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Abstract. Even the most sophisticated global climate models are known to have significant biases in the way

they reconstruct the climate system. Correcting model biases is therefore an essential step toward realistic

palaeoclimatologies, which are crucial for numerous applcations, such as modelling long-term and large-scale

ecological dynamics. Here, we evaluate three widely-used bias correction methods – the Delta Method, Gener-

alised Additive Models (GAMs) and Quantile Mapping – against a large global dataset of empirical temperature5

and precipitation records from the present, the Mid-Holocene (~6,000 years BP), the Last Glacial Maximum

(~21,000 years BP) and the Last Interglacial Period (~125,000 years BP). Overall, the Delta Method performs

slightly better, albeit not always to a statistically significant degree, at minimising the median absolute bias be-

tween empirical data and debiased simulations for both temperature and precipitation than GAMs and Quantile

Mapping, however, there is considerable spatial and temporal variation in the performance of each of the three10

methods. Furthermore, our data indicate that additional empirical reconstructions of past climatic conditions

might make it possible to soon use past data not only for the validation but for the active calibration of bias

correction functions.

1 Introduction

Realistic reconstructions of global palaeoclimate are a key requirement for modelling many important long-15

term and large-scale ecological processes (Eriksson et al., 2012; Timmermann and Friedrich, 2016; Leonardi

et al., 2018; Zhu et al., 2018; Rangel et al., 2018; Beyer et al., 2020). Despite advancements in how complex

physical processes are represented in global climate models, simulated present-day climate remains subject to

substantial biases when compared to observational data (Solomon et al., 2007; Ehret et al., 2012). Depending on
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the region of interest, these biases can be of the order of a few degrees of temperature, or centimeters of annual

precipitation, which can make the difference between markedly different vegetation types (e.g. the shift from

open to closed habitat, or the location of deserts) (Kottek et al., 2006).

Bias correction has received a great deal of attention for present-day and near-future simulations (Ho et al.,

2011; Maraun and Widmann, 2018), whereas work on palaeoclimate reconstructions has been much more lim-5

ited. This is partly due to the different time scale of palaeoecological applications, for which computationally

intensive bias correction methods that are used for the recent past and near future are not suitable. Several

challenges of methods used for bias-correcting future climate simulation data, including the correct represen-

tation of distributions of extreme weather events (e.g. precipitation during El Niño events, dry spell lengths),

of very small-scale patterns, or of the variability of climatic variables across time scales of a few years or10

decades (Maraun et al., 2017), are often not present in palaeoclimatological contexts. This is because palaeo-

climate simulation data are generally provided at a medium-scale spatial resolution, and oftentimes represent

millennial-scale averages. However, in both scenarios it is important to acknowledge that bias-correction meth-

ods are unable to substantially correct a fundamentally poor climate model, e.g. with strong circulation biases,

which such methods are not capable of removing (Maraun et al., 2017). Seeking to improve the representa-15

tion of climate dynamics in simulation models therefore remains a priority alongside the development of bias

correction methods.

There are three main methods that have been used so far in the palaeoclimatological context: the Delta Method

(http://www.worldclim.org/downscaling), statistical methods based on generalised additive models (GAMs)

(Vrac et al., 2007; Levavasseur et al., 2011; Woillez et al., 2014; Latombe et al., 2018) and Quantile Map-20

ping (Lorenz et al., 2016). All three methods are based on the assumption that the biases between present-day

observations and simulated data do not change through time, although each method takes a different approach

in the aspect that is assumed to be invariant. The Delta Method assumes bias to be location-specific (Maraun

and Widmann, 2018), as it is based on a map of differences between observed and simulated values. GAMs

attempt to represent statistical relationships between simulated climatic variables (as well as other known phys-25

ical variables, such as elevation and the distance from the coast) and bias-corrected climatic variables (Vrac

et al., 2007; Maraun and Widmann, 2018). Finally, Quantile Mapping assumes that biases are specific to their

respective quantiles in the distribution of the relevant climatic variable (Maraun and Widmann, 2018). However,

debiased simulation data have either not been validated against empirical reconstructions at all, or only for a
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small geographical area and a single point in the past. Here, we use a set of high-resolution climate simulations

to evaluate the performance of the Delta Method, a GAM-based approach, and Quantile Mapping, against a

global dataset of empirical climatology data from the present, the Mid-Holocene (~6,000 years BP), the Last

Glacial Maximum (~21,000 years BP) and the Last Interglacial Period (~125,000 years BP). As the first such

effort, here, we focus on the global performance of the different methods; however, we note that bias-correction5

is not a one-size-fits-all approach (Maraun and Widmann, 2018), and that our results do not remove the need for

local re-evaluations of methods in specific continental and subcontinental regions of interest.

Section 2 provides details of the three bias correction methods, the climate simulations, and the empirical

palaeoclimatology reconstructions used in this study. In section 3, we quantitatively assess the performance of

the methods at a global scale, and with regard to spatial and temporal heterogeneities. Section 4 discusses how10

palaeoclimate reconstructions could be used not only to evaluate methods, but to help estimate the variation of

local model bias over time, thus combining the strengths of the Delta Method and statistical bias correction.

2 Material and Methods

2.1 Climate data

2.1.1 Modelled climate data15

We used palaeoclimate simulations of monthly temperature and precipitation at a 1.25◦×0.83◦ grid resolution

for the present, the Mid-Holocene and the Last Glacial Maximum (LGM) from the HadAM3H atmospheric

model, which is part of the family of HadCM3 climate models (Valdes et al., 2017). For the Last Interglacial Pe-

riod, we do not have simulation data from HadAM3H, but we used the global climate model emulator GCMET

(Krapp et al., 2019) that is based on the same model and can make predictions at the same spatial resolution. We20

note that the results presented in this article are specific to the particular climate simulations considered here,

and do not claim generalisability to other models.

Empirical data (see section 2.1.2) of terrestrial temperature were compared against simulated temperature at

1.5 meters height, whereas simulated air surface temperature was used as a proxy for sea surface temperature, as

sea surface temperature is not part of the HadAM3H output. We removed marine data points for which simulated25
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air surface temperature was below the freezing point of saltwater, –1.8◦C, as in this case the simulated value

corresponds to the temperature of an ice layer rather than that of the top layer of water.

2.1.2 Empirical climate data

All bias correction methods considered in this paper are calibrated using present-day observational data. For

this, we used monthly terrestrial temperature and precipitation data at a 0.167◦ grid resolution (New et al.,5

2002), and mean annual sea surface temperature at a 1◦ grid resolution (Reynolds et al., 2002), representative

of 1960–1990. These maps were remapped to the 1.25◦×0.83◦ grid of the palaeoclimate simulations by taking

the average of values contained in each target grid cell.

We used global datasets of empirical local palaeoclimate reconstructions of terrestrial mean annual temper-

ature, temperature of the coldest and warmest month, and annual precipitation, for the Mid-Holocene and the10

LGM from Bartlein et al. (2011), reconstructions of mean annual sea surface temperature for the Mid-Holocene

and the LGM from Hessler et al. (2014) and Waelbroeck et al. (2009), respectively, and reconstructions of mean

annual terrestrial and sea surface temperature for the Last Interglacial Period from Turney and Jones (2010).

Standard errors of reconstructed values are available for all variables with the exception of terrestrial and ma-

rine temperature during the Last Interglacial Period.15

Terrestrial temperature and precipitation reconstructions for the Mid-Holocene and the LGM are provided on

a 2◦ resolution grid, and LGM marine temperature reconstructions are provided on a 5◦ grid. We assigned each

sample of these datasets to the 1.25◦×0.8◦ grid cell of our palaeoclimate simulations (see section 2.1.1) that

contains the centre of the relevant 2◦ or 5◦ cell. Reconstructions for the Last Interglacial Period are not gridded,

and were compared to the simulated climate in the 1.25◦×0.8◦ grid cell containing the sample location. Figs.20

3 and 4 visualise the locations of all reconstructions of terrestrial and marine mean annual temperature, and

annual precipitation.

2.2 Bias correction methods

2.2.1 The Delta Method

The Delta Method is based on adding the difference between past and present-day simulated climate (the ’delta’)25

to present-day observed climate. Thus, the Delta Method assumes that the local (i.e. grid cell-specific) model
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bias is constant over time (Maraun and Widmann, 2018). For temperature variables (including terrestrial and

marine mean annual temperature, and terrestrial temperature of the warmest and coldest month, considered

here), the bias in a geographical location x is given by the difference between present-day observed and raw

simulated temperature, Temp(x,0)−T raw
sim (x,0). Debiased temperature, TDM

sim (x,t), in location x at some time t

is obtained as:5

TDM
sim (x,t) : = Temp(x,0)+

(
T raw

sim (x,t)−T raw
sim (x,0)

)
= T raw

sim (x,t)+
(
Temp(x,0)−T raw

sim (x,0)
)
. (1)

The second expression illustrates that TDM
sim (x,t) is alternatively given by adding the present-day local bias to

the simulated temperature, T raw
sim (x,t), at time t.

Precipitation is bounded below by zero and covers different orders of magnitude across different regions. A10

multiplicative rather than additive bias correction is therefore more adequate when applying the Delta Method

for precipitation, which corresponds to applying the simulated relative change to the observations (Maraun and

Widmann, 2018). Analogously to temperature, debiased precipitation is given by

PDM
sim (x,t) : = Pobs(x,0) ·

P raw
sim (x,t)

P raw
sim (x,0)

= P raw
sim (x,t) · Pobs(x,0)

P raw
sim (x,0)

. (2)15

2.2.2 Statistical Models / GAMs

Statistical bias correction methods assume the existence of a functional relationship between (i) true climatic

conditions (dependent variables), and (ii) climate model outputs as well as additional known forcings such

as topography (independent variables) (Vrac et al., 2007; Maraun and Widmann, 2018). Transfer functions

representing this relationship are calibrated on the basis of present-day simulated and observed climate, and20

are then used to derive past climate using the appropriate simulated data. Generalised additive models (GAMs)

have gained particular popularity as transfer functions (Vrac et al., 2007; Levavasseur et al., 2011; Woillez

et al., 2014; Latombe et al., 2018). They accommodate potential nonlinearities in the response of the individual

variables, while – owing to the computational requirements of general high-dimensional nonlinear regressions

– assuming that the interactions between predictor variables can be neglected.25
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For a set of locations x1,x2, . . ., we denote by Vemp(xi,0) the present-day observed value of a climate variable

denoted V , at the location xi. Here, the x1,x2, . . . represent land and ocean points on the 1.25◦×0.8◦ grid of

the climate data (see section 2.1) in the case of terrestrial and marine climate variables, respectively. In a GAM,

these present-day observed values of V are modelled as the sum of functions of variables that are available

both for the present and the past, such as climate model outputs (typically including the raw simulated data of5

the climate variable in question, V raw
sim ), and/or certain geographical or physical quantities that are known across

time. We denote the values of these predictor variables in the location xi at time t by XV
1 (xi, t),X

V
2 (xi, t), . . ..

In general, the XV
j are time-dependent; not only when they represent climate model outputs, but also when they

represent elevation or the distance to the ocean, which vary over time as the result of sea level changes. Finally,

the GAM is given by the regression10

Vemp(·,0)∼
∑
j

fj
(
XV

j (·,0)
)
, (3)

where the f1,f2 . . . represent smooth functions that are fitted to minimise the distance between the left and the

right hand side in Eq. (3). Once the model has been calibrated on the present-day data, it can be used to estimate

the true (i.e. bias-corrected) values of the climate variable of interest in the location xi at some point in past t as

15

V GAM
sim (xi, t) :=

∑
j

fj
(
XV

j (xi, t)
)
. (4)

Similar to Latombe et al. (2018), here we used elevation, the shortest distance to the ocean and simulated temper-

ature as predictor variables XV
j for temperature variables; we use elevation, the shortest distance to the ocean,

and simulated precipitation, temperature, (absolute) wind speed, air pressure and relative humidity as predictors

variables for annual precipitation. The functions fi were estimated as piecewise third order polynomials (using20

thin plate splines did not change the results) using the mgcv package Wood (2004) in R.

2.2.3 Quantile Mapping

Quantile Mapping aims to correct distributional biases in the simulated climate data. For a given climate vari-

able, Quantile Mapping applies a correction to present and past simulated climate values that is specific to the

quantile associated with the relevant value within the set of all simulated values at the appropriate point in time.25

This correction is calculated based on the difference between present-day simulated and observed quantiles. As
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a result, the cumulative distribution functions of present-day observed and present-day simulated data that was

bias-corrected using Quantile Mapping are identical.

For a climate variable V , we denote by FV
emp[0] the cumulative distribution function of the present-day empir-

ical observations Vemp(x1,0),Vemp(x2,0), . . . (i.e. FV
emp[0] is the function that monotonically maps these values

onto the interval [0,1]). Analogously, we denote by FV,raw
sim [t] the cumulative distribution function of the raw5

simulated values V raw
sim (x1, t),V

raw
emp (x2, t), . . . at time t. We denote by FV

emp[0]
−1 and FV,raw

sim [t]−1 (both mapping

[0,1] to R) the inverse functions of FV
emp[0] and FV,raw

sim [t], respectively.

FV,raw
sim [t](V raw

sim (xi, t)) is the quantile corresponding to the value V raw
sim (xi, t) in the set of simulated val-

ues V raw
sim (x1, t),V

raw
emp (x2, t), . . . of the climate variable V at time t. Under Quantile Mapping, the function

[FV
emp[0]

−1−FV,raw
sim [0]−1] maps each such quantile to a quantile-specific correction term, which is then applied10

to the raw simulation data. Thus, we obtain

V QM
sim (xi, t) := V raw

sim (xi, t)+
[
FV

emp[0]
−1−FV,raw

sim [0]−1
]
(FV,raw

sim [t](V raw
sim (xi, t)))︸ ︷︷ ︸

Correction term specific to the quantile of V raw
sim (xi, t)

. (5)

for the bias-corrected value at time t and location xi.

2.2.4 Method discussion

All three bias correction methods considered here aim at minimising biases in past simulated data, but they make15

different assumptions as to how this aim can best be achieved. The Delta Method assumes that the (known)

present-day model bias is also a good estimate for past model bias. GAM methods and Quantile Mapping

operate on the premise that this assumption of that Delta Method – local biases remaining constant over time

– is too strong. Instead, GAM methods assume that a better estimate of past model biases can be obtained

by deriving a statistical relationship between present-day bias and present-day simulations, and then applying20

this relationship to past simulations in order to estimate past bias. By the nature of regression models, GAM

methods do not perfectly explain present-day model biases across grid cells via the predictor variables. As a

result (and unlike in the case of the Delta Method), GAM-corrected present-day simulations are not identical

to the present-day observed climate. This drawback is accepted under the assumption that the derived statistical

model captures the mechanisms underlying local model biases better than the time-constant local correction term25

used in the Delta Method, and indeed to an extent that allows better estimates of past model biases. Similarly,

7



Quantile Mapping assumes that the distributional correction of climate quantiles – whilst, again, not perfectly

eliminating biases in present-day simulations – ultimately represents a better strategy for minimising past bias

than the rigid local correction of the Delta Method.

2.3 Method evaluation

In ecological applications, the objective of applying a bias-correction method to past simulated climate data5

is generally to reduce the difference between the simulated and the (generally unknown) true past climate.

Empirical palaeoclimatic reconstructions allow us to assess these differences at specific locations and points in

time. Here, we determine local differences between empirical reconstructions and bias-corrected simulations

for each climate variable and bias-correction method, and define a spatially aggregated measures to assess the

overall global performance of each method.10

We denote by Vemp(x,t) the empirically reconstructed value at time t in a location x of the climate variable

V ∈ {T ter.mean,T Tmar.mean,T cold,Twarm,P ann}, representing terrestrial or marine mean annual temperature, tem-

perature of the coldest or warmest month, or annual precipitation, respectively. For M ∈ {raw,DM,GAM,QM},
we denote by V M

sim(x,t) the simulated value of the climate variable V at time t in location x, where the under-

lying simulation data was not debiased or was bias-corrected using the Delta Method, the GAM method or15

Quantile Mapping, respectively. The local bias between the empirically reconstructed and the simulation data at

time t in the location x is then given by

BM
V (x,t) =


V M

sim(x,t)−Vemp(x,t) if V ∈ {T ter.mean,T Tmar.mean,T cold,Twarm}
V M

sim(x,t)−Vemp(x,t)

Vemp(x,t)
if V = P ann

(6)

We use the absolute difference between empirical and simulated data for temperature variables, and the relative

difference in the case of precipitation. We denote by x
(t,V )
1 ,x

(t,V )
2 , . . . the geographical locations of the available20

empirically reconstructed samples at time t for climate variable V . In section 3, we provide complete plots of

the distribution of the biases corresponding to each specific climate variable, point in time, and bias correction

method. Furthermore, as a summary statistic of these distributions, and an aggregated measure for evaluating

and comparing the performance of the three bias correction methods, we use the median of the available local

absolute biases {|BM
V (x

(t,V )
i , t)|}i=1,2,.... The median is weighted by grid cell area for the present, and by the25

local inverse standard errors of the empirical data for the past. We denote the latter by {ωemp(x
(t,V )
i , t)}i=1,2,...,
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rescaled such that
∑

iωemp(x
(t,V )
i , t) = 1. The median absolute bias for variable V and bias-correction method

M at time t is then formally given by

MABM
V (t) = weighted median

(
{|BM

V (x
(t,V )
i , t)|}i=1,2,...

)
= |BM

V (x
(t,V )
k , t)|, where the median index k satisfies∑

|BM
V (x

(t,V )
i ,t)|<...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
and

∑
|BM

V (x
(t,V )
i ,t)|>...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
. (7)

Thus, the median absolute bias is a measure of the average difference between empirical and the bias-corrected5

simulated data. We consider a bias correction method to overall improve the raw simulation outputs if the

associated median absolute bias is smaller than the median absolute difference between raw simulations and

empirical data. We emphasise that the MAB is a summary statistic of the extent to which a given bias-correction

method reduces the difference between simulated and empirical climatic data, i.e. it does not allow inference of

the goodness of the climate model, or of the performance of the different methods in improving climatic signals10

that are not captured by the empirical data used here.

We tested whether the median absolute biases associated with any two bias-correction methods, a certain

climate variable and point in time, were statistically significantly different, under the given uncertainty in the

empirical reconstructions, using the following approach. For each climate variable and point in time, we gen-

erated 104 Monte Carlo realisations of empirical past climatic values in the locations where reconstructions15

are available by applying a normally-distributed noise term, with mean zero and standard deviation equal to

the error of the local empirical reconstruction, to the value provided by the empirical reconstruction. Next, we

calculated the local absolute biases between these empirical past climatic values, and the appropriate simulated

values obtained after applying the different bias-correction methods. For each of these 104 sets of absolute bi-

ases between empirical and simulated data, we used a one-sided Wilcoxon rank sum test to assess whether the20

median of the absolute biases associated with one bias-correction method was significantly smaller than that

associated with a different bias-correction method (at a 5% significance level). We then determined the number

of iterations, out of the total 104 Monte Carlo realisations, in which this was the case. If, for a given climate

variable and point in time, a bias-correction method was found to perform significantly better than another one

in more than half of the realisations, we report this result in section 3.25
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Debiased simulated data should ideally not contain any systematic bias, in that the median bias,

MBM
V (t) = weighted median

(
{BM

V (x
(t,V )
i , t)}i=1,2,...

)
(8)

(where the weighted median is calculate analogously as in Eq. (7)) should not differ substantially from zero.

In addition to considering the median absolute bias, here, we also examine how different methods affect the

associated median bias.5

In some applications, the climate change signal, i.e. the difference between past and present climatic states,

may be more relevant than the climate at a fixed point in time. The difference between the empirical and the

simulated climate change signal of a climate variable V bias-corrected using method M at a location x and

between the present and time t in the past is given by

CCBM
V (x

(t,V )
i , t) =



(
V M

sim(x,t)−V M
sim(x,0)

)
−
(
Vemp(x,t)−Vemp(x,0)

)
if V ∈ {T ter.mean,T Tmar.mean,T cold,Twarm}

V M
sim(x,t)−V M

sim(x,0)

V M
sim(x,0)

−
V M

emp(x,t)−Vemp(x,0)

Vemp(x,0)

if V = P ann,

(9)10

and the median absolute bias associated with the climate change signal is given by

CCMABM
V (t) = weighted median

(
{|CCBM

V (x
t,V )
i , t)|}i=1,2,...

)
, (10)

where the weighted median is calculated analogously as in Eq. (6). Here, we also compare the performance of

the different bias correction methods for this quantity. We did not determine the median absolute bias for the

climate change signal between points in the past, due to the much smaller number of empirical reconstructions15

that are available from the same location across time, and due to the increased uncertainty of the local empirical

climate change signals, which are given by the sum of the uncertainties of the local reconstructions of the

relevant points in time.
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3 Results

Fig. 1a–e compare empirically reconstructed and bias-corrected simulated climate data for the five climate

variables considered. They show that biases remaining after applying the different bias-correction methods are

not uniformly distributed across the range of simulated values. In a number of cases, very low temperatures in

several bias-corrected simulations tend to be lower than reconstructed values, while very high temperatures in5

the simulated data tend to be higher than what empirical reconstructions suggest (e.g. Mid-Holocene and Last

Interglacial mean annual marine temperature, and Mid-Holocene and LGM temperature of the warmest month).

For some bias-correction methods, an analogous patterns can be observed in the case of precipitation.

All bias-correction methods reduce the median absolute bias (MAB in Eq. (6)) of present-day simulated data

for all climate variables – as would be expected (Maraun and Widmann, 2018) – although, by construction,10

only the Delta Method completely eliminates all differences between simulated and observed data (Fig. 2). The

Delta Method also provides the strongest reduction in median absolute bias (MAB in Eq. (6)) for all variables and

points in time with the expection of temperature of the coldest month at the Mid-Holocene, and precipitation at

the LGM (Fig. 2). The comparatively good performance of the Delta Method is also reflected in the correlations

between present-day and past model biases, which the Delta Method assumes to be similar (Fig. A1). The GAM15

method and Quantile Mapping generally lead to a reduction in bias, even though overall not as effectively as the

Delta Method. In a few cases, the original bias is actually increased after applying a correction method (Fig. 2).

These trends in the performances of the different bias-correction methods in terms of the median absolute bias

are not always statistically significant. The median absolute bias associated with the Delta Method was signifi-

cantly smaller (p < 0.05) than that associated with Quantile Mapping and the GAM method for Mid-Holocene20

terrestrial mean annual temperature (in 96% and 83% of Monte Carlo realisations (see section 2.3) when com-

pared against Quantile Mapping and the GAM method, respectively), marine mean annual temperature (in 93%

and 89% of realisations, respectively), terrestrial mean temperature of the warmest month (in 92% and 100%

of realisations, respectively), and precipitation (in 100% and 100% of realisations, respectively). The Delta

Method also performed significantly better than the GAM method for Mid-Holocene terrestrial mean tempera-25

ture of the coldest month (86% of realisations), and significantly better than Quantile mapping for LGM marine

mean annual temperature (65% of realisations). The GAM method performed significantly better than Quantile
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(a) Terrestrial mean annual temperature

(b) Marine mean annual temperature
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(c) Mean temperature of the warmest month

(d) Mean temperature of the coldest month
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(e) Annual precipitation

Figure 1. Comparison of bias-corrected simulated and empirically reconstructed climate variables. Black lines show 1:1

relationships. Red lines and shades show 5th degree polynomial regression and 95% confidence intervals, respectively.

mapping for LGM precipitation (100% of realisations). By construction, the Delta Method has a significantly

lower median absolute bias (namely zero) than both other methods for all variables at present day.

On average, raw simulations underestimated terrestrial and marine mean annual temperature and terrestrial

temperature of the warmest month, and overestimated annual precipitation across time periods (Fig. A2). These

trends are as present in the bias-corrected data. Indeed, methods consistently reduced the absolute value of the5

median bias (MB in Eq. (8)) of the raw simulations, except in the case of terrestrial temperature of the coldest

month.

The differences in how raw and bias-corrected simulation outputs improve the representation of the climate

change signal (CCMAB in Eq. (10)) are negligible in all scenarios except for marine mean annual temperature

during the Last Glacial Maximum, where the GAM method performs slightly better than other methods (Fig.10

A3).

The performance of the different methods is not uniform across space nor time. Fig. 3 illustrates this hetero-

geneity for the Delta Method. For example, the Delta Method significantly reduced the original bias of modelled
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Figure 2. Median absolute biases (MAB, Eq. (7)) of the raw and bias-corrected climate simulation data. Error bars represent

25% and 75% weighted quantiles of the local absolute biases available for the given climatic variable and point in time.

precipitation in Eastern North America in the Mid-Holocene, but hardly improved the raw simulations in the

Sahara, whereas the opposite pattern can be observed at the LGM.

The performances of the methods relative to each other also varied significantly across both space and time.

For example, while the Delta Method has a slight overall edge over the GAM approach, the comparison of the

two methods in Fig. 4 shows that even within small geographical regions neither method performs consistently5

better than the other. Moreover, a better performance of one method in a specific location at a certain point in

time generally does not guarantee the same result at a different time. For instance, the Delta Method overall

reduced the original bias of modelled precipitation more than the GAM approach in Eastern North America

during the Mid-Holocene, but less during the LGM.

4 Discussion10

Whilst, overall, the Delta Method performs slightly better at debiasing temperature and precipitation compared

to GAMs and Quantile mapping for the empirical data considered here, we note that this method is only ap-
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Figure 3. Reduction of the original model bias by the Delta Method for terrestrial and marine mean annual temperature and

terrestrial annual precipitation. The lower end of the colour scale was capped at -100% (i.e. a doubling of the original bias).

propriate for a given land conformation. Thus, it is only appropriate for the Late Quaternary, and even for this

period, changes in sea levels are problematic as they expose areas for which we have no bias information as

well as changing the areas affected by maritime climate. GAMs should, in theory, obviate these problems by

quantifying local processes as statistical relationships with appropriate proxies. Whilst this approach might be

the only option for the deeper past, our results point to the fact that reconstructing such local processes in such5

a way is challenging, as demonstrated by its inferior performance to the Delta Method. A possible limitation of

GAMs as currently applied to bias correction and downscaling is that they assume additivity, thus estimating the

effect of given proxies for the prevaling climate state observed at present day. By fitting interactions, it would
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Figure 4. Relative performances of the Delta Method and the GAM approach in terms of debiasing simulated mean annual

temperature (left column) and annual precipitation (right column). The colour spectrum represents the interval [0,1], and

marker colours are calculated as the ratio of the absolute value of the local bias (Eq. (6)) of the GAM-based approach

divided by the sum of the absolute local biases of both methods.

be possible to allow for these effects to differ depending on the local climatic conditions, but the computational

complexitiy of interactions with such large datasets is non-trivial.

A major limitation of current approaches to debias climate model data is that they all assume biases in present-

day climate to be fully representative of the past. With the progressive increase in the number of empirical

reconstructions of past climatic conditions, it might be possible to soon move from a situation where past data5

are use to verify correction schemes (as we did in this manuscript) to using those data to actively calibrate the

17



bias correction function. Fig. 5 suggests an intriguing relationship between the temporal variation of the local

model bias and the simulated climate change signal of the variable of interest. Such a statistical relationship

could, in principle, be used to refine the Delta Method by accounting for the change in local model bias with

time. However, uncertainties are large, patterns do not seem fully consistent across time, and available data

points do not represent the world uniformly. A robust statistical model will require not only additional data5

from currently underrepresented geographical areas (specifically the southern hemisphere), but also curating

empirical reconstructions, as successfully done for the last millenium (Hakim et al., 2016; Tardif et al., 2018).

5 Conclusions

Our comparison of global debiased palaeosimulation data and empirical reconstructions suggests that, overall,

the Delta Method provides slightly better performance at debiasing compared to GAMs and Quantile Mapping10

– though not in all cases to at a statistically significanty extent. Given our results, we suggest that the Delta

Method is good starting point for bias removal of simulated Late Quaternary climate data at a global scale.

However, given the considerable variability in the effectiveness of the different methods in different locations,

we echo earlier propositions that studies focussing on specific regions require case-by-case assessments of which

bias-correction method is most suitable for improving palaeoclimate model outputs (Maraun et al., 2017).15

Whilst the datasets used in this paper are a step in the right direction, they are still too sparse and diverse for

the purpose of actively parameterising debiasing functions. Such a resource would arguably allow bias removal

methods to greatly improve in their effectivness.

Code and data availability. Code and datasets used in this analysis will be made publicly available on the Open Science

Framework repository upon acceptance of the manuscript.20
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Figure 5. Differences between local past and present model bias (at locations for which reconstructions are available) against

the local simulated climate change signal (i.e. the difference between past and present simulated value) of the variable of

interest. Red, blue and green markers represent data from the Mid-Holocene, the LGM and the Last Interglacial Period,

respectively. Error bars represent standard errors of the empirical reconstructions. Lines and shades show robust linear

regressions and 95% confidence intervals, respectively. Whilst weak, the relationships suggest that it may be possible to

model some of the variability of local model biases over time, using only available simulation data. Such an approach

could potentially significantly enhance the Delta Method, which currently operates on the simplifying assumption that this

variability is negligible.
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Figure A1. Comparison of present-day and past model biases (which the Delta Method assumes to be similar) from locations

where reconstructions are available. Lines represent 1:1 relationships.
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Figure A2. Median biases of the raw and bias-corrected climate simulation data. Error bars represent 25% and 75% weighted

quantiles of the local biases available for the given climatic variable and point in time.
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