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Abstract. Spatial information on past weather contributes to better understand the processes behind day-to-day weather vari-

ability and to assess the risks arising from weather extremes. For Switzerland, daily-resolved spatial information on meteoro-

logical parameters is restricted to the period starting from 1961, whereas prior to that local station observations are the only

source of daily, long-term weather data. While attempts have been made to reconstruct spatial weather patterns for certain

extreme events, the task of creating a continuous spatial weather reconstruction dataset for Switzerland has so far not been5

addressed. Here, we aim to reconstruct daily, high-resolution precipitation and temperature fields for Switzerland back to 1864

with an analogue resampling method (ARM) using station data and a weather type classification. Analogue reconstructions are

post-processed with an ensemble Kalman fitting (EnKF) approach and quantile mapping. Results suggest that the presented

methods are suitable for daily precipitation and temperature reconstruction. Evaluation experiments reveal an excellent skill

for temperature and a good skill for precipitation. As illustrated on the example of the avalanche winter 1887/88, these weather10

reconstructions have a great potential for various analyses of past weather and for climate impact modelling.

1 Introduction

Historical meteorological measurements are invaluable not just for studying climate variability, but also for long-term vari-

ability in weather, its extremes and its relation to the large-scale circulation. Day-to-day weather data allow the calculation of15

targeted indices (e.g., consecutive dry days, growing degree days), which are more useful than monthly climate data for assess-

ing climate impacts. Moreover, daily data feed into current impact models and allow studying crop growth, water availability,

or impacts of droughts, floods or avalanches numerically. However, historical station observations only capture local weather

conditions. Most of the applications mentioned above require spatial fields of meteorological parameters.
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For Switzerland a long-term, high-resolution and time-consistent spatial dataset of precipitation and temperature starting20

in 1864 is available only with monthly resolution, introduced recently by Isotta et al. (2019). A comparable daily dataset,

however, which is needed to analyse past weather, covers a relatively short period starting in 1961 (MeteoSwiss, 2016a, b).

Prior to 1961, observations from weather stations are the only sources that provide continuous information on daily weather.

Today’s dynamical and stochastic models offer new possibilities to make use of this sparse information and enable us to create

spatial reconstructions of past weather. In recent years, several efforts have been made to create high-resolution temperature25

and precipitation reconstructions for historical extreme events in Switzerland using dynamical (Brugnara et al., 2017; Stucki

et al., 2018) and statistical (Flückiger et al., 2017) downscaling methods. While for Switzerland, the task to create long-term,

high-resolution daily spatial weather reconstructions has not been addressed so far, Caillouet et al. (2016, 2019) have presented

a continuous dataset of daily precipitation and temperature fields for France starting in 1871 by statistically downscaling data

from the 20CR reanalysis. This study aims at creating such a dataset of long-term, high-resolution daily spatial reconstructions30

of precipitation and temperature for Switzerland by extending the currently available datasets backwards in time until 1864.

We use a statistical approach that has been applied in various research areas related to climate sciences: the so-called

analogue method (Lorenz, 1969; Zorita and von Storch, 1999; Ben Daoud et al., 2016; Barnett and Preisendorfer, 1978;

Kruizinga and Murphy, 1983; Horton et al., 2012). In recent years, this method has also been introduced to local-scale weather

reconstruction using historical station data (Flückiger et al., 2017; Rössler and Brönnimann, 2018). It is based on the assumption35

that over time similar spatial patterns of atmospheric states occur that produce similar local effects (Lorenz, 1969; Horton et al.,

2017). The analogue approach makes use of this statistical relationship between large-scale and local weather or meteorological

patterns, while the former is used to predict the latter. To predict a certain atmospheric feature, e.g. precipitation and temperature

fields for a given day of interest, the analogue method looks for the day with the most similar predictor values (best analogue)

and takes the atmospheric feature from this (or multiple) best analogue day(s) as prediction (Zorita et al., 1995). As it is40

basically a resampling of observed states of the atmosphere (spatial weather data) along the time axis to optimally fit certain

predictors (Graham et al., 2007; Franke et al., 2011), the term analogue resampling method (ARM) is used in this paper.

In our approach, analogue reconstructions are further improved. Using techniques borrowed from data assimilation, re-

constructed temperature fields are adjusted towards station measurements with a so-called ensemble Kalman fitting approach

(Whitaker and Hamill, 2002; Franke et al., 2017) that is adapted to analogue reconstructions. Reconstructed precipitation data45

are bias-corrected using a quantile mapping method (Gudmundsson et al., 2012) by fitting reconstructed to observed precipita-

tion distributions.

The result is a long-term, daily-resolved spatial dataset of precipitation and temperature with a 2.2×2.2 km spatial resolution

for the period of 1 Jan 1864–31 Dec 2017. Reconstructions are evaluated against gridded data from MeteoSwiss and against

station observations. To demonstrate the potential of the reconstructions, we analyse the avalanche winter in 1887/88, com-50

paring reconstructions to previous studies, as well as documentary data (Vieli, 2017; Coaz, 1889). This paper accompanies

the online publication of the reconstructed precipitation and temperature datasets at the open-source repository PANGAEA

(https://doi.org/10.1594/PANGAEA.907579).
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The paper is organised as follows: Section 2 provides an overview of the data used. Section 3 describes the methods of

weather reconstruction and post-processing and presents validation strategy and –measures applied for assessing the recon-55

structions. In Section 4, results from the validation of reconstructed and post-processed temperature and precipitation fields are

presented and discussed before analysing the avalanche winter 1887/88 in section 5. Conclusions are drawn in Section 6.

2 Data

Statistical weather reconstruction methods require long-term and if possible homogeneous series of station measurements. In

Switzerland, we can benefit from the network of MeteoSwiss going back to the year 1864 (Füllemann et al., 2011; Begert60

et al., 2005). All 68 meteorological stations used for reconstruction are part of the Swiss National Basic Climatological Net-

work (Swiss NBCN), a network of long-term, continuous and high-quality measurements used for climate monitoring (Begert

et al., 2007; Begert, 2008). To ensure the consistency of the reconstructions over time, the set of meteorological stations and

parameters used is ideally not changed over time. Therefore, only measurement series starting prior to 1901 and continuing un-

til today with interruptions of no longer than five years were selected. One exception is the station of Grand St-Bernard (GSB),65

where data show a gap from 30 Jul 1925 to 31 Dec 1933. This station was included, as it lies within a data-scarce region and

is representing higher altitudes. In all cases, homogenised daily mean temperature and precipitation sums were used, as well

as daily mean pressure values at station height (QFE). An overview of measurement locations and variables, as well as their

vertical distribution is given in Fig. 1.

In total we used 10 pressure, 25 temperature and 67 precipitation series. The large number of precipitation measurements70

was chosen to account for high spatial variability of this variable, while 10 stations are enough to cover surface pressure. Most

stations are located at lower elevations and in valleys, while higher altitudes (hillsides, mountains) are under-represented. Two

independent measurement series (yellow) from the Swiss Plateau and the Alpine region were used for validation: Schaffhausen

(SHA, 438 m a.s.l.) with measurements from 1 Jan 1864–31 Dec 2017 and Grimsel-Hospiz (GRH, 1980 m a.s.l.), covering the

period from 1 Jan 1932–31 Dec 2017. Note that data from Schaffhausen are not homogenised.75

Furthermore, the ARM requires spatial data, from where best analogue reconstructions are drawn. Here we used daily

gridded precipitation and temperature data provided by MeteoSwiss (MeteoSwiss, 2016a, b) with a spatial resolution of 2.2

km, covering the period 1 Jan 1961–31 Dec 2017. Precipitation data (RhiresD) indicate accumulated precipitation (rain- and

snowfall water equivalent) from 06:00 UTC to 06:00 UTC of the following day (MeteoSwiss, 2016a), spatially interpolated

from daily precipitation sums measured at the MeteoSwiss high-resolution rain-gauge station network. Topographic effects80

and differences in station distribution are accounted for. Errors are estimated to be in the order of factor 1.7 for precipitation

below the 20% quantile (tendency towards overestimation) and 1.3 for precipitation above the 90% quantile (tendency towards

underestimation) and are higher in mountainous areas (MeteoSwiss, 2016a). A detailed description of this dataset and the

methods to derive it can be found in MeteoSwiss (2016a) and Schwarb (2001).

Gridded temperature (TabsD) displays daily mean (00:00 to 00:00 UTC) air temperature measured in degrees Celsius at 2 m85

above ground (MeteoSwiss, 2016b). As homogenized station data were used for interpolation, errors resulting from changes
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of measurement location or instruments are corrected. Regional differences in vertical temperature gradients, as well as the

effects of warm boundary layers and temperature inversions are taken into account. Standard errors in the TabsD dataset range

from 0.6 to 1.1 °C in the Swiss Plateau (smaller in summer) and reach values of 4 °C in inner Alpine valleys in winter. For

further information on interpolation method and validation, the reader is referred to Frei (2014) and MeteoSwiss (2016b).90

Furthermore, a daily weather type (WT) classification is used (Schwander et al., 2017), covering the period of interest. These

WT reconstructions are based on the CAP9 classification used by MeteoSwiss that distinguishes 9 different WTs for Central

Europe (Weusthoff, 2011), which show good skills at predicting daily weather, especially precipitation in the Alpine region

(Schiemann and Frei, 2010). Merging two pairs of similar CAP9 WTs, Schwander et al. (2017) reconstructed WTs from 1763

to 2009 using homogenised instrumental measurement series from different locations in Europe. For each day, this dataset95

provides the probabilities of each CAP7 WT. WTs from 2010 onwards were calculated from the CAP9 data from MeteoSwiss

(Weusthoff, 2011).

As argued by Schwander et al. (2017), reconstructed WTs are more reliable for winter than for summer months, as the

underlying meteorological patterns are more pronounced during winter. For weather reconstruction, this property has to be

taken into account.100

3 Methods

3.1 The Analogue Resampling Method

The application of the ARM in this paper is based on the work by Flückiger et al. (2017). The ARM requires two meteorological

archives: data to predict the spatial fields and a record of the spatial data from which the reconstructions are drawn. To predict

the spatial fields we used daily station observations, while the RhiresD and TabsD datasets for 1961–2017 from MeteoSwiss105

serve as record of spatial data (see chapter 2). For a given day in the past, we screen the period for which we have spatial data

(analogue pool) for the most similar day in terms of station data (best analogue). Precipitation and temperature fields from this

day serve as an estimate for the day in the past.

The ARM has the advantage of preserving natural variability and spatial patterns in the reconstructions (Zorita and von

Storch, 1999). With input from both, coarser-resolved data, e.g. reanalyses or weather types, as well as local information110

(station data), it can make use of more data sources than simple downscaling or interpolation of station observations alone. A

limitation is the size of the analogue pool, which has to be large enough to provide reasonably matching analogues to a given

atmospheric state (Zorita and von Storch, 1999). Furthermore, temporal consistency is not guaranteed.

In order to maintain the physical consistency of the reconstructions, further conditions are established:

1) The day of interest and possible analogue days are required to be of the same WT to assure similar synoptic-scale115

atmospheric conditions, e.g. wind fields (Weusthoff, 2011). To account for the uncertainty in WT reconstructions,

we did not restrict the analogue to the most probable WT but accepted additional WTs such that they cover the true

WT with a combined probability of at least 95% according to Schwander et al. (2017).
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2) The day of interest and possible analogue days are required to be within the same season to account for seasonally

different spatial patterns. The time window is set to ±60 days centred at the target day.120

Following these conditions, the best analogue is defined as a day within the analogue pool with the same weather type, within

the same time window that shows the most similar values of certain meteorological variables from a defined set of stations to

the day of interest.

Before the application of the ARM, station and gridded data are pre-processed. As observed variables have different scales,

each measurement series is standardised. Temperature data are decomposed into a smoothed mean climatology and the respec-125

tive anomalies. For each observation series, as well as each cell of the gridded data, a smoothed mean seasonality curve is

estimated by fitting the first two harmonics of temperature time series following equation 1, using linear regression.

S = c0 + c1 sin
(

2πdoy
ndoy

)
+ c2 cos

(
2πdoy
ndoy

)
+ c3 sin

(
4πdoy
ndoy

)
+ c4 cos

(
4πdoy
ndoy

)
(1)

doy denotes the day of year, ndoy the number of days in a year and c0, c1, c2, c3 and c4 are parameters to estimate. After

the calculation of the analogue reconstructions using temperature anomalies, mean climatology is then again added to the130

reconstructed temperature deviation fields to get absolute temperature data. This procedure slightly alters the characteristics of

the ARM, as adding climatology and resampled temperature deviations does not only resample known temperature fields, but

creates new ones. An elimination of the signal from climatic temperature changes over the last centuries did not improve the

results and was not further pursued in this study.

With pre-processed data, the analogue method is applied. Following Horton et al. (2017), the root mean squared error135

(RMSE) is used as measure of similarity (equation 2).

d(x,y) =

√√√√
n∑

i=1

(xi− yi)2 (2)

where x and y are vectors of observations from the day of interest and a day within the analogue pool, respectively. i denotes

the different observations within this vector. Other measures of similarity like the Mahalanobis distance were not examined.

3.2 Post-Processing Methods140

The best analogue may not perfectly fit all observations. To further improve the temperature reconstructions, we borrow from

data assimilation techniques (see e.g. Daley, 1999; Kalnay, 2007). The method used here is based on the ensemble Kalman

filter (Kalman, 1960; Evensen, 1994; Burgers et al., 1998), which is applied e.g. for data assimilation of ensemble forecasts

from dynamical models. Here we use the best analogue in the same way as forecast (termed background or first-guess) and the

best n analogues as ensemble. However, neither the analysis nor the covariance matrix (see below) are passed on to the next145

time step. This simplification is called ensemble Kalman fitting (EnKF) (Bhend et al., 2012; Franke et al., 2017) or off-line

data assimilation (Matsikaris et al., 2015). The EnKF essentially minimizes a least-squares problem (Franke et al., 2017). The

state vector x that minimizes the following cost function J is optimal in the case of Gaussian errors:

J(x) =
(
x−xb

)T (
P b
)−1(

x−xb
)

+
(
y−H[x]

)T
R−1

(
y−H[x]

)
(3)
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where xb is the first guess (background), in this case reconstructions from the best analogue. P b is the background error150

covariance matrix that in this particular case is estimated from an "ensemble" of the best n analogues, i.e. temperature fields

from the n most similar days to the day of interest. Vector y contains station observations and operator H is used to extract the

observations from the model space. R is the error covariance matrix of y−H(x). With station observations and the ensemble

of the best n analogues, a new estimation of temperature xa that is the best estimate for true atmospheric state x is calculated

from equation 4155

xa = xb +K(y−Hxb) (4)

where xa denotes the updated state vector (analysis), xb and y as described above and K is the Kalman gain or innovation

matrix calculated from the ensemble. In this and the following equations,H describes the Jacobian matrix ofH(x) and extracts

the values from the grid cell closest to the observation site of y.

We use an implementation (Whitaker and Hamill, 2002; Bhend et al., 2012) in which each observation is assimilated se-160

quentially (equations 5–7). The fitting procedure is split into two steps: an update of the ensemble mean x̄ (equation 5a) and

an update of the anomalies x′ with respect to the ensemble mean (equation 5b). Equations 6a and 6b depict the calculation of

the Kalman gain K for the ensemble mean and K̃ for the anomalies.

x̄a = x̄b +K(ȳ−Hx̄b) (5a)

165

x′a = x′b + K̃(y′−Hx′b) with: y′ = 0 (5b)

K = P bHT (HP bHT +R)−1 (6a)

K̃ = P bHT

[(√
HP bHT +R

)−1
]T
×
(√

HP bHT +R+
√
R
)−1

(6b)170

x̄a and x̄b denote the analysis and background of the ensemble mean and x′a and x′b the corresponding anomalies. P b and

R are the error covariance matrices as in equation 3. The observation error R is roughly estimated to be 1 °C. The background

error covariance matrix P b is calculated from the best n analogues following equation 7, where i and j denote grid boxes and

k the ensemble members.

P bi,j =
1

nens− 1

nens∑

k=1

(
xbi,k − x̄bk

)(
xbj,k − x̄bk

)
(7)175

Following Whitaker and Hamill (2002), not the full error covariance matrix is calculated, but directly the conversion P bHT

in order to save computational resources. Covariance matrices estimated from small samples may exhibit spurious covariances
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far away from the observation. Spatial localisation is often used to minimise these effects. In our case, the study areas is too

small and the ensemble size sufficient such that localisation is not necessary (tests using a Gaussian weighting function did not

show improvement).180

For each day, the EnKF is applied to the analogue reconstructions using a selection of measurement series that exhibit

an average monthly correlation with co-located data from TabsD above 0.975 (see Fig. 1). This is to avoid measurement

series subject to local influences, which are not resolved by spatial data and thus would lead to erroneous assimilations. To

account for a bias between local measured temperature at a weather station and spatially aggregated temperature values of the

corresponding grid cell, station data are corrected by subtracting the mean bias between measurement and grid cell value from185

the TabsD dataset over the period 1961–2017 for each month. This procedure prevents systematic biases in fitted temperature

fields. The ensemble size is set to the 50 best analogues.

Precipitation reconstructions are often affected by biases in the mean, an increased number of wet days and underestimation

of extreme events (Piani et al., 2010b). To avoid such effects, analogue reconstructions of precipitation are post-processed.

Although attempts have been made to assimilate precipitation with an application of a Kalman filter (Lien et al., 2013, 2016),190

in this paper, a much simpler approach is used: quantile mapping (QM). This method of model output statistics aims at trans-

forming cumulative distribution functions (CDF) of modelled precipitation to match the CDFs of observed precipitation by

finding a statistical transfer function h (Maraun et al., 2010; Maraun, 2013), i.e. it is mapping modelled to the observed distri-

bution. As pointed out by Cannon (2018), this procedure is asynchronous, that is not considering any chronological aspects of

precipitation. In its simplest application, QM corrects the model bias according to observed precipitation values (Piani et al.,195

2010a) and can be generally expressed by equation 8.

Po = h(Pm) (8)

where Po and Pm are observed and modelled precipitation, respectively and h the transfer function (Gudmundsson et al.,

2012). Based on the probability integral transform theorem (Angus, 1994), the transformation can be described as:

Po = F−1
o (Fm(Pm)) (9)200

with Fm the CDF of modelled precipitation and F−1
o the inverse CDF of the observed precipitation. To solve this equation,

the distribution of the variable of interest has to be defined. In this paper, a parametric transformation using an exponential

asymptotic function to estimate precipitation distribution was chosen following Gudmundsson et al. (2012). This parametric

transformation is described by equation 10, where P̂o denotes the best estimate of Po and parameters a, b, x and τ are to be

determined.205

P̂o = (a+ bPm)
(

1− e−(Pm−x)/τ
)

(10)

The best prediction of parameters a, b, x and τ is estimated by minimising the residual sum of squares for wet days (Gud-

mundsson et al., 2012). To define wet days, a threshold for P > 0.1 mm was set. Precipitation values beyond 0.1 mm were

set to zero. Parametric transfer functions were calculated from all data within the calibration period 1 Jan 1961–31 Dec 2017
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for each grid cell after Piani et al. (2010a) with Pm the values from the analogue reconstructions and Po the values from210

the RhiresD dataset. No discrimination between different seasons has been made. Based on the assumption, that the transfer

function derived from this period is robust, i.e. precipitation distribution is not subject to changes in time, these functions can

then be extrapolated in time to transform precipitation distributions of the reconstructed datasets back to 1864.

Note that the method as applied in this paper only corrects model bias. This simple application of QM was chosen to be

able to extrapolate distribution correction in time, as more complex approaches would likely be less robust. To substantially215

improve e.g. dry/wet day discrimination or extreme values, other approaches have to be applied (Cannon et al., 2015).

3.3 Validation

The validation of precipitation and temperature reconstructions is following common measures and strategies used in validation

of field forecasts (Wilks, 2009; Jolliffe and Stephenson, 2012). If not indicated otherwise, validation measures and skill scores

are computed on absolute values.220

We use the Pearson correlation coefficient for temperature, while for non-Gaussian distributed precipitation the Spearman

correlation is calculated. Note that for temperature, correlation is computed on anomalies from mean seasonality (compare

chapter 3.1) so it reflects day-to-day variability rather than the seasonal cycle. Error magnitudes are indicated as root mean

squared error (RMSE), as this measure is sensitive to larger errors. Furthermore, systematic biases between reconstructions

and observations are evaluated.225

Additionally, the mean squared error skill score (MSESS) or reduction of error-statistic (RE-value) is calculated for temper-

ature reconstructions following equation 11, allowing us to analyse the skill of reconstructions compared to mean climatology

in terms of the mean squared error.

MSESS = 1−

n∑

i=1

(
xreci −xrefi

)2

n∑

i=1

(
x0
i −xrefi

)2
(11)

with xrec the reconstruction, x0 a ’no knowledge prediction’ (in this case mean climatology), xref the reference data from230

TabsD and i denotes time step (validation over time) or grid cell (validation over space). A MSESS value of 1 indicates a perfect

reconstruction. With an MSESS of zero, prediction skills of reconstruction and climatology are equal and values below zero

denote a decline in skill compared to climatology (Jolliffe and Stephenson, 2012). Note that this measure punishes variance,

i.e., a reconstruction with the correct variance but zero correlation will have an MSESS of -1.

For precipitation reconstructions, another property of interest is the discrimination between wet and dry. For this purpose,235

the Brier score (BS) was calculated (equation 12) that compares the predicted probability of an event to observations (Wilks,

2009).

BS =
1
n

n∑

i=1

(yi− oi)2 (12)
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where y and o denote the probability of rain in reconstructions and observation, respectively and i as above. As reconstruc-

tions do not provide probabilities, y and o are binary with 1 = rain and 0 = no rain with a wet/dry-threshold of 0.1 mm. The BS240

describes the percentage of time steps (or grid cells) that was wrongly assigned as wet or dry.

In a first part, a leave-one-out validation was performed on daily gridded data within the period 1 Jan 1961–31 Dec 2017.

For each day, the best analogue day is calculated, excluding data from 5 days before and after the day of interest, as spatial

patterns from neighbouring days can be similar. Precipitation and temperature reconstructions are then validated against the

RhiresD and TabsD dataset, respectively. To analyse the full timespan of the dataset, reconstructions are compared to station245

observations in a second part. For this purpose, two independent station series from Schaffhausen and Grimsel-Hospiz (see

chapter 2) were used. Measurements were compared to reconstructions by extracting values from the corresponding grid cells

without interpolation.

4 Results and Discussion

As described in chapter 3.3, a leave-one-out validation over the period 1961–2017 was performed and reconstructions were250

compared to the MeteoSwiss RhiresD and TabsD datasets, as well as station data. In this section, we will illustrate and discuss

general results from grid-based validation of precipitation and temperature reconstructions for 1961–2017. Of particular interest

are seasonal differences and extreme events, where we evaluate also the accuracy of reconstructions to reproduce spatial

patterns. Furthermore, we compare reconstructed time series for Schaffhausen and Grimsel-Hospiz to corresponding station

observations.255

4.1 Leave-one-out Validation in Time

Figure 2 shows results from the validation over time for analogue precipitation reconstructions (a–d) and quantile-mapped

data (e–h) against RhiresD data. Depicted are rank correlation (a, e), RMSE (b, f), mean bias (c, g) and Brier score (d, h).

The Spearman correlation coefficient for analogue reconstructions is 0.79 on average and attains values from 0.62 to 0.86

with maximum values in central Switzerland (a). Quantile mapping does not change the ranks of precipitation distribution,260

therefore the two correlation maps are identical. Regarding the RMSE (e, f), an average error magnitude of less than 5 mm

in the Swiss Plateau, as well as the inner-alpine valleys and large parts of the canton of Grisons can be observed. Errors are

larger in mountainous areas and in Ticino reaching values of 6–15 mm. Post-processed data (f) reveal a negligible increase of

these errors in the range of 0.1–0.6 mm. Analogue reconstructions show a negative bias between 0.2 and 0.5 mm in the Swiss

Plateau (c). The underestimation is more pronounced in mountainous regions and in Ticino with values of 0.5–1.6 mm. Using265

the quantile mapping approach described in chapter 3.2, this bias could be eliminated for the given timespan (g). The Brier

score indicates relatively high error rates in the discrimination between wet and dry days at individual locations with values

between 0.13 and 0.23 (d). Post-processed data reveal slightly negative changes in terms of Brier scores (h).

While rank correlation values show satisfying results, bias and RMSE patterns of ARM reconstructions could possibly be

explained by an underestimation of extreme and convective precipitation, which occur in the Alpine region and in Southern270
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Switzerland, especially in summer. While quantile-mapped data correct the bias, error values still remain large. We will elabo-

rate on this issue below, where we look at seasonal patterns and extremes. Another problem of the reconstructions is indicated

by the Brier score: on average, 17% of days are wrongly assigned as wet or dry. This relatively high fraction is not improved

with post-processing, as the quantile mapping approach used here is not designed to address this particular problem.

Validation of temperature reconstructions over time in Fig. 3 reveals a good correlation already for unprocessed data, ranging275

between 0.76 and 0.95 with a mean of 0.91 (a). Correlation is slightly lower in Ticino and the southern valleys of Grisons.

With ensemble Kalman fitting, Pearson correlation could be increased to values between 0.83 and 0.99 and a mean of 0.96,

showing similar spatial patterns (e). Also the error (RMSE) could be reduced with post-processing from 1.52 °C to 0.96 °C

on average (b, f). In the Swiss Plateau, the error attains values below 1 °C, while in the Alpine region, in the Jura Mountains

and in southern Switzerland RMSE values up to 2.7 °C can be observed. Unprocessed reconstructions show a systematic280

overestimation of temperature in the Swiss Plateau, in the Rhone valley in Valais and in the northern valleys of Ticino with

values up to 0.06 °C (c). On the other hand, temperatures at higher altitudes and in southern Ticino are underestimated by 0.05

to 0.15 °C. Post-processed data (g) show less bias and a more balanced spatial pattern with values ranging between –0.08 °C

and 0.03 °C and a mean of –0.01 °C. The MSESS compared to mean seasonality (d, h) is high all over Switzerland and could

be increased from 0.83 to 0.93 on average using EnKF. The pattern is following correlation.285

Overall, reconstructed temperature fields can be considered to very accurately reproduce the temporal evolution of the

weather. Errors are relatively low, although in regions with sparse meteorological observations, larger errors are observed.

Station coverage thus plays a crucial role for analogue reconstructions. The local field of larger errors in the western Jura near

La Brévine might be explained by cold air pooling, which occurs frequently in this region during winter (Vitasse et al., 2017)

and is not captured by any of the measurement series used for reconstruction. Bias patterns suggest that ARM reconstructions290

have problems to correctly reproduce vertical temperature gradients. A major issue here could also be inversions. In the vertical

distribution of used temperature stations higher altitudes are only sparsely covered (see Fig. 1), making the correct determina-

tion of vertical gradients and inversion heights difficult. Post-processed data seem to solve large parts of this problem, but this

needs for further investigation.

To find possible explanations behind the issues mentioned above and to gain more insight into the dataset, precipitation and295

temperature reconstructions are assessed in detail for differences between seasons, as well as extremes.

Figure 4 depicts rank correlation (a–d), RMSE (e–h) and averaged bias (i–l) over time of post-processed precipitation for

each season. We see a relatively uniform correlation pattern over all seasons with slightly higher values for summer (JJA) along

the northern Prealps (c). Correlation values are lowest on the southern side of the Alps, especially in winter (a). Error values

(e–h) show a similar spatial pattern throughout the year and are smallest from December to February (DJF) and slightly higher300

in spring (MAM) and autumn (SON); maximum values of the RMSE occur during the summer months and reach values of

8–15 mm in Ticino. Mean bias over time (i–l) still shows minor seasonal differences. In the Swiss Plateau, the mean deviation

is approximately zero, except for a slight positive bias in summer. In the Jura Mountains, a minor underestimation in winter

and an overestimation of summer precipitation is observed. Largest differences occur in the Alpine region and in southern
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Switzerland, where winter and summer precipitation show a tendency towards overestimation, while in spring post-processed305

precipitation fields exhibit a negative bias in western Valais and the Gotthard region.

The pattern of RMSE with higher values during the warmer periods of the year and maxima in summer is supporting the

previous assumption that reconstructions have problems to reproduce intensive or convective precipitation. Especially the latter

which are local-scale phenomena may not be detected by measurement stations, making station coverage again an important

issue to obtain reliable reconstructions.310

Analysing the same for temperature (Fig. 5), we see that Pearson correlation values (a–d) exhibit maximum correlation

values in spring and summer, while in autumn and winter these values are slightly lower. The RMSE (e–h) is higher in winter

than during the other seasons and reaches minima in the summer months. Maximum errors of up to 3 °C occur during winter in

the Alpine region and the Jura Mountains (e). Overall, average bias (i–l) is only marginal for all seasons with values between

–0.2 °C and 0.1 °C. Generally, vertical temperature gradients seem to be corrected by Kalman fitting. However, we can see315

higher values and a distinct spatial pattern related to topography in winter, as can also be seen in the RMSE (e). This indicates

that inversions, which occur more frequently during this season, remain a problem also in post-processed reconstructions.

The above-mentioned issue with cold air pools in the western Jura seems to be confirmed by the seasonal error patterns,

although larger errors for this region persist throughout the year. Interestingly, the mean bias shows an underestimation of

winter temperature for this region.320

4.2 Leave-one-out Validation in Space

Post-processed temperature and precipitation data were further assessed by quantiles of Swiss mean temperatures and precip-

itation 1961–2017 calculated from the MeteoSwiss TabsD and RhiresD datasets to analyse the accuracy of reconstructions in

reproducing extremes (Fig. 6). Note that, as quantiles were calculated for average values over Switzerland, local extremes do

not necessarily correspond to highest or lowest quantiles for the whole area. In the following, results from validation over space325

are shown to analyse the capability of reconstruction methods to reproduce spatial patterns. For comparison, validation results

from the analogue method are indicated in grey.

Spatial correlation of precipitation (top) is relatively low for low to moderate precipitation events and increases with precip-

itation quantiles. Looking at the RMSE, mean and also the spread of errors increase with increasing precipitation. While the

RMSE shows a median of less than 5 mm up to the 70% quantile, for extreme precipitation events above the 95% quantile330

errors attain values of 10–15 mm in the interquartile range. Compared to unprocessed data, a slight decrease of correlation and

increase of the RMSE is visible. However, the bias is considerably improved. While analogue reconstructions reveal a strong

underestimation of extreme events, the median bias becomes approximately zero for all quantiles. Uncertainties, however, re-

main large. The Brier score reveals that for days with zero to low precipitation as well as for extreme events, the precipitation

area is well represented in the reconstructions. Problems here lie in the correct reconstruction of precipitation areas for moder-335

ate events. Compared to unprocessed data, quantile mapping leads to a slightly better discrimination between wet and dry grid

boxes for upper quantiles, while the BS becomes larger for lower quantiles.
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From this, we can conclude, that reconstructions provide accurate precipitation fields for low to moderate precipitation

events. For the benefit of unbiased reconstructions, a slight decrease of correlation and an increase of the RMSE and BS have

to be accepted. Extreme events, however, are underestimated by ARM reconstructions and show large errors also for post-340

processed data. As extreme events by definition occur more rarely, the number of suitable analogues is limited. As argued in

chapter 3, a bigger size of the analogue pool would lead to more accurate results also for extremes. Different post-processing

methods might help to improve reconstructions, especially regarding wet/dry discrimination and extremes.

Validation of temperature by spatial mean temperature quantiles (bottom) shows a considerable improvement for post-

processed data, compared to analogue reconstructions. Correlation values exhibit slightly better correlations for extreme tem-345

peratures, while reconstructed fields for medium temperatures are less correlated with TabsD data. RMSE values are higher

for upper and lower extreme values. In general, errors could be significantly reduced with Kalman fitting. The average bias

reveals, that while analogue reconstructions tend to overestimate negative extreme values and underestimate extremely high

temperatures, post-processed temperature data show a median of approximately zero for all quantiles. The bias pattern of the

ARM can be explained as for precipitation by a limited number of suitable analogues for extreme events. Kalman fitting solves350

this problem. Furthermore, the spread of bias values is within ±1 °C for four times the interquartile range. Post-processed

temperature reconstructions are thus accurate and precise also for extreme temperatures. MSESS values are better for upper

and lower quantiles and show worse results around the median. As days around median temperature are closer to average

climatology, this pattern has to be expected. Nonetheless, the MSESS of post-processed data is still within the area of natural

variability (see chapter 3.3).355

4.3 Validation Against Independent Observations

In Fig. 7, reconstructed precipitation and temperature is compared to station observations from Schaffhausen (left) and Grimsel-

Hospiz (right) over the full length of the respective series. Plotting reconstructed values against observations, we see a large

spread of values for analogue reconstructions (grey), as well as for post-processed data (red). While for Schaffhausen, quantile-

mapped precipitation exhibits a distribution closer to station observations in the QQ-plot (centre) compared to ARM recon-360

structions, we can see a tendency towards overestimation in post-processed precipitation reconstructions for Grimsel-Hospiz.

The seasonal pattern (bottom) reveals lowest differences in autumn, whereas the uncertainty is highest during summer, which

is again in line with more frequent convective activity during the latter season as discussed before. The systematic underesti-

mation of precipitation by the ARM is adjusted by post-processing for all seasons. The larger uncertainty in the Alpine region

discussed before is also visible in station data where the spread of bias values over all seasons (bottom) is larger for Grimsel-365

Hospiz. This is also the case for the RhiresD gridded dataset used for reconstruction (see chapter 2). The differences between

reconstructions and station observations might at least partly be explained by the high spatial variability of precipitation, thus

spatially coarser gridded data can differ considerably from local measurements. For reasons of higher spatial variability, a less

perfect fit has to be expected compared to temperature reconstructions. These are closer to observed values compared to precip-

itation and show a smaller spread of deviations. Kalman-fitted reconstructions are even more precise; not only that the spread370

of values is reduced, but also the tilt in distribution could largely be corrected. Seasonal patterns of ARM reconstructions show
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larger deviations during spring and autumn. These seasonal differences are eliminated by EnKF. Reconstructed temperature

fields thus accurately reproduce local temperature measurements, even for remote locations. With precipitation data, however,

one has to be more careful when generating station series at individual locations.

4.4 The Avalanche Winter of 1887/88375

The winter of 1887/88 was one of the most severe avalanche winters during the last 150 years, boosting the efforts in avalanche

prevention in Switzerland (SLF, 2000; Margreth, 2019). Intensive snowfall in February and March 1888 brought large snow

masses to Switzerland leading to 1094 disastrous avalanches, damaging 850 buildings and destroying over 1300 hectares of

forest and burying 49 people under the snow (Coaz, 1889; Laternser and Pfister, 1997). Documentary data from Coaz (1889)

provide a detailed description of this winter and comprehensive survey of avalanche activity gathered by cantonal forestry380

offices. From a historical perspective, it has been recently assessed by Vieli (2017). However, quantitative data on the weather

of this avalanche winter is restricted to sparse station observations so far. The gridded weather reconstructions presented

in this paper can help to analyse 1887/88 winter weather quantitatively, thus helping to better understand weather patterns

leading to such an event. For demonstration purposes, we performed some simple calculations of monthly averages, mean

snow precipitation and the zero-degree level that are summarised in Fig. 8.385

Shown are post-processed precipitation reconstructions aggregated over one month (a–d) for winter 1887/88 and the recently

published monthly precipitation reconstructions by MeteoSwiss (Isotta et al., 2019) (e–h). Both datasets reveal similar patterns

of monthly precipitation, although regional differences occur. More deviations between the dataset can be observed in the

amount of reconstructed precipitation. From both datasets, large precipitation sums can be determined in December 1887 on

the northern flank of the Alps and in the Jura mountains. January shows only little precipitation with highest values in the390

north-eastern Alps. February and March show extreme precipitation values in Ticino and the Gotthard region, in March also

over the remaining part of Switzerland.

Daily reconstructions allow for going more into detail. For example, we can calculate the development of the zero-degree

level from gridded temperatures taking the intercept of a linear regression between temperature and altitude (bottom of Fig.

8). Altitude data used here was aggregated from the SRTM 90 digital elevation dataset (Jarvis et al., 2008) to fit the resolution395

of reconstructions. Another value of interest is the intensity of snowfall precipitation. In Fig. 8 (bottom), the average snow

precipitation per snowfall area is shown, calculated from post-processed reconstructions and assuming an estimated 1 °C

threshold (Jennings et al., 2018), below which precipitation falls as snow. Grey shaded areas depict periods of high avalanche

activity as reported by Coaz (1889).

Analogue reconstructions (red) and assimilated temperature data (blue) show similar values. The extreme precipitation event400

in December 1887 coincides with a high altitude of the zero-degree level, thus leaving a snow covered area restricted to higher

altitudes. This event was followed by several cold episodes and low precipitation in January. The first avalanche period was

dominated by low temperatures and intensive precipitation. During the second avalanche period, the reconstructed zero-degree

level rises to approximately 600 m a.s.l. with almost no snow precipitation. March shows two periods of high temperatures and

intensive precipitation in the middle of the month and during the third avalanche period.405
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Reconstructed precipitation patterns, as well as the development of temperature are in line with the findings from documen-

tary data (Coaz, 1889) that report strong snowfall during December, a dry January and again intensive precipitation during

February and March, especially in the Southern Alps. While the first two avalanche periods are determined by low tempera-

tures, Coaz describes a sharp rise of the zero-degree level to about 2000 m a.s.l. preceding the third period that led to a high

number of wet avalanches, which can well be seen in the reconstructions. However, during the second period, reconstructions410

show relatively low snow precipitation values, contesting the high avalanche activity. Nonetheless, avalanches are not only

triggered by intensive precipitation. For example, the intensive snowfall period in December 1887 and the first two in March

1888 are not accompanied by more frequent avalanches. To analyse this, also other factors like temperature and wind as well as

the composition of different snow layers play an important role and have to be assessed. A closer look at these periods would

probably reveal more about the processes that triggered or prevented avalanches.415

From precipitation and temperature reconstructions, new insight on the avalanche winter of 1887/88 can be gained already

with simple methods. Using more sophisticated snow models that also take into account evaporation and snow-melt, high-

resolution daily spatial data of the snow cover could be established that may be able to further explain avalanche activity.

This is but one example, what the new daily reconstructions of temperature and precipitation could be used for. Analogue

reconstructions have already been applied as input to numerical models, such as crop modelling (e.g. Flückiger et al., 2017) or420

hydrological modelling (e.g. Brönnimann et al., 2018), but the list could be extended. Many other phenomena, e.g., heat waves

or droughts can be analysed spatially, and making use of the long timespan changes of climate and extreme events over time

could be investigated.

5 Conclusions

As shown in this paper, the Analogue Resampling Method is a suitable and efficient approach for reconstructing daily pre-425

cipitation and temperature fields from station observations. Using CAP7 weather types as a criterion for physical consistency

and a set of observations from 68 weather stations, we could present a long-term, physically consistent, high-resolution spa-

tial dataset of these meteorological parameters for Switzerland since 1864. The datasets are published at [DATABASE, DOI].

Analogue reconstructions for temperature and precipitation show good results, but experience difficulties in reproducing ver-

tical temperature gradients and show a general negative bias for precipitation arising mainly from underestimation of extreme430

events. Furthermore, analogue reconstructions reveal difficulties to correctly distinguish between wet and dry days. On average

17% of days were wrongly assigned. Temperature reconstructions could be considerably improved by assimilating station data

using an ensemble Kalman fitting approach. Assimilated temperature fields show average error magnitudes of less than 1 °C

and are nearly unbiased for the mean. The issue with vertical temperature gradients could be largely eliminated, although in

winter some problems remain that could probably be referred to difficulties of reconstructions to determine inversion heights.435

Precipitation data were post-processed with quantile mapping, adjusting the distributions of daily precipitation for each grid

cell to obtain more accurate values. The mean bias could be successfully reduced, while a larger uncertainty for extreme events
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persists. However, error values show a slight increase in post-processed data. With the simple approach of quantile mapping

presented in this paper, the problem of wet and dry day discrimination could not be addressed.

There are some limitations to the analogue method, as the availability and coverage of station observations affects the440

accuracy of the results, especially for precipitation reconstruction. In regions with sparse information from weather stations,

the uncertainty of reconstructions is larger. In Switzerland, this regards mostly mountainous areas. A second constraint is the

comparatively small size of the analogue pool that is available for this application, which is especially relevant for extreme

events as for such events less suitable analogues exist. To reconstruct extremes more accurately, notably for precipitation, a

longer series of spatial data and a denser station network would be needed. With more sophisticated post-processing methods445

for precipitation, also errors in wet and dry day discrimination could be reduced. As mentioned, the analogue approach does

not guarantee temporal consistency and therefore isn’t completely suitable to analyse trends. However, the dataset presented

in this study very well complements the monthly reconstructions by Isotta et al. (2019) that were specifically designed for this

purpose.

The assessment of avalanche winter 1887/88 in Switzerland shows that the reconstructed development of temperature and450

precipitation correspond well to documentary sources and to monthly reconstructions by Isotta et al. (2019). Possible applica-

tions of our daily, high-resolution precipitation and temperature reconstructions range from crop modelling to the reconstruction

of river runoffs, and the study of weather phenomena in the context of climate change.

Could daily reconstructions be extended even further back in time? For Switzerland, a recent survey brought to light a large

amount of early instrumental data (Pfister et al., 2019). An extension of the dataset to the pre-industrial period is therefore455

envisaged, although larger measurement errors and less consistent measurement series make this endeavour rather challenging.

The method should also be suitable to reconstruct daily meteorological fields for other regions of Central and Western Europe.
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cence.460
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Figure 1. Station Map. (left) Measured variables are indicated as colours. Labelled pie charts represent NBCN climate monitoring stations.

Additional NBCN precipitation stations are indicated as small blue dots. Stations that were used for temperature assimilation are marked by

an asterisk. Yellow dots represent series used for station-based validation. (right) Vertical distribution of measurement series is indicated by

altitude class for each variable.
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Figure 2. Validation over time of precipitation 1961–2017 for analogue reconstructions (a–d) and quantile-mapped data (e–h). Shown are

Spearman correlation (a, e), RMSE in mm (b, f), mean bias in mm (c, g) and Brier score (d, h).
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Figure 3. Validation of temperature over time 1961–2017 for ARM (a–d) and EnKF (e–h) reconstructions. Shown are Pearson correlation

(a, e), RMSE in mm (b, f), mean bias in mm (c, g) and MSESS (d, h).
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Figure 4. Validation of quantile-mapped Precipitation over time by season. Shown are Spearman correlation (a–d), RMSE (e–h) and bias

(i–l).
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Figure 5. Results of validation over time of EnKF temperature reconstructions for each season. Shown are Pearson correlation (a–d), RMSE

(e–h) and bias values (i–l).
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Figure 6. Validation over space of precipitation (top) and temperature (bottom) for ARM reconstructions (grey) and post-processed data

(red), separated by quantile groups of spatial average precipitation and temperature, respectively. Shown are Spearman (precipitation) and

Pearson (temperature) correlation, RMSE, bias, Brier score (precipitation) and MSESS (temperature). Boxes range from the 1st to the 3rd

quartile and whiskers extend to 1.5 times the interquartile range outside the box.
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Figure 7. Comparison between reconstructions and station observations of precipitation [in mm] and temperature [in °C] for Schaffhausen

(left) and Grimsel-Hospiz (right) with ARM reconstructions (grey) and post-processed data (red). Shown are observed vs. reconstructed

values (top), quantile-quantile plots (centre) and boxplots of the deviation between reconstruction and observation by season (bottom).
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Figure 8. Avalanche winter 1887/88: monthly mean precipitation from December 1887 to March 1888 calculated from post-processed daily

reconstructions (top, a–d) compared to monthly reconstructions from Isotta et al. (2019) (top, e–h). On the bottom, estimated zero-degree

level from ARM (red lines) and EnKF (blue lines) reconstructions are indicated, as well as average snow precipitation (blue bars), calculated

from post-processed data. Grey shaded areas depict periods of increased avalanche activity as determined by Coaz (1889).
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