✿✿✿✿✿

extract

✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿

δ18O
✿✿

at
✿✿✿

the
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿

sites
✿✿✿✿

and
✿✿✿✿✿✿✿

correlate
✿✿

it
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿✿

δ18O.
✿✿✿✿✿

This
✿✿✿✿

tests
✿✿

if
✿✿✿✿✿✿✿✿

matching145

✿✿

the
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

PCs
✿✿

to
✿✿✿✿

the
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿

PCs
✿✿✿✿✿✿✿

captures
✿✿✿

the
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿✿

data.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

is
✿✿✿✿✿✿✿

similar
✿✿✿

for

✿✿✿✿✿✿✿

summer,
✿✿✿✿✿✿

winter
✿✿✿

and
✿✿✿✿✿✿

annual
✿✿✿✿

data,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

signal
✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿✿

core
✿✿✿✿

data
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿

captured,
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿✿✿✿

ranging
✿✿✿✿✿

from
✿✿✿

0.4
✿✿

to
✿✿✿

0.8

✿✿✿✿✿✿✿✿✿✿✿✿✿

(Supplementary
✿✿✿✿✿✿

Figure
✿✿

2).
✿✿✿✿

The
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

are
✿✿✿✿

seen
✿✿✿

for
✿✿✿✿

sites
✿✿✿✿

with
✿✿✿✿✿✿✿

multiple
✿✿✿

ice
✿✿✿✿✿

cores
✿✿✿

and
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿✿✿

accumulation
✿✿✿✿

rate,
✿✿✿✿

both

✿✿

of
✿✿✿✿✿

which
✿✿✿✿✿✿✿

reduces
✿✿✿✿✿

noise.
✿✿

In
✿✿✿✿✿✿✿✿

summary,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿

δ18O
✿✿✿✿✿✿✿

captures
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿

of
✿✿✿

the
✿✿✿

ice
✿✿✿

core
✿✿✿✿

data
✿✿✿✿✿

well,
✿✿✿✿✿

based

✿✿

on
✿✿✿✿✿✿✿✿

matching
✿✿✿

the
✿✿✿✿✿✿✿✿✿

normalized
✿✿✿✿✿✿✿✿

PCmodel
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

PCicecore.150

As outlined in the introduction the definition of the seasons or year is an important parameter for the reconstruction. This

applies both in terms of the seasonality of the proxy data and the target season of the reconstruction. Following the study

of Vinther et al. (2010) we will use the definitions of summer as May-Oct (sum50), winter as Nov-Apr (win50), and winter
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centered annual mean Aug-Jul (win100) for the ice core data. These definitions will also be applied to the target seasons of

the reconstructions, as well as the widely used definitions of summer (JJA) and winter (DJF). We investigate the seasonal and155

annual variability using these different definitions with two data sets for short (1777-1970, 19 ice cores) and long (1241-1970,

8 ice cores) reconstructions, resulting in a total of 12 reconstructions, where one for DJF covering 1241-1970 was published

by Sjolte et al. (2018) (see Table 2).

3.2 Constraining summer reconstructions using tree-ring data160

For the summer reconstructions also using
✿✿✿✿✿

season
✿✿✿

we
✿✿✿

test
✿✿✿✿✿✿✿✿✿✿✿✿

incorporating tree-ring data
✿

to
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

constrain
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction.

✿✿✿

We
✿✿✿✿✿✿

choose
✿

a
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿

approach
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

incorporating
✿✿✿

the
✿✿✿✿

data,
✿✿✿✿✿

which
✿✿✿✿

can
✿✿✿✿

serve
✿✿

as
✿✿

a
✿✿✿✿

pilot
✿✿✿✿✿

study
✿✿

for
✿✿✿✿✿✿

further
✿✿✿✿

tests
✿✿

of
✿✿✿✿✿✿

adding
✿✿✿✿✿

more
✿✿✿✿

data
✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction.
✿✿✿

For
✿✿✿

the
✿✿✿✿

test we sort the
✿✿✿✿✿✿✿✿✿

pre-selected
✿

39 existing ensemble members
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members
✿✿✿✿✿✿✿✿✿✿

(t′
IC−ENS

) based

on the ice core selection, using a similar
✿✿✿✿

data
✿✿✿✿✿

(Table
✿✿

2)
✿✿✿✿✿

using
✿

a
✿

Chi-square fit as for the ice core data. Then we evaluate the time

series of normalized modeled temperature
✿✿

at
✿✿✿

the
✿

8
✿✿✿✿

tree
✿✿✿

ring
✿✿✿✿

sites
✿✿✿✿✿✿✿✿

(Tmodel) against the normalized tree-ring data .
✿✿✿

tree
✿✿✿✿

ring
✿✿✿✿

data165

✿✿✿✿✿✿

(Ttrees)
✿✿✿✿

(see
✿✿✿

Eq.
✿✿✿

2).

χ2

Match−TR(t) =
1

8

8∑

k=1

(T (k,t′IC−ENS)model −T (k,t)trees)
2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)

The fit is done using the JJA temperature from the model, which are the best months
✿

to
✿✿✿✿

use with respect to seasonal sensitivity

for these 8 tree-ring records (Wilson et al., 2016). In a next step we test the ensemble mean temperature reconstruction against

the time series of the tree-ring data at each site, by calculating the correlation to the tree-ring data while increasing the number170

of ensemble members from 1 to 39 (Supplementary Figure S2
✿✿

S3). Although a Chi-square test of the fit of the reconstructed

temperature shows that including 24 ensemble members provides a good fit (p < 0.01), the correlation decreases quite rapidly

when including more ensemble members and we choose to include only 20. With this ensemble we capture the variability of

the tree-ring data relatively well for the whole period of the reconstruction (Supplementary Figure S3). In this study we follow

the convention of using the term PCs for the time series of the main modes of variability, while using
✿✿✿✿

S4).
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

correlation175

✿✿✿✿

goes
✿✿

to
✿✿✿✿

zero
✿✿✿✿

when
✿✿✿✿✿✿✿✿

including
✿✿✿

all
✿✿

of the term EOFs for the spatial patterns of the modes. The method of Ebisuzaki (1997) is used

to calculate the significance when correlating filtered time series in order to take auto-correlation into account.
✿✿

39
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿

members
✿✿✿✿✿✿✿✿✿

indicating
✿✿✿

that
✿✿✿✿✿✿✿

without
✿✿✿

the
✿✿✿✿✿✿✿

tree-ring
✿✿✿✿

data
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿

using
✿✿✿✿

only
✿✿✿

the
✿✿

8
✿✿

ice
✿✿✿✿✿

cores
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

has
✿✿

no
✿✿✿✿✿✿✿✿✿

predictive

✿✿✿

skill
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

in
✿✿✿✿✿✿

Europe.

180
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4 Results

4.1 The seasonal variability in observations and when combining proxy data and model output

In the introduction we mentioned seasonality, definition of seasons and shifts in circulation patterns as potential limiting factors

for the skill of climate field reconstructions. In general, seasonal dependency on climate variables, temporal resolution as well

as the precision of the chronology of proxy records sets a limit on the temporal resolution of climate field reconstructions.185

Seasonal resolution is likely the the highest possible resolution which can be attained due to these different factors. A key

factor in how well seasonal climate reconstructions
✿✿✿✿✿

proxy
✿✿✿✿

data can represent climate itself
✿✿✿✿✿✿✿✿

variability, is the
✿✿✿✿✿✿✿✿✿✿

sub-seasonal
✿

auto-

correlation structure of atmospheric variability. This can be illustrated by investigating the monthly auto-correlation during

the year of the 1st leading mode of sea level pressure in the North Atlantic region, the NAO. We found that, for example,

the 2nd and 3rd leading modes are too dissimilar between summer, autumn, winter and spring to allow a meaningful study190

of the monthly auto-correlation of these modes, as they simply represent different teleconnection patterns during each season.

Figure 2 shows the monthly auto-correlation of each month of the PC-based NAO calculated from the 20CR. These figures

show that during the cold season the NAO has the weakest auto-correlation with other months, as well as weaker year-to-year

auto-correlation compared to summer. While the lower auto-correlation during winter shows stochastic nature of the variability,

it is also during winter that the NAO variability is the most vigorous. Thus, the portion of a given climate signal that can be195

reconstructed is a balance of what is recorded in the proxy at a certain resolution, as well as the strength and auto-correlation

of the signal sampled at this resolution. It is noteworthy that Figure 2 also illustrates that targeting the calendar year in a

reconstruction (or any sort of analysis) splits up the variability mid winter and mixes the variability of two consecutive winters

that have little variability in common. This is the motivation for using the definition of winter centered annual mean for the

annual data in this study.200

Vinther et al. (2010) tested the ice core data used in this study using correlation with observed temperature, leading to the

division of the in seasons using the definition of sum50, win50 and win100 as outlined in Section 3. Due to the changes in

the patterns and variability of the circulation modes from summer to winter we furthermore test the seasonality in terms of

circulation modes. We do this by performing monthly reconstructions for pressure and evaluating the resulting
✿✿✿✿✿✿✿✿✿

correlating
✿✿✿

the

✿✿✿✿

time
✿✿✿✿✿

series
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding main modes of circulation against
✿✿✿

that
✿✿

of the modes of the 20CR. This is done using the same205

method as for the seasonal reconstructions, but only picking individual months from the matching year of the model simulation.

We do not suggest that it is feasible to reconstruct climate on monthly timescales using seasonal ice core data. This exercise is

purely for testing purposes. The monthly reconstructions are done each data set (sum50, win50, win100, for 8 ice cores and 19

ice cores) for the months that each data set is assumed to cover, e.g. May-Oct for win50
✿✿✿✿✿

sum50. The overall results show that

the different reconstructed surface pressure modes, as represented by the first three PCs, do not peak in skill during the same210

months (Supplementary Figures S4 and S5
✿✿✿

and
✿✿

S6). For example, for win50 PC1 has highest skill for Feb-Apr, while the skill

for PC2 peaks Jan-Feb. This type of behavior is repeated for the sum50 and win100 data sets. The differentiated seasonality

in the skill of the reconstructed modes can originate from i) the sensitivity of the Greenland δ18O to different modes ii) the

changes in circulation modes during the season iii) the auto-correlation structure of circulation, as discussed above iv) model
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biases in circulation modes, and combinations of these influences. The difference in the reconstructions using 8 ice cores and 19215

ice cores, respectively, is mainly seen for win100, where more months across the year show significant skill when using more

ice cores in the reconstruction. Furthermore, the monthly skill for the win100 data set indicate that it is feasible to reconstruct

the winter circulation (e.g. DJF). This test suggests that in order to get the highest average skill possible for all modes during

winter the reconstruction should target DJF, while for summer the full span of the season (May-Oct) is likely better, also

taking into account the higher monthly auto-correlation during the warm season. The EOF patterns of surface pressure will be220

discussed further in Section 4.2.2.

4.2 Evaluation of reconstructions

In the following sections we evaluate and compare the reconstructions using different methods. We start with point-by-point

correlation maps for the North Atlantic sector of the reconstructions to 20CR SLP and T2m as well as the COBE SSTs. This is

a general evaluation in terms of spatial coverage and skill of the reconstructions. We also include a comparison to the longest225

instrumental records of temperature from Greenland and Iceland. Next we evaluate the skill of the reconstructions in terms

of atmospheric circulation modes. In the final part of the evaluation we investigate if the main patterns of North Atlantic

SSTs and their variability can be reconstructed using the method of this study. We would like to emphasize that none of these

reconstructions have been calibrated to observations, but that the model provides us directly with the physical variables of SLP

and T2m for the years where modeled and measured δ18O patterns match. The evaluation of these reconstructions are thus230

done using completely independent data sets.

4.2.1 Reconstructed temperature and sea level pressure

Investigating the results for correlations and the spatial patterns of skill for SLP, T2m and SSTs reveals a complex interplay of

factors influencing the reconstructions for different seasons, as well as how different definition of seasons influence the skill.

Reconstructions for the summer season show the least skill, but perform better using the extended definition of the target season235

(May-Oct) (Figure 4) rather than JJA (Figure 3). The summer reconstruction also appears to benefit the most from including 19

ice cores rather than 8 (Table 3). Including more cores and using the extended season likely reduces noise in the reconstruction.

Using the extended season also smooths out the variability of the 20CR data, which can partly account for the higher skill of

the short sum50 reconstruction for summer. The
✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

using
✿

8
✿✿✿

ice
✿✿✿✿

cores
✿✿✿✿✿

show
✿✿✿

no
✿✿✿✿✿✿✿✿

significant
✿✿✿✿

skill
✿✿✿

for
✿✿✿✿✿✿✿

Europe,

✿✿✿✿✿

which
✿✿

is
✿✿

in
✿✿✿✿

line
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

European
✿✿✿✿✿✿✿

tree-ring
✿✿✿✿

data
✿✿✿✿

(see
✿✿✿✿✿✿✿

Section
✿✿✿✿

3.2).
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿

of
✿✿✿

the240

✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

using
✿✿✿

19
✿✿✿

ice
✿✿✿✿

cores
✿✿✿✿✿✿

shows
✿✿✿✿✿✿

patches
✿✿✿

of
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿

correlation
✿✿

in
✿✿✿✿✿✿✿

Europe.
✿✿✿

The
✿

reconstructions for winter

shows the highest skill of the reconstructions, in-line with the findings of Vinther et al. (2010), that δ18O is found to be a more

efficient climate proxy during winter (Sjolte et al., 2011, 2014) and that the climate variability in extra-tropical North Atlantic

region is most vigorous during winter causing a large signal-to-noise ratio in δ18O records with respect to their ability to record

circulation changes. All of the these factors contribute to better reconstructions for winter compared to summer both in terms245

of spatial skill and strength of correlation with 20CR.
✿✿✿✿

This
✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

skill
✿✿

in
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿

Europe,
✿✿✿✿✿✿

which
✿✿

is

✿✿✿✿✿✿✿

probably
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿

capturing
✿✿✿

the
✿✿✿✿

main
✿✿✿✿✿✿

modes
✿✿

of
✿✿✿✿

SLP.
✿✿✿

We
✿✿✿✿

will
✿✿✿✿✿

return
✿✿

to
✿✿✿✿

this
✿✿✿✿

topic
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿✿✿

4.2.2. As opposed

8



to summer, the winter reconstructions for DJF performs better, rather than the extended season Nov-Apr. This is probably due

to the migration of circulation patters and low auto-correlation of atmospheric circulation during winter as discussed in Section

4.1.250

One of the questions of this study is about the use of annual data for reconstructions of climate and atmospheric circulation.

For the reconstructions targeting the winter centered annual mean (win100) the skill and patterns of correlation are reminiscent

to that of the winter reconstructions, although clearly with less areal coverage of significant correlation for SLP. We interpret

this as being due the migration of the circulation patterns with the seasons, as discussed above. However, for SSTs the win100

reconstruction shows the highest spatial skill of all the reconstructions, including better capturing low latitude variability, with255

the correlation pattern being reminiscent of the spatial pattern of Atlantic Multi-decadal Oscillation (AMO) -type variability.

As with the extended summer season, part of the increase in skill for the win100 SST reconstruction could also originate from

a smoother signal for annual data – in both observations and reconstruction, where some of the noise is reduced compared to

seasonal data, but some of the signal is also lost. Targeting the winter season (DJF) using the winter centered annual data results

in a clear gain in skill for SLP, while the skill for SST is somewhat reduced, although retaining the overall correlation pattern of260

the winter centered annual mean reconstruction. This indicates that it is feasible to reconstruct winter variability from annual

data, if the definition of the winter centered annual mean is used for the proxy data. Seasonal δ18O data are increasingly sparse

going back in time, and using winter centered annual mean data could be an alternative for reconstructing winter variability

beyond the reach of seasonal δ18O data when seasonality in the ice can still be defined from e.g., aerosol records.

To further assess the skill of the reconstructed temperature we compare to data from three stations on the Greenland coast265

and one Icelandic station. Vinther et al. (2010) showed that the first Principal Component (PC1) of Greenland isotope data

(20 cores) has strong correlation (r = 0.71) to the stacked Greenland coastal data (South West Greenland temperature, SWG

index) during winter (Nov-Apr), while PC1 of the isotope data for summer is most strongly correlated to data from Iceland

(r = 0.55) (May-Oct). Here we compare the reconstructed site temperature both to data from each of the stations and to the

SWG index. The highest correlations are found for the 8 core Win50 reconstruction at Nuuk and Qaqortoq with a correlation270

of 0.6 at both sites (
✿✿✿✿✿

Figure
✿

5
✿✿✿✿

and Table 4). It is also for this reconstruction we find the highest correlation of 0.63 with the SWG

index.
✿✿✿✿

While
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

for
✿✿✿✿✿✿✿

Ilulissat
✿✿

is
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

for
✿✿✿✿✿

Nuuk
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

Qaqortoq,
✿✿✿

the
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

amplitude

✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

captured
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿

probably
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

subgrid
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

neither
✿✿✿✿✿✿✿✿

resolved
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿

nor
✿✿✿

the

✿✿✿✿✿✿

model.
✿

The 19 core reconstructions have slightly lower correlations to the Greenland temperature data. This could be due to

a weighting of the variability more to the east, as most of the additional cores in the shorter reconstructions are to the east of275

the ice divide. For the summer reconstructions the correlations to the Greenland station data are below 0.3. However, the 8

core Sum50 reconstruction captures a substantial part of the longer term variability with a correlation of 0.44 to the decadally

filtered SWG index. With respect to the definition of the winter season, the DJF reconstructions appear to better capture the

long term variability with slightly higher correlation for the filtered data compared to the Win50 reconstructions. The Win100

and the Win100 DJF reconstructions both show only slightly lower correlations than the Win50 and DJF reconstructions, indi-280

cating that for temperature alone the seasonal data is less crucial than for reconstruction SLP, at least when comparing locally

to the Greenland coastal data.
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The correlations to the Icelandic temperature data shows correlations around 0.3 for all reconstructions, with most of the

summer reconstructions showing higher correlations for long term variability compared to the winter reconstructions. This

indicates a similar behavior as for the ice core PC1 correlation with respect to the winter data responding more to the Western285

Greenland temperature and the summer data having better coherency with Icelandic data. The predominance of the summer

signal east of Greenland also results in the reconstructions based on the winter centered annual mean not having very high skill

for Icelandic temperatures, at least for the long term variability.

Comparing the summer reconstructions including tree-ring data with the 20CR we find that the skill for SLP, T2m and SST

has increased considerably compared to the summer reconstructions only using 8 ice cores (Table 3 and Supplementary Figure290

S8
✿✿

S9). The skill is improved in particularly for temperature in the eastern sector of the domain, while the skill for SLP is still

low near Greenland, although the skill has clearly increased over Northern Europe for JJA.

4.2.2 Main modes of atmospheric variability

Sjolte et al. (2018) showed that the winter variability of the first two PCs of the SLP in the North Atlantic region could be295

reconstructed with good skill using the analogue method based on 8 ice cores. Here we evaluate all the different reconstructions

of this study for the first three PCs, including the spatial patterns of the loading of the PCs (EOFs). For the DJF and Win50

reconstructions EOF1, 2 and 3 all qualitative match that of the 20CR (Figure 6). The reconstructed EOF patterns for SLP are

very similar for the reconstructions using 8 and 19 ice cores, respectively, and we only show the patterns for the reconstructions

using 8 ice cores. There are some indications that EOF2 of the reconstructions summarizes some of the variability assigned300

to EOF3 of the 20CR as also discussed by Sjolte et al. (2018). For summer the reconstructed EOFs capture many of the same

features of the 20CR, but less clear than for the winter reconstructions. For example, the reconstructed JJA pattern for EOF1

shows differences to 20CR south of Greenland (Figure 6), which probably partly explains the low skill for summer SLP in

this region shown in Section 4.2.1. The origin of this problem is probably a bias for large scale summer variability of the

ECHAM5/MPIOM model (Jungclaus et al., 2006). This means that the main modes of the original model simulation (not305

shown) do not correspond to the main observed modes, except for Winter NAO, which the model captures. It is only after

matching the model output to the proxy data that the main modes align with the observed patterns.

The maps of the EOF patterns illustrate the point made earlier about the differences in the modes of SLP variability from

season to season. Not only do the patterns change from summer to winter but also depending of the definition of the season,

e.g. JJA versus May-Oct (Supplementary Figure S10
✿✿✿✿

S11). Furthermore, the EOFs of the winter centered annual mean appear310

as mixtures of summer and winter variability, carrying most likeness to the winter patterns, again showing the problem of using

the annual mean SLP as target for reconstructions.

Common for all the different reconstructions is that they all assign more variability to EOF1 and less to EOF3 compared to

20CR, while EOF2 is fairly similar to 20CR in terms of the explained variance. This could be due to sole use of Greenland ice

core data, which could skew variability to be dominated more by NAO-type variability. For DJF the model simulation itself315

does not have a high bias in the explained variance of NAO-type variability.
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From the time series of EOFs (PCs) it is evident that the reconstructions have realistic amplitudes of the year-to-year variability

(Figure 7). In other words, the spectrum of the reconstructions are similar to actual weather variability as also found for the

DJF reconstruction by Sjolte et al. (2018). Correlating the reconstructed PCs to that of the 20CR (see Figure 8) shows that i)

the variability of PC1 is well captured by the winter and annual data ii) only the Win50 DJF reconstruction has skill for PC2320

iii) the summer reconstructions have some skill for PC3 iv) in some instances the decadally filtered data capture a significant

part of the 20CR variability, even with no correlation for annual data (e.g. PC2 and PC3 of DJF Win100 (8 cores)). The very

low values 1851-1860 in the 20CR PC1 is possibly a bias in the reanalysis and is not seen in the HadCRU NAO time series

(not shown). Comparing the reconstructions for winter and annual data to the HadCRU NAO results in higher correlations

than for 20CR, also for the filtered data. For summer it is not meaningful to use the station-based NAO due to the shifted325

centers of action during summer compared to winter. As discussed in Section 4.2.1 the skill for SLP improves locally when

including tree-ring data to constrain the summer reconstructions. However, the skill for the circulation patterns is not improved

by including the tree-ring data.

4.2.3 North Atlantic sea surface temperature

The correlation maps with the COBE SSTs (Figures 3 and 4) indicate that the reconstructions are particularly well suited to330

investigate the SST variations in the region 50oN-70oN, 70oW-0oW. For this purpose we define a North Atlantic SST index

as the mean SST for the aforementioned area. Although the year-to-year variations of the reconstructions are somewhat noisy

compared to the variations of the COBE SSTs, the reconstructions have significant skill for all investigated seasons, most

notably for winter and annual data (Figure 9). For decadally filtered data the Win50 DJF and Win50 reconstructions (8 cores)

explain more than 50% of the COBE North Atlantic SST variability (r = 0.72 and r = 0.74, respectively) (Figure 10). While the335

long term SST changes for summer are underestimated, the reconstructions of winter SST match the COBE amplitudes of the

decadal-multidecadal SST variability very well. As mentioned in Section 4.2.1 the skill for temperature and SST is markedly

improved when in including the tree-ring data in the summer reconstructions. This is also see in the higher correlations and

stronger significance for the North Atlantic SST index for these reconstructions (Figure 10).

To further investigate how much information of the North Atlantic SST variability is obtainable using this type of reconstruc-340

tion, we also compared the patterns and variability of the main modes of reconstructed SSTs to that of the COBE SSTs (Figures

11). As the skill of the reconstructions decreases with the distance from the proxy sites we calculated the modes using data

from 30oN-70oN for the reconstructions, while we used 0oN-70oN for the COBE data. Generally the reconstructions qualita-

tively capture the spatial characteristics of the EOF1, 2 and 3 patterns of the COBE data, as well as the variability of the PCs

(Figure 12). Again, the match appears to be better for the winter season. The PCs of the reconstructed SSTs are correlated to345

the reconstructed PCs of SLP, indicating that the SST variability captured by the reconstruction is related to atmosphere-ocean

interaction of the main circulation modes (not shown). EOF1 of the SSTs is also correlated to the North Atlantic SST index dis-

cussed above, and the pattern is akin to AMO-type variability associated with long term variation of the NAO (McCarthy et al.,

2015). EOF2 of the SSTs can be related to subpolar gyre-type variability connected with the frequency of the weather patterns

Atlantic Ridge/Blocking (Moffa-Sanchez et al., 2014; Moreno-Chamarro et al., 2017). Only the reconstructed PC1 for winter350
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and annual SSTs shows consistent skill compared to the COBE SSTs, although the Win50 PC3 (19 cores) also has significant

correlation for both annual and decadally filtered data (Figure 13).

4.3
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

millennium-length
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions

✿✿✿✿✿

While
✿✿✿

an
✿✿✿✿✿✿✿✿✿

exhaustive
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

to
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿

is
✿✿✿✿✿✿

beyond
✿✿✿✿

the
✿✿✿✿✿

scope
✿✿✿

of
✿✿✿

the
✿✿✿✿

this
✿✿✿✿✿

study,
✿✿✿

we
✿✿✿✿✿✿

briefly
✿✿✿✿✿✿✿✿

compare
✿✿✿✿

our

✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿

to
✿✿✿✿

two
✿✿✿✿✿

other
✿✿✿

data
✿✿✿✿✿

sets.
✿✿✿

We
✿✿✿✿

limit
✿✿✿✿✿✿✿✿

ourselves
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿

based
✿✿

on
✿✿✿✿

data
✿✿✿✿✿✿✿

entirely
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿

from355

✿✿✿

this
✿✿✿✿✿

study
✿✿✿

and
✿✿✿✿

also
✿✿✿✿✿

cover
✿✿✿

the
✿✿✿✿

span
✿✿✿

of
✿✿✿

our
✿✿✿✿✿✿

longest
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿✿✿✿✿✿

(1241-1970).
✿✿✿

We
✿✿✿✿

first
✿✿✿✿✿✿✿

compare
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

index
✿✿✿

for

✿✿✿✿✿✿

Central
✿✿✿✿✿✿

Europe
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Glaser and Riemann (2009),
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

based
✿✿✿✿✿✿✿

entirely
✿✿✿

on
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿

and
✿✿✿✿✿

early
✿✿✿✿✿✿✿✿✿✿✿

instrumental

✿✿✿✿

data.
✿✿✿✿

Due
✿✿

to
✿✿✿

less
✿✿✿✿✿✿✿✿

available
✿✿✿✿

data
✿✿

in
✿✿✿

the
✿✿✿✿

early
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

millennium
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Glaser and Riemann (2009)
✿✿

is
✿✿✿✿

only
✿✿

in

✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿

1500
✿✿✿✿

CE,
✿✿✿✿✿

while
✿✿✿✿✿✿✿

monthly
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿

available
✿✿✿✿

after
✿✿✿✿

this.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

we
✿✿✿

use
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions

✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿✿

tree-ring
✿✿✿✿

data
✿✿✿

for
✿✿✿✿✿✿✿

summer
✿✿✿✿

(JJA,
✿✿✿✿✿✿✿

sum50),
✿✿

as
✿✿✿

the
✿✿✿✿✿

ones
✿✿✿✿✿✿

relying
✿✿✿✿✿

solely
✿✿✿

on
✿✿✿

ice
✿✿✿

core
✿✿✿✿

data
✿✿✿

(8
✿✿

ice
✿✿✿✿✿✿

cores)
✿✿

do
✿✿✿

not
✿✿✿✿✿

have
✿✿✿✿

skill
✿✿

in360

✿✿✿✿✿✿

Europe
✿✿✿

for
✿✿✿✿✿✿✿

summer.
✿✿✿✿✿✿✿

Judging
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

there
✿✿

is
✿✿✿✿✿

fairly
✿✿✿✿

good
✿✿✿✿✿✿✿✿✿✿✿✿✿

correspondence
✿✿✿✿✿✿✿

between
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

index
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Glaser and Riemann (2009)
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

period
✿✿✿✿

after
✿✿✿✿✿

1600
✿✿✿

CE,
✿✿✿✿✿

apart
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿

distinct
✿✿✿✿✿

spell
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

out-of-phase

✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

around
✿✿✿✿✿

1650
✿✿✿

CE
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season
✿✿✿✿✿✿

(Figure
✿✿✿✿

14).
✿✿✿

The
✿✿✿✿✿✿✿✿✿

correlation
✿✿

is
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

consistent
✿✿✿

for
✿✿✿✿

DJF,
✿✿✿✿✿✿✿

although
✿✿✿

the
✿✿✿✿✿✿✿

decadal

✿✿

to
✿✿✿✿✿✿✿✿✿✿

multidecadal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

also
✿✿✿✿✿✿✿

appears
✿✿✿✿✿✿✿

coherent
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season.
✿✿

As
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

index
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Glaser and Riemann (2009)

✿✿✿✿

relies
✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

few
✿✿✿✿

data
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿✿

1500
✿✿✿

CE
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿

tempting
✿✿✿

to
✿✿✿✿✿✿✿✿

conclude
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

loss
✿✿

of
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿

is
✿✿✿✿

due
✿✿

to
✿✿✿✿

this,
✿✿✿

as365

✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿

is
✿✿✿✿✿✿✿✿

produced
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

records
✿✿✿

and
✿✿✿✿✿

same
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿✿

records.
✿✿✿✿✿✿✿

Despite
✿✿✿✿

this

✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿

support
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

validity
✿✿

of
✿✿✿

our
✿✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿✿✿

extending
✿✿✿✿✿✿

further
✿✿✿✿✿

back
✿✿✿✿

than
✿✿✿

the

✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

data.

✿✿

In
✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

we
✿✿✿✿✿✿

include
✿✿✿

the
✿✿✿✿✿✿

recent
✿✿✿✿

DJF
✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)
✿✿✿✿✿

which
✿

is
✿✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿

drought
✿✿✿✿

data

✿✿✿✿

from
✿✿✿

tree
✿✿✿✿✿

rings.
✿✿✿

For
✿✿✿✿✿✿✿✿

reference
✿✿✿

we
✿✿✿

also
✿✿✿✿✿✿✿

include
✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ortega et al. (2015)370

✿✿✿

also
✿✿✿✿✿✿

shown
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sjolte et al. (2018)
✿

,
✿✿✿✿✿✿✿✿

although
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

is
✿✿✿✿✿

partly
✿✿✿✿

also
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿

Greenland
✿✿✿

ice
✿✿✿✿✿

core
✿✿✿✿

data.
✿✿✿✿✿

From
✿✿✿✿

the

✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

there
✿✿✿

is
✿✿✿✿

little
✿✿✿✿✿✿✿✿✿✿✿✿✿

correspondence
✿✿✿✿✿✿✿✿

between
✿✿✿

our
✿✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

and
✿✿✿✿

that
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)
✿✿✿✿

prior
✿✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿

record
✿✿✿✿✿✿✿

(Figure
✿✿✿✿

15).
✿✿✿✿✿✿

Unlike
✿✿✿

our
✿✿✿✿✿✿✿

method,
✿✿✿✿

the
✿✿✿✿✿✿

method
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)
✿✿✿✿✿✿

involves
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿

to
✿✿✿✿✿✿✿✿

observed

✿✿

the
✿✿✿✿✿✿

NAO.
✿✿✿✿✿

Also
✿✿✿

for
✿✿✿

the
✿✿✿

the
✿✿✿✿✿✿✿

decadal
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

multidecadal
✿✿✿✿

time
✿✿✿✿✿✿

scales
✿✿✿

the
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿

diverge
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿

record,
✿✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ortega et al. (2015)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicates
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

long
✿✿✿✿✿✿✿✿

standing
✿✿✿✿✿✿✿

problem
✿✿✿

of375

✿✿✿✿✿✿✿✿✿✿

incoherence
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

different
✿✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿

prior
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

instrumental
✿✿✿✿✿✿

record
✿✿

is
✿✿✿

still
✿✿✿✿✿

valid
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pinto and Raible, 2012).
✿✿✿✿

The

✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿

15
✿✿✿✿✿

b)-c)
✿✿✿

are
✿✿✿✿✿

scaled
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

decadal
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

observed
✿✿✿✿✿

NAO
✿✿

to
✿✿✿✿✿✿✿✿

facilitate
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the

✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability.
✿✿

It
✿✿

is
✿✿✿✿

clear
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ortega et al. (2015)
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated,

✿✿✿✿

while
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

only
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated
✿✿

in
✿✿✿✿✿✿✿✿✿

amplitude,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)

✿✿✿✿

could
✿✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿

somewhat
✿✿✿✿✿✿✿✿✿✿✿✿

overestimated
✿✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability.
✿✿✿✿✿✿

Factors
✿✿✿✿✿

which
✿✿✿✿✿

could
✿✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿✿✿

the
✿✿✿

lack
✿✿

of
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

between380

✿✿✿

our
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019),
✿✿

is
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

drought
✿✿✿✿

and
✿✿✿✿✿✿

winter
✿✿✿✿

NAO
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿

stationary
✿✿

in

✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(López-Moreno and Vicente-Serrano, 2008)
✿

,
✿✿✿

and
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

records
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)

✿✿✿✿✿✿✿

decrease
✿✿✿✿✿✿✿

strongly
✿✿✿✿

back
✿✿

in
✿✿✿✿

time
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿

1700
✿✿✿✿

CE.
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5 Discussion and conclusions

In this study we tested climate reconstructions of summer, winter and annual climate variability, based on a data set of 8 ice385

cores covering 1241-1970 and an extended data set of 19 cores covering 1777-1970. While the increased number of ice cores

can reduce noise in the reconstructions, the more geographically uneven distribution of the additional cores appears to have

some negative effects for the skill of the reconstructions. This means that the over all added value of more ice core data seems

less than the drawbacks of the much shorter time span being covered. Unfortunately it is not possible to test the reconstruc-

tions of 8 versus 19 cores on truly equal terms, as the EOFs of the 8 ice cores for shorter time periods become depended
✿✿✿

are390

✿✿✿✿✿✿✿✿

dependent
✿

on the exact choice of the investigation period.
✿✿✿✿

This
✿✿

is
✿✿✿

due
✿✿✿

to
✿✿✿✿

poor
✿✿✿✿✿✿✿✿

statistics
✿✿

in
✿✿✿✿✿✿✿✿✿✿

determining
✿✿✿

the
✿✿✿✿✿✿

EOFs
✿✿✿✿✿

when
✿✿✿

the

✿✿✿✿✿✿

number
✿✿

of
✿✿✿

ice
✿✿✿✿

core
✿✿

is
✿✿✿

low
✿✿✿✿

and
✿✿✿

the
✿✿✿

data
✿✿✿✿✿✿✿

sample
✿

is
✿✿✿✿✿

short.

The inherent properties of climate variability with respect to auto-correlation and changes in governing weather patterns as il-

lustrated in Section 4.1 are probably the reason for the differences in skill seen for the reconstructions using different definitions

of the target season. One consequence is that the skill for secondary circulation modes is better for the reconstructions targeting395

DJF rather than Nov-Apr, and a secondly that using the wider definition of summer (May-Oct) may reduce some noise in the

temperature reconstruction, an effect which likely also can be seen for the temperature reconstructions of the winter centered

annual mean. Additionally, reconstruction of the DJF atmospheric circulation using winter centered annual mean ice core data

is attainable, which opens up the possibility of extending the winter reconstructions further back than with seasonal data. This

could be done by using high resolution chemistry data (e.g., Rasmussen et al., 2006) to define the seasons in the ice core data,400

even though the annual cycle in the ice core isotope data cannot be recovered.

The evaluation of correlation to the North Atlantic SSTs shows a particular strong sensitivity to SSTs variability north of 50oN.

This is in principle true for all seasons, but in particularly
✿✿✿✿✿✿✿✿

particular in winter, where the amplitude of the decadal changes in

SSTs are captured by the reconstruction. This is achieved without tuning the reconstruction to observations. This indicates a

clear potential for reconstructing AMO-like variability. Furthermore, the reconstructions yield qualitatively similar main pat-405

terns of variability as those based on observations (EOF1, 2 and 3). These SST patterns are connected to the main atmospheric

modes of variability.

The reconstructions in this study only based on ice core data are using what one might call a minimal proxy data set. The

thought behind is to select few – but high quality well dated, and well studied proxy data, rather than a large collection of data

where the link between climate parameters and all proxy data has not been tested in details. Furthermore, the use of isotope410

records have the property discussed in the introduction of not only recording local information, while the assimilation using an

isotope enabled climate model allows coupling the model and proxy data without calibration. However, it is clear that the skill

of the summer reconstructions is generally lower than the the winter reconstructions. For this reason we also include
✿✿✿✿✿✿

perform
✿✿

a

✿✿✿

test
✿✿✿✿✿✿✿✿

including European tree-ring data for two additional reconstructions for summer (JJA and May-Oct) covering 1241-1970.

For these reconstructions the skill for temperature is clearly improved, although for SLP the skill only improves locally with415

no improvement of the skill for the main modes of circulation.

For model assimilation-type climate reconstructions the performance of the climate model is an important parameter. All cli-
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mate models have biases that can influence the patterns of the reconstructed climate variability. Here we have mainly discussed

the model bias in SLP during summer as this is the most prominent model related problem found for our reconstructions. Given

the relatively coarse model resolution (3.75o x 3.75o) using a model with finer resolution, better representation of orography,420

atmospheric circulation and physics would probably yield a better climate reconstruction. However, the model used in this

study fundamentally performs well when it comes to mimicking the variability of the isotopic composition of Greenland pre-

cipitation, which is what allows us to use the method of matching the ice core EOF patterns.

Different strategies can be chosen for attaining an uncertainty estimate of the reconstructions based on the analogue method.

Bothe and Zorita (2019) presents different options i) uncertainty based on the fit of the analogues to the proxy data ii) a fixed425

distance allowed for the fit of the analogues, but variable number of analogues, and iii) uncertainty estimated from the en-

semble spread of model analogues. Our method employs a fixed number of model analogues (e.g. 39 for DJF 1241-1970)

and the ensemble spread is therefore the most natural choice of uncertainty estimate. However,
✿✿✿✿

When
✿✿✿✿✿✿✿✿✿✿

comparing
✿✿

to
✿✿✿✿✿

other

✿✿✿

data
✿✿✿✿

sets
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿✿

can
✿✿✿✿

also
✿✿✿

be
✿✿✿✿

used
✿✿✿✿✿

along
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

measure
✿✿✿

of
✿✿✿✿

how
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿

matches

✿✿

the
✿✿✿✿✿✿✿✿✿✿

variability.
✿✿✿✿

This
✿✿✿

can
✿✿✿

for
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿

reveal
✿✿✿✿✿

cases
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿

is
✿✿✿✿✿

good,
✿✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿

does
✿✿✿

not430

✿✿✿✿✿

match
✿✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿

Supplementary
✿✿✿✿✿✿

Figure
✿✿✿✿✿

S16).
✿✿

In
✿✿✿✿✿✿

Figure
✿✿

5,
✿✿✿✿✿✿

where
✿✿✿

we
✿✿✿

plot
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿✿✿✿

Greenland
✿✿✿✿✿✿✿

coastal
✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿

we
✿✿✿✿✿

both

✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿✿✿

Except
✿✿

for
✿✿✿✿✿✿✿✿

Illulissat,
✿✿✿✿✿✿

which
✿✿✿

has
✿✿✿✿

very
✿✿✿✿

high
✿✿✿✿✿✿✿✿

observed

✿✿✿✿✿✿✿✿✿

variability,
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿✿

and
✿✿✿✿✿✿

RMSE
✿✿

is
✿✿✿✿

very
✿✿✿✿✿✿✿

similar.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿

is
✿✿

a
✿✿✿✿

good
✿✿✿✿✿✿✿

measure
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

at
✿✿

a
✿✿✿

grid
✿✿✿✿✿

point
✿✿✿✿✿

scale.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿

we
✿✿✿

also
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿

RMSE
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

(Figure
✿✿✿

15).
✿✿✿

In
✿✿✿

this
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿

is
✿✿✿✿

well
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿

envelope
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread435

✿✿

of
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿

NAO,
✿✿✿

and
✿✿

in
✿✿✿✿

this
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿✿✿✿

would
✿✿✿

be
✿

a
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿✿✿✿✿✿

conservative
✿✿✿✿✿✿✿

measure
✿✿

of
✿✿✿✿✿✿✿✿✿✿

uncertainty.
✿✿✿

In
✿✿✿✿✿✿✿

addition

we have investigated the quality of the fit over time (Chi-square distance for each time step) to see if there are trends or periods

of very poorly fitting model analogues. Although there are years where we have trouble finding a good model analogue, the

fit is on average throughout the records as good as for 1851-1970 where the reconstructions are evaluated. For example, there

are no large decadal trends in the fit. From a statistical point of view, the reconstructions are therefore equally valid any time440

during the reconstruction as there is no calibration involved in the method(disregarding the summer reconstructions including

tree-ring records). .

✿✿✿

The
✿✿✿✿✿✿✿✿

approach
✿✿

of
✿✿✿✿✿

using
✿✿

an
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿

analogues
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

in
✿✿✿✿✿

terms
✿✿✿

of
✿✿✿✿✿✿✿✿✿

correlation
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿

but
✿✿✿✿

also

✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

producing
✿✿✿

the
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

avaraging
✿✿

out
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gómez-Navarro et al., 2017)

✿

.
✿✿✿✿✿

Using
✿✿✿

the
✿✿✿✿✿✿✿✿

example
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Greenland
✿✿✿✿✿✿

coastal
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

again
✿✿✿✿✿✿

(Figure
✿✿✿

5),
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

year-to-year
✿✿✿✿✿✿✿✿✿

variability
✿✿

is445

✿✿✿✿✿✿✿✿

somewhat
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

decadal-scale
✿✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿

captured.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

smoothing
✿✿✿

of
✿✿✿

the

✿✿✿✿

high
✿✿✿✿✿✿✿✿

frequency
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿

can
✿✿✿

to
✿

a
✿✿✿✿✿✿

certain
✿✿✿✿✿✿

extent
✿✿✿

be
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

approach,
✿✿✿

but
✿✿✿✿

also
✿✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

course
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

model,
✿✿✿✿✿

which
✿✿✿✿

also
✿✿✿✿✿✿✿

smooths
✿✿✿✿

out
✿✿✿✿✿✿✿✿✿

variability.
✿✿✿

On
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿

hand
✿✿✿✿

the
✿✿✿✿

SST
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction

✿✿✿✿✿✿

(Figure
✿✿

9)
✿✿✿✿✿

show
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

overestimated
✿✿✿✿✿✿✿✿

variability
✿✿✿

for
✿✿✿✿✿✿

winter,
✿✿✿✿✿

which
✿✿✿✿✿

could
✿✿

be
✿✿✿✿

due
✿✿

to
✿✿✿✿✿

using
✿✿

an
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

signal
✿✿

to
✿✿✿✿✿✿✿✿✿✿

reconstruct
✿✿✿✿✿

ocean

✿✿✿✿✿✿✿✿✿

variability,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿

amplitude
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated
✿✿✿

for
✿✿✿✿✿✿✿

summer.
✿✿✿✿

This
✿✿✿✿✿✿✿

contrast
✿✿✿✿

can
✿✿✿✿✿✿✿

probably
✿✿✿

be
✿✿✿✿✿✿✿✿

explained
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿

skill
✿✿✿

for450

✿✿✿✿✿✿✿

summer,
✿✿✿✿✿

which
✿✿✿✿✿✿

causes
✿✿✿✿

loss
✿✿✿

of
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

due
✿✿

to
✿✿✿✿

lack
✿✿✿

of
✿✿✿✿✿✿✿✿✿

coherency
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble.
✿✿✿

For
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿✿✿

(SLP),
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿✿✿✿✿✿✿✿✿

year-to-year
✿✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿✿

well
✿✿✿✿✿✿✿✿

preserved
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿✿✿

appears
✿✿

to
✿✿✿✿✿

have
✿✿

a
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✿✿✿✿✿

minor
✿✿✿✿✿

effect
✿✿

on
✿✿✿

the
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

frequency
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿

(Figure
✿

8
✿✿✿✿

and
✿✿✿✿✿✿

Figure
✿✿✿

15).
✿✿✿✿

One
✿✿✿✿✿

factor
✿✿

in
✿✿✿✿✿✿✿✿✿

preserving
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

year-to-year
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿✿✿✿✿✿

variability,
✿

is
✿✿✿✿

that
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿

from
✿

a
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿✿

where,
✿✿✿

for
✿✿✿✿✿✿✿✿

example,
✿✿✿

the
✿✿✿✿

NAO
✿✿✿

has
✿✿

a
✿✿✿✿✿

nearly
✿✿✿✿✿

white
✿✿✿✿✿✿

power
✿✿✿✿✿✿✿✿

spectrum

✿✿✿

(not
✿✿✿✿✿✿

shown)
✿✿✿✿

and
✿✿✿✿

given
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

spread
✿✿

is
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

large
✿✿✿✿✿✿

(Figure
✿✿✿✿

15),
✿✿✿

this
✿✿✿✿✿✿✿✿

spectrum
✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿✿

preserved
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction.455

To attain the best possible reconstruction of climate variability, taking into account the the nature of the target for the recon-

struction is important. This is illustrated by the dependency of the skill of the climate reconstructions on the definition of

seasonality, due to the seasonal changes of the patterns or variability. For winter a narrow definition of the season (DJF) yields

better performance for circulation patterns. Furthermore, in some cases a wider definition of the season, e.g. for summer and

annual data, can provide better performance for temperature due to better capturing the signal during months of higher auto-460

correlation and less variability.

Further development of seasonal climate field reconstructions requires a larger data set of well studies proxy records. Isotope

records of tree-ring cellulose from regions with sustained winter snow are potential sources for expanding the spatial coverage

for winter (Seftigen et al., 2011; Edwards et al., 2017). In more temperate climates such records could be used for reconstruct-

ing summer variability (Labuhn et al., 2016). Speleothem data could potentially also be used, however is a challenge to find465

high resolution continuous data sets due to growth hiatuses (e.g., de Jong et al., 2013). Newly updated isotope enabled climate

models (e.g., Cauquoin et al., 2019) shows the continual development of this field. This makes running new millennium length

model simulations attractive for the purpose of providing better sampling pools for finding model analogues to match the proxy

data. Although not shown in this study, reconstruction of precipitation is also possible using the analogue method. However,

in particularly
✿✿✿✿✿✿✿✿

particular for precipitation better model resolution is important to capture storm tracks and orographic effects.470

Finally, the indication found in this study of that is possible to capture the main SST patterns of the North Atlantic, makes this

approach a good supplement to marine records due to better precision of the dating of terrestrial records.
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Figure 1. a)-c) loadings of the first three PCs of ice core δ
18O for winter using 19 cores. d)-f) same as a)-c), but for modeled precipitation

weighted δ
18O for Nov-Apr at the sites of the 19 ice cores. Results for summer and annual data are very similar (not shown).
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Figure 2. Auto-correlation analysis for PC1 of monthly 20CR SLP (1851-2010). a) shows results for Feb-Jul and b) shows Aug-Jan. (+)

indicated significant correlations (p<0.01).
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Figure 3. a)-c) Correlation between reconstructed (8 ice cores) and reanalysis SLP, T2m and COBE SST for JJA. The reanalysis data has

been interpolated to the model grid (3.75o x 3.75o). Black markers indicated p<0.05 and white markers indicate p<0.025. Also indicated is

the mean correlation of all significantly correlated grid points (Mean sig. Corr.) (p<0.05) and the number of significant grid points (n). d)-f)

same as a)-c), but for DJF. g)-i) same as a)-c) but for DJF reconstructed from the winter centered annual mean ice core data. Supplementary

Figure S6
✿

S7
✿

shows corresponding figures for the reconstructions using 19 ice cores.
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Figure 4. a)-c) Correlation between reconstructed (8 ice cores) and reanalysis SLP, T2m and COBE SST for sum50 (May-Oct). The reanalysis

data has been interpolated to the model grid (3.75o x 3.75o). Black markers indicated p<0.05 and white markers indicate p<0.025. Also

indicated is the mean correlation of all significantly correlated grid points (Mean sig. Corr.) (p<0.05) and the number of significant grid

points (n). d)-f) same as a)-c), but for Win50 (Nov-Apr). g)-i) same as a)-c), but for the winter centered annual mean (Win100, Aug-Jul).

Supplementary Figure S7
✿✿

S8 shows corresponding figures for the reconstructions using 19 ice cores.
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series
✿✿

of
✿✿✿✿✿✿✿

Nov-Apr
✿✿✿✿✿✿

(sum50) -c
✿✿✿✿✿✿✿✿✿

temperature
✿✿

for
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

(yellow) regression of the first three reconstructed PCs of SLP on

✿✿✿

and reconstructed
✿✿✿✿✿✿✿

ensemble
✿✿✿✿

mean
✿

(
✿✿✿✿✿✿

sum50, 8 ice cores) JJA SLP, which corresponds to the reconstructed EOF patterns. d)-f
✿✿✿

(dark
✿✿✿✿

blue) same

as
✿✿✿

from
✿✿✿✿✿

Nuuk
✿

(a)-c), but for DJF
✿✿✿✿✿

Ilulissat
✿✿✿

(b)
✿✿✿

and
✿✿✿✿✿✿✿

Qaqortoq
✿✿✿

(c). These plots, with
✿✿✿✿

Light
✿✿✿✿

blue
✿✿✿✿✿✿

shading
✿

is
✿

the addition
✿✿

one
✿✿

σ
✿✿✿✿✿

spread
✿

of the plots

for DJF reconstructed (8 ice cores) from the winter centered annual mean ice core data, are shown in Supplementary Figure S9, as well as

corresponding plots for Sum50, Win50
✿✿✿✿✿✿✿✿✿

temperature and Win100 shown in Supplementary Figure S10. g)-i) regression of the first three 20CR

PCs of SLP on 20CR JJA SLP, which corresponds to
✿✿✿✿

green
✿✿✿✿

lines
✿✿✿✿✿✿✿

indicates the EOF patterns. j)-l) same as g)-i), but for DJF. These plots for

20CR data are also shown in Supplementary Figure S11, as well as corresponding plots for Sum50, Win50
✿✿✿✿✿

RMSE
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

observed

and Win100 shown in Supplementary Figure S12. The time period for all plots is 1851-1970. Only data shown for p<0.05
✿✿✿✿✿✿✿✿✿✿

reconstructed

✿✿✿✿✿✿✿✿✿

temperature.
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Figure 6.
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a)-c)
✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿

PCs
✿✿

of
✿✿✿✿

SLP
✿✿

on
✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿

(8
✿✿✿

ice
✿✿✿✿✿

cores)
✿✿✿

JJA
✿✿✿✿

SLP,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿

EOF
✿✿✿✿✿✿

patterns.
✿✿✿✿

d)-f)
✿✿✿✿

same
✿✿

as
✿✿✿✿✿

a)-c),
✿✿

but
✿✿✿

for
✿✿✿✿

DJF.
✿✿✿✿✿

These
✿✿✿✿

plots,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

addition
✿✿

of
✿✿✿

the
✿✿✿✿

plots
✿✿

for
✿✿✿✿

DJF
✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿

(8
✿✿✿

ice
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cores)

✿✿✿

from
✿✿✿

the
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winter
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centered
✿✿✿✿✿✿

annual
✿✿✿✿

mean
✿✿✿

ice
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core
✿✿✿✿

data,
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are
✿✿✿✿✿

shown
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in
✿✿✿✿✿✿✿✿✿✿✿✿

Supplementary
✿✿✿✿✿

Figure
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S10,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿

plots
✿✿✿

for
✿✿✿✿✿✿

Sum50,

✿✿✿✿✿

Win50
✿✿✿

and
✿✿✿✿✿✿

Win100
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Supplementary
✿✿✿✿✿✿

Figure
✿✿✿

S11.
✿✿✿✿

g)-i)
✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

three
✿✿✿✿✿

20CR
✿✿✿

PCs
✿✿

of
✿✿✿✿

SLP
✿✿✿

on
✿✿✿✿

20CR
✿✿✿✿

JJA
✿✿✿✿

SLP,
✿✿✿✿✿

which

✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿

the
✿✿✿✿

EOF
✿✿✿✿✿✿✿

patterns.
✿✿✿

j)-l)
✿✿✿✿

same
✿✿

as
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✿✿✿

but
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for
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DJF.
✿✿✿✿✿

These
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plots
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for
✿✿✿✿✿

20CR
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data
✿✿
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✿✿✿✿

also
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Supplementary
✿✿✿✿✿

Figure
✿✿✿✿

S12,
✿✿

as

✿✿✿

well
✿✿

as
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corresponding
✿✿✿✿

plots
✿✿
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Win50
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shown
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Supplementary
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Figure
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S13.
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The
✿✿✿✿

time
✿✿✿✿✿

period
✿✿

for
✿✿

all
✿✿✿✿

plots
✿✿

is
✿✿✿✿✿✿✿✿✿

1851-1970.

✿✿✿✿

Only
✿✿✿

data
✿✿✿✿✿

shown
✿✿✿

for
✿✿✿✿✿✿

p<0.05.
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Figure 7. Time series of reconstructed PC1, PC2 and PC3 of SLP using 8 ice cores (dark blue) and 19 ice cores (light blue) compared to

PC1, PC2 and PC3 of 20CR SLP (yellow). Smoothed curves are using a decadal FFT-filter. Top six plots are for JJA and bottom six plots are

for DJF.
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Figure 8. Correlation analysis for reconstructed PC1, PC2 and PC3 of SLP using 8 ice cores (triangles) and 19 ice cores (squares) correlated

to PC1, PC2 and PC3 of 20CR SLP covering 1851-1970 (a)-b) and e)-f)), correlation analysis for reconstructed PC1 SLP using 8 ice cores

(triangles) and 19 ice cores (squares) correlated to station based NAO covering 1824-1970 (c)-d)). The station based NAO is only valid

for winter and annual data due to the seasonal shift in the centers of action. Open markers indicate significance of p<0.1 and full markers

indicate p<0.05, while crossed out markers indicate p>0.1.
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Figure 9. Time series of the North Atlantic SST index (50oN-70oN, 70oW-0oW) for reconstructions using 8 ice cores (dark blue) and 19 ice

cores (light blue) compared to COBE SSTs (yellow). Smoothed curves are using a decadal FFT-filter. The top six plots are for JJA, DJF and

DJF reconstructed using the winter centered annual mean, while the bottom six plots are for sum50 (May-Oct), win50 (Nov-Apr) and the

winter centered annual mean Win100 (Aug-Jul).
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Figure 10. Correlation analysis of the North Atlantic SST index (No50-70oN, 70oW-0oW) for reconstructions using 8 ice cores (triangles)

and 19 ice cores (squares) correlated to COBE SSTs covering 1851-1970- The green markers are for the reconstructions including tree-ring

data. Open markers indicate significance of p<0.1 and full markers indicate p<0.05, while crossed out markers indicate p>0.1.
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Figure 11. a)-c) regression of the first three reconstructed PCs of SSTs on reconstructed sum50 JJA SSTs, which corresponds to the recon-

structed EOF patterns. d)-f) same as a)-c), but for DJF. Corresponding plots for reconstructions of sum50 (May-Oct), win50 (Nov-Apr) and

the winter centered annual mean (Win100, Aug-Jul) are shown in Supplementary Figure S13
✿✿✿

S14. g)-i) regression of the first three COBE

SST PCs on COBE JJA SSTs, which corresponds to the reconstructed EOF patterns. j)-l) same as g)-i), but for DJF. A corresponding figure

for 20CR sum50 (May-Oct), win50 (Nov-Apr), and the winter centered annual mean Win100 (Aug-Jul) can be found in the Supplementary

Figure S14
✿✿✿

S15. The time period for all plots is 1851-1970. Only data shown for p<0.05.
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Figure 12. Time series of reconstructed PC1, PC2 and PC3 of SSTs using 8 ice cores (dark blue) and 19 ice cores (light blue) compared to

PC1, PC2 and PC3 of COBE SSTs (yellow). Smoothed curves are using a decadal FFT-filter. Top six plots are for JJA and bottom six plots

are for DJF.
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Figure 13. Correlation analysis for reconstructed PC1, PC2 and PC3 of SSTs using 8 ice cores (triangles) and 19 ice cores (squares) correlated

to PC1, PC2 and PC3 of COBE SSTs covering 1851-1970. Open markers indicate significance of p<0.1 and full markers indicate p<0.05,

while crossed out markers indicate p>0.1.
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Figure 14.
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✿✿✿✿✿✿✿
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reconstructed
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from
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this
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study
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(JJA,
✿✿✿✿✿✿

sum50,
✿✿✿✿✿

DJF).
✿✿✿✿

The
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full
✿✿✿

line
✿✿✿✿✿✿✿
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significant
✿✿✿✿✿✿✿✿

correlation
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Glaser and Riemann (2009)
✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿

is
✿✿

in
✿✿✿✿✿✿✿

seasonal
✿✿✿✿✿✿✿✿✿✿✿

reconstruction,
✿✿✿

and
✿✿

in
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿✿✿✿✿✿✿

reconstruction

✿✿✿

after
✿✿✿✿✿

1500
✿✿✿

CE,
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which
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can
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seen
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in
✿✿✿

the
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change
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in
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variability.
✿✿✿
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✿✿✿✿
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✿✿✿✿✿✿✿
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✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Glaser and Riemann (2009)
✿✿✿✿

index
✿✿✿✿✿

prior
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✿✿✿✿

1500
✿✿✿

CE

✿

in
✿✿✿✿✿

b)-c)
✿✿

by
✿

a
✿✿✿✿✿

factor
✿✿

of
✿✿✿

1.5
✿✿

to
✿✿✿✿✿

make
✿✿

the
✿✿✿✿✿

figure
✿✿✿✿✿

easier
✿✿

to
✿✿✿✿

read.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

from
✿✿✿

this
✿✿✿✿✿

study
✿✿

we
✿✿✿✿✿✿

extract
✿✿✿

the
✿✿✿

area
✿✿✿✿✿

mean

✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

(T2m)
✿✿

for
✿✿✿

the
✿✿✿

box
✿✿✿✿✿✿✿✿✿

50oN-60oN
✿✿✿

and
✿✿✿✿✿✿✿✿

0oE-20oE
✿✿✿✿

using
✿✿✿✿

only
✿✿✿✿✿

values
✿✿

for
✿✿✿✿

land.
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Figure 15.
✿

a)
✿✿✿✿✿✿✿

Moving
✿✿✿✿✿✿✿

31-point
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

between
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reconstructed
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✿✿✿✿✿
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this
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study
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)
✿✿✿✿✿✿✿✿

(magenta),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ortega et al. (2015)
✿✿✿✿✿

(green)
✿✿✿

and
✿✿✿✿✿✿✿

observed
✿✿✿✿

NAO
✿✿✿✿✿✿

(yellow)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Jones et al., 1997)
✿

.
✿✿✿✿

Only
✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿

correlations
✿✿

are
✿✿✿✿✿✿

plotted
✿✿✿✿✿✿✿

(p<0.05).
✿✿

b)
✿✿✿✿✿✿✿✿

Ensemble

✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

reconstructed
✿✿✿✿

NAO
✿✿✿✿

(PC1
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of
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reconstructed
✿✿✿✿

SLP
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hurrell et al., 2003))
✿✿✿✿

with
✿✿✿✿

error
✿✿✿✿✿✿✿

estimated
✿✿

by
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

spread
✿✿✿

and
✿✿✿✿✿

RMSE,
✿✿✿✿✿✿✿✿

compared
✿✿

to

✿✿✿✿✿✿

observed
✿✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Jones et al., 1997)
✿✿✿

and
✿✿✿✿

NAO
✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cook et al. (2019)
✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ortega et al. (2015).
✿✿✿✿

The
✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿

all
✿✿✿✿

time
✿✿✿✿✿

series

✿✿

are
✿✿✿✿✿

scaled
✿✿

to
✿✿

fit
✿✿✿

the
✿✿✿✿✿✿

decadal
✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

observed
✿✿✿✿✿

NAO.
✿

c)
✿✿✿✿✿

Same
✿✿

as
✿✿

b),
✿✿✿✿✿

except
✿✿✿✿✿✿

filtered
✿✿✿

with
✿✿

a
✿✿

30
✿✿✿✿

point
✿✿✿✿✿

’loess’
✿✿✿✿✿

filter.
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Table 1. Tree-ring sites used to constrain summer reconstructions 1241-1970, with correlations to observed mean temperature from

Wilson et al. (2016) for the indicated months.

Location Site

name

Long. Lat. Time period Corr. with

CRUTS3.2

1901-present

Scotland SCOT 57.08 -3.44 1200-2010 JA: 0.75

E Alps - Tyrol TYR 47.30 12.30 1053-2003 JAS: 0.72

Jaemtland JAEM 63.30 13.25 783-2011 AMJJAS: 0.75

Tjeggelvas, Arjeplog,

Ammarnäs composite

TAA 65.54-66.36 16.06-18.12 1200-2010 MJJA: 0.81

North Fenno EFmean 66-69 19-32 750-2010 JJA: 0.76

Forfjorddalen FORF 68.47 15.43 978-2005 JA: 0.71

Tatra TAT 48-49 19-20 1040-2010 MJ: 0.45

South Finland SFIN 62.19.30 28.19.30 760-2000 MJJA: 0.71

Table 2. Reconstructions featured in this study. A total of twelve reconstructions are done using 6 data sets, e.g. both the reconstructions for

JJA and Sum50 use the same ice core data representing the summer season May-Oct, but targeting the differently defined summer seasons

by extracting either JJA or May-Oct from the model output. The number of ensemble members (no. ens.) are given in parenthesis for each

set of seasons. The winter reconstruction for DJF using 8 ice cores covering 1241-1970 is published in Sjolte et al. (2018).

Data set and time span 19 cores, 1777-1970 8 cores, 1241-1970

Seasons (no. ens.) JJA/Sum50 (31) JJA/Sum50 (39)

Seasons (no. ens.) DJF/Win50 (34) DJF/Win50 (39)

Seasons (no. ens.) DJF/Win100 (33) DJF/Win100 (39)
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Table 3. Summary of the mean of significant correlations (Mean sig. corr.) and number of grid points with significant correlation (n) from

Figure 3 and 4. Results in columns Sum50∗ and JJA∗ are for the reconstructions using tree-ring data.

Sum50

Short

Sum50

Long

Sum50∗

Long

Win50

Short

Win50

Long

Win100

Short

Win100

Long

JJA

Short

JJA

Long

JJA∗

Long

DJF

Short

DJF

Long

DJFwin100

Short

DJFwin100

Long

CorrSLP 0.22 0.22 0.22 0.25 0.26 0.25 0.26 0.22 0.21 0.22 0.26 0.27 0.26 0.25

CorrT2m 0.24 0.26 0.31 0.28 0.28 0.27 0.30 0.23 0.22 0.32 0.30 0.29 0.27 0.27

CorrSST 0.22 0.22 0.26 0.24 0.26 0.26 0.27 0.22 0.21 0.27 0.26 0.28 0.24 0.25

NSLP 69 58 61 451 429 310 337 86 42 120 433 477 511 469

NT2m 135 101 266 311 249 225 264 116 77 247 283 308 218 227

NSST 56 26 138 95 103 124 113 71 31 116 85 92 95 59
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Table 4. Correlation between reconstructed and observed temperature for Greenland coastal stations (1874-1970) and the Icelandic station,

Stykkisholmur (1831-1970). Bold marks p<0.05, (*) marks p<0.10. The low pass filter is a decadal FFT filter.

19 ice cores Sum50 Low pass Win50 Low pass Win100 Low pass

Stykkisholmur 0.32 0.48 0.33 0.44 0.25 0.17

Nuuk 0.19 0.33 0.58 0.35 0.52 0.47

Ilulissat 0.18* 0.35 0.53 0.48 0.45 0.40

Qaqortoq 0.24 0.34 0.56 0.40* 0.53 0.44*

SWG index 0.22 0.38* 0.59 0.42* 0.52 0.44

8 ice cores Sum50 Low pass Win50 Low pass Win100 Low pass

Stykkisholmur 0.33 0.38* 0.33 0.53 0.28 0.37*

Nuuk 0.24 0.36* 0.60 0.53 0.58 0.56

Ilulissat 0.19 0.39* 0.56 0.60 0.50 0.52

Qaqortoq 0.27 0.45 0.60 0.65 0.59 0.59

SWG index 0.26 0.44 0.63 0.63 0.58 0.56

19 ice cores JJA Low pass DJF Low pass DJFwin100 Low pass

Stykkisholmur 0.27 0.58 0.35 0.41 0.27 0.20

Nuuk 0.10 -0.03 0.56 0.49 0.45 0.45

Ilulissat 0.09 0.27 0.56 0.67 0.41 0.42

Qaqortoq 0.22 0.43* 0.52 0.49 0.48 0.41*

SWG index 0.15 0.29 0.58 0.57 0.47 0.45

8 ice cores JJA Low pass DJF Low pass DJFwin100 Low pass

Stykkisholmur 0.29 0.50 0.27 0.41 0.29 0.34

Nuuk 0.18* 0.14 0.57 0.53 0.49 0.47

Ilulissat 0.07 0.29 0.58 0.70 0.47 0.55

Qaqortoq 0.25 0.43* 0.57 0.62 0.52 0.50

SWG index 0.21 0.35 0.61 0.67 0.52 0.52
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