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Abstract. The isotopic signal (δ18O and δD) imprinted in ice cores from Antarctica is not solely generated by the temperature

sensitivity of the isotopic composition of precipitation but also contains the signature of the intermittency of the precipitation

patterns as well as of post-deposition processes occurring at the surface and in the firn. This leads to a proxy signal recorded

by the ice cores that may not be representative of the local climatic variations. Due to precipitation intermittency, the ice cores

only record brief snapshots of the climatic conditions, resulting in aliasing of the climatic signal, and thus a large amount5

of noise which reduces the minimum temporal resolution at which a meaningful signal can be retrieved. The analyses are

further complicated by isotopic diffusion, which acts as a low pass filter that dampens any high frequency changes. Here, we

use reanalysis data (ERA-Interim) combined with satellite products of accumulation to evaluate the spatial distribution of the

numerical estimates of the transfer function that describes the formation of the isotopic signal across Antarctica. As a result,

the minimum time scales at which the signal-to-noise ratio exceeds unity range from less than a year at the coast to about10

thousand years further inland. Based on solely physical processes, we are thus able to define a lower bound for the time scales

at which climate variability can be reconstructed from the isotopic composition in ice cores.

1 Introduction

Ice cores are key archives of past climatic conditions (Jouzel and Masson-Delmotte, 2010, and references therein) as a wide

range of climatic parameters are recorded in the physical and chemical composition of the ice itself and of the air bubbles15

trapped within. Water isotopes are commonly used as a past temperature proxy due to the sensitivity of the isotopic composi-

tion to atmospheric temperature variations over the course of the water cycle (Dansgaard, 1964; Lorius et al., 1969). Antarctic

ice cores have been used to reconstruct continuous high resolution temperature time series dating back 800 000 years (Petit

et al., 1999; EPICA, 2004; Kawamura et al., 2017). Ice core water isotope data have also been used to compare rapid (e.g.

Dansgaard–Oeschger) events between the Arctic and Antarctica (EPICA, 2006; Markle et al., 2017) or to provide a context20

for the recent climate change (Stenni et al., 2017). Even though the amount of water needed to analyse water isotopes is very

small (Jones et al., 2017a), inhomogeneous deposition and diffusion together with the annual layer thickness limit the tempo-

ral resolution of the climatic signal that can be retrieved from isotopes. As a result, ice cores from high accumulation areas

such as Coastal Antarctica (Morgan, 1985; Masson-Delmotte et al., 2003; Küttel et al., 2012; Vega et al., 2016; Caiazzo et al.,
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2017; Goursaud et al., 2018) and West Antarctica (Markle et al., 2017) could be used to achieve up to seasonal resolution in25

temperature reconstructions, while ice cores from low accumulation areas such as the East Antarctic Plateau cannot be used to

achieve a temporal resolution below decadal, or even multi-decadal (Petit et al., 1982; Ekaykin et al., 2002).

Due to how the signal is imprinted into the water isotopic composition in the ice of Antarctica, there are fundamental limits

to the reconstruction of past temperatures based on water isotopes (Petit et al., 1982; Casado et al., 2017). For instance, before30

the precipitation forms near the deposition site, the isotopic composition of the atmospheric moisture keeps an imprint of all

the fractionation processes that occurred since the water evaporated in the mid-latitudes (Craig and Gordon, 1965), including

the subsequent condensation events that occurred while the air masses moved to high latitudes (Dansgaard, 1964). Moreover,

the local climatic signal is only archived in the snow when there is a precipitation event (Steig et al., 1994; Werner et al., 2000;

Sime et al., 2009) which introduces a bias and aliasing in the recorded signal (Laepple et al., 2011; Persson et al., 2011; Sime35

et al., 2011; Casado et al., 2013, 2018). Even after the deposition, in central Antarctica, the accumulation not only depends on

the precipitation input (Genthon et al., 2015), but is also affected by blowing snow, moving the snow layers several times be-

fore they eventually settle (Picard et al., 2019), thereby redistributing and mixing snowflakes of different isotopic composition

which leads to significant stratigraphic noise in the firn isotopic composition (Fisher et al., 1985; Ekaykin et al., 2002; Münch

et al., 2016). In addition, isotopic diffusion in the firn acts as a low pass filter that erases part of the climatic signal (Johnsen,40

1977; Johnsen et al., 2000; Gkinis et al., 2014; Laepple et al., 2018).

Overall, although the isotopic composition of precipitation in Antarctica is relatively well correlated with local temperature,

both spatially and temporally (Landais et al., 2012; Stenni et al., 2016), the surface snow isotopic composition often is not

(Touzeau et al., 2016), which suggests that it includes more processes than just precipitation as an input (Casado et al., 2018).45

In addition, comparisons of the statistical properties of the seasonal climate signal and the isotopic profiles in snow-pits have

suggested that there is a large amount of noise (up to 90% of the total variance) in the input isotopic signal (Laepple et al., 2018).

It is important to determine the origin of this noise, since post-deposition processes (wind blowing, sublimation/condensation

at the surface, metamorphism, etc.) only affect the signal locally and are characterised by decorrelation lengths of the order

of five to ten metres (Münch et al., 2017), while precipitation intermittency will have an effect over hundreds of kilometres,50

as suggested by an analysis of the spatial extent of the precipitation simulated by a regional climate model (Agosta et al., 2019).

While there is generally a high degree of confidence in ice cores being able to yield good results as an isotopic paleother-

mometer on long time scales (from multi-decadal to millennial), the climatic signal in the ice core on shorter time scales

(seasonal to inter-annual) is often difficult to interpret, especially at low accumulation sites (Frezzotti et al., 2007). Although55

technical advances in analytical techniques (Jones et al., 2017b) have immensely improved the sampling resolution without

any additional analytical costs, there is still a need to identify the minimum time scales at which it is possible to recover a

meaningful climatic signal from the ice cores’ isotopic composition. In other words, what is the theoretical lower limit for the

time scale at which a meaningful climatic signal can still be reconstructed from water isotopes in ice cores? Here, we present
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two simple modelling approaches involving virtual ice cores to identify the minimum resolution at which a climatic signal60

can be retrieved from the snow’s isotopic composition in Antarctica at a predefined level of quality (signal-to-noise ratio).

This approach will provide a theoretical understanding of the limitations of ice core records, particularly at low accumulation

sites where the snow remains exposed for a long time before being buried. By combining approaches from Sime et al. (2011),

Persson et al. (2011), and Laepple et al. (2018) we construct a forward model of virtual ice cores that includes (i) the climatic

signal, (ii) precipitation intermittency, (iii) isotopic diffusion, and (iv) measurement noise. The relative importance of each of65

these four contributions is then compared in a conceptual spectral model to determine the lower bounds for the time scale

above which a meaningful reconstruction is possible.

2 Data and methods

2.1 Forward model for ice core records

Following Sime et al. (2011) and Laepple et al. (2018), we developed a simple forward model that uses temperature and precip-70

itation time series to simulate virtual ice cores. For each precipitation event, the model determines the corresponding amount

of snow and applies an isotopic composition that is determined by the temperature during the event. The model also accounts

for diffusion, and it outputs vertical depth series that can be dated to produce isotopic time series.

Temperature is converted to isotopic composition assuming a linear relationship with a constant slope of 0.46 ‰ ◦C−175

(Touzeau et al., 2016). We chose to use the same slope for all of Antarctica as this will allow us to distinguish between the

noise generated by different distillation paths and the noise due to precipitation intermittency. A large range of slopes are

reported in the literature, but in our case, the uncertainty on the value of the slope does not affect our main conclusions as

both the input signal and the noise scale with the same coefficient. A different value for the slope only affects our results when

considering the impact of measurement uncertainty: while the assumed isotopic signal and noise from intermittency scale with80

the slope, the measurement uncertainty stays constant and thus its relative impact changes.

Precipitation intermittency is computed as follows: every six hours (model time step) a new layer of snow is added to the pre-

vious stack with an isotopic composition determined by the temperature (first input of the model) and a thickness determined by

the amount of precipitation (second input), converted to snow height using a snow density of 350 kgm−3. This has two effects:85

(i) days without precipitation events will not leave any signature on the virtual ice core, and (ii) the statistical weight of the

temperature on days with precipitation events is increased with the amount of precipitation. This yields an intermittent virtual

core, whose total depth (in metres) is the product of the duration of the input signal (a) and the mean accumulation rate (ma−1).

For the sake of simplicity, missing noise that could be introduced when the signal is archived (stratigraphic noise, meta-90

morphism, etc.) is parametrised as a redistribution of the signal power across all frequencies prior to diffusion, equivalent to a

random reshuffling of the signal in the time domain (Münch et al., 2016). In practise, this is implemented by adding temporally
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independent white noise to the intermittent virtual core and renormalising the variance of the total signal (intermittent virtual

core + white noise) to the variance of the original signal (intermittent virtual core only) (Laepple et al., 2018). The added white

noise is controlled by two parameters: (i) the relative amount of noise compared to the input signal (0 to 100%) and (ii) the95

resolution at which the noise impacts the signal (from 1 to 10 cm). The noise module in the model is used to assess the impact

of additional noise sources on precipitation intermittency and isotopic diffusion.

Diffusion is applied using the classical isotopic diffusion scheme (Johnsen, 1977; Johnsen et al., 2000; Gkinis et al., 2014)

of convolving the depth series with a Gaussian kernel (Johnsen et al., 2000) following Fick’s law. It is characterised by a depth-100

dependent diffusion length (Laepple et al., 2018) that is computed for each site based on the local temperature, accumulation

rate, atmospheric pressure, and the snow density. We model the snow density profiles using the Herron and Langway model

(Herron and Langway, 1980) assuming a constant surface density of 350 kgm−3 and setting the temperature of each site to the

ERA-Interim grid point value. Atmospheric pressure is kept constant at 650 mbar. The impact of both the constant atmospheric

pressure and surface snow density on the diffusion length is minimal and allows for a straightforward comparison of different105

sites.

The virtual records (intermittent virtual core and diffused virtual core) are block-averaged to create a 1 cm vertical resolution,

similar to what can be achieved with manual sampling of ice cores. The virtual ice cores are perfectly dated by tagging the

formation date and time to each layer. During the block-averaging to 1 cm, we also block-average the date tags to obtain the110

average age of each 1 cm layer. The perfect dating can be used to compare the original climatic signal to the generated virtual

cores, in an optimistic case (without age uncertainty, equivalent to every snow layer being perfectly dated). To do so, we do a

linear interpolation of the virtual ice core to the original date coordinates of the input data. Indeed, the original climatic depth

series typically shows a rather poor correlation with the generated virtual cores as their respective depth axes move quickly out

of phase due to the large interannual variability in precipitation, which creates years accounting for thicker/thinner layers when115

the amount of precipitation is large/small. In contrast, a perfect record would only contain the climatic signal and produce

the same layer thickness each year. The perfect dating enables to synchronise the virtual cores’ time series on the climatic

signal in order to provide an upper bound of how meaningful a reconstruction be would be ignoring dating issues. In most of

the manuscript, a more realistic case study is presented for which a constant accumulation rate is considered between two tie

points (39 years in the manuscript, with sensitivity tests presented in Supplementary Materials S3).120

2.2 Input time series and correction

As inputs we use a 39-year (1979–2018) time series of 2m air temperature (T) and total precipitation (P), both from ERA-

Interim re-analysis (Dee et al., 2011) at a temporal resolution of six hours and a spatial resolution of approximately 80 km

(T255 spectral truncation).

125
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The ERA-Interim temperature data provide good approximations of the spatial and temporal variations of the temperature

observed in in-situ data from Antarctica (Genthon et al., 2013; Medley et al., 2013; Jones and Lister, 2015). However, compared

to satellite products and in-situ ice core records, the ERA-Interim data overestimates the amounts of total precipitation by 50

to 95% (Arthern et al., 2006; Thomas et al., 2017). This is to be expected as precipitation amounts do not directly contribute to

the local accumulation in Antarctica, especially in Central Antarctica where up to 90% of the local accumulation can be blown130

away by wind (Picard et al., 2019) and more than 10% of the total surface mass balance can be associated with sublimation

and condensation (Genthon et al., 2017). Nevertheless, precipitation occurrence tends to correlate well with in-situ snowfall

events in the interior of Antarctica (Medley et al., 2013; Libois et al., 2014), and with ice core records from Antarctica (Sime

et al., 2011). This supports the use of ERA-Interim precipitation since a well-captured precipitation variability is needed to

realistically model the precipitation intermittency.135

However, since the diffusion length depends on the amount of accumulation, we need to compensate for the difference

between precipitation and accumulation. This is achieved by applying an individual linear correction at each grid point of

the reanalysis product. The correction matrix was generated using satellite data of snow accumulation (Arthern et al., 2006),

that were corrected before to match the accumulation obtained in ice core records (Thomas et al., 2017) with the follow-140

ing procedure. For the virtual cores to have the same accumulation as actual ice cores, we used a reference accumulation

rate for the years from 1960 to 2016 from a recently established database of regional Antarctic snow accumulation from ice

core records over the past 1000 years (Thomas et al., 2017). We selected all the ice cores sites with accumulations ranging

from 20 to 400 kgm−2 a−1 that had overlap with the ERA-Interim time series (in total 71). The accumulation range upper

limit (400 kgm−2 a−1) was chosen to be representative of the low accumulation rates of the deep ice core sites (in general145

<100 kgm−2 a−1) where the results are more sensitive to the use of an accurate accumulation rate. We then did a spatial linear

regression between the satellite derived accumulation (Arthern et al., 2006) for these 71 sites and the ice cores observations,

and used the produced regression to calibrate the satellite data of snow accumulation on the ice core accumulation rates. Finally,

we interpolated the corrected satellite product to ERA-Interim grid, and used the corrected satellite product as a reference for

the accumulation, normalising the precipitation amount of ERA-Interim to match this reference.150

The impact of this correction was then assessed using the uncorrected ERA-Interim amount of precipitation (See Supple-

mentary Material S2). This affects the results locally as values of accumulation will not match reality, thereby changing the

diffusion length while the modelled impact of precipitation intermittency and stratigraphic noise for a given accumulation

amount remain unaffected.155

In addition, we use the millennial CMIP5 climate model simulations to compare our results with longer time series than the

ones produced by ERA-Interim. We use the past1000 simulations from eight General Climate Models (GCM), namely BCC-

CSM1-1, CCSM4, CSIRO-Mk3L-1-2, FGOALS-gl, GISS-E2-R, IPSL-CM5A-LR, MIROC-ESM, MRI-CGCM3 that cover

the last 1000 years and include the historical solar and volcanic forcing (Bothe et al., 2013).160
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2.3 Evaluating the signal-to-noise ratio in the spectral domain

In a second modelling approach, we employ a method in the frequency domain (spectral method) to evaluate the ice core signal

as a combination of (i) the climatic signal, (ii) noise linked to precipitation intermittency, (iii) additional noise of unknown

origin, (iv) a low pass filter due to isotopic diffusion, and (v) measurement noise. The purpose of this spectral approach is to

produce time-scale dependent signal-to-noise ratios (SNR) that allow estimations of the time scales at which ice cores will be165

correlated with the climatic signal. We make use of the outputs of the forward model (Sect. 2.1) to parameterise this conceptual

spectral model.

In the spectral domain, the noise added by precipitation intermittency originates from sub-sampling the climatic signal

(dominated by the seasonal cycle) which in turn leads to aliasing as only the temperatures during precipitation events are170

recorded. Empirically, precipitation events are largely random in Antarctica (Genthon et al., 2003; Rémy and Parrenin, 2004;

Turner et al., 2019). During the aliasing of a signal by random sub-sampling, the superimposed noise is white (Thomson and

Robinson, 1996). The whiteness of the precipitation intermittency noise is confirmed by numerically examining the impact of

precipitation intermittency using ERA-Interim data (Fig. 4). Thus, throughout this manuscript, we use this approximation and

consider the added noise as white.175

To evaluate the extent to which the climatic signal is preserved in the ice core record as a function of time scale, we assess

the minimum time scale τ at which the SNR reaches a value of 1, denoted in the following as the signal retrieval time scale.

In any proxy record containing a climatic signal and noise, the SNR and the correlation between the record and the climatic

signal are linked via180

r2 =
SNR

1+SNR
. (1)

As a result, the signal retrieval time scale will correspond to a correlation with the climate signal of r =
√
0.5∼ 0.71.

The SNR can be defined in two ways. First, one can analyse the SNR at a specific frequency after filtering the ice-core

time series with a narrow bandpass filter, in which case we refer to the signal retrieval time scale as τb, where the subscript b185

stands for bandpass. Second, and more commonly, the ice-core time series results from averaging a higher-resolution record to

a fixed temporal resolution, either by discrete sampling in the depth domain or by block-averaging the dated record to a specific

resolution, e.g. annual or decadal resolution. In this case, we refer to the signal retrieval time scale as τa, where the subscript a

stands for averaging.

190

Formally, τb is given by the critical frequency fb = 1/τb, for which the direct ratio of the signal and noise spectra reaches 1,

SNR(fb) = S(fb)/N (fb) = 1 (2)
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Figure 1. Schematic of the signal-to-noise ratio (SNR) estimate using the power spectral density (PSD): (a) idealised PSD of the climatic

signal (red) and of the archiving noise (green) which consists of noise induced by precipitation intermittency and stratigraphic noise; (b)

impact on the same PSDs of the effect of diffusion (light colours: before diffusion, dark colours: after diffusion) and of measurement noise

(black).

where S and N are the power spectral densities (PSDs) of the signal and the noise. To obtain τa, the PSDs of the signal and

noise have to be integrated to that critical frequency fa = 1/τa, for which the ratio of the integrated spectra reaches 1,

SNR(fa) =

∫ fa
1/LR

S(ν)dν∫ fa
1/LR

N (ν)dν
= 1 (3)195

where LR is the length of the record (either in years or in metres). Graphically, this is given by the ratio of the area representing

the signal excess Asignal to the area representing the noise excess Anoise (Fig. 1a). Note that due to the Shannon-Nyquist

theorem, the actual resolution of the record would have to be τa/2 in order to obtain an SNR of 1 at the frequency 1/τa.

However, here we use τa for the signal retrieval time scale in order to ease the comparison with τb. If the signal is redder than
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the noise, τa will be smaller than τb.200

With regard to precipitation intermittency, assuming that the noise related to the aliasing of the climatic signal is white, we

can estimate the amount of noise contained at the interannual to decadal scales using ERA-Interim data and then apply it to

lower (centennial and millennial) frequency ranges. We then compare the amount of climatic signal (provided independently)

to the constant white noise due to precipitation intermittency and estimate the frequency at which the SNR reaches a value of 1.205

In addition to the noise induced by precipitation intermittency, several other sources of noise can influence the signal recorded

by ice cores such as stratigraphic noise (Fisher et al., 1985), and we combine all types of noise in this method to the collective

term of archiving noise (Fig. 1a).

Adding the impact of diffusion results in a convolution of both the signal and the archiving noise with the diffusion transfer210

function (Fig. 1b) and thus does not directly affect the SNR, which is also reflected by the fact that diffusion can be inverted

("back diffusion") (Münch and Laepple, 2018). However, in practice, additional measurement noise is added to the signal

after the diffusion has taken place, which limits the potential of back-diffusion. We include this effect in the estimation of the

signal retrieval time scales by adding a measurement noise offset to the initial archiving noise after diffusion (Fig. 1b). This

additional noise reduces the area of excess signal and increases the area of excess noise, thereby reducing the frequency at215

which the correlation between an ice core record and the climatic signal reaches r2 = 0.5.

2.4 Comparison with PSD from snow pits in Antarctica

We compare our results with snow-pit data from three deep ice-core sites in Antarctica (West Antarctic Ice Sheet, WAIS;

EPICA Dronning Maud Land, EDML; and Dome C). These three sites were chosen to illustrate a large range of climatic

conditions for which we expect different signal retrieval time scales: WAIS with an expected close-to-annual signal retrieval220

(Jones et al., 2018), EDML as an intermediate site for which it has been shown that only decadal signals and longer can be

retrieved (Münch and Laepple, 2018), and Dome C as a site where we expect to have even longer signal retrieval time scales

(Petit et al., 1982).

The WAIS site is located in West Antarctica (79.5°S, 112°W) and the dataset selected for this study includes two 30m225

vertical profiles of isotopic composition, including the WAIS Divide ice core (WAIS Divide Project members, 2013) and a

shallow core obtained in 2006 (Jones et al., 2018). Considering the local accumulation (around 220 kgm−2 a−1 w.e.), this

depth range covers more than 39 years of snow accumulation, and thus encompasses the period covered by ERA-Interim in

this study. From the EDML site located in East Antarctica (75.0°S, 0.1°E) we use here two 3.5m profiles of average isotopic

composition obtained from trench studies (Münch et al., 2017) as well as two 12m cores (B41 and B50; Laepple et al., 2018).230

Finally, from the East-Antarctic site of Dome C (75.1°S, 123.3°E), we include three snow pits covering between 1m and 3.5m

depth (Touzeau et al., 2016; Casado et al., 2018).
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3 Results

3.1 Illustrating the methodological approach

In order to illustrate the methodological approach and the results of the forward model, we choose the EDML site near Kohnen235

Station, for which a large number of snow pits are available (Münch et al., 2017; Laepple et al., 2018).

A first virtual core is generated for the pure climate signal (Fig. 2b) which corresponds to a perfect record as each day is

archived and no information is lost. The climatic signal at EDML is dominated by the seasonal cycle, as for most sites in

Central Antarctica, which leads to a large peak in the PSD at the frequency that corresponds to the local accumulation and a240

smaller peak corresponding to the second harmonic (Fig. 2c).

Since water isotopes create an archive of the temperature conditions only during precipitation events, many days will not be

recorded. In addition, large precipitation events will lead to thicker layers of snow which in turn have a stronger statistical im-

pact on the overall signal recorded in the ice core (Fig. 2d). These effects are included in the precipitation intermittency virtual245

core (Fig. 2e). Here, the amount of variance is reduced, as the precipitation events in winter are often associated with warmer

than average conditions, which leads to an under-representation of the coldest conditions and a warm bias in the isotopic record

(Noone et al., 1999; Casado et al., 2018). As a result, the difference between the precipitation-weighted temperature and the

actual temperature is larger in winter than in summer (Fig. S4). Indeed, the amount of lost variance (the difference between the

variances of the intermittent and the climatic virtual cores) is throughout Antarctica positively correlated with the difference250

between the mean value of the intermittent virtual core and the climatic core (r2 = 0.34, n = 12128, p < 0.05). This suggests

that part of the variance reduction is related to the under-sampling of the colder winter conditions (Fig. S4). Overall, the total

amount of variance preserved in the intermittent virtual core ranges from 30 to 100% of the amount of variance observed in

the climatic signal. However, the PSD of the intermittent virtual core is very different from the climatic signal, and the large

amount of variance at the frequency equivalent to 1 year in the climatic signal is reduced, since precipitation intermittency255

redistributes the very strong seasonal signal across all frequencies, as can be seen from the example of EDML (Fig. 2f).

Our modelling approach produces profiles of isotopic composition which can be plotted either against depth or against time.

Analysing the depth series, we observe no correlation between the intermittent and the climatic virtual cores, since the seasonal

cycles are out of phase due to the interannual variations in the amount of precipitation. Analysing the time series, assuming that260

each layer is perfectly dated (perfect dating assumption), we obtain for EDML a correlation of r = 0.85 (p < 0.05) between

the virtual core and the climate signal.

Accounting for diffusion reduces the variance (Fig. 2h) mainly due to the damping of high frequency variations. At EDML,

the diffusion low-pass filter starts to have a strong effect at frequencies corresponding to length scales smaller than the local265

accumulation rate, i.e. at the interannual scale. Under the perfect dating assumption, the diffused core is correlated to the
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Figure 2. Description of the archival processes included in the forward model that lead to a loss of signal in the snow isotopic composition.

Examples are for EDML: (a) idealised temperature time series with rare precipitation events (capital letters A to G); (b) climatic virtual

core: actual temperature time series converted to an isotopic profile for the case of constant daily precipitation; (c) power spectral density

of the climatic virtual core in (b); (d) schematic illustrating the impact of precipitation intermittency on the layering of the isotopic profiles;

(e) intermittent virtual core: isotopic composition after precipitation intermittency has affected the signal; (f) power spectral density of the

intermittent virtual core in (e); (g) schematic illustrating the impact of snow redistribution and isotopic diffusion on the snow layering; (h)

diffused virtual core: isotopic composition after precipitation intermittency and diffusion have impacted the signal, (i) power spectral density

of the diffused virtual core in (h).

climatic signal with r = 0.22 (p < 0.05), mainly due to the most recently deposited near-surface layers that have not been
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diffused yet. This is visible in the PSD of the diffused core as a peak remaining near the frequency that corresponds to the

annual accumulation (Fig. 2i).

3.2 Outputs of the forward model across Antarctica270

By producing similar virtual cores for each grid point of the ERA-Interim reanalysis product, we can illustrate the impact of

the archival processes on the signal by comparing the correlation of the virtual cores of each site with the climatic signal under

a perfect dating assumption (Fig. 3). Precipitation intermittency alone (Fig. 3a) only slightly reduces the correlation of the full

time series (mean correlation across Antarctica: r = 0.88, p < 0.05). As the seasonal cycle clearly dominates the signal by

roughly two orders of magnitude in the frequency range covered by ERA-Interim (Fig. 2c), the correlation is reduced at a large275

number of interior sites when applying a two-year running mean filter (henceforth referred to as interannual low-pass filter),

which illustrates the aliasing effect due to precipitation intermittency at interannual and decadal scales (Fig. 3c).
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Figure 3. Maps showing the correlation between the climatic signal and perfectly dated virtual cores: (a) and (c) precipitation intermittency

only (green); (b) and (d) precipitation intermittency and diffusion (blue). The top panels (a) and (b) present the correlation using the complete

time series, while the bottom panels (c) and (d) show the correlation for the time series smoothed with a two-year running mean filter.

After diffusion, the correlation between the virtual core and the climatic signal drops on the East Antarctic Plateau, Marie

Byrd Land, and the Ross Ice Shelf (Fig. 3b). Part of the remaining correlation is due to remnants of the seasonal cycle that280
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have been preserved (mean correlation across Antarctica of r = 0.50). By filtering out any signal below the interannual scale,

large areas exhibit a drop in correlation, particularly in the interior (Fig. 3d). In areas that exhibit a drop in correlation while the

forward model shows significant correlation with the climate signal at sub-annual resolution (up to r = 0.9), there is no power

of reconstruction, because the artificial signals at interannual scales due to precipitation intermittency make it impossible to

retrieve any climatic signal.285

The perfect dating assumption corresponds to an ideal case for which each layers of snow is dated. This is in most cases

unrealistic, for instance, in the case of EDML, this corresponds to dating snow layers every 16 days on average. In the following

part of the manuscript, we include a more general case for ice core records interpretation for which the conversion from depth

to age is done by considering a constant accumulation rate in between two tie points. In this study, we use the full dataset of290

ERA-interim (39 years) to calculate the accumulation, leading to a dating interval of roughly 40 years, over which the average

accumulation rate is used to convert the results from the depth domain to the time domain. This value is realistic considering

that the most common tie points for ice core records (volcanic ashes layers) rarely occur more often than this (Gautier et al.,

2016). Sensitivity tests on the impact of the dating interval on the results are presented in Supplementary Materials S3.

3.3 Impact of intermittency on long time scales295

In order to investigate the effect of precipitation intermittency for time scales relevant in ice-core studies, we extend our results

up to centennial and millennial time scales, in the case where the dating relies on constant accumulation rate for in between tie

point with dating interval of roughly 40 years. As the ERA-Interim time series input we use only covers 40 years, we do this

by making use of (i) the approximation that the noise generated by precipitation intermittency is white (see Sect. 2.3), and (ii)

general assumptions on the spectrum of the climatic signal.300

We estimate the noise level added by precipitation intermittency from the difference between the power spectral densities of

the intermittent virtual core and the climatic signal virtual core over the interannual and decadal scales (more specifically, for

frequencies below 3/2 a−1, hatched area in Fig. 4). As the noise is white, we generalise this level to longer time scales (see

the dashed line in Fig. 4). For instance, in the case of EDML, we obtain a white noise level of 0.59 ‰2 m using the difference305

between the intermittent virtual core (green curve) and the climatic virtual core (red curve). For the period covered by ERA-

Interim, the signal strength never reaches this noise level at EDML, except for the frequency associated with the seasonal cycle

(Fig. 4). In consequence, the SNR-based correlation at interannual scales between the intermittent virtual core and the climatic

signal will be below r2 = 0.5, and specifically the time series correlation obtained by comparing the virtual cores at EDML is

r2 = 0.15.310

To obtain an input climatic signal for longer time scales, we use in a first step the spectra of the 1000-year long forced

simulations from the CMIP5 model ensemble. For this, we first produce the PSDs of the temperature data for the last 1000

years for each grid point of the eight CMIP5 models from the past1000 runs. We then resample this field of temperature PSDs
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Figure 4. Comparison of the amount of noise generated by precipitation intermittency and different hypothesis for the climatic signal for the

site of EDML: PSD generated by the forward model for the climatic signal (red) and the precipitation intermittency (green) virtual cores;

area where the noise level added by precipitation intermittency is calculated (hatched zone) and noise level threshold (hatched line); and

several hypothesis for the climatic signal input over 1000 years. The signal retrieval time scales τb (see Sect. 2.3) are given as the intersection

of the noise level and the climatic signal inputs.

to the ERA-Interim grid and convert the spectra to δ18O units (see Sect. 2.1). The results show (grey lines in Fig. 4) that while315

some individual models predict a sufficiently strong signal that exceeds the noise created by precipitation intermittency, the

SNR for the average signal remains below 1.

Next, we consider alternative assumptions to GCMs regarding the climate variability on longer time scales, which might

more accurately represent the amount of variance observed in ice cores. One of the simplest parametrisations to describe the320

observed climate variability over a large range of time scales is to assume a power-law relationship for the PSD of the signal

S(f) (Huybers and Curry, 2006; Lovejoy and Schertzer, 2013),

S(f)∝ f−β , (4)

where β is the scaling exponent. For the CMIP5 model ensemble, the scaling exponent obtained at EDML is β = 0.2, while

EDML ice core records for the last 1000 years indicate a scaling exponent of around β = 0.6 after correcting for local non-325

climate variability (Münch and Laepple, 2018). Here, we investigate β between 0 and 1 to cover the range of reasonable scaling

behaviours of temperature.
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When we analyse the amount of signal at a specific single frequency (for instance, as it is commonly done to evaluate the

solar cycles), an SNR of 1 is reached at a temporal resolution of τb (Sect. 2.3). In the best case scenario, as no other effects than330

precipitation intermittency are considered, this signal retrieval time scale varies for an ice core drilled at EDML from a value

of more than 1000 years, if we characterise the climatic conditions by a power law with a slope of β = 0 or 0.2, to 24 years for

a power-law slope of β = 1 (Table 1).

Table 1. Signal retrieval time scales at EDML after precipitation intermittency for the cases of band-pass filtering at a specific frequency (τb)

and of block-averaging to a certain resolution (τa), both as a function of the input climate spectrum scaling exponent β.

β 0 0.2 0.4 0.6 0.8 1

τb (a) / / 200 62 33 24

τa (a) / / 91 17 7.4 3.9

Usually, ice cores records consist of block-averages of the vertical profile, at a given resolution (either by measuring long335

bars of ice as a block, or by averaging samples from measurements done at a finer scale). For this approach, the time scales at

which the SNR will reach a value of 1 are given by the signal retrieval time scale τa after block-averaging (Sect. 2.3). For a

time series of 1000 years at EDML, τa is smaller than τb with a value of ∼ 4 years for β = 1 (Table 1).

We generalise these results to all of Antarctica and present maps of the signal retrieval time scales τa at which the climate340

signal is preserved in an ice-core record after the impact of precipitation intermittency (Fig. 5). For this, we present maps of τa

for values of power-law slopes of β = 0.2 (small scaling predicted by GCM and as estimated for climate variability in firn cores

from the WAIS region; Münch and Laepple, 2018), β = 0.6 (best guess from isotope data from East Antarctica over the last

millennium; Münch and Laepple, 2018), and a slightly higher value of β = 0.8, which is within the range of scaling exponents

expected for decadal-to-centennial scale variations (Zhu et al., 2019). For a value of β = 0.2, for most of Antarctica, the time345

scale τa is larger than 1000 years, meaning that the amount of signal is too low to be visible in the ice core in most sites. Only

in coastal areas can time scales below 50 years be obtained. For a value of β = 0.6, the time scales range from one year in

coastal areas to 1000 years for special areas of the interior (e.g. Ellsworth Land and Victoria Land). For a value of β = 0.8,

i.e. assuming more low frequency climate variability, the time scales are globally reduced. In both cases, the spatial pattern

cannot be entirely explained by the amount of accumulation (Fig. 5 and Fig. S1): while the low-accumulation areas of the East350

Antarctic Plateau have large values for the signal retrieval times scales τa (from 10 to 500 years), the largest values of τa are

however found for the regions around Ellsworth Land where the amount of accumulation is much larger (see Supplementary

Material).
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Figure 5. Maps of the signal retrieval time scales τa after block-averaging for the case of precipitation intermittency only and for climate

spectrum scaling exponents of (a) β = 0.2, (b) β = 0.6 and (c) β = 0.8. The red line marks the contour of an accumulation of 25 cm w.e.,

see also Fig. S1.

15



3.4 Impact of diffusion

Isotopic diffusion continues to affect the isotopic signal after snow deposition has occurred; as a result, its impact increases355

with depth in the firn column. To illustrate the effect of diffusion on our time-scale estimates and compare it to the impact of

precipitation intermittency, we use diffusion length values determined at the lock-in depth (for simplicity assumed here to be

at 100m depth).

Table 2. EDML signal retrieval time scales τa after block-averaging accounting for precipitation intermittency, diffusion, and measurement

noise.

β 0 0.2 0.4 0.6 0.8 1

τa (a) / / 143 23 9.2 4.6

As before, we assume climate input signals characterised by scaling exponents β varying from 0 to 1 and compare these to360

a given noise level. We apply the diffusion transfer function both to the input signal and to the white noise spectrum generated

by precipitation intermittency. Additional noise, which impacts the signal after diffusion such as measurement noise, will limit

the ability to back-diffuse the ice core signal. We take this into account by adding a measurement noise level of 0.1 ‰2. As

above, we calculate the signal retrieval time scales τa for which the SNR = 1 after block-averaging, with the noise spectrum

now including both diffused white noise linked to precipitation intermittency and pure white noise linked to measurement365

uncertainty.

Diffusion and the additional measurement noise mainly affect areas with low accumulation where diffusion is more important

(Fig. 6), which leads to an increase in the signal retrieval time scales mainly in the interior, such as at EDML where the values

are larger especially for smaller values of β (Table 2).370

3.5 Comparison with snow-pit in-situ measurements

We compare the PSDs of the simulated isotopic profiles that include precipitation intermittency and diffusion to the PSDs of

observational snow-pit isotope data obtained from sites all across Antarctica that exhibit a wide range of accumulation and

temperature conditions (Fig. 7). As illustrated by Laepple et al. (2018), observations from snow pits lack any clear periodicity,

particularly at the frequency associated with the seasonal cycle. In contrast, our model maintains some additional power at the375

frequency associated with the local accumulation rate, even when accounting for precipitation intermittency and diffusion (see

the blue vs. black curves in Fig. 7). In addition, the model output shows reduced variance compared to the observations at the

lowest frequencies (between 0.1m−1 and the frequency associated with the local accumulation rate).
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Figure 6. Maps of the signal retrieval time scales τa after block-averaging for the case of precipitation intermittency, diffusion and measure-

ment error (0.1 ‰2) affecting the signal and for climate spectrum scaling exponents of (a) β = 0.2, (b) β = 0.6 and (c) β = 0.8. The red line

marks the contour of an accumulation of 25 cm w.e., see also Fig. S1.
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Laepple et al. (2018) have shown that in order to generate accurate PSDs of snow pits in Antarctica, up to 90% of the total380

variance of the input signal before diffusion needs to be white noise. The patterns observed here correspond to a lack of noise

compared to their estimates, which is expected as long as we do not account for stratigraphic noise (see Discussion). We can

produce modelled profiles that better reproduce the PSD of observations for the three sites described here by converting more

of the signal to white noise. In order to obtain the best fitting PSDs, the added noise accounts for 60% of the total variance at

EDML and affects the virtual core at a resolution of 5 cm. At Dome C, the parametrisation of added noise that yields the best385

fit is 80% of the total signal at a resolution of 2 cm. At WAIS, the corresponding noise level is 80% of the total signal at a

resolution of 10 cm.

4 Discussion

4.1 Impact of the results on the interpretation of ice core records

Ice core isotopic composition is traditionally used as a temperature proxy. For sites with very low accumulation such as Vostok,390

Dome C, or Dome F, where the oldest ice core records have been obtained (Petit et al., 1999; EPICA, 2004; Kawamura et al.,

2017), temperature records are typically retrieved at centennial or decadal scales (EPICA, 2006). For instance, in the Dome C

ice core, the 55 cm sampling rate and the varying accumulation yielded a temporal resolution of 15 to 30 years during the last

Glacial Period. Here, we suggest that the temporal resolution of the time series obtained from ice core records should not be

based just on the sampling rate of the ice core. Our results cast doubts on the amount of the climate signal that can be retrieved395

from very high resolution records (below annual), even if the climatic signal is back-diffused. The unexpectedly large impact

Table 3. Signal retrieval time scales τa (SNR = 1 after block-averaging) for the main Antarctic ice core sites including the impact of

precipitation intermittency, diffusion and measurement noise and for three assumed climate spectrum scaling exponents.

Ice core Scaling as GCM Prescribed scalings

sites β ≈ 0.2 β = 0.6 β = 0.8

Dome C > 1 000 27.8 10

EDML > 1 000 23 9.2

Vostok > 1 000 30 11

Dome F > 1 000 12 4.6

Dome A > 1 000 29 11

South Pole > 1 000 15 6.5

RICE 2.3 1.1 0.81

TALOS > 1 000 100 27

WAIS 9.0 1.8 1.3

Law Dome < 0.50 0.66 0.50
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of precipitation intermittency in the form of white noise is masking much of the high frequency variability. In agreement with

previous studies, our results suggest that climatic signals at time scales below decadal to multi-decadal cannot be recovered

from ice cores collected on the East Antarctic Plateau (Petit et al., 1982; Ekaykin et al., 2002).
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Figure 8. Application of the forward model to the temperature time series of the last deglaciation obtained from the Trace21k model

simulation for Dome C. The pure climatic signal has been resampled at a fixed temporal resolution of 5.8 a, to match the sampling rate of the

top of the ice core (light red), and of 100 a (dark red). (a) Intermittent virtual core (light green: ice core resolution, dark green: 100 a averages)

and running correlation between the intermittent virtual core and the climatic signal for different block-averaging windows. (b) Intermittent

and diffused virtual core (light blue: ice core resolution, dark blue: 100 a averages) and running correlation between the intermittent and

diffused virtual core and the climatic signal for different block-averaging windows.

As a visual representation of our findings, we present a simplified calculation of the impact of precipitation intermittency

and diffusion on a long-term temperature time series (TRACE21k; Liu et al., 2009) for Dome C (Fig. 8; see Supplementary

Materials S6). Precipitation intermittency adds a large amount of non-climatic noise, clearly visible at the resolution applied to

extract data from the Dome C ice core (Fig. 8a, light green curve). While the standard deviation for the intermittent virtual core

for the last 1000 years is σ1ka = 2.6K, the climatic signal has a standard deviation of only σ1ka = 0.64K. The intermittent405

virtual core and the climatic signal are uncorrelated during stadial periods (Holocene and Last Glacial Maximum), and only

show a notable correlation during the climate transition after averaging to time scales larger than 60 years (r2 ≥ 0.5). This is
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expected as the scaling of Trace21k is only β = 0.27, much smaller than the values expected from ice core records (around

0.6; Münch and Laepple, 2018) and thus associated with a poor SNR according to our results.

410

The diffused virtual core sampled at the ice core resolution has a variance (σ1ka = 1.5K) that is lower than for the intermit-

tent virtual core but still larger than for the climatic signal (Fig. 8b). Although we only included the present level of precipitation

intermittency and isotopic diffusion, this value is of the same order of magnitude as the one obtained for the actual temperature

reconstruction from the Dome C ice core (σ1ka = 0.94K; EPICA, 2004).

415

Overall, our results are in agreement with the call for caution made by Sime et al. (2009) when interpreting isotopic com-

position fluctuations in individual ice core records. We have shown here that across Antarctica, precipitation intermittency

adds a significant noise component to the water isotope signal in ice cores due to the aliasing of the seasonal cycle (Persson

et al., 2011). Using spectral methods, we could determine the lower limit for the time scales at which the ice core signal is

sufficiently correlated with the climatic signal (Table 3). Isotopic composition profiles from snow pits on the East Antarctic420

Plateau exhibit a systematic visual similarity apparent to cycles with a period of roughly 20 cm (Casado et al., 2018) mostly

due to diffusion of a signal dominated by white noise (Laepple et al., 2018). Our results indicate that a large part of the noise

that needs to be added to the climatic signal is due to precipitation intermittency (63% of the initial variance on average across

all of Antarctica).

4.2 Additional impact of stratigraphic noise425

All three snow pit sites that we compared to our model outputs point toward additional noise that needs to be added prior to

diffusion. Stratigraphic noise could be a likely candidate for this missing noise (Fisher et al., 1985), which is mostly white

(Münch and Laepple, 2018) and results from a range of processes that affect the snow while it remains at the surface such as

wind blowing (Groot Zwaaftink et al., 2013), sublimation and condensation (Casado et al., 2016; Ritter et al., 2016; Genthon

et al., 2017), and surface metamorphism (Picard et al., 2012; Casado et al., 2018). Stratigraphic noise would further reduce the430

correlation between the climatic signal and the ice cores. In particular, it decreases the relative amount of variance associated

with the seasonal cycle.

The amount of additional noise needed for the model outputs to match the PSDs of the observations matches the amount of

stratigraphic noise obtained independently in Antarctica. Using the correlation between two trenches at EDML, Münch et al.435

(2017) estimated that the stratigraphic noise for the site of EDML accounts for 50% of the total signal, which is of the same

order of magnitude as our estimate of the additional noise of 60% (Fig. 7). No corresponding estimate exists for Dome C.

We do know, however, that the amount of snow accumulating at Dome C corresponds to only 10% of the amount of snow

being deposited (i.e., about 90% is blown by wind several times before settling definitively) (Picard et al., 2019), which would

suggest a similar amount of stratigraphic noise as our estimate of 80 % of the total variance.440
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Figure 9. Maps of the signal retrieval time scales τa after block-averaging including the effects of precipitation intermittency, stratigraphic

noise corresponding to 60% of the climatic signal’s variance, diffusion, and additional measurement noise of 0.1 ‰2, assuming climate

spectrum scaling exponents of (a) β = 0.2, (b) β = 0.6 and (c) β = 0.8. The red line marks the contour of an accumulation of 25 cm w.e.,

see also Fig. S1.
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For a stratigraphic noise level of 60% of the total variance of the climatic signal, we obtain on average a doubling of the

values for the signal retrieval time scales τa (Fig. 9). We expect stratigraphic noise to have a different spatial pattern than the

noise associated with precipitation intermittency, as both processes involve different physical mechanisms: wind blowing, sub-

limation and condensation, metamorphism in case of stratigraphic noise versus precipitation formation in case of precipitation445

intermittency. An additional quantitative evaluation of the amount of stratigraphic noise with respect to the total variance of

isotopic records would be necessary to be able to parameterise stratigraphic noise in our forward model.

While both stratigraphic noise and precipitation intermittency add white noise to the climatic signal, it is important to distin-

guish the spatial and temporal properties of the white noise in each case. Stratigraphic noise from two locations separated by450

only a few metres will be essentially uncorrelated (Münch et al., 2016), while precipitation intermittency can exhibit a correla-

tion across areas as large as 100×100 km, which is suggested by an analysis of the spatial extent of the precipitation simulated

by a regional climate model (Agosta et al., 2019). As a result, any attempt to increase the SNR by averaging several ice cores

will need to take into account the different decorrelation lengths of both these noise sources (Münch and Laepple, 2018). On

the one hand, to reduce the impact of stratigraphic noise, it would be sufficient to average two or more ice cores collected 10455

m apart from a single site. On the other hand, to reduce the impact of precipitation intermittency, it will be necessary to collect

the two ice cores from further appart. This, however, may introduce a bias, since the two sites which are further apart may have

slightly different local temperature variations, and further biases may be introduced by dating uncertainties.

As a result, if one was able to make a large number of cores at a single site, the limiting signal retrieval time scale would be460

the one without considering the impact of stratigraphic noise, as presented in Fig. 6. In the typical case of having just one core

available for a given site, the signal retrieval time scale is the one that includes stratigraphic noise (Fig. 9).

4.3 Limits of the present methodological approach

The first approximation on which we based the calculation of the signal retrieval time scales is that the amount of white noise

generated by both precipitation intermittency and stratigraphic noise has remained constant through time. This approximation465

may not hold as precipitation patterns and amounts may have been different in the past, and thus change our postulated time

scale limits. General Climate Models (GCM) can provide estimations of the changes in precipitation intermittency in the past,

especially if they are linked to changes in the atmospheric circulation.

Furthermore, we needed to make certain assumptions about the spectrum of the climatic signal. Using the CMIP5 climate470

model simulations to estimate the spectrum of the climatic signal yields signal retrieval time scales > 1000 a for ice cores

in Central Antarctica. These results stand in contrast to in-situ observations (Münch and Laepple, 2018), which suggest that

the true regional climatic variability may be higher than predicted by GCMs (Laepple and Huybers, 2014), leading to more

optimistic results.

475

23



This study provides only a lower boundary of signal retrieval time scales while taking into account what we believe to be

the major contributions. However, there are several additional processes that affect the isotopic signal. First, dating affects

the quality of the retrieved signal. Here, we illustrate a realistic case where dating interval between tie points is roughly 40

years (constrained by the length of the ERA-interim time series). We also used a perfect dating by tagging each layer of snow

with a date and evaluate the impact on the presented results (Supplementary Material S3). For a real ice core, the uncertainty480

associated with the dating, as well as the variable accumulation amounts in between tie points also impacts the signal, leading

to additional effects than the one described here (Supplementary Material S3).

Second, we did not include the effect of clear sky precipitation, which, in the center of Antarctica, can sum up to a significant

fraction of the annual accumulation (Fujita and Abe, 2006) and tends to occur more evenly over the year, in contrast with the485

intermittent aspect of long-range precipitation (the only one included accurately in ERA-Interim). Such a more regular input

of the signal would reduce the amount of noise created by precipitation intermittency. Sensitivity tests show that if half of the

precipitation originates from clear sky precipitation, the signal retrieval time scales after precipitation intermittency are sig-

nificantly larger (3.4 years instead of 17 at EDML for β = 0.6; see Supplementary Material S4). However, as the relationship

between clear sky precipitation isotopic composition and temperature likely differs from the one between long range precipi-490

tation and temperature (Dittmann et al., 2016; Stenni et al., 2016), we expect additional noise from mixing these two different

signal sources which would decrease again the signal retrieval time scale (3.9 years; see Supplementary Material S4). These

limitations are overall linked to uncertainties in the surface mass balance (Genthon et al., 2015; Picard et al., 2019), which in

Central Antarctica are quite large, in particular due to analytical limits to evaluate the precipitation amounts (both clear sky and

long range), the snow blown and redeposited by wind (Palm et al., 2017), and sublimation and condensation (Genthon et al.,495

2017). In Sect. 4.2 we showed that the total noise level appears to be higher than predicted by just precipitation intermittency

alone, which would suggest that the reduced white noise level generated by precipitation intermittency when including clear

sky precipitation would have to be compensated by additional noise needed after precipitation intermittency (provided that we

know the total noise level).

500

Third, exchanges between the surface snow and the atmosphere can lead to significant changes of the snow isotopic compo-

sition in between precipitation events in polar regions (Steen-Larsen et al., 2014; Ritter et al., 2016; Casado et al., 2018). These

effects are not directly taken into account here, and they would take part after the precipitation has been deposited while the

snow remains at the surface (Münch et al., 2017). On the one hand, snow–atmosphere exchanges would be more continuous

over time and thus reduce the noise level in case these effects play a significant role compared to the isotopic variations driven505

by the isotopic content of the snowfall. On the other hand, sublimation and condensation could result in an addition of noise at

the surface due to the strong spatial (linked to dune and sastrugi) and temporal (linked to variable cloud cover) variability in

latent heat created mostly by radiative processes (Vignon et al., 2017).
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For taking isotopic diffusion into account, we assumed it to be constant by using a diffusion length that corresponds to a510

depth of 100m, comparable to the lock-in depth. In reality, the amount of diffusion varies with depth as a result of firn diffusion

(Johnsen, 1977; Johnsen et al., 2000; Laepple et al., 2018), layer thinning and ice diffusion (Pol et al., 2014). This can easily

be included in our approach through the use of a more complete transfer function of diffusion which requires prior knowledge

of the variations of the diffusion processes.

515

Our present approach is not suitable to actually produce realistic depth series of isotopic composition of snow in Antarctica,

mainly because of the uncertainties of the ERA-Interim precipitation time series and the difference between snow accumula-

tion and precipitation in Antarctica due to wind blowing, sublimation and condensation, and other processes involved in the

surface mass balance. For instance, while it is well known that ERA-Interim predicts rather well the precipitation timing but

shows biases for the magnitudes (Medley et al., 2013), we expect that the produced virtual cores from our model suffer random520

dephasing due to the errors on the amount of accumulation linked with every event of precipitation. In addition, Picard et al.

(2019) showed that the snow for a specific point does not actually accumulate necessarily during the precipitation event, which

would create additional random lags between our produced virtual cores and actual snow pits. This does not affect the present

results which are based on spectral analysis and thus independent of the phase.

525

Finally, another important aspect that limits the ability of our modelling approach to provide minimum time scales at which

an actual ice core can be used is the lack of constraints on the strength of decadal to centennial climate variability in Antarctica,

reflected here by the values of β, both in general as well as at the specific ice core sites. We were not able to estimate the

scaling for each site and instead presented exemplary results for the values of β of 0.2, 0.6 and 0.8 to cover the whole range of

reasonable assumptions for the climate variability of the last millennia. The lowest value of β of 0.2 represents the variability530

as simulated from current climate models but is likely pessimistic as current climate models tend to underestimate regional

climate variability (Laepple and Huybers, 2014). It further reflects the small scaling of climate variability that was found in

firn-cores of the WAIS region (Münch and Laepple, 2018). The value of β = 0.6 represents our best guess based on a single

study that estimated the decadal-to-centennial scaling exponents from an array of ice core records in the EDML region (Münch

and Laepple, 2018). Finally, the highest value of β of 0.8 represents an optimistic assumption of strong slow climate variability,535

similar to estimates for regional ocean variability of β = 1 (Laepple and Huybers, 2014). Our choice is based on the reasoning

that while the climate variability scales less on land than over the ocean on interannual to decadal time scales (Huybers and

Curry, 2006), both should converge to a similar scaling behaviour on longer time scales (North et al., 2011). Further analyses

of firn and ice-core arrays, paired with a better understanding of the noise processes such as presented here, would provide

means to make significant progress in the interpretation of ice core records and Antarctic climate variability.540
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5 Conclusions

We provided a forward modelling approach to estimate the minimum time scales at which meaningful (SNR ≥ 1) signals can

be extracted from ice cores, taking into account the potential effects from (i) precipitation intermittency, (ii) diffusion, and (iii)

measurement noise. This was achieved by estimating the spectral properties of these three processes using ERA-Interim time

series of temperature and precipitation.545

Our results underline that the ability to reconstruct past climate conditions from ice cores depends not only on the noise

levels imposed by precipitation intermittency and stratigraphic noise, but also on the strength of the input signal. As a result,

a particularly strong signal, such as the deglaciation, will be imprinted in the ice cores at a much higher effective resolution

than the limited Holocene temperature variations in Antarctica. Potential variations in the noise levels during past climatic550

conditions will also strongly affect our results.

The systematic analysis of the various processes that affect how climatic signals are stored is important for high-resolution

climate reconstructions. We propose that the use of spectral properties, rather than linear correlations in a calibration period

of the proxy with instrumental observations, provides a great potential to quantitatively estimate the signal recorded in the555

isotopic composition in ice cores.
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