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Abstract 15 
The composite section from ODP Site 846 has provided key data sets for Pliocene stable isotope 
and paleoclimatic time series.  We document here apparent outliers in previously published data 
sets for stable isotopes and alkenone-derived sea surface temperature estimates (SST) in the late 
Pliocene interval containing the M2 glaciation (ca. 3.290-3.3 Ma) by tying high resolution core 
measurements to a continuous downhole conductivity log.  We generate a revised sequence of  20 
new stable isotopic and alkenone measurements across the M2 event that correlate well to the 
revised splices of color reflectance and gamma ray attenuation porosity evaluator data from Site 
846, and to a new composite section produced at equatorial Pacific ODP Site 850. A new 
composite splice for Site 846 is proposed, along with composite isotope and alkenone time series 
that should be integrated into revised Pliocene paleoclimatic stacks.  25 
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1 Introduction 
Continuous proxy time series from ODP Site 846 occupy a privileged place in Pliocene 35 
stratigraphy and paleoclimatology.  Drilled during Leg 138, this site was one of the first to 
systematically integrate high resolution, non-destructive core scanning into the construction of 
composite sections (Shipboard Scientific Party, 1992; Hagelberg et al., 1995) that formed the 
basis for later detailed shore-based studies.  The creation of composite sections was necessitated 
by the fact that coring does not completely recover the sequence at any one drill hole; continuous 40 
records must be stitched together to fill in coring gaps. Among the fruits of this work were some 
of the longest, best resolved time series of Pliocene stable isotopic variations (Shackleton et al., 
1995b), lithological variations (Hagelberg et al., 1995) and tropical sea surface temperatures 
(Lawrence et al., 2006; Herbert et al., 2010) and a proposal for an orbitally-tuned late Neogene 
time scale (Shackleton, 1995a).  The continuity and high sedimentation rate at site 846 resulted 45 
in its isotopic data set playing an outsized role in the Pliocene interval of the widely used LR04 
isotopic stack (Lisiecki and Raymo, 2005.  However, it was noted (Figure 9 of Lisiecki and 
Raymo, 2005) that the isotopic record in the interval surrounding the glacial event M2 (circa 3.3 
Ma) at Site 846 is anomalous in comparison to other sites. 
 50 
In this contribution we document significant errors in the late Pliocene (equivalent to the Gauss 
magnetochron) composite section at Site 846.  These affect the stable isotopic and 
paleotemperature reconstructions around the Pliocene M2 isotopic event, the most notable 
Pliocene glacial stage preceding cyclic northern hemisphere glaciation at ~ 2.7 Ma (Mudelsee 
and Raymo, 2005), and immediately predating the well-studied Pliocene Research, Interpretation 55 
and Synoptic Mapping (PRISM) interval (Dowsett, 2007).  We were drawn to revisit the original 
composite section because features surrounding the M2 glacial event seemed anomalous in 
comparison to other time-equivalent marine sections we have been investigating. We construct a 
more reliable composite section through a combination of tying high resolution measurements 
made at offset holes to a high-resolution downhole log acquired at Hole 846B, and we 60 
supplement that stratigraphic analysis with new stable isotopic and alkenone sea surface 
temperature (SST) estimates from hole 846B, which was not used in the original composite in 
the M2 interval. We propose a revised composite section spanning the interval equivalent to the 
early Gauss through Mammoth magnetic polarity zones (circa 3.2-3.6. Ma) and tie the ODP Site 
846 records to ODP Site 850, which provides an indirect tie of stable isotopic and SST estimates 65 
at Site 846 to a high-quality magnetic polarity stratigraphy. Our results also yield insights into 
core recovery and coring distortion artifacts during hydraulic piston coring of calcareous-
siliceous sediments of the equatorial Pacific. 
 
2 Methods 70 
 

1.1 Composite section generation 
 

Assignments of gaps in core recovery and distortions induced by coring create challenges in 
accurately compositing sedimentary records from offset holes.  The scientific part on board Leg 75 
138 made excellent use of high-resolution measurements from the Gamma Ray Porosity 
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Evaluation scanner, a reflectance spectrophotometer, and magnetic susceptibility logging of 
cores (Hagelberg et al., 1995; Mix et al., 1995). Constructing a composite section proceeded by 
identifying tie points between holes on a core-by-core basis, splicing missing material at core 
breaks by the section represented at an offset hole, and assuming that a linear offset applied 80 
between the drilling depth (mbsf) and the composite depth that resulted from splicing materials 
between holes.  As compared to the original drilling depth, the composite section at Site 846 
grew by about 15%, indicating that a significant amount of material was not recovered at any one 
hole during drilling.  
 85 
Later sampling followed the logic of the initial splicing, hopping between holes to follow the 
composite section documented in the Initial Reports volume (Hagelberg et al., 1992, 1995).  A 
more flexible and robust procedure for composite section generation was subsequently 
developed using dynamic programming to optimally align time series data (Lisiecki and Lisiecki, 
2002, and Lisiecki and Herbert, 2007.  This method allowed for assessing distortions in the 90 
coring process (e.g. stretching or squeezing of sedimentation relative to the undisturbed section) 
but it still required user guidance of key tie points and the more or less arbitrary assumption of 
which section of several replicates (e.g. holes B, C and D at Site 846) provided the least 
disturbed representation of sedimentation. 
 95 
In this work we continue to use the Match program developed by Lisiecki and Lisiecki (2002), 
but take advantage of a high resolution downhole log of conductivity acquired at the time of 
drilling, which provides the best representation of a truly continuous and undistorted sedimentary 
column at Site 846.  This opportunity was not recognized in the compositing of Lisiecki and 
Herbert (2007), although it could have been apparent based on the work of Harris et al. (1995), 100 
who used a different hostile-environment lithodensity sonde (HLDS) 
log that has lower spatial resolution than the Formation Microscanner (FMS) conductivity sensor 
log analyzed here.  The FMS log (Hole 846B pass 2) acquired data at 0.25 cm resolution from 
~80 mbsf (early Pleistocene) to the base of the section (see 
http://brg.ldeo.columbia.edu/logdb/hole/?path=odp/leg138/846B/).  Unlike many of the borehole 105 
logging measurements, the conductivity log preserves fine scale (centimetric) variations related 
to changes in lithology and sediment physical properties. The conductivity measurements 
essentially represent the inverse of porosity logging, as conductivity increases with conductive 
pore water volume and decreases as the volume of solids grows.  The conductivity log is 
therefore quite similar to variations in wet bulk density logged by the Gamma Ray Attenuation 110 
Porosity Evaluator (GRAPE) sensor in cores raised during drilling of Site 846 (Figure 1 reports 
highly significant correlations of detrended data FMS and GRAPE). As demonstrated by 
shipboard results, wet bulk density correlates positively with carbonate content and therefore 
positively with reflectance (r = 0.69 for datasets from Site 846).   
 115 
The downhole log information includes conductivity measurements from three pad sensors.  We 
tested different combinations of weighting the log data against reflectance and GRAPE time 
series measured on cores (mean, geometric mean, maximum/minimum of the 3 measurements) 
and found that choosing the minimum of the 3 sensor measurements at each depth interval gave 
consistently the highest match to the core color reflectance and GRAPE data sets.  We interpret 120 
this result to reflect the likelihood that high conductivity readings can result from poor pad 
contact with the borehole and/or washouts of sediment, and are likely to be outliers.  We also 
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found that one interval of the borehole provided unreliable data from any of the sensors, most 
likely due to a significant washout, and deleted data from this segment (138.37 to 138.19 meters 
in log depth) in our alignment process.  Three more short segments showed unusually low 125 
conductivity and were likewise removed (146.6799-146.746, 150.3299-150.3705, and 150.4315-
150.4798 meters log depth). We used core photographs to remove GRAPE and reflectance 
outliers at the top and base of cores based on visual evidence of core disturbance. 
 
Mapping between offset holes and the downhole conductivity log was done to optimize the 130 
alignment of GRAPE and reflectance data to the target.  In addition, guided by the downhole log, 
we optimized the alignment of each offset hole data to the other offset holes.  Data sets were 
normalized and detrended and we mapped ( ) reflectance and GRAPE bulk density to (-) 
conductivity. While we relied on the reflectance and GRAPE information, wherever possible we 
checked for consistency with stable isotopic (Shackleton et al., 1995b) and alkenone (Lawrence 135 
et al., 2006) data sets as well. Tie points were inserted based on both reflectance and GRAPE 
data, but the final composites were generated from the Match algorithm applied to the GRAPE 
time series only, as this consistently showed better alignment to the log and smoother variations 
in implied core distortion than the reflectance data.  The better correlations to the borelog log via 
GRAPE presumably reflects the benefit of consistent GRAPE calibration to density standards in 140 
comparison to the reflectivity measurements and/or a closer match between GRAPE-estimated 
wet bulk density and conductivity, in comparison to color reflectance. 
 
Our goal in composite section generation was to achieve alignments between the depth series of 
offset holes and the conductivity log robust at the scale of orbitally-related variations in 145 
sedimentation and proxy variance.  Given sedimentation rates in the interval of interest of 4-5 
cm/kyr, this meant achieving satisfactory alignment at ~40 cm, or one half precessional 
wavelength.  In practice, we found that approximately 20 tie points served to achieve this level of 
match. The Match algorithm includes a number of tradeoffs in the alignment procedure.  
Essentially, it determines the optimal alignment of segments of data at integer ratios, with a 1:1 150 
alignment indicating no distortion of one record relative to the other.  In addition to default 
choices supplied by the Match software (http://lorraine-lisiecki.com/match.html) we ran an 
experiment where we increased the number of integer choices in the vicinity of the 1:1 match in 
order to suppress smalls-scale jumps in relative accumulation in order to see larger patterns 
between offset holes (the point penalty score for correlations to the log can be improved by about 155 
15% by letting the accumulation rate change more freely in the Match algorithm than we do for 
the “smooth” mapping).  To enhance smoothness, we assigned a relatively high penalty function 
to the speed parameter but very little penalty to the speed change parameter- this allowed for fine 
scale adjustment of relative accumulation rates while minimizing large and abrupt changes in the 
mapping functions. We also iteratively adjusted the gaps assigned between cores from the 160 
nominal gaps determined by the shipboard splices, so that the matching procedure yielded a 
smooth downhole mapping without artificial jumps at core breaks (Figures 2 and 3.    
 
 Ultimately, we determined that choices such as the number of intervals and penalty parameters 
had very little effect on the final mapping (e.g. variations in parameters by a factor of 2 produced 165 
negligible changes in mapping). Final Match parameter choices are presented in Table I.  
Figure 2 portrays the final alignment of individual GRAPE time series to the downhole 
conductivity log at Site 846.  At Site 850, we produced a composite section from simultaneous 
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alignment of GRAPE, reflectance, and magnetic susceptibility measurements at holes 850A and 
850B.  This composite has no downhole log reference section; however, the composite allows us 170 
to very accurately map discrete measurements between holes A and B of alkenone unsaturation 
and stable isotopes produced as part of the present work.  Composite reflectance, GRAPE and 
magnetic susceptibility (for Site 850) sections are included as Supplementary Tables 1-13.  
 
 175 

1.2 Stable isotopic data 
 

Because our initial investigation suggested an ambiguity in the composite section based on 
splices of holes 846D (which provides the majority of the backbone to the shipboard composite 
section) to 846C in the interval 95 to 181 meters composite depth (mcd) as defined by the 180 
shipboard scientific party (splice of 846D core 13 to 846 C core 13 and then to 846D core 14), 
we analyzed 227 new samples from hole 846B, cores 12, 13, and 14, of which 211 yielded 
enough benthic foraminifera for isotope analysis at the Brown University stable isotope facility. 
Samples were freeze-dried, soaked in water for 24 hours to disaggregate, and wet sieved using a 
150 µm mesh. Samples were then dried at 40 °C and split into a faunal and isotope fractions. 185 
Isotope fraction vials were dry sieved, benthic foraminifera were picked from 150-355 µm, 
cleaned with 70 µl ethanol, sonified for 30 seconds, ethanol was drawn off with a pipette, and 
specimens were dried overnight at room temperature. In some cases, it was necessary to expand 
the size fraction to 150-355 µm to provide enough carbonate for replicate measurements. Isotope 
ratios were quantified at with a Finnigan MAT 252 with Carbonate Kiel III autosampler, where 190 
the individual sample is reacted with 70 °C H3PO4.    170 of the 211 intervals were analyzed at 
least in duplicate, and in a number of cases we were able to acquire triplicate or quadruplicate 
replication.  We analyzed both Cibicidoides wuellerstorfi and Uvigerina peregrina (95 paired 
samples) and determined an average offset of  0.643 ±  0.011 o/oo (standard error of the mean) for 
δ18O (Uvigerina heavier) and   0.973 o/oo for δ13C (Cibicidoides heavier, ± 0.018 standard error 195 
of the mean).  At Site 846, we supplemented analyses with a handful (15) of measurements on 
Cibicidoides mundulus where C. wuellerstorfi and/or U. peregrina were not abundant enough to 
provide a good signal for mass spectrometry. In accordance with standard practice (Duplessy et 
al., 1984; Shackleton & Opdyke, 1973), Cibicidoides δ18O values were adjusted to Uvigerina 
values; similarly, Uvigerina carbon isotope values were adjusted to Cibicidoides.  C. mundulus 200 
isotopic values were taken as equivalent to C. wuellerstorfi. Wherever replicate analyses were 
possible, we report results as the average. 
 
At Site 850, we obtained 273 samples from Holes A (core 7) and B (cores 6 and 7) where benthic 
foraminifera were sufficient for isotope analysis (we had smaller sample volumes, so the data set 205 
is less continuous than for Site 846). Replication is also less extensive (155 of 273 samples) and 
the proportion of C. mundulus used was higher (63 samples). Isotopic adjustments by species 
were handled identically to those at Site 846. 
 
When we compared stable isotopic data acquired at Brown with values reported by Shackleton et 210 
al. (1995b) over the equivalent interval at holes 846D and C it was evident that there was an 
isotope offset of  0.17 in δ18O (Brown heavier). Variance was essentially identical; therefore, we 
adjusted the Brown values to align with the much longer Shackleton et al. (1995b) record by 
adjusting the Brown δ18O values by the average difference.  It is not clear that the choosing the 
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Shackleton values is preferable on analytical grounds, but our choice allows the user to 215 
incorporate our new splice without having to adjust previously published values determined by 
the Shackleton et al. (1995b) study.  We found no statistically significant offset between the 
carbon isotope values determined at Brown and the values in Shackleton et al. (1995b). 
The oxygen and carbon species-specific isotopic offsets we report are identical with (δ18O) or 
very similar to (δ13C) the offsets used by Shackleton et al. (1995b).  220 
 
 

1.3 Alkenone unsaturation estimates 
 

Alkenone paleothermometry relies on the temperature dependence of the degree of unsaturation 225 
(number of double bonds) observed in the suite of organic compounds (C37:3 and C37:2 alkenones) 
synthesized by marine surface-dwelling haptophyte algae (Marlowe et al., 1984; Prahl and 
Wakeham, 1987). Alkenone extraction followed freeze-drying ~1 g of homogenized dry 
sediment, using 100% Dichloromethane (DCM) and a Dionex 200 Accelerated Solvent Extractor 
(ASE. Prior to quantification, extracts were evaporated with nitrogen and reconstituted with 200 230 
µL of toluene spiked with n-hexatriacontane (C36) and n-heptatriacontane (C37) standards. 
Alkenone parameters were determined using an Agilent Technologies 6890 gas chromatograph–
flame ionization detector (GC-FID), with Agilent Technologies DB-1 column (60 m, 0.32 mm 
diameter and 0.10 mm film thickness. Procedure entailed a 1µl injection, initial temperature 90 
°C, increased to 255 °C with 40 °C/minute rate, increased by 1 °C/minute to 300 °C, increased 235 
by 10 °C/minute to 320 °C, and an isothermal hold at 320 °C for 11 minutes. All GC analyses 
simultaneously provide the information to determine the UK’37 unsaturation values and an 
estimate of the total amount of C37 ketones by summation of the areas of the C37:2 and C37:3 
alkenones. Long-term laboratory analytical error, estimated from replicate extractions and gas 
chromatographic analyses of a composite sediment standard is equivalent in temperature to ±0.1 240 
°C. 
 
We analyzed a total of 249 samples from hole 846B and 427 from holes 850A and 850B. All 
samples yielded adequate alkenone concentrations for unsaturation estimates. The mean Uk’37 
value for the interval of interest from hole 846B of 0.896 compares very well to the average 245 
reported by Lawrence et al. (2006) from equivalent interval of hole 846D of 0.902, although 
small differences in orbital-scale peak amplitudes are observed that probably reflect small 
variations in gas chromatographic performance over time.  For consistency to the longer 
Lawrence et al. record, we adjusted new Uk’37 values by  .006. To convert to estimated sea 
surface temperature (SST) we used the global core top calibration of Muller et al. (1998). 250 
 
2 Results 
 

3.1 Lessons on coring distortion  
 255 

The Lisiecki and Herbert (2007) study of hydraulic piston coring relied on offset holes alone to 
assess distortion related to porosity rebound and coring-induced disturbance.  This meant that 
distortion could be assessed from one hole relative to another, but without a definitive 
undistorted reference (with the exception of reported drilling depth at the top and bottom of each 
core). In the present case, we can assess distortions using the Match alignment of composite 260 
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sections to the presumably undistorted conductivity borehole log. Several conclusions stand out. 
First, there are very few instances of coring compression indicated by the Match algorithm 
(compression would register as a relative accumulation rate < 1) (Figure 3).  Second, we can only 
document one instance of coring repetition, a segment of ~40 cm at the top of 846B core 16, 
consistent with the original composite section proposed by the shipboard party.  265 
 
Lisiecki and Herbert (2007) found strong correlations of extension for Leg 138 sites with 
%CaCO3, and GRAPE density for the upper 50m, but decreasing correlation at depth.  Our 
mapping of each offset hole to the downhole log shows a relationship of coring distortion 
between the inverse of log conductivity, composite GRAPE density, and composite reflectance 270 
(not shown) over the study interval using the smoother fit option (e.g. more Match speed choices 
close to 1:1 between cores and the downhole log) (Figure 3). Most of the distortions correlate 
between offset holes (Figure 3), demonstrating the largely predictable coring expansion with 
lithological variations.  In the case of these siliceous sediments, the coring distortion may also be 
related to lithology as well as physical properties, as zones with lower density (higher porosity) 275 
generally have high biogenic silica contents and may behave differently from carbonate-
dominated lithologies during coring.  While the distortion appears systematic, it somewhat 
counter-intuitively indicates expansion of the lower conductivity (higher carbonate/lower 
porosity) beds relative to lower carbonate beds when examined in detail, although the 
relationship is not statistically significant (Figure 4) and may depend on unresolved factors such 280 
as differences in the proportion of biogenic silica to detrital content in the non-carbonate 
fraction, or to the contrast of physical properties with depth.  Evaluating distortion as a function 
of position within each core fails to reveal systematic distortion as a function of the HPC barrel 
penetration (Figure 5).  It therefore seems as if there is little differential distortion during the 
stroke of the HPC that cannot be explained by the behavior of contrasting lithologies penetrated. 285 
 
We also found that our new composites of reflectance and GRAPE density (see Tables S2-S7) 
compare much more favorably to the downhole log data than the prior Lisiecki and Herbert 
(2007) composite.  We attribute the better match both to the use of a continuous log reference 
and to the additional splicing constraints gained from consulting stable isotopic and alkenone 290 
data.  This observation highlights the importance of incorporating all available stratigraphic data 
to avoid mistakes in tying potentially ambiguous sections between offset holes so as to generate 
the most reliable composite section.   
 
 295 

3.2 Revision of the Mammoth-Gauss/Gilbert equivalent section 
 
To generate a revised composite, we used the downhole conductivity log as our reference.  
The Match algorithm allows a continuous mapping of reflectance and GRAPE data at offset 
Holes 846B, 846C, and 846D with log depth as the common depth scale (Tables 2-7).  Data 300 
obtained from any of the offset holes can be correlated to this reference depth with an uncertainty 
on the order of 5 cm (resolution of Match alignment).  The original shipboard splice links holes 
846D (the primary hole used by Shackleton et al., 1995b, and followed by Lawrence et al. 2006) 
and 846C.  As Figure 6 demonstrates, recovery at hole 846C entirely omits the M2 interval.  We 
turn to hole 846B, which contains the best representation of both the M2 interval and the 305 
subsequent interglacial recovery, to tie its record to hole 846D.  The original composite using 
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hole 846C does nearly completely tie the gap between cores 12 and 13 of hole 846B, but is 
extremely stretched for the last ~2 meters by coring distortion (Figure 6).  The tie lines indicated 
in Figure 6 include important constraints from the GRAPE log and from our new discrete δ18O 
and alkenone measurements (not shown) in addition to the reflectance data displayed.  Table 8 310 
provides the new composite section as a sequence of discrete segments from the different offset 
holes.   Log depth again provides the new composite depth. 
 
The original δ18O section published by Shackleton et al. (1995b) in the vicinity of the M2 glacial 
event seems unusual in having 2 distinctly separated enriched features (Figure 7) - an anomaly 315 
that showed clearly in the original LR04 isotope stack (Figure 9 of Lisiecki and Raymo, 2005), 
but that nevertheless guided the final product of that stack.  Carbon isotopes (not shown) also 
show an anomalous depletion in the same interval.  Turning to a high-resolution SST record 
previously generated at Site 846 (Lawrence et al., 2006), it too seems anomalous, in that a strong 
cooling is very short lived and does not follow the reflectance, GRAPE, and stable isotopic 320 
trends well in this particular interval (Figure 9). As documented below, we are convinced that an 
error of unknown origin at Site 846 (erroneously labeled samples? Inverted core section?) has 
confused the stratigraphy surrounding the M2 event.   
 
Both the stable isotopic and alkenone data previously generated at hole 846D deviate in an 325 
anomalous manner relative to reflectance and GRAPE variations in the M2 interval (Figures 7 & 
8).  In general, the isotopic and alkenone values align well with variations in reflectance, log 
conductivity and also GRAPE bulk density at Site 846; this is the only interval we have observed 
with such significant deviations between proxies.  In contrast, if we exclude the problematic 
intervals identified in Figure 9 (specifically, stable isotope data from 846D core 13, section 1, 330 
and alkenone data from 846D core 13, section 2), the new composite that integrates newly 
generated stable isotopic and alkenone data from hole 846B follows reflectance and log data 
closely through the interval containing the M2 glacial event (Figure 9).  It is therefore apparent 
that, for unknown reasons, both previously published isotopic and alkenone data that followed 
the original splice in the M2 interval are not reliable.  We attempted several simple fixes, such as 335 
assuming that stable isotope data from hole 846D, core 13, section 1, were reversed in depth by a 
sampling error, but the data still would not align well with the new isotope section from hole 
846B, or with the reflectance and GRAPE data generated on the same section at 846D. We 
conclude that stable isotopic data from 846D, core 13, section 1, and alkenone data from 846D, 
core 13, section 2 must be discarded as erroneous.  In addition, the original splice from 846D, 340 
core 12 to 846C, core 12 is problematic because of what appears to be extensive coring extension 
at the base of core 12 at Hole 846C (Figure 6). 
 
We can confirm the reliability of the new isotopic and SST composites at Site 846 (see Tables S9 
and S10) by comparing them to newly generated records at Site 850 (Figure 10; Table S11).  The 345 
equivalent interval at Site 850 spans only one core break, minimizing possible uncertainties in 
creating a continuous composite section there.  Unfortunately, the Pliocene section at Site 850 is 
too shallow to have had borehole logging, so we can only create a composite depth section based 
on coring (Tables S12-14).  Nevertheless, isotopic and reconstructed SST patterns can be 
matched very precisely (sample tie lines indicated in Figure 10) between Sites 846 and 850, once 350 
coring and/or sedimentation rate distortions are considered.  These ties also allow us to indirectly 
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transfer the high-quality magnetic polarity stratigraphy obtained at Site 850 to its equivalent 
positions at Site 846 (Figure 10). 
 
4 Conclusions 355 
 
In our new composite, we align data from offset holes to the borehole conductivity log to obtain 
the least distorted representation of the mid to late Pliocene interval, focusing especially on the 
stratigraphy around the M2 interval. Careful analysis of the original composite section produced 
at Site 846 shows errors of unknown origin in the critical interval surrounding the M2 glacial 360 
event. These errors influenced the original LR04 isotopic stack and the composite tropical ocean 
temperature stack of Herbert et al. (2010), and persist in the recent Ahn et al. (2017) revision to 
LR04, although to a lesser degree as more sites have been incorporated into the new isotopic 
stack.  In contrast to the earlier data sets from Site 846, the M2 glaciation now stands out as a 
long sawtooth feature of enriched δ18O and cold SST values, rather than as 2 events separated by 365 
a significant deglaciation/warming.  The anomalously enriched interval of the δ18O record 
preceding the M2 glaciation identified as MG4 in LR04 (see Figure 9 of Lisiecki and Raymo, 
2005) seems to be a 1-point outlier when new isotopic information from Hole 846B is spliced 
into the revised composite (Fig 8). We suggest that the new splice and composite section shown 
in Figure 9 replace the previously published alkenone and stable isotope sections of Lawrence et 370 
al. (2006) and Shackleton et al. (1995b) and that this revised section (see Supplementary Tables 
S8 and S9) be incorporated in future stable isotope and temperature stacks.  Given the expanded 
sedimentation rate and dense sampling resolution of stable isotopic and alkenone data at Site 
846, this new composite provides one of the best representations of late Pliocene 
paleoceanographic variability. 375 
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Table 1: values used with Match algorithm to generate “smooth” mappings of offset holes for 480 
new composite sections and for mapping to the borehole conductivity log. The default mapping 
for the “high resolution” mapping used speeds of 1:3, 2:5,1:2, 3:5, 2:3, 3:4, 4:5, 1:1, 5:4, 4:3,3:2, 
5:3, 2:1, 5:2, and 3:1 
 
 485 

  

Match parameter
numintervals 2000 composites, 4000 to borehole log
nomatch penalty 40
speed penalty 45
target speed 1:01
tie penalty 60
gap penalty 40
speeds 10:7 4:3 9:7 5:4 6:5 7:6 8:7 9:8 10:9 11:10 13:12 21:20 31:30 1:1 

30:31 20:21 12:13  10:11 9:10 8:9 7:8 6:7 5:6 4:5 3:4 7:10 
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Supplementary Tables (archived on website Pangaea https://www.pangaea.de) 
 
Table 1: Borehole conductivity log 
Table 2: 846B GRAPE composite 490 
Table 3: 846C GRAPE composite 
Table 4: 846D GRAPE composite 
Table 5: 846B reflectance composite 
Table 6: 846C reflectance composite 
Table 7: 846D reflectance composite 495 
Table 8: 846 composite section splices 
Table 9: 846 composite isotopic data 
Table10: 846 composite SST data 
Table 11: 850 composite SST and isotopic data 
Table 12: 850 composite GRAPE data 500 
Table 13: 850 composite reflectance data 
Table 14: 850 composite magnetic susceptibility data 
 
 
 505 
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Figure 1.  Locations of ODP Sites 846 and 850 (ODP Leg 138). 
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Figure 2.  Correlations of the inverse of borehole log conductivity (detrended and 
normalized) to GRAPE density (detrended and normalized) and to color reflectance 
(channel 1, detrended  and normalized) over the depth interval 85-170 mbsf (95-181 
mcd), hole 846B.  Note that the inverse of conductivity is plotted. Both correlations (N = 
1853, 3388) are highly significant. Correlations of the same variables from holes 846C 
and 846D were very similar 
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Figure 3.  Composite sections of GRAPE density generated using the Match algorithm for holes 
846B, C, and D, on a new composite depth section, compared to the inverse conductivity log 
depth.  All data sets were detrended and normalized for this comparison. Coring gaps at each 
hole have been filled in from offset holes to make continuous splices. 
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w.b. density
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Figure 4. Coring distortion inferred from Match alignment of GRAPE composite sections to the 
borehole conductivity log (log has been inverted, detrended, and normalized) generated using the 
“smooth” Match parameters emphasizing a 1:1 depth mapping of core data to the downhole log.  
Values >1 indicates stretching of the cored section relative to the borehole log, which we assume 
represents the best representation of the in situ stratigraphy.  Note that the scale for coring 
distortion has been inverted so that higher expansion (stretching) is in the downward direction. 
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conductivity
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Figure 5. Coring distortion inferred from Match alignment of the hole 846B GRAPE composite 
section to the borehole conductivity log (conductivity data detrended and normalized) generated 
using the “high resolution” Match parameters emphasizing the closest possible mapping of core 
data to the downhole log. Note that core stretching generally moves positively with lower 
conductivity/porosity (higher carbonate content). 
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Figure 6.  Inferred coring distortion based on Match alignment of GRAPE composite sections to 
the borehole conductivity log as a function of depth in each ~9.5 m core.  Note that there is no 
evidence for a systematic pattern of stretching/squeezing as a function of penetration depth. 
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Figure 7.  Detail of reflectance-based correlations (original mcd 122.6-137.8) of offset holes 
846B, 846C, and 846D correlated to the common depth scale of the borehole log (log depth 106-
119 m).  Signals were detrended and normalized; higher reflectance and lower conductivity plot 
upward. Note the problematic tie of the base of Hole 846C, core 12 to the top of Hole 846D, core 
13 (shipboard splice).  In contrast, Hole 846B has a sequence that correlates easily to the 
borehole log and can be reliably spliced to the base of Hole 846D, core 12. 
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Figure 8.  Comparison of δ18O series of Shackleton et al. (1995b) on original composite depth 
(Shipboard Scientific Party, 1992) in comparison to reflectance and GRAPE data (original 
shipboard composite).  Note the anomalous interval encompassing  the M2 glacial event, 
indicated by gray shading where the isotopically enriched values depart from their correlation to 
reflectance and GRAPE values. 
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Figure 9.  Comparison of alkenone-based SST series of Lawrence et al. (2006) on original 
composite depth in comparison to detrended and normalized reflectance and GRAPE data.  Note 
the anomalous interval indicated by gray shading where the warm SST values depart from 
reflectance and GRAPE values. 
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Figure 10.  Revised alkenone and δ18O time series based on new data from hole 846B, aligned 
with prior data from Shackleton et al. (1995b) and Lawrence et al. (2006), excluding the 
problematic intervals around the M2 glaciation (see text. The composite section has been 
mapped to the borehole log depth.  Previously published isotopic and alkenone data in the 
problematic M2 interval are shown as dashed lines. Revised composite time series now align 
well, and the interval containing the M2 glacial event presents as a sawtooth isotopic enrichment 
and cooling. 
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Figure 11.  Comparison of the new alkenone-based SST and δ18O composites from Site 846 to 
composites from Site 850.  The location of magnetic polarity reversals (reversed Kaena, 
Mammoth and Gilbert polarity zones indicated by abbreviations) at Site 850 can be mapped to 
Site 846 with high confidence by the close correspondence of SST patterns (note: polarity 
determinations are only available at Site 850). 
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