
Reply to the editor's comments

Line 382. ‘This distance measure, which is sensitive to large deviations, shall avoid levelling out of station 
data resulting in reduced variance of reconstructions’. 
I am not sure I understand what you mean here. Do you mean that with this choice of the distance measure you
have a smaller risk to have reduced variance in the reconstruction? Maybe a rephrasing or a little bit more 
detail will help the reader.

Line 392 ‘measure can have an impact on the capability of the ARM to correctly reproduce variance and 
mean’. 
Would it be possible to be more explicit on the impact on the variance and mean (for example a reduction or 
amplification of the variance, a mean biased towards high or low values’) ?

Thank you for these remarks. As the RMSE is sensitive to large deviations (e.g. compared to the MAE), best 
analogues tend to follow more closely observed measurements (also in case of extreme and local phenomena). 
Thus, the leveling out of station data can be reduced (but not avoided entirely) and naturally occurring 
variability is better reproduced by the analogue reconstructions. Biases due to the choice of distance measure 
are related to the reduction of variability and can be either way. We will try to make this clearer in the revised 
manuscript and add also some more information on possible impacts of the chosen distance measure: "This 
distance measure was chosen to reduce leveling out of station data resulting in decreased variance of 
reconstructions. As it is sensitive to large deviations, station data of the best analogues will be closely 
following observed ones, thus reproducing also local phenomena and extremes. To a certain extent, however, 
an underestimation of variance due to leveling out of station observations can't be avoided, especially for days 
with less suitable analogues and for skewed distributions like precipitation."

Line 435 ‘From the limitations of the ARM described in the previous section we can conclude that also 
precipitation reconstructions are not perfect, but might be affected by difficulties, e.g. ‘. 
This sentence is a bit heavy for me. Could you rephrase it (I would for instance suppress ‘also’ at least) ?

We will change the sentence as follows: "Given the limitations of the ARM described in the previous section, 
also precipitation reconstructions might be affected by difficulties, e.g...."

Reply to the reviewers comments (RC1)

The manuscript presents a gridded reconstruction of daily precipitation and temperature in Switzerland over 
the last 140 years approximately, based on available but sparse station observations. The methodology is based
on the Analogue Resampling method , with post-processing applied Quantile Mapping and Ensemble Kalman 
Filter. The study is indeed very interesting – the idea of combining the Kalman Filter and the analog method is 
I think novel. The applied methodology is valuable. The manuscript is generally clearly written and well 
structured. Therefore, I m happy to recommend the manuscript for publication after some revisions, which I 
hope that the authors may want to consider.

We'd like to thank the reviewer for this positive feedback and for all the helpful comments and suggestions to 
improve the manuscript.

General comments:

1) The manuscript discusses at length the success and deficiencies of the reconstructions, both with the ARM 
and the post-processed reconstructions. This discussions is focused on the replication of the mean, variability 
and extreme events. I have one general comment in this regard. The ARM using just one analogue is in 
principle unbiased and should also replicate the correct variance, since it is simply a re-sampling of 
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observations. Therefore, deficiencies in the replication of aggregated statistical measures, such as mean and 
variance, found in the same ‘pool’ period 1961-2017 can only be originated in the predictand field, the girdled 
temperature and precipitation products. (Of course, the skill in replicating the temporal succession and 
extremes is another question). Thus, the evaluation of the ARM by the leave-one-out method is actually not 
only a validation itself but also in combination with the gridded temperature and precipitation fields. Since the 
construction of these fields always involves some sort of regression or averaging of station data, the extremes 
and in general the variability is reduced compared to station data.

This is an important point. We agree with the reviewer that in principle, the ARM using only the best analogue
has the advantage over e.g. simple interpolation methods to reproduce natural variability and mean values. 
However, as the reviewer points out, certain methodological choices as the coupling of temperature and 
precipitation reconstructions or also the application of a distance measure over all station data can result in 
reduced variance and biases. The best analogue thus represents a best compromise to optimally satisfy all 
criteria described in section 3.1 of the manuscript. Some causes of reduced variance and bias (limited size of 
the analogue pool, availability of station data) are discussed in the manuscript. In section 3 of the revised 
manuscript, we will state more clearly that the ARM generally should be unbiased and reproducing natural 
variability and we will add a few sentences on possible impacts that methodological choices may have, 
limiting the capability of the ARM to do so.

2) I understood why the station predictor data need to be de-seasonalized and standardized, as temperature and 
precipitation have different variation ranges. However, I did not understand why the gridded predictand fields 
also need to undergo this preprocessing. In theory, once the ensemble of n analogues is identified, the same 
days can be selected from the pool of un-preprocessed predictand fields. Perhaps, the Kalman Filter algorithm 
requires that preprocessing, but it is not obvious to me. A short explanation, if that is the case, would help the 
reader.

Thank you for this remark. Station data are standardized and temperature measurements also de-seasonalised. 
To the gridded data, however, no standardisation is applied, but only a de-seasonalising of temperature fields. 
For precipitation, the best analogue dates are selected directly from the pool of un-processed predictand fields 
(absolute values). As analogues are calculated using temperature deviations from a mean seasonal cycle, 
reconstructed temperature fields are accordingly taken from pre-processed gridded data (temperature 
anomalies). The mean climatology is then added again to get absolute temperature values. This procedure 
might not be entirely clear from the formulation in section 3.1 and we will try to clarify it in the revised 
manuscript.

3) Through the manuscript, especially in the beginning I had problems to figure out which data are the 
‘predictors’ and which the ‘predictand’. It becomes clearer later in the manuscript, but perhaps the authors 
would like to use this terminology or a similar one from the start. It will help those readers that are not that 
acquainted with the analog method

Thank you for this suggestion. For the analogue method, the spatial fields of a given day of interest is the 
predictand and all data used to look for the best analogue (station data, weather types) are used as predictors. 
In the revised version, we try to make this distinction clearer for better understanding.

Particular comments:

Some refer to the English usage, but I am not a native speaker, so the authors may want to double-check

Thank you for these comments. We changed the order of the reviewer's comments in the following to first 
answer remarks regarding language and then go into detail with comments regarding content and 
understanding of the manuscript.
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line 3 ‘ whereas prior to that local station observations ‘ 
the sentence is ambiguous : whereas prior to that year, local stations observations..

line 115 The day of interest and possible analogue days are required to be of the same WT to assure similar 
synoptic-scale 
to ensure

Line 338: From this, we can conclude, that reconstructions provide accurate precipitation fields for low to 
moderate precipitation 
delete comma after conclude

Thank you for these suggestions. We will correct the errors and adjust the wording in the manuscript for better 
understanding.

line 37 ‘The analogue approach makes use of this statistical relationship between large-scale and local weather 
or meteorological patterns, while the former is used to predict the latter. ‘
what is ‘the former’ and which ‘the latter’ ?

This is a good point. In fact, the analogue method can be applied in both ways: for downscaling large-scale 
weather data to a local scale, as well as to predict large scale weather data from local scale information. As in 
the introduction we want to keep the description of the method general, the wording will be changed in the 
revised manuscript as follows: "The analogue approach makes use of this statistical relationship between large-
scale and local weather or meteorological patterns, while one can be used to predict the other". Further details 
are given in section 3.

Line 81: ‘Errors are estimated to be in the order of factor 1.7 for precipitation on) and 1.3 for precipitation 
above the 90% quantile.
I guess units are mm/day

Thank you for this comment. In the description of the RhiresD dataset (MeteoSwiss, 2016a), standard errors of
the dataset compared to local point observations are indicated to be in the order of a factor between 1.3 to 1.7 
(dimensionless).

line 104 data to predict the spatial fields and a record of the spatial data from which the reconstructions are 
drawn. the spatial fields we used daily station observations, while the RhiresD and TabsD datasets for 1961–
2017 from M
I would set here which are data are the predictors and which the predictands. Many readers would refresh their 
understanding of the method by going directly to this section

Thank you. In accordance with comment 3), we will clarify the terminology in the revised manuscript.

line 158: where x denotes the updated state vector (analysis), x and y as described above and K is the Kalman 
gain or innovation matrix calculated from the ensemble. In this and the following equations, H describes the 
Jacobian matrix of H(x) and extracts 
I am not sure this is the Jacobian matrix. In my undesrstanding the Jacobian of a vector function of several 
variables is constructed by taking the partial derivatives along the vector dimensions. Here, I think the authors 
mean the projection operator or the selection operator

Generally H(x) is the symbol for the operator and H is the Jacobi matrix of the H(x), so Jacobi matrix would be
correct. However, in this particular case, H describes indeed a simple selection operator, as no transformation 
of the data is done.
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line 191 I think that QM becomes necessary because of the use of the Ensemble Kalman Filter. The ARM (best
analog) would deliver the correct pdf (unbiased, correct stdev, etc). Also an ARM based on an ensemble of 
analogues would need QM. Is that true ? Perhaps the authors may want to discuss this point.

Thank you. The Ensemble Kalman Filter is only applied as post-processing of temperature fields, but was 
discarded in favor of the simpler method of quantile mapping for precipitation. The necessity of post-
processing of precipitation is mainly related on the reasons discussed in the answer to the reviewer's comment 
1).

line 340 ‘Extreme events, however, are underestimated by ARM reconstructions and show large errors also for
post- processed data. As extreme events by definition occur more rarely, the number of suitable analogues is 
limited. As argued in for upper and lower extreme values. In general, errors could be significantly reduced 
with Kalman fitting. The average bias reveals, that while analogue reconstructions tend to overestimate 
negative extreme values and underestimate extremely high’

I am not sure that I completely agree (see previous comments). The ARM (best analogue) would automatically
produce the correct pdf, It would miss extremes, and produce them at the wrong point in time, but the pdf 
should be the best possible (it is simply a re-sampling of the observations). I agree that the Kalman filter, and 
in general an ‘ensemble ARM’ would produce smaller RMSE at the expense of reduced variability, but trade-
off belongs to the general statistical trade-off between bias and variance of an estimator.

Thanks for this point. Referring to the authors' response to comment 1), there are certainly various reasons that 
limit the capability of the ARM to correctly reproduce the correct pdf, which will be discussed in more detail 
in section 3. As shown in figure 6 (over space) and figure 7 (for stations over time) such deviations between 
ARM reconstructions and observed distributions exist and can be associated with upper (and for temperature 
also lower) extreme values. Lines 340ff (figure 6) refer to the validation over space; in this particular case, also
uncertainties originating from a sparse station coverage play an important role. While the ARM assuming an 
unlimited pool of possible analogues would produce a correct pdf over time, uncertainties regarding spatial 
patterns in regions without measurements would still persist.

Reply to the reviewers comments (RC2)

The authors present a new dataset based on a combination of long station records and the analogue resampling 
method for daily temperature and precipitation. These fields are then adjusted using ensemble Kalman filtering
or quantile matching. Both the non-adjusted as the adjusted dataset are validated using a leave-one-out 
approach and against independent station observations. Finally, an application of the dataset is given in a 
reconstruction of snowfall and the altitude of the 0 degree line to better understand a historic avalanche winter.

The study is sound and - as far as I can tell - no methodologic errors have been made. The study is a pleasure 
to read and the application, presented like it is the cherry on the cake, makes a compelling case for the dataset. 
Although I am quite enthusiastic about this study, there are three aspects which the authors may want to look 
into. One is the need for some additional explanation, one relates to an issue with the post-processing and the 
last one relates to the analogue method and a suggestion to overcome the drawback of the limited number of 
suitable analogues

We thank the reviewer for the very positive feedback and appreciate the valuable suggestions and comments.

1. On page 7 (line 189) is is argued that ’reconstructions are often affected by biases in the mean, an increased 
number in wet days and underestimation of extreme events’. This statement is corroborated by a reference to 
Piani et al. This study works with global climate model data and a global dataset of hydrological forcing data. 
It is common knowledge that such global datasets suffer from the problems described on line 189, but one of 
the appealing aspects of the analogue method is that it has the potential to avoid these ’smoothing’ problems. 
After all, it are observed situations that are used to build the reconstruction (including observed extremes) 
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rather than a watered-down statistical interpolation. A more clear view on WHAT the reason is that the ARM 
provides estimates that have too many wet days, lack real extremes and suffer from a bias. After all, much of 
the study is devoted to adjusting for these problems.

This is an excellent suggestion. As the reviewer states, the analogue method generally has the advantage over 
e.g. statistical interpolation to reproduce natural variability and mean values. However, given the assumptions 
made in the setup of the method (e.g. similarity criterion, coupled reconstruction of temperature and 
precipitation) and limitations of available data (e.g. size of analogue pool, coverage of station data), also 
analogue reconstructions can suffer from the problems described in line 189. In the revised manuscript, we will
state that more clearly and go further into detail about possible consequences of methodological choices on 
resulting reconstructions in section 3.1 (see also reply to reviewer's comment RC1) and adopt this 
argumentation in section 3.2 instead of the mentioned reference to literature. In section 4, the limited size of 
the analogue pool and relatively sparse station coverage are identified as the main causes for problems 
regarding the reconstruction of extreme events and the related bias in the mean. Tests for the period 1961-2017
revealed that the size of the analogue pool is limited by the restrictions of the analogue method (seasonal 
window, weather types) to 1772 on average, with 21% of the days having less than 1000 and about 1% less 
than 500 possible analogues. Whereas for problems regarding the discrimination between wet and dry days, no
detailed assessment has been carried out in order to limit the scope of the manuscript. It could be shown 
however, that the analogue method is prone to such problems and that especially for moderate precipitation 
events it fails to correctly reproduce precipitation areas (figure 6).

2. On page 8, line 213, the authors state that the assumption in the post-processing method is that the 
precipitation distribution is not subject to changes in time. The period the authors use to calculate the 
parametric transfer functions is 1961-2017. Obviously, this period includes the climate change effects on the 
precipitation which are also evident in the Swiss climate. Examples of time series with steep trends and/or 
decadal variability of e.g. RR1 (number of wet days) are Andermatt and Altdorf, extreme precipitation has 
changed as well, as evident in e.g. R95p in Basel-Binnigen. Can the authors comment on how climate change 
and decadal variability affects the effectiveness of the adjustment for precipitation?

Thank you for this important question. While the effects of climate change and decadal variability on 
precipitation are captured by the analogue method to the extent where they can be found in station data or 
changes in the occurrence of weather types, post-processing does not take such effects into account. This very 
simple setting of quantile mapping was chosen to avoid over-fitting to the period 1961-2017, as the correction 
is applied to the whole dataset back to 1864. However, whether adjustments by quantile mapping show a 
pattern that can be related to climatic changes or decadal variability has not been analysed. Nonetheless, as 
quantile mapping does not correct the number of wet days and an increase in the number of extreme events 
related to climate change is already captured by the analogue method (from station data and weather types), the
impact of climate change or decadal variability on the effectiveness of the chosen post-processing approach is 
limited to the intensity of extreme precipitation. Considering the large uncertainties in the reconstruction of 
extremes compared to the magnitude of corrections by quantile mapping (see e.g. figure 7), the adjustment can 
be considered very effective albeit being calibrated for a period subject to climatic changes.

3. A problem with the analogue method, which the authors mention several times in the study, is the limited 
number of analogues. Earlier, Van den Dool (1994, his section 5) stumbled upon this problem as well and he 
suggests a way out. He suggests to construct an analogue having greater similarity than the best natural 
analogue. He considers linear combinations of naturally occuring analogues. There are a few differences 
between the Van den Dool study and the current study (monthly vs. daily fields for instance), but it may be 
worth looking into this suggestion as it may make the dataset presented in this study stronger.

Thank you for pointing out this interesting approach by Van den Dool. As our study has the advantage to 
dispose of a much larger pool of analogues and to cover a smaller area of study than the Van den Dool study, it
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is easier to find better matching analogues. Together with post-processing, reconstructions show very 
satisfying results. Nonetheless, it would be worth examining Van den Dool's method for the reconstruction of 
daily precipitation and temperature fields in Switzerland and we will definitely consider this suggestion for 
future work.

We will add the following sentence to the conclusions in the revised manuscript: "Another option to address 
the problem of small analogue pools as proposed by Van den Dool (1994) is to construct more similar 
analogues by linear combination of several possible analogue dates."

Other (minor) things the authors may want to look into

• page 5, line 120. What is the motivation to set this window to 60 days (and not e.g. 90 of 30)?

For the analogue method, we tested different seasonal windows. In order not to constrain the analogue pool too
much but still to have reconstructions with similar seasonal patterns, an optimum was found at about ±60 days.
This value is also in line with literature (e.g. Horton et al., 2017; Caillouet et al., 2019; Ben Daoud et al., 2016;
all cited in the manuscript).

• page 6, line 172, an observation error of 1C is quick steep - is there a sound reason for taking it that large?

As station measurements can be affected by micro-climatic conditions that are not captured by gridded data 
and due to larger uncertainties of the earlier observations, a rather conservative observation error of 1°C was 
chosen.

very very minor remarks

• line 185, in my humble view, observations are not corrected but adjusted (as I think that an observation is not
’wrong’)

• line 223, change ’chapter’ to ’section’

• line 490, the family name of the 2nd author is ’van Leeuwen’ and his initials are P.J.

• caption figure 8, in my print out, the snow precipitation bars are grey and the avalanche acitvity periods are 
brownish

Thank you very much for these remarks; we will adjust them accordingly in the manuscript.
As for the colors in figure 8: they seem to be matching the description on screen and in my printout.

Reference
Van den Dool, H. M. (1994). Searching for analogues, how long must we wait?. Tellus A, 46(3), 314-324.

Reply to the reviewers comments (RC3)

After submitting my review, I stumbled upon a reprint that described a similar method, although not in climate 
context. The authors may want to refer to in in the revised version: The Analog Ensemble Kalman Filter and 
Smoother https://hal.archives-ouvertes.fr/hal-01188825

We'd like to thank the reviewer for this addition. In the revised manuscript, this and a further article on this 
topic will be referred to in the introduction. We will add the following sentence in the revised manuscript: 
"The combination of the analogue method with a Kalman filter was tested e.g. by Tandeo et al. (2014) and 
Lguensat et al. (2017) for Lorenz models and has proven to provide good results."
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Abstract. Spatial information on past weather contributes to better understand the processes behind day-to-day weather

variability and to assess the risks arising from weather extremes. For Switzerland, daily-resolved spatial information on

meteorological parameters is restricted to the period starting from 1961, whereas prior to that , local station observations

are the only source of daily,  long-term weather  data.  While attempts have been made to reconstruct  spatial  weather

patterns for certain extreme events, the task of creating a continuous spatial weather reconstruction dataset for Switzerland

has so far not been addressed. Here, we aim to reconstruct daily, high-resolution precipitation and temperature fields for

Switzerland  back  to  1864  with  an  analogue  resampling  method  (ARM)  using  station  data  and  a  weather  type

classification.  Analogue  reconstructions  are  post-processed  with  an  ensemble  Kalman  fitting  (EnKF)  approach  and

quantile  mapping.  Results  suggest  that  the  presented  methods  are  suitable  for  daily  precipitation  and  temperature

reconstruction. Evaluation experiments reveal  an excellent skill for temperature and a good skill for precipitation. As

illustrated on the example of the avalanche winter  1887/88, these weather  reconstructions have a great  potential  for

various analyses of past weather and for climate impact modelling.

1. Introduction

Historical meteorological measurements are invaluable not just for studying climate variability, but also for long-term

variability in  weather,  its  extremes  and its  relation to  the large-scale circulation.  Day-to-day weather  data  allow the

calculation of targeted indices (e.g., consecutive dry days, growing degree days), which are more useful than monthly

climate data for assessing climate impacts. Moreover, daily data feed into current impacts models and allow studying crop

growth,  water  availability,  or  impacts  of  droughts,  floods  or  avalanches  numerically.  However,  historical  station

observations only capture local weather conditions. Most of the applications mentioned above require spatial fields of

meteorological parameters.

For Switzerland a long-term, high-resolution and time-consistent spatial dataset of precipitation and temperature starting

in 1864 is available only with monthly resolution, introduced recently by Isotta et al. (2019). A comparable daily dataset,

however, which is needed to analyse past weather, only covers a relatively short period starting in 1961 (MeteoSwiss,

2016a,b). Prior to 1961, observations from weather stations are the only sources that provide continuous information on

daily weather. Today’s dynamical and stochastic models offer new possibilities to make use of this sparse information and

enable us to create spatial reconstructions of past weather. In recent years, several efforts have been made to create high-

resolution temperature and precipitation reconstructions for historical  extreme events in Switzerland using dynamical

(Brugnara  et  al.,  2017;  Stucki  et  al.,  2018)  and statistical  (Flückiger  et  al.,  2017)  downscaling  methods.  While  for
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Switzerland, the task to create long-term, high-resolution daily spatial weather reconstructions has not been addressed so

far, Caillouet et al. (2016; 2019) have presented a continuous dataset of daily precipitation and temperature fields for

France starting in 1871 by statistically downscaling data from the 20CR reanalysis. This study aims at creating such a

dataset of long-term, high-resolution daily spatial reconstructions of precipitation and temperature for Switzerland by

extending the currently available datasets backwards in time until 1864. 

We use a statistical approach that has been applied in various research areas related to climate sciences: the so-called

analogue method (Lorenz, 1969; Zorita and von Storch, 1999; Ben Daoud et al., 2016, Barnett and Preisendorfer, 1978;

Kruizinga and Murphy, 1983; Horton et al., 2012). In recent years, this method has also been introduced to local-scale

weather reconstruction using historical station data (Flückiger et al., 2017; Rössler and Brönnimann, 2018). It is based on

the assumption  that  over  time similar  spatial  patterns  of  atmospheric  states  occur  that  produce  similar  local  effects

(Lorenz, 1969; Horton et al., 2017). The analogue approach makes use of this statistical relationship between large-scale

and local weather or meteorological patterns, while one can be used to predict the otherthe former is used to predict the

latter.  To predict  a  certain  atmospheric  feature,  e.g.  precipitation  and  temperature  fields  for  a  given day of  interest

(predictand), the analogue method looks for the day with the most similar predictor values (best analogue) and takes the

atmospheric feature from this (or multiple) best analogue day(s) as prediction (Zorita et al., 1995). As it is basically a

resampling  of  observed  states  of  the  atmosphere  (spatial  weather  data)  along the  time axis  to  optimally  fit  certain

predictors (Graham et al., 2007; Franke et al., 2011), the term analogue resampling method (ARM) is used in this paper.

In  our  approach,  analogue  reconstructions  are  further  improved.  Using techniques  borrowed  from data  assimilation,

reconstructed temperature fields are adjusted towards station measurements with a so-called ensemble Kalman fitting

approach (Whitaker and Hamill, 2002; Franke et al., 2017) that is adapted to analogue reconstructions.  The combination

of the analogue method with a Kalman filter was tested e.g. by Tandeo et al. (2014) and Lguensat et al. (2017) for Lorenz

models and has  proven to provide good results. Reconstructed  precipitation data are bias-corrected  using a quantile

mapping method (Gudmundsson et al., 2012) by fitting reconstructed to observed precipitation distributions.

The result  is  a  long-term,  daily-resolved  spatial  dataset  of  precipitation  and  temperature  with  a  2.2×2.2  km spatial

resolution  for  the  period  of  1  Jan  1864  –  31  Dec  2017.  Reconstructions  are  evaluated  against  gridded  data  from

MeteoSwiss  and  against  station  observations.  To  demonstrate  the  potential  of  the  reconstructions,  we  analyse  the

avalanche winter in 1887/88, comparing reconstructions to previous studies, as well as documentary data (Vieli, 2017;

Coaz, 1889). This paper accompanies the online publication of the reconstructed precipitation and temperature datasets at

the open-source repository PANGAEA (https://doi.org/10.1594/PANGAEA.907579).

The paper is organised as follows: Section 2 provides an overview of the data used. Section 3 describes the methods of

weather  reconstruction and post-processing  and presents  validation strategy and –measures  applied for  assessing the

reconstructions.  In  Section  4,  results  from  the  validation  of  reconstructed  and  post-processed  temperature  and

precipitation fields are presented and discussed before analysing the avalanche winter 1887/88 in section 5. Conclusions

are drawn in Section 6.

2. Data

Statistical weather reconstruction methods require long-term and if possible homogeneous series of station measurements.

In Switzerland, we can benefit from the network of MeteoSwiss going back to the year 1864 (Füllemann et al., 2011,

Begert  et  al.,  2005).  All  68  meteorological  stations  used  for  reconstruction  are  part  of  the  Swiss  National  Basic

Climatological  Network (Swiss NBCN), a network of long-term, continuous and high-quality measurements used for
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climate monitoring (Begert et al., 2007, Begert 2008). To ensure the consistency of the reconstructions over time, the set

of meteorological stations and parameters used is ideally not changed over time. Therefore,  only measurement series

starting prior to 1901 and continuing until  today with interruptions of no longer than five years  were selected.  One

exception is the station of Grand St-Bernard (GSB), where data show a gap from 30 Jul 1925 to 31 Dec 1933. This station

was included, as it lies within a data-scarce region and is representing higher altitudes. In all cases, homogenised daily

mean temperature and precipitation sums were used, as well as daily mean pressure values at station height (QFE). An

overview of measurement locations and variables, as well as their vertical distribution is given in Fig. 1.

In total we used 10 pressure, 25 temperature and 67 precipitation series. The large number of precipitation measurements

was chosen to account for high spatial variability of this variable, while 10 stations are enough to cover surface pressure.

Most  stations are  located at  lower elevations and in  valleys,  while  higher  altitudes (hillsides,  mountains)  are  under-

represented. Two independent measurement series (yellow) from the Swiss Plateau and the Alpine region were used for

validation: Schaffhausen (SHA, 438 m a.s.l.) with measurements from 1 Jan 1864 – 31 Dec 2017 and Grimsel-Hospiz

(GRH, 1980 m a.s.l.), covering the period from 1 Jan 1932  –  31 Dec 2017. Note that data from Schaffhausen are not

homogenised.

Furthermore, the ARM requires spatial data, from where best analogue reconstructions are drawn. Here we used daily

gridded precipitation and temperature data provided by MeteoSwiss (MeteoSwiss, 2016a,b) with a spatial resolution of

2.2 km, covering the period 1 Jan 1961 – 31 Dec 2017. Precipitation data (RhiresD) indicate accumulated precipitation

(rain- and snowfall water equivalent) from 06:00 UTC to 06:00 UTC of the following day (MeteoSwiss, 2016a), spatially

interpolated  from daily  precipitation  sums  measured  at  the  MeteoSwiss  high-resolution  rain-gauge  station  network.

Topographic effects and differences in station distribution are accounted for. Errors are estimated to be in the order of

factor 1.7 for precipitation below the 20% quantile (tendency towards overestimation) and 1.3 for precipitation above the

90% quantile (tendency towards underestimation) and are higher in mountainous areas (MeteoSwiss, 2016a). A detailed

description of this dataset and the methods to derive it can be found in MeteoSwiss (2016a) and Schwarb (2001).

Gridded temperature (TabsD) displays daily mean (00:00 to 00:00 UTC) air temperature measured in degrees Celsius at 2

m above ground (MeteoSwiss, 2016b). As homogenized station data were used for interpolation, errors resulting from

changes of measurement location or instruments are corrected. Regional differences in vertical temperature gradients, as

well as the effects of warm boundary layers and temperature inversions are taken into account. Standard errors in the

TabsD dataset range from 0.6 to 1.1 °C in the Swiss Plateau (smaller in summer) and reach values of 4 °C in inner Alpine

valleys in winter. For further information on interpolation method and validation, the reader is referred to Frei (2014) and

MeteoSwiss (2016b).

Furthermore, a daily weather type (WT) classification is used (Schwander et al., 2017), covering the period of interest.

These WT reconstructions are based on the CAP9 classification used by MeteoSwiss that distinguishes 9 different WTs

for Central Europe (Weusthoff, 2011), which show good skills at predicting daily weather, especially precipitation in the

Alpine  region  (Schiemann  and  Frei,  2010).  Merging  two  pairs  of  similar  CAP9  WTs,  Schwander  et  al.  (2017)

reconstructed WTs from 1763 to 2009 using homogenised instrumental measurement series from different locations in

Europe. For each day, this dataset provides the probabilities of each CAP7 WT. WTs from 2010 onwards were calculated

from the CAP9 data from MeteoSwiss (Weusthoff, 2011).
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As argued by Schwander et al. (2017), reconstructed WTs are more reliable for winter than for summer months, as the

underlying meteorological patterns are more pronounced during winter. For weather reconstruction, this property has to

be taken into account.

3. Methods

3.1 The Analogue Resampling Method

The application of the ARM in this paper is  based on the work by Flückiger  et  al.  (2017).  The ARM requires  two

meteorological archives: data to predict the spatial fields and a record of the spatial data from which the reconstructions

are drawn. To predict the spatial fields we used daily station observations, while the RhiresD and TabsD datasets for

1961–2017 from MeteoSwiss serve as record of spatial data (see chapter 2). For a given day in the past, we screen the

period for which we have spatial data (analogue pool) for the most similar day in terms of station data (best analogue).

Precipitation and temperature fields from this day serve as an estimate for the day in the past. Predictands of the analogue

method are thus the unknown spatial fields, while station data and weather types serve as predictors.

Given a sufficiently large analogue pool, the The ARM generally has the advantage of reproducing mean and variance of

the target, as well as naturally occurring preserving natural variability and spatial patterns in the reconstructions (Zorita

and von Storch, 1999). With input from both, coarser-resolved data, e.g. reanalyses or weather types, as well as local

information (station data),  it  can make use of more data sources  than simple downscaling or interpolation of station

observations alone.  A limitation is the size of the analogue pool, which has to be large enough to provide reasonably

matching analogues to a given atmospheric state (Zorita and von Storch, 1999). Furthermore, temporal consistency is not

guaranteed.

In order to maintain the physical consistency of the reconstructions, further conditions are established:

1) The day of interest and possible analogue days are required to be of the same WT to assureensure similar synoptic-

scale atmospheric conditions, e.g. wind fields (Weusthoff, 2011). To account for the uncertainty in WT reconstructions,

we did not restrict the analogue to the most probable WT but accepted additional WTs such that they cover the true WT

with a combined probability of at least 95% according to Schwander et al. (2017).

2) The day of interest and possible analogue days are required to be within the same season to account for seasonally

different spatial patterns. The time window is set to ±60 days centred at the target day.

Following these conditions, the best analogue is defined as a day within the analogue pool with the same weather type,

within the same time window that shows the most similar values of certain meteorological variables from a defined set of

stations to the day of interest.

Before the application of the ARM, station and gridded data are pre-processed. As observed variables have different

scales, each measurement series is standardised. Furthermore, Ttemperature data from weather stations, as well as spatial

fields are decomposed into a smoothed mean climatology and the respective anomalies. For each observation series, as

well as each cell of the gridded data, a smoothed mean seasonality curve is estimated by fitting the first two harmonics of

temperature time series following equation 1, using linear regression.
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doy denotes the day of year, ndoy the number of days in a year and c0, c1, c2, c3 and c4 are parameters to estimate. After the

calculation of the analogue reconstructions using temperature anomalies, mean climatology is then again added to the

reconstructed  temperature  deviation  fields  to  get  absolute  temperature  data.  This  procedure  slightly  alters  the

characteristics of the ARM, as adding climatology and resampled temperature deviations does not only resample known

temperature fields, but creates new ones. An elimination of the signal from climatic temperature changes over the last

centuries did not improve the results and was not further pursued in this study.

With pre-processed data, the analogue method is applied. Following Horton et al. (2017), the root mean squared error

(RMSE) is used as measure of similarity (equation 2). This distance measure was chosen to reduce leveling out of station

data resulting in decreased variance of reconstructions.  As it  is sensitive to large deviations,  station data of the best

analogues will be closely following observed ones, thus reproducing also local phenomena and extremes.  To a certain

extent, however, an underestimation of variance due to leveling out of station observations can't be avoided, especially for

days with less suitable analogues and for skewed distributions like precipitation.

where  x and  y are vectors of observations from the day of interest and a day within the analogue pool, respectively.  i

denotes the different observations within this vector. Other measures of similarity like the Mahalanobis distance were not

examined.

There are some limitations to the method, the most crucial one being the size of the analogue pool, which has to be large

enough to provide reasonably matching analogues to a given atmospheric state (Zorita and von Storch, 1999). This is

especially relevant for extreme events, as they occur more rarely and therefore less suitable analogues exist. Also, the

coverage by observation series plays an important role, as stations might fail to capture local events like thunderstorms.

Furthermore,  the  methodological  setting  described  above,  as  e.g.  coupling  of  precipitation  and  temperature

reconstructions and choice of the similarity measure can have an impact on the capability of the ARM to correctly

reproduce variance and mean, as well as spatial distribution of the variables. As the coupling was established for reasons

of physical consistency and the distance measure was chosen to maintain natural variability, these effects are not further

assessed in section 4. Finally, temporal consistency is not guaranteed.

3.2 Post-Processing Methods

The best analogue may not perfectly fit all observations. To further improve the temperature reconstructions, we borrow

from data assimilation techniques (see e.g. Daley 1999 and Kalnay 2007). The method used here is based on the ensemble

Kalman filter (Kalman, 1960; Evensen, 1994; Burgers et al., 1998), which is applied e.g. for data assimilation of ensemble

forecasts from dynamical models. Here we use the best analogue in the same way as forecast (termed background or first-

guess) and the best  n analogues as ensemble. However, neither the analysis nor the covariance matrix (see below) are

passed on to the next time step. This simplification is called ensemble Kalman fitting (EnKF) (Bhend et al., 2012; Franke

et  al.,  2017)  or  off-line  data  assimilation  (Matsikaris  et  al.,  2015).  The EnKF essentially  minimizes  a  least-squares

problem (Franke et al., 2017). The state vector  x that minimizes the following cost function J is optimal in the case of

Gaussian errors:
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where xb is the first guess (background), in this case reconstructions from the best analogue. Pb is the background error

covariance matrix that in this particular case is estimated from an "ensemble" of the best  n analogues, i.e. temperature

fields from the n most similar days to the day of interest. Vector y contains station observations and operator H is used to

extract the observations from the model space. R is the error covariance matrix of y - H(x). With station observations and

the ensemble of the best  n analogues, a new estimation of temperature  xa that is the best estimate for true atmospheric

state x is calculated from equation 4:

where xa denotes the updated state vector (analysis), xb and y as described above and K is the Kalman gain or innovation

matrix calculated from the ensemble. In this and the following equations,  H describes the Jacobian matrix of  H(x) and

extracts the values from the grid cell closest to the observation site of y. 

We use an implementation (Whitaker and Hamill, 2002; Bhend et al., 2012) in which each observation is assimilated

sequentially (equations 5 – 7). The fitting procedure is split into two steps: an update of the ensemble mean x (equation

5a) and an update of the anomalies x' with respect to the ensemble mean (equation 5b). Equations 6a and 6b depict the

calculation of the Kalman gain K for the ensemble mean and
~K for the anomalies.

x̄a and x̄b denote the analysis and background of the ensemble mean and x'a and x'b the corresponding anomalies. Pb and R

are  the  error  covariance  matrices  as  in  equation  3.  The  observation  error  R is  roughly  estimated  to  be  1°C.  The

background error covariance matrix Pb is calculated from the best n analogues following equation 7 where i and j denote

grid boxes and k the ensemble members.

Following Whitaker and Hamill (2002), not the full error covariance matrix is calculated, but directly the conversion P bHT

in  order  to  save  computational  resources.  Covariance  matrices  estimated  from small  samples  may  exhibit  spurious

covariances far away from the observation. Spatial localisation is often used to minimise these effects. In our case, the

study areas is too small and the ensemble size sufficient such that localisation is not necessary (tests using a Gaussian

weighting function did not show improvement). 

For each day, the EnKF is applied to the analogue reconstructions using a selection of measurement series that exhibit an

average monthly correlation with co-located data from TabsD above 0.975 (see Fig. 1). This is to avoid measurement

series subject to local influences, which are not resolved by spatial data and thus would lead to erroneous assimilations.

To account for a bias between local  measured temperature at  a weather  station and spatially aggregated temperature

values  of  the  corresponding  grid  cell,  station  data  are  correctedadjusted by  subtracting  the  mean  bias  between
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measurement and grid cell value from the TabsD dataset over the period 1961–2017 for each month. This procedure

prevents systematic biases in fitted temperature fields. The ensemble size is set to the 50 best analogues. 

Given the limitations of the ARM described in the previous section, also precipitation reconstructions might be affected

by difficulties, e.g Precipitation reconstructions are often affected by biases in the mean, an increased number of wet days

and in reproducingunderestimation of extreme events due to the limited availability of matching analogues and as  a

consequence biases in the mean, as well as issues regarding areas that are sparsely covered by weather stations. (Piani et

al.,  2010b). Thereforeo  avoid  such  effects,  analogue  reconstructions  of  precipitation  are  post-processed.  Although

attempts have been made to assimilate precipitation with an application of a Kalman filter (Lien et al., 2013, 2016), in this

paper,  a  much  simpler  approach  is  used:  quantile  mapping  (QM).  This  method  of  model  output  statistics  aims  at

transforming  cumulative  distribution  functions  (CDF)  of  modelled  precipitation  to  match  the  CDFs  of  observed

precipitation by finding a statistical transfer function h (Maraun et al., 2010; Maraun, 2013), i.e. it is mapping modelled to

the observed distribution. As pointed out by Cannon (2018), this procedure is asynchronous, that is not considering any

chronological  aspects of precipitation. In its simplest application, QM corrects  the model bias according to observed

precipitation values (Piani et al., 2010a) and can be generally expressed by equation 8.

where Po and Pm are observed and modelled precipitation, respectively and h the transfer function (Gudmundsson et al.,

2012). Based on the probability integral transform theorem (Angus, 1994), the transformation can be described as:

with Fm the CDF of modelled precipitation and Fo
−1 the inverse CDF of the observed precipitation. To solve this equation,

the  distribution  of  the  variable  of  interest  has  to  be  defined.  In  this  paper,  a  parametric  transformation  using  an

exponential asymptotic function to estimate precipitation distribution was chosen following Gudmundsson et al. (2012).

This parametric transformation is described by equation 10, where P̂0 denotes the best estimate of Po and parameters a, b,

x and τ are to be determined.

The best prediction of parameters  a, b, x and  τ is estimated by minimising the residual sum of squares for wet days

(Gudmundsson et al., 2012). To define wet days, a threshold for P > 0.1 mm was set. Precipitation values beyond 0.1 mm

were set to zero. Parametric transfer functions were calculated from all data within the calibration period 1 Jan 1961 – 31

Dec 2017 for each grid cell after Piani et al. (2010a) with  Pm the values from the analogue reconstructions and  Po the

values from the RhiresD dataset. No discrimination between different seasons has been made. Based on the assumption,

that the transfer function derived from this period is robust, i.e. precipitation distribution is not subject to changes in time,

these functions can then be extrapolated in time to transform precipitation distributions of the reconstructed datasets back

to 1864.

Note that the method as applied in this paper only corrects model bias. This simple application of QM was chosen to be

able  to  extrapolate  distribution  correction  in  time,  as  more  complex  approaches  would  likely  be  less  robust.  To

substantially improve e.g. dry/wet day discrimination or extreme values, other approaches have to be applied (Cannon et

al., 2015).
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3.3 Validation

The validation of precipitation and temperature reconstructions is following common measures and strategies used in

validation of field forecasts (Wilks, 2009; Jolliffe and Stephenson, 2012). If not indicated otherwise, validation measures

and skill scores are computed on absolute values.

We use the Pearson correlation coefficient for temperature, while for non-Gaussian distributed precipitation the Spearman

correlation is calculated. Note that for temperature, correlation is computed on anomalies from mean seasonality (compare

chaptersection 3.1) so it reflects day-to-day variability rather than the seasonal cycle. Error magnitudes are indicated as

root mean squared error (RMSE), as this measure is sensitive to larger errors. Furthermore, systematic biases between

reconstructions and observations are evaluated. 

Additionally,  the mean squared error  skill  score (MSESS) or reduction of error-statistic  (RE-value)  is  calculated for

temperature reconstructions following equation 11, allowing us to analyse the skill of reconstructions compared to mean

climatology in terms of the mean squared error. 

with xrec the reconstruction,  x0 a ’no knowledge prediction’ (in this case mean climatology),  xref the reference data from

TabsD and i denotes time step (validation over time) or grid cell (validation over space). A MSESS value of 1 indicates a

perfect reconstruction. With an MSESS of zero, prediction skills of reconstruction and climatology are equal and values

below zero denote a decline in skill compared to climatology (Jolliffe and Stephenson, 2012). Note that this measure

punishes variance, i.e., a reconstruction with the correct variance but zero correlation will have an MSESS of -1. 

For precipitation reconstructions, another property of interest is the discrimination between wet and dry. For this purpose,

the Brier score (BS) was calculated (equation 12) that compares the predicted probability of an event to observations

(Wilks, 2009). 

where  y and  o denote  the  probability  of  rain  in  reconstructions  and  observation,  respectively  and  i as  above.  As

reconstructions do not provide probabilities, y and o are binary with 1 = rain and 0 = no rain with a wet/dry-threshold of

0.1 mm. The BS describes the percentage of time steps (or grid cells) that was wrongly assigned as wet or dry.

In a first part, a leave-one-out validation was performed on daily gridded data within the period 1 Jan 1961 – 31 Dec

2017. For each day, the best analogue day is calculated, excluding data from 5 days before and after the day of interest, as

spatial patterns from neighbouring days can be similar. Precipitation and temperature reconstructions are then validated

against the RhiresD and TabsD dataset,  respectively.  To analyse the full timespan of the dataset,  reconstructions are

compared to station observations in a second part. For this purpose, two independent station series from Schaffhausen and

Grimsel-Hospiz (see chapter 2.1) were used. Measurements were compared to reconstructions by extracting values from

the corresponding grid cells without interpolation.

14

495

500

505

510

515

520



4. Results and Discussion

As described in chapter 3, a leave-one-out validation over the period 1961–2017 was performed and reconstructions were

compared to the MeteoSwiss RhiresD and TabsD datasets, as well as station data. In this section, we will illustrate and

discuss general  results from grid-based validation of precipitation and temperature reconstructions for 1961–2017. Of

particular interest are seasonal differences and extreme events, where we evaluate also the accuracy of reconstructions to

reproduce spatial patterns. Furthermore, we compare reconstructed time series for Schaffhausen and Grimsel-Hospiz to

corresponding station observations.

4.1. Leave-one-out Validation in Time

Figure 2 shows results from the validation over time for analogue precipitation reconstructions (a-d) and quantile-mapped

data (e-h) against RhiresD data. Depicted are rank correlation (a, e), RMSE (b, f), mean bias (c, g) and Brier score (d, h).

The Spearman correlation coefficient for analogue reconstructions is 0.79 on average and attains values from 0.62 to 0.86

with  maximum  values  in  central  Switzerland  (a).  Quantile  mapping  does  not  change  the  ranks  of  precipitation

distribution, therefore the two correlation maps are identical. Regarding the RMSE (e, f), an average error magnitude of

less than 5 mm in the Swiss Plateau, as well as the inner-alpine valleys and large parts of the canton of Grisons can be

observed. Errors are larger in mountainous areas and in Ticino reaching values of 6 – 15 mm. Post-processed data (f)

reveal a negligible increase of these errors in the range of 0.1 – 0.6 mm. Analogue reconstructions show a negative bias

between 0.2 and 0.5 mm in the Swiss Plateau (c). The underestimation is more pronounced in mountainous regions and in

Ticino with values of 0.5 – 1.6 mm. Using the quantile mapping approach described in chapter 3, this bias could be

eliminated for the given timespan (g). The Brier score indicates relatively high error rates in the discrimination between

wet and dry days at  individual locations with values between 0.13 and 0.23 (d).  Post-processed data reveal  slightly

negative changes in terms of Brier scores (h).

While rank correlation values show satisfying results, bias and RMSE patterns of ARM reconstructions could possibly be

explained  by  an underestimation  of  extreme  and convective  precipitation,  which  occur  in  the  Alpine  region  and  in

Southern Switzerland, especially in summer. While quantile-mapped data correct the bias, error values still remain large.

We will  elaborate  on  this  issue  below,  where  we  look  at  seasonal  patterns  and  extremes.  Another  problem of  the

reconstructions  is  indicated  by the Brier  score:  on average,  17% of days are  wrongly assigned as  wet  or  dry.  This

relatively high fraction is not improved with post-processing, as the quantile mapping approach used here is not designed

to address this particular problem.

Validation of temperature reconstructions over time in Fig. 3 reveals a good correlation already for unprocessed data,

ranging between 0.76 and 0.95 with a mean of 0.91 (a). Correlation is slightly lower in Ticino and the southern valleys of

Grisons. With ensemble Kalman fitting, Pearson correlation could be increased to values between 0.83 and 0.99 and a

mean of 0.96, showing similar spatial patterns (e). Also the error (RMSE) could be reduced with post-processing from

1.52°C to 0.96°C on average (b, f). In the Swiss Plateau, the error attains values below 1°C, while in the Alpine region, in

the Jura Mountains and in southern Switzerland RMSE values up to 2.7°C can be observed. Unprocessed reconstructions

show a systematic overestimation of temperature in the Swiss Plateau, in the Rhone valley in Valais and in the northern

valleys of Ticino with values up to 0.06 °C (c). On the other hand, temperatures at higher altitudes and in southern Ticino

are underestimated by 0.05 to 0.15 °C. Post-processed data (g) show less bias and a more balanced spatial pattern with

values ranging between –0.08 °C and 0.03 °C and a mean of –0.01 °C. The MSESS compared to mean seasonality (d, h)

15

525

530

535

540

545

550

555

560



is high all over Switzerland and could be increased from 0.83 to 0.93 on average using EnKF. The pattern is following

correlation. 

Overall, reconstructed temperature fields can be considered to very accurately reproduce the temporal evolution of the

weather. Errors are relatively low, although in regions with sparse meteorological observations, larger errors are observed.

Station coverage thus plays a crucial role for analogue reconstructions. The local field of larger errors in the western Jura

near La Brévine might be explained by cold air pooling, which occurs frequently in this region during winter (Vitasse et

al., 2017) and is not captured by any of the measurement series used for reconstruction. Bias patterns suggest that ARM

reconstructions have problems to correctly reproduce vertical temperature gradients. A major issue here could also be

inversions. In the vertical distribution of used temperature stations higher altitudes are only sparsely covered (see Fig. 1),

making the correct determination of vertical gradients and inversion heights difficult. Post-processed data seem to solve

large parts of this problem, but this needs for further investigation.

To find possible explanations behind the issues mentioned above and to gain more insight into the dataset, precipitation

and temperature reconstructions are assessed in detail for differences between seasons, as well as extremes.

Figure 4 depicts rank correlation (a-e), RMSE (f-h) and averaged bias (i-l) over time of post-processed precipitation for

each season. We see a relatively uniform correlation pattern over all seasons with slightly higher values for summer (JJA)

along the northern Prealps (c). Correlation values are lowest on the southern side of the Alps, especially in winter (a).

Error values (e-h) show a similar spatial pattern throughout the year and are smallest from December to February (DJF)

and slightly higher in spring (MAM) and autumn (SON); maximum values of the RMSE occur during the summer months

and reach values of 8–15 mm in Ticino. Mean bias over time (i-l) still shows minor seasonal differences. In the Swiss

Plateau and the Jura Mountains, the mean deviation is approximately zero, except for a slight positive bias in summer. In

the Jura Mountains, a minor underestimation in winter and an overestimation of summer precipitation is observed. Largest

differences occur in the Alpine region and in southern Switzerland, where autumn and winter and summer precipitation

show a tendency towards overestimation, while in spring and summer post-processed precipitation fields exhibit a mostly

negative bias in western Valais and the Gotthard region.

The pattern of RMSE with higher values during the warmer periods of the year and maxima in summer is supporting the

previous assumption that reconstructions have problems to reproduce intensive or convective precipitation. Especially the

latter which are local-scale phenomena may not be detected by measurement stations, making station coverage again an

important issue to obtain reliable reconstructions.

Analysing the same for temperature (Fig. 5), we see that Pearson correlation values (a-d) exhibit maximum correlation

values in spring and summer, while in autumn and winter these values are slightly lower. The RMSE (e, h) is higher in

winter than during the other seasons and reaches minima in the summer months. Maximum errors of up to 3 °C occur

during winter in the Alpine region and the Jura Mountains (e). Overall, average bias (i-l) is only marginal for all seasons

with values between –0.2 °C and 0.1 °C. Generally, vertical temperature gradients seem to be corrected by Kalman fitting.

However, we can see higher values and a distinct spatial pattern related to topography in winter, as can also be seen in the

RMSE (e). This indicates that inversions, which occur more frequently during this season, remain a problem also in post-

processed reconstructions. 
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The above-mentioned issue with cold air pools in the western Jura seems to be confirmed by the seasonal error patterns,

although larger errors for this region persist throughout the year. Interestingly, the mean bias shows an underestimation of

winter temperature for this region.

4.2. Leave-one-out Validation in Space

Post-processed temperature and precipitation data were further assessed by quantiles of Swiss mean temperatures and

precipitation  1961–2017  calculated  from  the  MeteoSwiss  TabsD  and  RhiresD  datasets  to  analyse  the  accuracy  of

reconstructions  in  reproducing  extremes  (Fig.  6).  Note  that,  as  quantiles  were  calculated  for  average  values  over

Switzerland,  local  extremes  do not  necessarily  correspond to highest  or  lowest  quantiles  for  the  whole  area.  In  the

following, results from validation over space are shown to analyse the capability of reconstruction methods to reproduce

spatial patterns. For comparison, validation results from the analogue method are indicated in grey.

Spatial correlation of precipitation (top) is relatively low for low to moderate precipitation events and increases with

precipitation quantiles. Looking at the RMSE, mean and also the spread of errors increase with increasing precipitation.

While the RMSE shows a median of less than 5 mm up to the 70% quantile, for extreme precipitation events above the

95% quantile errors attain values of 10-15 mm in the interquartile range. Compared to unprocessed data, a slight decrease

of correlation and increase of the RMSE is visible. However, the bias is considerably improved. While as argued before,

analogue  reconstructions  indeed  reveal  a  strong  underestimation  of  extreme  events,  the  median  bias  becomes

approximately zero for all quantiles. Uncertainties, however, remain large. The Brier score reveals that for days with zero

to low precipitation as  well  as  for  extreme  events,  the  precipitation  area  is  well  represented  in  the  reconstructions.

Problems here lie in the correct reconstruction of precipitation areas for moderate events. Compared to unprocessed data,

quantile mapping leads to a slightly better discrimination between wet and dry grid boxes for upper quantiles, while the

BS becomes larger for lower quantiles. 

From this, we can conclude, that reconstructions provide accurate precipitation fields for low to moderate precipitation

events. For the benefit of unbiased reconstructions, a slight decrease of correlation and an increase of the RMSE and BS

have to be accepted. Extreme events, however, are underestimated by ARM reconstructions and show large errors also for

post-processed data. As extreme events by definition occur more rarely, the number of suitable analogues is limited. As

argued in chapter 3, more station data and a bigger size of the analogue pool would lead to more accurate results also for

extremes.  Different  post-processing  methods  might  help  to  improve  reconstructions,  especially  regarding  wet/dry

discrimination and extremes.

Validation of temperature by spatial mean temperature quantiles (bottom) shows a considerable improvement for post-

processed data, compared to analogue reconstructions. Correlation values exhibit slightly better correlations for extreme

temperatures, while reconstructed fields for medium temperatures are less correlated with TabsD data. RMSE values are

higher for upper and lower extreme values. In general, errors could be significantly reduced with Kalman fitting. The

average bias reveals, that while analogue reconstructions tend to overestimate negative extreme values and underestimate

extremely high temperatures, post-processed temperature data show a median of approximately zero for all quantiles. The

bias pattern of the ARM can be explained as for precipitation by a limited number of suitable analogues for extreme

events. Kalman fitting solves this problem. Furthermore, the spread of bias values is within ±1 °C for four times the

interquartile  range.  Post-processed  temperature  reconstructions  are  thus  accurate  and  precise  also  for  extreme

temperatures. MSESS values are better for upper and lower quantiles and show worse results around the median. As days
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around median temperature are closer to average climatology, this pattern has to be expected. Nonetheless, the MSESS of

post-processed data is still within the area of natural variability (see chapter 3).

4.3. Validation Against Independent Observations

In Fig. 7, reconstructed precipitation and temperature is compared to station observations from Schaffhausen (left) and

Grimsel-Hospiz (right) over the full length of the respective series. Plotting reconstructed values against observations, we

see a large spread of values  for analogue reconstructions (grey),  as well  as  for post-processed  data (red).  While for

Schaffhausen, quantile-mapped precipitation exhibits a distribution closer to station observations in the QQ-plot (centre)

compared  to  ARM  reconstructions,  we  can  see  a  tendency  towards  overestimation  in  post-processed  precipitation

reconstructions for Grimsel-Hospiz.  The seasonal pattern (bottom) reveals  lowest  differences in autumn, whereas  the

uncertainty is highest during summer, which is again in line with more frequent convective activity during the latter

season as discussed before. The systematic underestimation of precipitation by the ARM is adjusted by post-processing

for all seasons. The larger uncertainty in the Alpine region discussed before is also visible in station data where the spread

of bias values over all seasons (bottom) is larger for Grimsel-Hospiz. This is also the case for the RhiresD gridded dataset

used for reconstruction (see chapter 2). The differences between reconstructions and station observations might at least

partly  be  explained  by  the  high  spatial  variability  of  precipitation,  thus  spatially  coarser  gridded  data  can  differ

considerably from local  measurements.  For reasons of higher spatial variability, a less perfect  fit  has to be expected

compared to temperature reconstructions.  These are closer  to observed values  compared to precipitation and show a

smaller spread of deviations. Kalman-fitted reconstructions are even more precise; not only that the spread of values is

reduced, but also the tilt in distribution could largely be corrected. Seasonal patterns of ARM reconstructions show larger

deviations during spring and autumn. These seasonal differences are eliminated by EnKF. Reconstructed temperature

fields thus accurately  reproduce  local  temperature  measurements,  even for  remote locations.  With precipitation data,

however, one has to be more careful when generating station series at individual locations.

4.4. The Avalanche Winter of 1887/88

The winter of 1887/88 was one of the most severe avalanche winters during the last 150 years, boosting the efforts in

avalanche  prevention  in  Switzerland  (SLF,  2000;  Margreth,  2019).  Intensive  snowfall  in  February  and  March  1888

brought large snow masses to Switzerland leading to 1094 disastrous avalanches, damaging 850 buildings and destroying

over  1300  hectares  of  forest  and  burying  49  people  under  the  snow  (Coaz,  1889;  Laternser  and  Pfister,  1997).

Documentary data from Coaz (1889) provide a detailed description of this winter and comprehensive survey of avalanche

activity gathered by cantonal forestry offices. From a historical perspective, it has been recently assessed by Vieli (2017).

However, quantitative data on the weather of this avalanche winter is restricted to sparse station observations so far. The

gridded weather reconstructions presented in this paper can help to analyse 1887/88 winter weather quantitatively, thus

helping to better understand weather patterns leading to such an event. For demonstration purposes, we performed some

simple calculations of monthly averages, mean snow precipitation and the zero-degree level that are summarised in Fig. 8.

Shown are post-processed  precipitation reconstructions aggregated  over  one month (a-d)  for  winter  1887/88 and the

recently published monthly precipitation reconstructions by MeteoSwiss (Isotta et al., 2019) (e-h). Both datasets reveal

similar patterns of monthly precipitation, although regional differences occur. More deviations between the dataset can be

observed in the amount of reconstructed precipitation. From both datasets, large precipitation sums can be determined in

December 1887 on the northern flank of the Alps and in the Jura mountains. January shows only little precipitation with

highest  values  in  the  north-eastern  Alps.  February  and  March  show extreme  precipitation  values  in  Ticino  and  the

Gotthard region, in March also over the remaining part of Switzerland.
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Daily reconstructions allow for going more into detail. For example, we can calculate the development of  the zero-degree

level from gridded temperatures taking the intercept of a linear regression between temperature and altitude (bottom of

Fig. 8). Altitude data used here was aggregated from the SRTM 90 digital elevation dataset (Jarvis et al., 2008) to fit the

resolution of reconstructions. Another value of interest is the intensity of snowfall precipitation. In Fig. 8 (bottom), the

average snow precipitation per snowfall area is shown, calculated from post-processed reconstructions and assuming an

estimated 1 °C threshold (Jennings et  al.,  2018),  below which precipitation falls  as snow. Grey shaded areas  depict

periods of high avalanche activity as reported by Coaz (1889).

Analogue reconstructions (red) and assimilated temperature data (blue) show similar values. The extreme precipitation

event  in  December  1887 coincides  with a  high altitude  of  the zero-degree  level,  thus  leaving a snow covered  area

restricted to higher altitudes. This event was followed by several cold episodes and low precipitation in January. The first

avalanche period was dominated by low temperatures and intensive precipitation. During the second avalanche period, the

reconstructed zero-degree level rises to approximately 600 m a.s.l. with almost no snow precipitation. March shows two

periods of high temperatures and intensive precipitation in the middle of the month and during the third avalanche period. 

Reconstructed  precipitation  patterns,  as  well  as  the  development  of  temperature  are  in  line  with  the  findings  from

documentary  data  (Coaz  1889)  that  report  strong  snowfall  during  December,  a  dry  January  and  again  intensive

precipitation during February and March, especially in the Southern Alps. While the first  two avalanche periods are

determined by low temperatures, Coaz describes a sharp rise of the zero-degree level to about 2000 m a.s.l. preceding the

third period that led to a high number of wet avalanches, which can well be seen in the reconstructions. However, during

the second period, reconstructions show relatively low snow precipitation values, contesting the high avalanche activity.

Nonetheless, avalanches are not only triggered by intensive precipitation. For example, the intensive snowfall period in

December 1887 and the first two in March 1888 are not accompanied by more frequent avalanches. To analyse this, also

other factors like temperature and wind as well as the composition of different snow layers play an important role and

have to be assessed. A closer look at these periods would probably reveal more about the processes that triggered or

prevented avalanches.

From precipitation and temperature reconstructions, new insight on the avalanche winter of 1887/88 can be gained already

with simple methods. Using more sophisticated snow models that also take into account evaporation and snow-melt, high-

resolution daily spatial data of the snow cover could be established that may be able to further explain avalanche activity.

This is but one example, what the new daily reconstructions of temperature and precipitation could be used for. Analogue

reconstructions have already been applied as input to numerical models, such as crop modelling (e.g. Flückiger et al.,

2017) or hydrological modelling (e.g. Brönnimann et al., 2018), but the list could be extended. Many other phenomena,

e.g., heat waves or droughts can be analysed spatially, and making use of the long timespan changes of climate and

extreme events over time could be investigated.

5. Conclusions

As shown in this paper, the Analogue Resampling Method is a suitable and efficient approach for reconstructing daily

precipitation and temperature fields from station observations.  Using CAP7 weather  types as a criterion for  physical

consistency and a set of observations from 68 weather stations, we could present a long-term, physically consistent, high-

resolution spatial dataset of these meteorological parameters for Switzerland since 1864. The datasets are published at  the

open-access  repository  PANGAEA  (https://doi.org/10.1594/PANGAEA.907579;  Pfister,  2019). [DATABASE,  DOI].

Analogue reconstructions for temperature and precipitation show good results, but experience difficulties in reproducing
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vertical temperature gradients and show a general negative bias for precipitation arising mainly from underestimation of

extreme events. Furthermore, analogue reconstructions reveal difficulties to correctly distinguish between wet and dry

days. On average 17% of days were wrongly assigned. Temperature reconstructions could be considerably improved by

assimilating station data using an ensemble Kalman fitting approach. Assimilated temperature fields show average error

magnitudes of less than 1 °C and are nearly unbiased for the mean. The issue with vertical temperature gradients could be

largely  eliminated,  although  in  winter  some  problems  remain  that  could  probably  be  referred  to  difficulties  of

reconstructions to determine inversion heights. Precipitation data were post-processed with quantile mapping, adjusting

the  distributions  of  daily  precipitation  for  each  grid  cell  to  obtain  more  accurate  values.  The  mean  bias  could  be

successfully reduced, while a larger uncertainty for extreme events persists. However, error values show a slight increase

in post-processed data. With the simple approach of quantile mapping presented in this paper, the problem of wet and dry

day discrimination could not be addressed.

There are some limitations to the analogue method, as the availability and coverage of station observations affects the

accuracy  of  the  results,  especially  for  precipitation  reconstruction.  In  regions  with  sparse  information  from weather

stations, the uncertainty of reconstructions is larger.  In Switzerland, this regards mostly mountainous areas.  A second

constraint is the comparatively small size of the analogue pool that is available for this application, which is especially

relevant for extreme events as for such events less suitable analogues exist. To reconstruct extremes more accurately,

notably for precipitation, a longer series of spatial data and a denser station network would be needed.  An option to

address the problem of small analogue pools as proposed by Van den Dool (1994) is to construct more similar analogues

by  linear  combination  of  several  possible  analogue  dates.  With  more  sophisticated  post-processing  methods  for

precipitation, also errors in wet and dry day discrimination could be reduced. As mentioned, the analogue approach does

not  guarantee  temporal  consistency  and  therefore  isn't  completely  suitable  to  analyse  trends.  However,  the  dataset

presented in this study very well complements the monthly reconstructions by Isotta et al. (2019) that were specifically

designed for this purpose.

The assessment of avalanche winter 1887/88 in Switzerland shows that the reconstructed development of temperature and

precipitation correspond well to documentary sources and to monthly reconstructions by Isotta et al. (2019). Possible

applications of our daily, high-resolution precipitation and temperature reconstructions range from crop modelling to the

reconstruction of river runoffs, and the study of weather phenomena in the context of climate change.

Could daily reconstructions be extended even further back in time? For Switzerland, a recent survey brought to light a

large amount of early instrumental data (Pfister et al., 2019). An extension of the dataset to the pre-industrial period is

therefore envisaged, although larger measurement errors and less consistent measurement series make this endeavour

rather challenging. The method should also be suitable to reconstruct  daily meteorological fields for other regions of

Central and Western Europe.
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Figure 1. Station Map. (left) Measured variables are indicated as colours. Labelled pie charts represent NBCN climate

monitoring stations. Additional NBCN precipitation stations are indicated as small blue dots. Stations that were used for

temperature assimilation are marked by an asterisk. Yellow dots represent series used for station-based validation. (right)

Vertical distribution of measurement series is indicated by altitude class for each variable.
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Figure 2. Validation over time of precipitation 1961-2017 for analogue reconstructions (a-d) and quantile-mapped data

(e-h). Shown are Spearman correlation (a, e), RMSE in mm (b, f), mean bias in mm (c, g) and Brier score (d, h).
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Figure 3. Validation of temperature over time 1961-2017 for ARM (a-d) and EnKF (e-h) reconstructions. Shown are

Pearson correlation (a, e), RMSE in mm (b, f), mean bias in mm (c, g) and MSESS (d, h).
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Figure 4. Validation of quantile-mapped Precipitation over time by season. Shown are Spearman correlation (a-d), RMSE

(e-h) and bias (i-l).
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Figure 5. Results of validation over time of  EnKF temperature reconstructions for  each season.  Shown are Pearson

correlation (a-d), RMSE (e-h) and bias values (i-l).
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Figure 6. Validation over space of precipitation (top) and temperature (bottom) for ARM reconstructions (grey) and post-

processed data (red), separated by quantile groups of spatial average precipitation and temperature, respectively. Shown

are Spearman (precipitation) and Pearson (temperature) correlation, RMSE, bias, Brier score (precipitation) and MSESS

(temperature). Boxes range from the 1st to the 3rd quartile and whiskers extend to 1.5 times the interquartile range outside

the box.
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Figure 7. Comparison between reconstructions and station observations of precipitation [in mm] and temperature [in °C]

for  Schaffhausen  (left)  and  Grimsel-Hospiz  (right)  with  ARM reconstructions  (grey)  and  post-processed  data  (red).

Shown are observed vs. reconstructed values (top), quantile-quantile plots (centre) and boxplots of the deviation between

reconstruction and observation by season (bottom).
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Figure 8. Avalanche winter 1887/88: monthly mean precipitation from December 1887 to March 1888 calculated from

post-processed daily reconstructions (top, a-d) compared to monthly reconstructions from Isotta et al. (2019) (top, e-h).

On the bottom, estimated zero-degree level from ARM (red lines) and EnKF (blue lines) reconstructions are indicated, as

well as average snow precipitation (blue bars), calculated from post-processed data. Grey shaded areas depict periods of

increased avalanche activity as determined by Coaz (1889).
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