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Abstract.

Even the most sophisticated global climate models are known to have significant biases in the way they

simulate the climate system. Correcting model biases is therefore an essential step toward realistic palaeo-

climatologies, which are important for many applications, such as modelling long-term ecological dynamics.

Here, we evaluate three widely-used bias correction methods – the Delta Method, Generalised Additive Mod-5

els (GAMs) and Quantile Mapping – against a large global dataset of empirical temperature and precipitation

records from the present, the Mid-Holocene (~6,000 years BP), the Last Glacial Maximum (~21,000 years BP)

and the Last Interglacial Period (~125,000 years BP). In most cases, the differences between the bias reductions

achieved by the three methods are small. Overall, the Delta Method performs slightly better, albeit not always

to a statistically significant degree, at minimising the median absolute bias between empirical data and debiased10

simulations for both temperature and precipitation than GAMs and Quantile Mapping; however, there is consid-

erable spatial and temporal variation in the performance of each of the three methods. Our data also indicate that

it could soon be possible to use empirical reconstructions of past climatic conditions not only for the evaluation

of bias correction methods, but for fitting statistical relationships between empirical and simulated data through

time that can inform more effective bias correction methods.15

1 Introduction

Realistic reconstructions of global palaeoclimate are a key input for modelling many important long-term and

large-scale ecological processes (Eriksson et al., 2012; Timmermann and Friedrich, 2016; Leonardi et al., 2018;

Zhu et al., 2018; Rangel et al., 2018; Beyer et al., 2020). In many of these applications, climatological normals at
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quasi-equilibrium of variables such as temperature and precipitation at different points in time represent the most

relevant climatic inputs. Simulations of these variables remain subject to substantial biases when compared to

observational data, despite advancements in how complex physical processes are represented in global climate

models (Solomon et al., 2007; Ehret et al., 2012). Depending on the region of interest, these biases can be of

the order of several degrees of temperature, and tens of percent of precipitation, which can make the difference5

between markedly different vegetation types (Kottek et al., 2006).

Bias correction has received a great deal of attention for present-day and near-future simulations (Ho et al.,

2011; Maraun and Widmann, 2018), whereas work on palaeoclimate simulations has been much more lim-

ited. This is partly due to the different time scale of palaeoclimatological applications, for which computation-

ally intensive bias correction methods that are used for the recent past and near future are not suitable. Three10

main methods have been applied thus far to bias-correct climatological normals in the palaeocontext: the Delta

Method (http://www.worldclim.org/downscaling, http://www.paleoclim.org/methods/, Armstrong et al., 2019),

statistical methods based on generalised additive models (GAMs) (Vrac et al., 2007; Levavasseur et al., 2011;

Woillez et al., 2014; Latombe et al., 2018) and Quantile Mapping (Lorenz et al., 2016). The Delta Method as-

sumes that biases are location-specific and constant over time; it uses a map of the local differences between15

observed and simulated values at present-day to bias-correct past simulations (Maraun and Widmann, 2018).

GAMs attempt to represent statistical relationships between present-day simulated climate variables (as well as

other known physical variables, such as elevation and the distance from the coast) and present-day observed cli-

mate, and apply these relationships to past simulations to reduce biases (Vrac et al., 2007; Maraun and Widmann,

2018). Quantile Mapping adjusts the cumulative distribution of the simulated data by applying a transformation20

between the quantiles of present-day simulated and observed climate to the quantiles of past simulated climate.

(Maraun and Widmann, 2018).

Here we combine a set of high-resolution simulations of the climatological means of several temperature

and precipitation variables for the present, the Mid-Holocene (~6,000 years BP), the Last Glacial Maximum

(~21,000 years BP) and the Last Interglacial Period (~125,000 years BP) with a global dataset of empirical25

climatic reconstructions to evaluate the performance of the Delta Method, a GAM-based approach, and Quantile

Mapping in removing simulation biases. We focus on the global performance of the different methods, but point

out that bias correction is generally not a one-size-fits-all approach (Maraun and Widmann, 2018), and that our
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results do not remove the need for local re-evaluations of methods in specific continental and subcontinental

regions of interest.

Section 2 provides details of the three bias correction methods, the climate simulations, and the empirical

palaeoclimate reconstructions used in this study. In section 3, we quantitatively assess the performance of the

methods at the global scale and with regard to spatial and temporal heterogeneities. Section 4 discusses how5

empircal palaeoclimate reconstructions could be used not only to evaluate methods, but to help estimate the

variation of local model biases over time, thus combining the strengths of the Delta Method and statistical bias

correction.

2 Material and Methods

2.1 Climate data10

2.1.1 Modelled climate data

We used 1.25◦×0.83◦ resolution palaeoclimate simulations of monthly mean temperature and monthly precip-

itation for the present, the Mid-Holocene and the Last Glacial Maximum (LGM) from the HadAM3H atmo-

spheric model (Hudson and Jones, 2002; Arnell et al., 2003), which is part of the family of HadCM3 climate

models (Valdes et al., 2017). For the Last Interglacial Period, we do not have simulation data from HadAM3H,15

but we used the global climate model emulator GCMET (Krapp et al., 2019) that is based on the same model

and can make predictions at the same spatial resolution. In all cases, simulations represent climatological nor-

mals (i.e. 30-year averages) at quasi-equilibrium, following a 500-year spin-up period. Based on the monthly

data, we computed the following climate variables, for which suitable empirical reconstructions are available

(see section 2.1.2): terrestrial mean temperature, marine mean annual temperature, temperature of the coldest20

month, temperature of the warmest month, and annual precipitation. We note that the results presented here may

be specific to the particular climate simulations considered, and do not claim generalisability to other models.

Empirical reconstructions (see section 2.1.2) of terrestrial temperature variables were compared against sim-

ulated temperature at 1.5 meters height, while simulated air surface temperature was used as a proxy for sea

surface temperature, as sea surface temperature is not part of the HadAM3H output. We removed marine data25
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points for which simulated air surface temperature was below the freezing point of saltwater, –1.8◦C, as in this

case the simulated value corresponds to the temperature of an ice layer rather than that of the top layer of water.

2.1.2 Empirical climate data

All bias correction methods considered here are calibrated based on present-day observational data. For this, we

used monthly terrestrial temperature and precipitation data at a 0.167◦ grid resolution (New et al., 2002), and5

mean annual sea surface temperature at a 1◦ grid resolution (Reynolds et al., 2002), representative of 1960–1990.

These maps were remapped to the 1.25◦×0.83◦ grid of the palaeoclimate simulations by taking the average of

values contained in each target grid cell.

We used global datasets of local empirical palaeoclimatic reconstructions of terrestrial mean annual temper-

ature, temperature of the coldest and warmest month, and annual precipitation, for the Mid-Holocene and the10

LGM from Bartlein et al. (2011), reconstructions of mean annual sea surface temperature for the Mid-Holocene

and the LGM from Hessler et al. (2014) and Waelbroeck et al. (2009), respectively, and reconstructions of mean

annual terrestrial and sea surface temperature for the Last Interglacial Period from Turney and Jones (2010).

Standard errors of reconstructed values are available for all variables with the exception of terrestrial and ma-

rine temperature during the Last Interglacial Period. Terrestrial temperature and precipitation reconstructions15

for the Mid-Holocene and the LGM are available on a 2◦ resolution grid, and LGM marine temperature recon-

structions are provided on a 5◦ grid. We assigned each sample of these datasets to the 1.25◦×0.8◦ grid cell of

our palaeoclimate simulations (see section 2.1.1) that contains the centre of the relevant 2◦ or 5◦ cell. Recon-

structions for the Last Interglacial Period are not gridded, and were assigned to the 1.25◦×0.8◦ grid cell that

contains the sample location. Figs. 3 and 4 visualise the locations of all empirical reconstructions of terrestrial20

and marine mean annual temperature, and annual precipitation.

Empirically derived climate reconstructions can themselves be subject to biases and uncertainties, which

arise at the different stages of the reconstruction process, from collecting the data to computationally converting

empirical records to climatic variables. Nonetheless, these data represent the best empirically-based estimates

of past climatic conditions available, and the most suitable data for our analysis.25
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2.2 Bias correction methods

2.2.1 The Delta Method

The Delta Method consists of adding the difference between past and present-day simulated climate (the Delta)

to present-day observed climate. As such, the Delta Method assumes that local (i.e. grid cell-specific) model

biases are constant over time (Maraun and Widmann, 2018). For temperature variables (including terrestrial5

and marine mean annual temperature, and terrestrial temperature of the warmest and coldest month, consid-

ered here), the bias in a geographical location x is given by the difference between present-day observed and

simulated temperature, Temp(x,0)−T raw
sim (x,0). Bias-corrected temperature in x at some time t in the past is

estimated as

TDM
sim (x,t) : = Temp(x,0)+

(
T raw

sim (x,t)−T raw
sim (x,0)

)
10

= T raw
sim (x,t)+

(
Temp(x,0)−T raw

sim (x,0)
)
. (1)

The second expression illustrates that TDM
sim (x,t) is alternatively given by adding the local present-day bias to

the local temperature simulated for time t.

Precipitation is bounded below by zero and covers different orders of magnitude across different regions. A

multiplicative rather than additive bias correction is therefore more common when applying the Delta Method15

for precipitation, which corresponds to applying the simulated relative change to the observations (Maraun and

Widmann, 2018). Analogously to temperature, debiased precipitation is estimated as

PDM
sim (x,t) : = Pobs(x,0) ·

P raw
sim (x,t)

P raw
sim (x,0)

= P raw
sim (x,t) · Pobs(x,0)

P raw
sim (x,0)

. (2)

2.2.2 Statistical Models / GAMs20

Statistical bias correction methods assume the existence of a functional relationship between true climatic condi-

tions (dependent variables), and climate model outputs as well as additional known forcings such as topography

(independent variables) (Vrac et al., 2007; Maraun and Widmann, 2018). Transfer functions representing this

relationship are calibrated based on present-day simulated and observed climate, and are then applied to simula-

tions of past climate to derive bias-corrected data. Generalised additive models (GAMs) have gained particular25
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popularity as transfer functions (Vrac et al., 2007; Levavasseur et al., 2011; Woillez et al., 2014; Latombe et al.,

2018). They accommodate potential nonlinearities in the response of the individual predictor variables, but –

owing to the computational requirements of general high-dimensional nonlinear regressions – assume that the

interactions between predictors can be neglected.

For a set of geographical locations x1,x2, . . ., we denote by Vemp(xi,0) the present-day observed value of5

a climate variable V (representing the relevant temperature and precipitation variables considered here) in the

location xi. Here, the x1,x2, . . . represent the locations of the cells of the 1.25◦×0.8◦ grid of the climate data

(see section 2.1) on land and in the ocean in the case of terrestrial and marine climate variables, respectively.

In a GAM, the present-day observed values of V are modelled as the sum of functions of variables that are

available both for the present and the past, such as climate model outputs (typically including the raw simulated10

data of the variable in question), and/or certain geographical or physical quantities that are known across time.

We denote the values of these predictor variables in the location xi at time t by XV
1 (xi, t),X

V
2 (xi, t), . . .. The

XV
j are generally time-dependent, not only when they are climate model outputs, but also when they represent

elevation or the distance to the coast, which vary over time as the result of sea level changes. The GAM is

defined by the regression15

Vemp(·,0)∼
∑
j

fj
(
XV

j (·,0)
)
, (3)

where the f1,f2, . . . represent smooth functions that are fitted to minimise the distance between the left and the

right hand side in Eq. (3). Once the model has been calibrated on the present-day data, it is used to estimate the

bias-corrected values of the climate variable V in the location xi at a point t in the past as

V GAM
sim (xi, t) :=

∑
j

fj
(
XV

j (xi, t)
)
. (4)20

Similar to Latombe et al. (2018), here, we used elevation, the shortest distance to the ocean and simulated

temperature as predictor variables XV
j for temperature variables. Elevation, the shortest distance to the ocean,

and simulated annual precipitation, temperature, (absolute) wind speed, air pressure and relative humidity were

used as predictors variables for annual precipitation. The functions fi were estimated as piecewise third order

polynomials (using thin plate splines did not change the results) using the mgcv package in R (Wood, 2004).25
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2.2.3 Quantile Mapping

Quantile Mapping aims to correct distributional biases in the simulated climate data. The method consists of first

computing a transformation that maps the quantiles of the cumulative distribution function of all present-day

observed values (i.e. from all land or ocean grid cells) of a climate variable onto the quantiles of the cumulative

distribution function of all present-day simulated values. The derived mapping is then applied to the cumulative5

distribution function of all simulated values at a given point in the past. For example, let the cumulative dis-

tribution function of the values of present-day observed terrestrial mean annual temperature (i.e. from all land

grid cells) map the value T ◦1 C onto the value q ∈ [0,1], and let the analogous cumulative distribution function

of present-day simulated terrestrial mean annual temperature map T ◦2 C onto q. If the value that is mapped onto

q by the cumulative distribution function of simulated terrestrial mean annual temperature at a given point in10

the past is T ◦3 C, then the bias-corrected mean annual temperature in all grid cells with simulated mean annual

temperature T ◦3 C at that point in time is estimated as T3 +(T1−T2)
◦C. Notably, by design of the method,

the cumulative distribution function of present-day bias-corrected simulated data (i.e. after applying Quantile

Mapping) is identical to the cumulative distribution functions of present-day observed values.

Formally, denote by x1,x2, . . . the centres of the 1.25◦×0.8◦ grid cells of the climate data (see section 2.1) on15

land and in the ocean in the case of terrestrial and marine climate variables, respectively. For a climate variable

V (representing the relevant temperature and precipitation variables), we denote by FV
emp[0] the cumulative

distribution function of all present-day empirical observations, Vemp(x1,0),Vemp(x2,0), . . . (i.e. FV
emp[0] is the

function that monotonically maps these values onto the interval [0,1]). Analogously, we denote by FV,raw
sim [t] the

cumulative distribution function of the raw simulated values V raw
sim (x1, t),V

raw
emp (x2, t), . . . at time t. We denote by20

FV
emp[0]

−1 and FV,raw
sim [t]−1 (both mapping [0,1] to R) the inverse functions of FV

emp[0] and FV,raw
sim [t], respectively.

With this notation, FV,raw
sim [t](V raw

sim (xi, t)) is the quantile corresponding to the value V raw
sim (xi, t) in the set of

all simulated values of the climate variable V at time t. Under Quantile Mapping, the function FV
emp[0]

−1−
FV,raw

sim [0]−1 maps each such quantile to a quantile-specific correction term, which is then applied to the raw

simulation data. Thus, the bias-corrected value of V in the location xi at time t is estimated as25

V QM
sim (xi, t) := V raw

sim (xi, t)+
[
FV

emp[0]
−1−FV,raw

sim [0]−1
]
(FV,raw

sim [t](V raw
sim (xi, t)))︸ ︷︷ ︸

Correction term specific to the quantile of the value V raw
sim (xi, t)

. (5)
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2.2.4 Method discussion

All three bias correction methods considered here aim at minimising biases in past simulated data, but they

are based on different assumptions as to how this aim can best be achieved. The Delta Method assumes that

the known present-day model bias is also a good estimate for past model bias. GAM methods and Quantile

Mapping operate on the premise that this assumption of that Delta Method – local biases remaining constant5

over time – is too strong. Instead, GAM methods assume that a better estimate of past model biases can be

obtained by deriving a statistical relationship between present-day bias and present-day simulations, and then

applying this relationship to past simulations in order to estimate past bias. Because regressions generally do not

fit the data perfectly, present-day biases modelled by the GAM will not exactly match the observed biases across

all grid cells. Unlike in the case of the Delta Method, GAM-corrected present-day simulations are therefore not10

identical to the present-day observed climate. This drawback is accepted under the assumption that the derived

statistical model captures the mechanisms that underlie local model biases better than the time-invariant local

correction term used in the Delta Method, and indeed to an extent that results in more accurate estimates of

past model biases. Similarly, Quantile Mapping assumes that the distributional correction of climate quantiles –

whilst, again, not perfectly eliminating biases in present-day simulations – ultimately represents a better strategy15

for minimising past bias than the rigid local correction of the Delta Method.

Another important commonality between the methods is that they are calibrated only using present-day sim-

ulated and observed data. All three are based on the concept of establishing a relationship between present-day

simulated and observed data, and then extrapolating that relationship in order to estimate past biases. The spe-

cific aspect that is assumed to be invariant over time is the present-day local bias in the case of the Delta Method,20

the regression model linking present-day simulated and observed data in the case of GAMs, and the present-day

distributional correction in the case of Quantile Mapping.

2.3 Method evaluation

Empirical palaeoclimate reconstructions of climatological normals allow us to assess the performance of dif-

ferent bias correction methods in removing biases in past simulated data. In the following, we define the local25

differences between empirical reconstructions and bias-corrected simulations for the different climate variables
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and bias correction method considered, and develop a spatially aggregated measure to assess the global perfor-

mance of each method.

We denote by Vemp(x,t) the empirically reconstructed value of a climate variable V (representing terres-

trial mean temperature, marine mean annual temperature, temperature of the coldest month, temperature of the

warmest month, or annual precipitation) at a time t in a location x. For a bias correction method M (represent-5

ing the Delta Method, GAM-based statistical bias correction, Quantile Mapping), we denote by V M
sim(x,t) the

simulated value of the climate variable V at the time t in the location x that was processed using the method

M . The remaining local bias, B, between the empirically reconstructed and the bias-corrected simulation data

at time t in the location x is then given by

BM
V (x,t) =


V M

sim(x,t)−Vemp(x,t) if V is a temperature variable

V M
sim(x,t)−Vemp(x,t)

Vemp(x,t)
if V is annual precipitation

(6)10

Thus, we used the absolute difference between empirical and simulated data for temperature variables, and

the relative difference in the case of precipitation. We denote by x
(t,V )
1 ,x

(t,V )
2 , . . . the geographical locations

of the available empirical records at time t for the climate variable V . In section 3, we provide the complete

distributions of the local biases that were derived for each climate variable, point in time, and bias correction

method. In addition, as a summary statistic of these distributions and a spatially aggregated measure for evaluat-15

ing the performance of each bias correction methods, we used the median of the available local absolute biases

{|BM
V (x

(t,V )
i , t)|}i=1,2,.... The median is weighted by grid cell area for the present, and by the local inverse

standard errors of the empirical data for the past. We rescaled the latter proportionally so that their sum equals

1, and denote the result by {ωemp(x
(t,V )
i , t)}i=1,2,... (i.e.

∑
iωemp(x

(t,V )
i , t) = 1). Formally, the median absolute

bias, MAB, for the variable V and the bias correction method M at time t is given by20

MABM
V (t) = weighted median

(
{|BM

V (x
(t,V )
i , t)|}i=1,2,...

)
= |BM

V (x
(t,V )
k , t)|, where the median index k satisfies∑

|BM
V (x

(t,V )
i ,t)|<...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
and

∑
|BM

V (x
(t,V )
i ,t)|>...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
. (7)

Thus, the median absolute bias is a measure of the average difference between empirical and the bias-corrected

simulated data. We considered a bias correction method to overall improve the raw simulation outputs if the
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associated median absolute bias is smaller than the median absolute difference between raw simulations and

empirical data. The local biases B in Eq. (6) and the MAB only permit to assess the performace of the three

methods in bias-corrrecting quasi-quilibrated climatological normals of the variables considered here, not of

climatic signals that are not captured by the underlying data, such as short-term climatic variability.

We tested whether the median absolute biases associated with any two bias correction methods, a certain5

climate variable and point in time, were statistically significantly different under the given uncertainty in the

empirical reconstructions, using the following approach. For each climate variable and point in time, we gen-

erated 104 Monte Carlo realisations of empirical past climatic values in the locations where reconstructions

are available by applying a normally-distributed noise term, with mean zero and standard deviation equal to

the error of the local empirical reconstruction, to the value provided by the empirical reconstruction. Next, we10

calculated the local absolute biases between these empirical past climatic values, and the relevant simulated

values obtained after applying the different bias correction methods. For each of these 104 sets of local absolute

biases between empirical and simulated data, we used a one-sided Wilcoxon rank sum test to assess whether

the median of the absolute biases associated with one bias correction method was significantly smaller than that

associated with a different bias correction method (at a 5% significance level). We then determined the number15

of iterations, out of the total 104 Monte Carlo realisations, in which this was the case. If, for a given climate

variable and point in time, a bias correction method was found to perform significantly better than another one

in more than half of the realisations, we report this result in section 3.

Debiased simulated data should ideally not contain any systematic bias, in that the median bias, MB, given

by20

MBM
V (t) = weighted median

(
{BM

V (x
(t,V )
i , t)}i=1,2,...

)
, (8)

where the weighted median is calculated analogously as in Eq. (7), should not differ substantially from zero. In

addition to the median absolute bias (Eq. (7)), we also examined how the different methods affect the associated

median bias (Eq. (8)).

In some applications, the climate change signal, i.e. the difference between past and present climatic states,25

may be more relevant than the climate at a fixed point in time. The difference between the empirical and the

simulated climate change signal, CCB, of a climate variable V that was bias-corrected using method M at a
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location x and between the present and time t in the past is calculated as

CCBM
V (x

(t,V )
i , t) =



(
V M

sim(x,t)−V M
sim(x,0)

)
−
(
Vemp(x,t)−Vemp(x,0)

)
if V is a temperature variable

V M
sim(x,t)−V M

sim(x,0)

V M
sim(x,0)

−
V M

emp(x,t)−Vemp(x,0)

Vemp(x,0)

if V is annual precipitation,

(9)

and the median absolute bias associated with the climate change signal, CCMAB, is given by

CCMABM
V (t) = weighted median

(
{|CCBM

V (x
t,V )
i , t)|}i=1,2,...

)
, (10)

where the weighted median is calculated analogously as in Eq. (6). We also compared the performance of the5

three bias correction methods in terms of this quantity. We did not determine the median absolute bias for the

climate change signal between different points in the past, due to the much smaller number of empirical records

that are available from the same location across the past, and due to the increased uncertainty of the local

empirical climate change signals, which are given by the sum of the uncertainties of the local reconstructions of

the relevant points in time.10

3 Results

Fig. 1a–e compare empirically reconstructed and bias-corrected simulated data for the five climate variables

considered. They show that the biases that remain after applying a bias correction method are not uniformly

distributed across the range of simulated values. In a number of cases, very low temperatures in several bias-

corrected simulations tend to be lower than empirically reconstructed values, while very high temperatures in15

the simulated data tend to be higher than what empirical reconstructions suggest (e.g. Mid-Holocene and Last

Interglacial mean annual marine temperature, and Mid-Holocene and LGM temperature of the warmest month).

For some bias correction methods, an analogous patterns can be observed in the case of precipitation.

All bias correction methods reduce the median absolute bias (MAB in Eq. (6)) of present-day simulated

data for all climate variables, as would be expected (Maraun and Widmann, 2018) (Fig. 2). By construction, the20

Delta Method completely eliminates all differences between present-day simulated and observed data. The Delta

Method also provides the strongest reduction in the median absolute bias (MAB in Eq. (6)) for all variables and
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(a) Terrestrial mean annual temperature

(b) Marine mean annual temperature
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(c) Mean temperature of the warmest month

(d) Mean temperature of the coldest month
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(e) Annual precipitation

Figure 1. Comparison of bias-corrected simulated and empirically reconstructed climate variables. Black lines show 1:1

relationships. Red lines and shades show 5th degree polynomial regression and 95% confidence intervals, respectively.

points in time, with the expection of temperature of the coldest month at the Mid-Holocene and precipitation at

the LGM (Fig. 2). The comparatively good performance of the Delta Method is reflected in strong correlations

between present-day and past model biases, which the Delta Method assumes to be similar (Fig. A1). The GAM

method and Quantile Mapping also generally lead to a reduction in bias, though overall not quite as strongly as

the Delta Method. In a few cases, the original bias is actually increased after applying a correction method (Fig.5

2).

These above trends in the performances of the different bias correction methods in terms of the median ab-

solute bias are not always statistically significant. The median absolute bias associated with the Delta Method

was significantly smaller (p < 0.05) than that associated with Quantile Mapping and the GAM method for Mid-

Holocene terrestrial mean annual temperature (in 96% and 83% of Monte Carlo realisations (see section 2.3)10

when compared against Quantile Mapping and the GAM method, respectively), marine mean annual tempera-

ture (in 93% and 89% of realisations, respectively), terrestrial mean temperature of the warmest month (in 92%

and 100% of realisations, respectively), and precipitation (in 100% and 100% of realisations, respectively). The

Delta Method also performed significantly better than the GAM method for Mid-Holocene terrestrial mean tem-
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perature of the coldest month (86% of realisations), and significantly better than Quantile Mapping for LGM

marine mean annual temperature (65% of realisations). The GAM method performed significantly better than

Quantile Mapping for LGM precipitation (100% of realisations). By design, the Delta Method has a significantly

lower median absolute bias (namely zero) than both other methods for all variables at present day.

Figure 2. Median absolute biases (MAB, Eq. (7)) of the raw and bias-corrected climate simulation data. Error bars represent

25% and 75% weighted quantiles of the local absolute biases available for the given climatic variable and point in time.

Across time periods, raw simulations tended to underestimate terrestrial and marine mean annual temperature5

and terrestrial temperature of the warmest month, and overestimated annual precipitation (Fig. A2). These trends

are less present in the bias-corrected data: methods consistently reduced the absolute value of the median bias

(MB in Eq. (8)) of the raw simulations, except in the case of terrestrial temperature of the coldest month.

The differences between bias correction methods in terms of improving the climate change signal (CCMAB

in Eq. (10)) are negligible in all scenarios except for marine mean annual temperature during the Last Glacial10

Maximum, where the GAM method performs slightly better than other methods (Fig. A3).

The performance of the different methods is not uniform across space nor time. Fig. 3 illustrates this hetero-

geneity for the Delta Method. For example, the Delta Method significantly reduces the original bias of modelled
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precipitation in Eastern North America in the Mid-Holocene, but hardly improved the raw simulations in the

Sahara, whereas the opposite pattern can be observed at the LGM.

Figure 3. Reduction of the original model bias by the Delta Method for terrestrial and marine mean annual temperature and

terrestrial annual precipitation. The lower end of the colour scale was capped at -100% (i.e. a doubling of the original bias).

The performances of the methods relative to each other also vary substantially across both space and time.

For example, whilst globally the Delta Method has a slight overall edge over the GAM approach (Fig. 2), the
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comparison of the two methods in Fig. 4 shows that even within small geographical regions neither method

performs consistently better than the other. Moreover, a better performance of one method in a certain location

at some point in time generally does not guarantee the same result at a different time. For instance, the Delta

Method overall reduced the original bias of modelled precipitation more than the GAM approach in Eastern

North America during the Mid-Holocene, but less during the LGM (Fig. 4).5

4 Discussion

Whilst, overall, the Delta Method performs slightly better at debiasing temperature and precipitation compared

to the GAM-based method and Quantile Mapping for the empirical data considered here, we note that this

method is only appropriate for a given land conformation. Thus, it is only suitable for the Late Quaternary,

and even for this period, changes in sea levels are problematic as they expose areas for which there is no bias10

information. GAMs should, in theory, obviate this problem by quantifying bias-related processes as statistical

relationships; however, whilst this approach might be the only option for the deeper past, our results point to

the fact that estimating such processes in such a way is challenging, as demonstrated by its overall inferior

performance to the Delta Method. A possible limitation of GAMs as currently applied is that they assume

additivity between predictor variables. By fitting interactions, it would be possible to allow for more complex15

processes, but the computational complexitiy of interactions with such large datasets is non-trivial.

A major limitation of current approaches for bias-correcting climate model data is that they all assume bias

patterns in present-day climate to be fully representative of the past (see section 2.2.4). With the progressive

increase in the number of empirical records of past climatic conditions, it may be possible to soon move from a

situation where past reconstructions are use to verify bias correction methods (as we did in this manuscript) to20

using those data to actively calibrate bias correction methods. Despite large uncertainties, and patterns that are

not fully consistent across time, Fig. 5 suggests an intriguing relationship between the variation of local model

biases across time on the one hand, and simulated climate change signals on the other hand. Such a relationship

could, in principle, be used to refine the Delta Method by accounting for the change of local model biases over

17



Figure 4. Relative performances of the Delta Method and the GAM approach in terms of debiasing simulated mean annual

temperature (left column) and annual precipitation (right column). The colour spectrum represents the interval [0,1], and

marker colours are calculated as the ratio of the absolute value of the local bias (Eq. (6)) of the GAM-based approach

divided by the sum of the absolute local biases of both methods.

time. For example, instead of Eq. (1), we would have

TDM+
sim (x,t) := T raw

sim (x,t)+
(
Temp(x,0)−T raw

sim (x,0)
)︸ ︷︷ ︸

standard time-invariant Delta
Method bias correction term

+ f
(
T raw

sim (x,t)−T raw
sim (x,0)︸ ︷︷ ︸

simulated climate
change signal

, . . .︸︷︷︸
additional
predictor
variables

)
︸ ︷︷ ︸

time-variable correction term

, (11)
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where f represents a non-linear regression model satisfying f |t=0 = 0. A robust statistical model f will require

not only additional data from currently underrepresented geographical areas (specifically the southern hemi-

sphere), but also the curation of empirical reconstructions, as successfully done for the last millenium (Hakim

et al., 2016; Tardif et al., 2018).

Such an approach would tie in with data assimilation methods, which also use empirical climate proxy records5

to improve climate simulations. These methods have been used to estimate global climate variables at times

at which the quantity and spatial coverage of available empirical records is high enough to allow a robust

calibration of the relevant computational methods. As a result, they have focussed either on single points in

the past, such as the Mid-Holocene (Mairesse et al., 2013) or Last Glacial Maximum (Kurahashi-Nakamura

et al., 2017), or on time intervals across which suitable empirical data are available, namely the last millennium10

period (Tardif et al., 2019; Goosse, 2017). In contrast to the aforementioned approaches, based on Fig. 5 we

suggest that it may be possible to use empirical reconstructions even from only a small set of points in time

(e.g. the present, Mid-Holocene, LGM and Last Interglacial Period) to parameterise a statistical model of the

temporal variation of local biases that could be used to improve simulated data at any time point in the Late

Pleistocene-Holocene period.15

5 Conclusions

Our comparison of global debiased palaeosimulation data and empirical reconstructions suggests that, despite its

conceptual simplicity, the Delta Method is good starting point for bias correction of simulated Late Quaternary

climate data at a global scale, providing slightly stronger bias reductions compared to GAMs and Quantile

Mapping. However, given the lack of statistical significance of the superior performance in some cases, and the20

considerable variability in the effectiveness of the three methods across different locations and points in time, we

echo earlier propositions that studies focussing on specific regions require case-by-case assessments of which

bias correction method is most suitable for improving palaeoclimate simulations (Maraun et al., 2017). We also

reiterate that our results may be different for palaeoclimate simulations other than the ones used here. Finally, it

is important to bear in mind that bias correction methods are unable to substantially correct a fundamentally poor25

climate model, e.g. with strong circulation biases, which such methods are not capable of removing (Maraun
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Figure 5. Differences between local past and present model bias (at locations for which empirical reconstructions are

available) against the local simulated climate change signal (i.e. the difference between past and present simulated value)

of the variable of interest. Red, blue and green markers represent data from the Mid-Holocene, the LGM and the Last

Interglacial Period, respectively. Error bars represent standard errors of the empirical reconstructions. Lines and shades

show robust linear regressions and 95% confidence intervals, respectively. Whilst weak, the relationships suggest that it may

be possible to model some of the variability of local model biases over time, using only available simulation data. Such an

approach could potentially significantly enhance the Delta Method, which currently operates on the simplifying assumption

that this variability is negligible.

et al., 2017). Seeking to improve the representation of climate dynamics in simulation models therefore remains

a priority alongside the development of bias correction methods.

A key limitation of all three methods considered here is their assumption that present-day patterns between

simulated and observed climate can be extrapolated to estimate model biases in the past. High uncertainties, and

20



the spatial and temporal sparseness associated with currently available empirical palaeoclimate datasets will

likely impede a robust assimilation of these data into bias correction methods at this stage; however, our data

indicate the increasing quantity and quality of global proxy records could soon make it possible to use empirical

reconstructions in the development of improved methods that effectively account for the variation of local model

biases through time.5

Code and data availability. Code and datasets used in this analysis will be made publicly available on the Open Science

Framework repository upon acceptance of the manuscript.

Author contributions. All authors conceived the study. R.B. conducted the analysis and wrote the manuscript. All authors

interpreted the results and revised the manuscript.

Competing interests. The authors declare no competing interests.10

Acknowledgements. The authors are grateful to Paul J. Valdes and Joy S. Singarayer for providing the climate simulation

data used in this study, and to three anonymous reviewers for their helpful comments. R.B., M.K. and A.M. were supported

by the ERC Consolidator Grant 647787 (”LocalAdaptation”).

21



Figure A1. Comparison of present-day and past model biases (which the Delta Method assumes to be similar) from locations

where empirical reconstructions are available. Lines represent 1:1 relationships.
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Figure A2. Median biases of the raw and bias-corrected climate simulation data. Error bars represent 25% and 75% weighted

quantiles of the local biases available for the given climatic variable and point in time.
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