
We wish to extend our gratitude to the Reviewers for their comments, which we feel have greatly

helped to improve the quality of our manuscript. We also wish to apologise for the substantial

delay in returning this revised version - the result of a spinal injury of the lead author shortly after

our submission of the responses to the Reviewer’s comments in October 2019, which has impeded

an earlier finalisation of this submission.

Reviewer 1

1) The evaluation criterion is essentially the difference between the corrected and reconstructed

climatology.  However,  the  Delta  Method  has  been  specifically  constructed  to  eliminate  this

difference between simulated climatology and present-day climatology. Quantile Mapping pursues

a  more  general  correction,  namely  to  correct  the  whole  probability  distribution  of  annual

temperature (or precipitation). The GAM method is a statistical model that incorporates (in my

understanding) simulated and observed gridpoint climatologies as predictors and predictands , and

additionally some other factors like distance to the ocean, etc. The GAM method is therefore also

not specifically tailored to eliminate the bias. I wonder if the main result of the manuscript, namely

the  best  performance  of  the  Delta  method,  is  not  an  artifact.  The  Delta  Method  is  precisely

tailored  to  maximise  the  evaluation  criterion  and  thus  ,  it  is  for  me  not  surprising  that  it

outperforms the other two methods. I am not sure which other, fairer, evaluation criterion could

be introduced, but I think that this issue should be addressed or at least thoroughly discussed.

We have added the following  section to  clarify  that,  indeed,  all  three methods  aim at

minimising  the  difference  between  simulated  and  real  climate,  but  make  different

assumptions as to how this aim can best be achieved:

All three bias correction methods considered here aim at minimising biases in past

simulated data, but they make different assumptions as to how this aim can best be

achieved. The Delta Method assumes that the (known) present-day model bias is

also a good estimate for past model bias.  GAM methods and Quantile Mapping

operate on the premise that this assumption of that Delta Method - local biases

remaining constant over time - is too strong. Instead, GAM methods assume that a

better  estimate  of  past  model  biases  can  be  obtained  by  deriving  a  statistical

relationship  between  present-day  bias  and  present-day  simulations,  and  then

applying this relationship to past simulations in order to estimate past bias. By the
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nature of regression models, GAM methods do not perfectly explain present-day

model biases across grid cells via the predictor variables. As a result (and unlike in

the  case  of  the  Delta  Method),  GAM-corrected  present-day  simulations  are  not

identical to the present-day observed climate. This drawback is accepted under the

assumption that the derived statistical model captures the mechanisms underlying

local model biases better than the time-constant local correction term used in the

Delta Method, and indeed to an extent that allows better estimates of past model

biases.  Similarly,  Quantile Mapping assumes that  the distributional  correction of

climate  quantiles  -  whilst,  again,  not  perfectly  eliminating  biases  in  present-day

simulations - ultimately represents a better strategy for minimising past bias than

the rigid local correction of the Delta Method.

Although  the  Delta  Method  fully  eliminates  present-day  bias,  as  pointed  out  by  the

Reviewer, a priori, it is not clear whether it would also reduce past biases most effectively.

Indeed, our analysis demonstrates that this is  not the case in several  scenarios - which

supports  the  rationale  underlying  both  the  GAM  Method  and  Quantile  Mapping,  i.e.

present-day bias is not as good an estimate for past bias as the one obtained by using the

other two methods.

In our revised version, we begin our results section by providing plots showing, for each

climate variable, point in time and bias correction method, the unprocessed, complete set

of local biases, thus illustrating the performance of each method across the full spectrum of

values  of  the  relevant  climate  variable.  Only  after  that  do  we  present  the  statistical

summary of these plots, in terms of the median absolute biases.

We  would  argue  that  the  MAB  is  the  most  natural  and  intuitive  way  to  statistically

summarise the set of local biases, providing a simple measure to assess, as we state later

on  in  the  text,  whether  a  bias-correction correction  method  overall  improves  the  raw

simulation outputs (namely if  the associated MAB is smaller than that of the non-bias-

corrected simulations).

In  addition,  following  Reviewer  2’s  suggestion,  we  now  additionally  evaluate  the

performance of each method in terms of improving the simulated climate change signal,

and have summarised these results in the newly added supplementary figure A3.
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2)  The  difference  between  the  corrected  simulated  climatologies  and  the  reconstructed

climatologies does not take into account the presumably large uncertainty in the reconstructions

and in the corrected simulated climatologies (the former being presumably much larger?) . This

needs to  be incorporated in  the evaluation of  the three methods.  If  the  inter-methodological

differences are  much smaller  than the uncertainties in the estimated paleo-bias  ,  it  would be

difficult to claim that one particular method is superior to other two. I think that the manuscript

should  include  also  these  uncertainty  estimations,  or  at  least  place  the  inter-methodological

differences in the frame of the reconstruction uncertainties.

We have included the Reviewer’s suggestion into our analysis. We have added the following

paragraph to the Methods:

We tested whether the median absolute biases associated with two bias-correction

methods, a specific climate variable and point in time, were statistically significantly

different, under the given uncertainty in the empirical reconstructions, using the

following approach. For each climate variable and point in time, we generated 104

Monte Carlo realisations of empirical  past climatic values in the locations where

reconstructions are available by applying a normally-distributed noise term, with

mean  zero  and  standard  deviation  equal  to  the  error  of  the  local  empirical

reconstruction,  to  the  value  provided by  the  empirical  reconstruction.  Next,  we

calculated the local absolute biases between these empirical past climatic values,

and the appropriate simulated values obtained after applying the different bias-

correction methods. For each of these 104 sets of absolute biases between empirical

and simulated data, we used a one-sided Wilcoxon rank sum test to assess whether

the median of the absolute biases associated with one bias-correction method was

significantly smaller than that associated with a different bias-correction method (at

a 5% significance level). We then determined the number of iterations, out of the

total 104 Monte Carlo realisations, in which this was the case. If, for a given climate

variable  and  point  in  time,  a  bias-correction  method  was  found  to  perform

significantly better than another one in more than half of the realisations, we report

this result in section 3.

and have added the following paragraph to the results:

These trends in the performances of the different bias-correction methods in terms

of  the  median  absolute  bias  are  not  always  statistically  significant.  The  median
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absolute bias associated with the Delta Method was significantly smaller (p < 0.05)

than  that  associated  with  Quantile  Mapping  and  the  GAM  method  for  Mid-

Holocene terrestrial  mean annual temperature (in 96% and 83% of Monte Carlo

realisations (see section 2.3) when compared against  Quantile Mapping and the

GAM method, respectively), marine mean annual temperature (in 93% and 89% of

realisations, respectively), terrestrial mean temperature of the warmest month (in

92% and 100% of realisations, respectively), and precipitation (in 100% and 100% of

realisations,  respectively).  The  Delta  Method  also  performed  significantly  better

than  the  GAM  method  for  Mid-Holocene  terrestrial  mean  temperature  of  the

coldest month (86% of realisations), and significantly better than Quantile mapping

for LGM marine mean annual temperature (65% of realisations). The GAM method

performed significantly better than Quantile mapping for LGM precipitation (100%

of realisations). By construction, the Delta Method has a significantly lower median

absolute bias (namely zero) than both other methods for all  variables at present

day.

We have also added a caveat in the Abstract and the Conclusions stating that the slightly

better overall performance of the Delta Method is not always statistically significant.

3) The readability of the illustrations is poor. it is, for instance, very difficult to discern anything in

Figure 2 and Figure 3. The lettering, axis labels, etc, in most figures is too small (e.g Figure 4)

We have provided higher-resolution figures, and have increased the size of the maps by

removing unnecessary white spaces. We have increased the font sizes across figures.

4) what is the original spatial resolution of the climate reconstructions ? were they regridded, and

how?

We have now specified this in section 2.1.2 as follows:

Terrestrial temperature and precipitation reconstructions for the Mid-Holocene and

the  LGM  are  provided  on  a  2°  resolution  grid,  and  LGM  marine  temperature

reconstructions  are  provided  on  a  5°  grid.  We  assigned  each  sample  of  these

datasets to the 1.25°x0.8° grid cell  of our palaeoclimate simulations (see section

2.1.1) that contains the centre of the relevant 2° or 5° cell. Reconstructions for the
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Last  Interglacial  Period  are  not  gridded,  and  were  compared  to  the  simulated

climate in the 1.25°x0.8° grid cell containing the sample location. Fig. 3 and Fig. 4

visualise the locations of all reconstructions of terrestrial and marine mean annual

temperature, and of annual precipitation.

5) The text refers sometimes to bias , other times to ’error’, whereas in my understanding very

often  both  terms  carry  the  same  meaning.  This  can  be  confusing  for  some  readers.  I  would

recommend to stick to one of those terms when possible.

We have removed the term ‘error’ (which we had previously used in the sense of ‘the bias 

remaining after bias-correction’) as suggested, and now use ‘bias’ throughout the text.

6) The text also refers to the climate reconstructions as ’the observations’, e-g. in equation 5. This

can also be confusing. It would be clearer to use ’climate reconstructions’ when referring to the

proxy-reconstructed climatologies and ’observations’ when referring to present-day climatologie.

We now use the terminology suggested by the Reviewer throughout the text.

7) The main conclusion is derived from the analysis of only one model. Perhaps I missed it but I

think this a caveat that should be mentioned.

We have added this caveat to section 2.1.1, as suggested.

Reviewer 2

1) Page 1, lines 11-13, The DC method has its name because it is based on adding the simulated

difference between two periods to observations.  Although this is  mathematically equivalent to

subtracting the fitting period bias from the simulations (as shown in eqn.1) I think introducing the

BC methods using the second definition rather than the one that is directly linked to the name is

potentially confusing.

We now introduce the Delta Method as follows:
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The Delta Method is based on adding the difference between past and present-day

simulated climate (the 'delta') to present-day observed climate.

We have also changed the order  of  equations in  Eqs.  (1)  and (2),  as  suggested by the

Reviewer.

 

2) Page 1, lines 13 -15, Please use clean terminology. GAM is a statistical representation of links

between ‘variables’ not between ‘proxies for processes’ and ‘biases’. Define clearly what predictors

and predictands are. From the current statement it is impossible to find out which variables are

actually linked through GAM.

We have rephrased the statement as follows:

GAMs  attempt  to  represent  statistical  relationships  between  simulated  climatic

variables  (as  well  as  other  known  physical  variables,  such  as  elevation  and  the

distance from the coast)  and bias-corrected climatic variables (Vrac et  al.,  2007;

Maraun and Widmann, 2018).

We have also rewritten section 2.2.2, in which GAM methods are explained in detail (see

our responses to comments further below).

3) Page 1, lines 15-16, QM does not assume the shape of the distribution to be constant in time. If

there is climate change the distribution obviously changes. Standard implementations assume that

the  bias  for  a  given  value  is  constant  in  time  (but  there  are  implementations  without  this

assumption). Please remove wrong statement and include a correct explanation.

We have corrected the statement as follows:

Quantile mapping assumes that biases are specific to their respective quantiles in

the distribution of the relevant climatic variable.

4) Page 1, lines 18-20. Please be more specific about the potential setups in the palaeoclimate

context. Some empirical palaeoclimate reconstructions are local or have a high spatial resolution,
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which  means  they  are  smaller-scale  than  the  climate  model  output  (downscaling),  whereas

continental-scale empirical reconstructions have a lower resolution than the models (upscaling).

We rewrote section 2.1.2 as as follows, to accommodate the Reviewer’s comment:

We used global datasets of local palaeoclimate reconstructions of terrestrial mean

annual temperature, temperature of the coldest and warmest month, and annual

precipitation  for  the  mid-Holocene  and  the  LGM  from  Bartlein  et  al.  (2011),

reconstructions of mean annual sea surface temperature for the mid-Holocene and

the LGM from Hessler et al. (2014) and Waelbroeck et al. (2009), respectively, and

reconstructions of mean annual continental  and sea surface temperature for the

last  interglacial  period  from  Turney  and  Jones  (2010).  Standard  errors  of

reconstructed  values  are  available  for  all  variables  with  the  exception  of  Last

Interglacial terrestrial and marine temperature.

Terrestrial temperature and precipitation reconstructions for the Mid-Holocene and

the  LGM  are  provided  on  a  2°  resolution  grid,  and  LGM  marine  temperature

reconstructions  are  provided  on  a  5°  grid.  We  assigned  each  sample  of  these

datasets to the 1.25°x0.8° grid cell  of our palaeoclimate simulations (see section

2.1.1) that contains the centre of the relevant 2° or 5° cell. Reconstructions for the

Last  Interglacial  Period  are  not  gridded,  and  were  compared  to  the  simulated

climate in the 1.25°x0.8° grid cell containing the sample location. Fig. 3 and Fig. 4

visualise the locations of all reconstructions of terrestrial and marine mean annual

temperature, and of annual precipitation.

5) Page 1, There is a complete lack of critical discussion about the limitations of BC. It is obvious

that a fundamentally poor model cannot be improved in a meaningful way by BC (see for instance

Maraun and Widmam (2018), Maraun et al., 2017: Towards process informed bias correction of

climate change simulations. Nature Climate Change, 7(11), 764-773). These limitations should be

discussed in the introduction, in particular in the context of palaeoclimate simulations. Moreover,

the validation approach needs to be justified taking into account the potential problems with BC,

and clear comments need to be made on whether the validation would identify such problems. It

will  turn  out  that  it  would  not  (see  comments  below),  which  should  at  least  be  stated  as  a

limitation of the study.

We have added the following paragraph to the Introduction:
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Several  challenges of methods used for  bias-correcting future climate simulation

data,  including  the  correct  representation  of  distributions  of  extreme  weather

events (e.g. precipitation during El Niño events, or dry spell lengths), of very small-

scale patterns, or of the variability of climatic variables across time scales of a few

years or decades (Maraun et al., 2017), are often not present in paleoclimatological

contexts. This is because palaeoclimate simulation data are generally provided at a

medium-scale  spatial  resolution,  and  oftentimes  represent  millennial-scale

averages.  However,  in  both  scenarios  it  is  important  to  acknowledge  that  bias-

correction  methods  are  unable  to  substantially  improve  a  fundamentally  poor

climate model, e.g. with strong circulation biases that such methods are not capable

of removing (Maraun et al., 2017). Seeking to improve the representation of climate

dynamics  in  simulation  models  therefore  remains  a  priority  alongside  the

development of bias correction methods.

In addition, we have added the following paragraph to the Introduction:

[W]e focus on the global performance of the different methods; however, we note

that bias-correction is not a one-size-fits-all  approach (Maraun et al.,  2017),  and

that  our  results  do not  remove the need for  local  re-evaluations of  methods in

specific continental and subcontinental regions of interest.

and the following sentence to the Conclusion:

Given the considerable variability in the effectiveness of the different methods in

different locations, we echo earlier propositions that studies focussing on specific

regions require case-by-case assessments of which bias-correction method is most

suitable for improving palaeoclimate model outputs (Maraun et al., 2017).

We have also added the following caveat to the definition of the MAB (previously MAE):

We emphasise that the MAB is a summary statistic of the degree to which a given

bias-correction method reduces the difference between simulated and empirical

climatic data, i.e. it does not allow inference of the goodness of the climate model,

or of the performance of the different methods in improving climatic signals that

are not captured by the empirical data used here.
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6) Page 4, lines 18-19, The statement about the log-transform is correct, but overcomplicated. It is

more helpful to just say that this is a multiplicative delta method, i.e. the simulated relative change

is applied to the observations.

We have removed the sentence referring to the log-transformation, as suggested, and have

added the following statement:

[This] corresponds to applying the simulated relative change to the observations.

7) Page 4, lines 21-22, The sentence doesn’t work out. The relationship is between climate model

output  and  real-world  climate  variables,  with  additional  time-invariant  predictors  such  as

topography or distance from the coast.

We have rewritten the sentence to clarify dependent and independent variables:

Statistical bias correction methods assume the existence of a functional relationship

between (i) true climatic conditions (dependent variables), and (ii) climate model

outputs  as  well  as  additional  known  forcings  such  as  topography  (independent

variables) (Vrac et al., 2007; Maraun and Widmann, 2018). “

8)  Page 5,  eqn. 3,  Clarify  that  some x_i  are time-dependent (i.e.  those that  represent climate

model output), while others (topography, distance from coast) are not.

We  now  explicitly  state  the  temporal  dependency  of  the  predictor  variables  in  the

equations, and have specified in the text:

[These predictors] are time-dependent; not only when they represent climate 

model outputs, but also when they represent elevation or the distance to the 

ocean, which vary over time as the result of sea level changes.

9) Page 5, line 13, does ‘wind speed’ include the direction?

We have added “(absolute)” to clarify that we mean speed, not velocity.
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10) Page 5, line 14-15, It is not clear what the predictor and predictand data are and how the fitting

for the f_i works. What are the individual realisations of T_sim and x_i for which the polynomials

are fitted? Are these timesteps? But if so, if I understand correctly, there are only three, namely the

mean temperatures for the present, Mid-Holocene, and Last Glacial Maximum. What is the spatial

resolution? Are the simulated temperatures averaged over the continental areas represented in

the proxy-based reconstructions? Or are the realisations in space (if so, is this one value for each

continent?), or space and time?

In our initial submission, we had abused mathematical notation in some instances (e.g. by

dropping the dependence of certain variables on time, location, or the climate variable or

bias correction method in question), with the aim of facilitating an intuitive understanding

of the key concepts. We understand that this may have caused misunderstandings and loss

of clarity of our methods. We have therefore completely rewritten the mathematical parts

of  section 2.2 (bias correction methods) and section 2.3 (method evaluation).  We have

explicitly added the dependence of variables on time, location, climate variable, and bias-

correction method throughout these sections, thus clarifying the details that the Reviewer

enquired about.

11)  Page  5,  line  17-22,  It  is  not  clear  what  the  distributions  are.  Are  they  annual  values  of

continental means?

In the course of rewriting the technical details of the methods (see response to previous

comment), we have clarified the data that the relevant cumulative distribution are based

on. Please also refer to our response to comment 14, regarding the term “continental”.

12) Page 6, The evaluation method needs more justification. For instance it would be a logical first

step to validate the three BC methods on instrumental data, using crossvalidation, and focusing on

aspect that are important in the palaeoclimatic context, i.e. long-term variability. The argument is

probably that the key aspect is the representation of changes on multi-millennial timescales. The

evaluation  section  should  start  with  stating  the  objectives  of  the  evaluations,  followed  by  a

justification of why the chosen evaluation method addresses these objectives. Please keep in mind

that BC methods reduce bias by construction, even for completely wrong models (see e.g. Maraun

et al, 2017). A reduction in the bias of the mean (DC, GAM), will reduce also the biases for the

distribution quantiles,  while  BC corrects these directly.  For strongly biased climate models the
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reduction of the biases in the distributions will necessarily lead to a reduction in MAE. Why is the

MAE chosen as the evaluation measure? In the paleoclimate context it is also very relevant to

compare  the  climate  change  signals  in  the  raw and  the  BC-corrected  simulations,  and in  the

proxybased reconstructions. Please add statements and if suitable figures on this.

We  have  added  the  following  paragraph  to  the  beginning  of  the  section  2.3  (Model

evaluation) to clarify the objective of our evaluation:

In ecological applications, the objective of applying a bias-correction method to past

simulated climate data is generally to reduce the difference between the simulated

and  the  (generally  unknown)  true  past  climate.  Empirical  palaeoclimatic

reconstructions allow us to assess the differences at specific locations and points in

time. Here, we determine these local differences between empirical reconstructions

and  bias-corrected  simulations  for  each  climate  variable  and  bias-correction

method,  and define a  spatially  aggregated  measure  to assess  the  overall  global

performance of each method.

After formally defining the local differences between empirically reconstructed and bias-

corrected simulated data, we now motivate the use of the MAB as follows:

We provide complete plots of the distribution of the biases corresponding to each

specific climate variable, point in time, and bias correction method. As a summary

statistic  of  these  distributions,  and  an  aggregated  measure  for  evaluating  and

comparing  the  performance  of  the  three  bias  correction  methods,  we  use  the

[MAB].

We  would  argue  that  the  MAB  is  the  most  natural  and  intuitive  way  to  statistically

summarise the set of local biases, providing a simple measure to assess, as we state later

on  in  the  text,  whether  a  bias-correction correction  method  overall  improves  the  raw

simulation outputs (namely if  the associated MAB is smaller than that of the non-bias-

corrected simulations).

However, we have added Figs.1a-e, showing for each climate variable, point in time and

bias correction method, the unprocessed complete set of local biases, thus illustrating the

performance of each method across the full  spectrum of values of the relevant climate

variable. Only then do we show the statistical summary of these plots, in terms of the MAB,

in Fig. 2.

11



As suggested by the Reviewer, we have also included an evaluation of the performance of

each bias-correction method in terms of reducing the average bias between the empirically

reconstructed and the simulated climate change signal, which may be relevant in certain

applications. We have added the formal details of this evaluation to section 2.3 (Model

evaluation). The newly added supplementary figure A3 shows that the differences between

the methods in terms of bias-correcting the climate change signal are extremely small.

We  agree  with  the  Reviewer  that  bias-correction  methods  reduce  the  overall  bias  in

present-day simulations, and we now explicitly state this in the text. However, we would

argue  that  it  is  not  clear,  a  priori,  whether  any  of  the  three  bias-correction  methods

considered also reduces biases in past simulations. Indeed, our analysis shows that this is

not always the case: Some bias-corrected simulations have a higher MAB than the raw

simulation data.

13)  Page  5,  line  7,  ‘standard  errors’  of  what?  It  is  said  later  that  it  is  the  error  of  the

reconstructions, but it needs to be said the first time this is mentioned.

We have added information on the standard errors of the empirical data to the description

of the empirical reconstructions in section 2.1.2.

14) Page 6, eqn. 6, The notation is very unclear. It is also not clear what ‘grid cell’ refers to. Earlier it

was mentioned that continental  means are used. This problem is related to the lack of clarity

about predictand and predictor data mentioned in previous comments.

As mentioned in our response to a previous comment by the Reviewer, we have completely

rewritten and clarified the mathematical parts of our methods. This includes the section

referred to by the Reviewer.

We feel  that  the  term “continental”,  which  we have  used in  the  sense  of  “terrestrial”

(following  Bartlein  et  al.  (2011),  our  source  of  Mid-Holocene  and  LGM  empirical

reconstructions),  may  have  led  to  confusion  about  the  spatial  scale  of  the  empirical

reconstructions  used  in  our  analysis.  These  are  always  local/gridded,  never  spatially

aggregated across continents. (Thus, “Continental mean annual temperature” referred to

the (locally specific) mean annual temperature of terrestrial data points.) We have clarified
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this in our methods by emphasising the locality and spatial dependence of variables. In

addition, we now use the term “terrestrial” instead of “continental” throughout the text.

15) Page 7, figure 1. It seems not plausible that QM leads to substantially larger MAEs than for the

raw simulations, with values up to 10 K. Surprisingly this is not even discussed. There might be a

problem  with  the  implementation.  If  the  implementation  is  correct,  please  give  a  detailed

explanation how this  is  possible.  If  I  understand correctly  the  BCcorrected  distribution of  the

present simulation is identical to the distribution of the instrumental observations. This means that

the instrumental observations have also a very high MAE for the present. How can this be the

case? If suitable, please add information about how the instrumental data, which are the training

data for all BC methods, perform in this evaluation framework. When addressing this please state

explicitly what is compared with what for calculating the MAE; the information that is currently

given is incomplete.

There was indeed an error in the implementation of Quantile Mapping, and we thank the

Reviewer very much for bringing this to our attention. We have corrected the error, and

find that Quantile Mapping also slightly reduces model biases, as expected by the Reviewer.

We have updated the figures and text accordingly.

The  Reviewer  is  correct  in  that  the  cumulative  distribution  function  of  present-day

simulated  climatic  values  obtained  after  applying  Quantile  Mapping  is  identical  to  the

cumulative distribution function of present-day observed values. However, this does not

imply that the underlying climate maps must be identical (in which case the MAB would be

0). Indeed, any spatial permutation of present-day observed climate values would have the

same cumulative distribution function as present-day observed climate, but the MAB would

not  necessarily  be  0.  Only  in  the  case  of  the  Delta  Method  are  present-day  observed

climate and bias-correct simulated data identical  (as are, by extension, their cumulative

distribution functions).

16) Page 11, figure 4. If I understand correctly, this figure shows that the simulated climate change

signal is different from the reconstructed climate change signal. If this is correct, please include this

straightforward interpretation.
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This is not the case. Letting Vsim(x,t) and Vemp(x,t) denote the simulated and empirical values

of a climate variable V at time t and location x. The figures suggest a relationship between

“Past minus present model bias” - i.e. (Vemp(x,t)-Vsim(x,t)) - (Vemp(x,0)-Vsim(x,0)) - on the one

hand, and the “Simulated climate change” - i.e. Vsim(x,t) - Vsim(x,0) - on the other hand. This

is different from the Reviewer’s suggestion that “the simulated climate change signal  “,

Vsim(x,t) - Vsim(x,0), “is different from the reconstructed climate change signal”, Vemp(x,t) –

Vemp(x,0).  We  have  clarified  the  relevance  of  the  observed  relationships  in  the  figure

caption.
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Abstract. Even the most sophisticated global climate models are known to have significant biases in the way

they reconstruct the climate system. Correcting model biases is therefore an essential step toward realistic

paleoclimatologies
::::::::::::::::
palaeoclimatologies, which are crucial for

::::::::
numerous

::::::::::
applcations,

:::::
such

::
as

:
modelling long-

term and large-scale ecological dynamics. Here, we evaluate three widely-used bias correction methods – the

delta method, generalised additive models and quantile mapping
::::
Delta

:::::::
Method,

:::::::::::
Generalised

:::::::
Additive

:::::::
Models5

:::::::
(GAMs)

:::
and

::::::::
Quantile

::::::::
Mapping

:
– against a

::::
large

:
global dataset of empirical temperature and precipitation

records from the present, the mid-holocene
:::::::::::
Mid-Holocene

:
(~6,000 years BP), the last glacial maximum

::::
Last

::::::
Glacial

:::::::::
Maximum (~21,000 years BP) and the last interglacial period

::::
Last

:::::::::
Interglacial

::::::
Period

:
(~125,000 years

BP). Overall, the delta method performs best
:::::
Delta

:::::::
Method

:::::::
performs

:::::::
slightly

::::::
better,

:::::
albeit

::::
not

::::::
always

::
to

::
a

:::::::::
statistically

:::::::::
significant

::::::
degree, at minimising the median absolute error

:::
bias

:
between empirical data and debiased10

simulations for both temperature and precipitation , although
:::
than

::::::
GAMs

:::
and

::::::::
Quantile

::::::::
Mapping,

:::::::
however,

:
there

is considerable spatial and temporal variation in the performance of each of the three methods. We
:::::::::::
Furthermore,

:::
our

::::
data indicate that additional empirical reconstructions of past climatic conditions might make it possible to

soon use past data not only for the validation but for the active calibration of bias correction functions.

1 Introduction15

Realistic reconstructions of global paleoclimate
:::::::::::
palaeoclimate

:
are a key requirement for modelling many impor-

tant long-term and large-scale ecological processes (?????)
:::::::
(??????). Despite advancements in how complex

physical processes are represented in global climate models, simulated present-day climate remains subject to

1



substantial biases when compared to observational data (??). Depending on the region of interest, these biases

can be of the order of a few degrees of temperature
:
,
:
or centimeters of annual precipitation, which can make20

the difference between markedly different vegetation types (e.g. the shift from open to closed habitat, or the

location of deserts)
::
(?).

Whilst bias
:::
Bias

:
correction has received a great deal of attention for present-day and near-future simulations

(??), work on paleoclimate
:::::::
whereas

:::::
work

::
on

::::::::::::
palaeoclimate reconstructions has been much more limited. This

is partly due to the different time scale of paleoecological
:::::::::::::
palaeoecological

:
applications, for which computa-25

tionally intensive bias correction methods that are used for the recent past and near future are not suitable.

::::::
Several

:::::::::
challenges

::
of
::::::::

methods
::::
used

:::
for

:::::::::::::
bias-correcting

::::::
future

::::::
climate

:::::::::
simulation

:::::
data,

::::::::
including

:::
the

:::::::
correct

:::::::::::
representation

:::
of

::::::::::
distributions

:::
of

:::::::
extreme

:::::::
weather

::::::
events

::::
(e.g.

:::::::::::
precipitation

::::::
during

::
El

:::::
Niño

::::::
events,

:::
dry

:::::
spell

:::::::
lengths),

::
of

::::
very

::::::::::
small-scale

:::::::
patterns,

::
or

::
of

:::
the

:::::::::
variability

::
of

:::::::
climatic

:::::::
variables

::::::
across

::::
time

:::::
scales

::
of

::
a

:::
few

:::::
years

::
or

::::::
decades

:::
(?)

:
,
:::
are

::::
often

:::
not

:::::::
present

::
in

:::::::::::::::::
palaeoclimatological

::::::::
contexts.

::::
This

:
is
:::::::
because

::::::::::::
palaeoclimate

:::::::::
simulation30

:::
data

::::
are

::::::::
generally

::::::::
provided

::
at

::
a
::::::::::::
medium-scale

::::::
spatial

:::::::::
resolution,

::::
and

:::::::::
oftentimes

::::::::
represent

::::::::::::::
millennial-scale

:::::::
averages.

:::::::::
However,

::
in

::::
both

::::::::
scenarios

::
it
::
is

::::::::
important

:::
to

:::::::::::
acknowledge

::::
that

::::::::::::
bias-correction

::::::::
methods

:::
are

::::::
unable

::
to

::::::::::
substantially

:::::::
correct

:
a
:::::::::::::
fundamentally

::::
poor

:::::::
climate

::::::
model,

:::
e.g.

:::::
with

:::::
strong

::::::::::
circulation

::::::
biases,

:::::
which

:::::
such

:::::::
methods

:::
are

:::
not

::::::
capable

::
of

::::::::
removing

:::
(?).

:::::::
Seeking

::
to

:::::::
improve

:::
the

::::::::::::
representation

::
of

::::::
climate

::::::::
dynamics

::
in

:::::::::
simulation

::::::
models

:::::::
therefore

:::::::
remains

::
a
::::::
priority

::::::::
alongside

:::
the

:::::::::::
development

::
of

::::
bias

:::::::::
correction

:::::::
methods.

:
35

There are three main methods that have been used so far : the delta method
:
in

:::
the

::::::::::::::::::
palaeoclimatological

::::::
context:

::::
the

:::::
Delta

::::::
Method

:
(http://www.worldclim.org/downscaling), statistical methods based on generalised

additive models (GAMs) (????) and quantile mapping
:::::::
Quantile

:::::::
Mapping

:
(?). All three methods are based on

the assumption that the biases between present-day observations and simulated data do not change through

time, even though
:::::::
although each method takes a different approach in the aspect that is assumed to be invariant.40

The delta method
:::::
Delta

:::::::
Method assumes bias to be location-specific (?), as it is based on a map of differ-

ences between observed and simulated values. GAMs attempt to represent local processes by finding statistical

association between proxies for those processes (e.g. altitude,
:::::::
statistical

:::::::::::
relationships

:::::::
between

::::::::
simulated

:::::::
climatic

:::::::
variables

:::
(as

::::
well

::
as

::::
other

::::::
known

:::::::
physical

::::::::
variables,

::::
such

::
as

::::::::
elevation

:::
and

:::
the distance from the coast) and biases

for present-day observation
::::::::::::
bias-corrected

:::::::
climatic

:::::::
variables

:
(??). Finally, quantile mapping assumes the shape45

of
:::::::
Quantile

::::::::
Mapping

:::::::
assumes

:::
that

::::::
biases

:::
are

::::::
specific

::
to

::::
their

:::::::::
respective

::::::::
quantiles

::
in the distribution of a certain

variable to be constant through time
:::
the

:::::::
relevant

:::::::
climatic

:::::::
variable (?). However, debiased simulation data have

2



either not been validated against observational data
:::::::
empirical

:::::::::::::
reconstructions

:
at all, or only for a small geo-

graphical area and a single point in the past. Furthermore, because of the limited spatial resolution of many

paleoclimate reconstructions, bias correction is conflated with downscaling, thus confounding any estimate of50

the actual effect of debiasing the data.

Here, we use a set of high-resolution climate simulations to systematically evaluate the performance of the

delta method
:::::
Delta

:::::::
Method, a GAM-based approach, and quantile mapping

:::::::
Quantile

::::::::
Mapping, against a global

dataset of empirical climatology data from the present, the mid-holocene
:::::::::::
Mid-Holocene

:
(~6,000 years BP), the

last glacial maximum (~21
::::
Last

::::::
Glacial

:::::::::
Maximum

::::
(~21,000 years BP) and the last interglacial

:::
Last

::::::::::
Interglacial55

:::::
Period

:
(~125,000 years BP). Thanks to the high resolution of our simulation data, we can isolate the effect of

debiasing from downscaling
::
As

:::
the

::::
first

::::
such

::::::
effort,

::::
here,

:::
we

:::::
focus

:::
on

:::
the

:::::
global

:::::::::::
performance

::
of

:::
the

::::::::
different

:::::::
methods;

::::::::
however,

:::
we

::::
note

::::
that

:::::::::::::
bias-correction

:
is
::::

not
:
a
:::::::::::::
one-size-fits-all

::::::::
approach

:::
(?)

:
,
:::
and

::::
that

:::
our

::::::
results

:::
do

:::
not

::::::
remove

:::
the

:::::
need

:::
for

::::
local

::::::::::::
re-evaluations

::
of

::::::::
methods

::
in

:::::::
specific

:::::::::
continental

::::
and

::::::::::::
subcontinental

::::::
regions

:::
of

::::::
interest.60

Section 3
::
??

:
provides details of the three bias correction methods, the climate simulations, and the empirical

paleoclimatology
:::::::::::::::
palaeoclimatology

:
reconstructions used in this study. In section 4

::
??, we quantitatively assess

the performance of the methods at a global scale, and with regard to spatial
:::
and

:::::::
temporal

:
heterogeneities. Section

5 discusses how paleoclimate
::
??

::::::::
discusses

:::
how

::::::::::::
palaeoclimate reconstructions could be used not only to evaluate

methods, but to help estimate the variation of local model bias over time, thus combining the strengths of the65

delta method
::::
Delta

:::::::
Method and statistical bias correction.

2 Material and Methods

2.1 Climate data

2.1.1 Modelled climate data

We used paleoclimate
:::::::::::
palaeoclimate simulations of monthly temperature and precipitation at a 1.25◦×0.83◦ grid70

resolution for the present, the mid-Holocene and the last glacial maximum
::::::::::::
Mid-Holocene

:::
and

:::
the

::::
Last

:::::::
Glacial

::::::::
Maximum

:
(LGM) from the HadAM3H atmospheric model, which is part of the family of HadCM3 climate

models (?). For the last interglacial
:::
Last

::::::::::
Interglacial

::::::
Period, we do not have simulation data from HadAM3H,

3



but we used the global climate model emulator GCMET (?) that is based on the same model and can make

predictions at the same spatial resolution.
::
We

::::
note

::::
that

:::
the

::::::
results

::::::::
presented

::
in
::::

this
::::::
article

:::
are

::::::
specific

:::
to

:::
the75

::::::::
particular

::::::
climate

::::::::::
simulations

:::::::::
considered

::::
here,

::::
and

::
do

:::
not

:::::
claim

:::::::::::::
generalisability

::
to

:::::
other

:::::::
models.

Empirical data (see below) of continental
:::::
section

:::
??)

:::
of

::::::::
terrestrial temperature were compared against simu-

lated temperature at 1.5 meters height, whereas simulated air surface temperature was used as a proxy for sea

surface temperature, since
:
as

:
sea surface temperature is not part of the HadAM3H output. We removed marine

data points for which simulated air surface temperature was below the freezing point of saltwater, -1.8
:::
–1.8◦C,80

as in this case the simulated value corresponds to the temperature of an ice layer rather than that of the top layer

of water.

2.1.2 Empirical climate data

All bias correction methods considered in this paper are calibrated on
::::
using

:
present-day observational data. We

used monthly continental
:::
For

::::
this,

:::
we

::::
used

:::::::
monthly

::::::::
terrestrial temperature and precipitation data at a 0.167◦ grid85

resolution (?), and mean annual sea surface temperature at a 1◦ grid resolution (?), representative of 1960–1990.

These maps were aggregated
::::::::
remapped to the 1.25◦×0.83◦ grid of the paleoclimate

:::::::::::
palaeoclimate

:
simulations

by taking the average of values contained in each target grid cell.

We used paleoclimate reconstructions of continental
:::::
global

::::::
datasets

::
of

::::::::
empirical

:::::
local

:::::::::::
palaeoclimate

:::::::::::::
reconstructions

::
of

::::::::
terrestrial

:
mean annual temperature, temperature of the coldest and warmest month, and annual precipita-90

tionfor the mid-Holocene
:
,
:::
for

:::
the

::::::::::::
Mid-Holocene

:
and the LGM from ?, reconstructions of mean annual sea

surface temperature for the mid-Holocene
::::::::::::
Mid-Holocene

:
and the LGM from ? and ?, respectively, and re-

constructions of mean annual continental
:::::::
terrestrial

:
and sea surface temperature for the last interglacial period

:::
Last

::::::::::
Interglacial

::::::
Period from ?.

:::::::
Standard

:::::
errors

:::
of

:::::::::::
reconstructed

::::::
values

:::
are

:::::::
available

:::
for

:::
all

::::::::
variables

::::
with

:::
the

::::::::
exception

::
of

::::::::
terrestrial

:::
and

:::::::
marine

::::::::::
temperature

:::::
during

:::
the

::::
Last

::::::::::
Interglacial

::::::
Period.95

::::::::
Terrestrial

::::::::::
temperature

::::
and

:::::::::::
precipitation

:::::::::::::
reconstructions

:::
for

:::
the

::::::::::::
Mid-Holocene

::::
and

:::
the

:::::
LGM

:::
are

::::::::
provided

::
on

:
a
:::

2◦
:::::::::
resolution

::::
grid,

:::
and

:::::
LGM

:::::::
marine

::::::::::
temperature

::::::::::::
reconstructions

::::
are

:::::::
provided

:::
on

:
a
:::
5◦

::::
grid.

:::
We

::::::::
assigned

::::
each

::::::
sample

::
of

:::::
these

::::::
datasets

:::
to

::
the

::::::::::
1.25◦×0.8◦

::::
grid

::::
cell

::
of

:::
our

:::::::::::
palaeoclimate

::::::::::
simulations

::::
(see

::::::
section

:::
??)

::::
that

:::::::
contains

:::
the

:::::
centre

::
of

:::
the

:::::::
relevant

::
2◦

::
or

:::
5◦

::::
cell.

:::::::::::::
Reconstructions

:::
for

:::
the

::::
Last

:::::::::
Interglacial

::::::
Period

:::
are

:::
not

:::::::
gridded,

:::
and

::::
were

:::::::::
compared

::
to

:::
the

::::::::
simulated

:::::::
climate

::
in

:::
the

::::::::::
1.25◦×0.8◦

::::
grid

:::
cell

:::::::::
containing

:::
the

:::::::
sample

:::::::
location.

:::::
Figs.100
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::
??

:::
and

:::
??

::::::::
visualise

:::
the

:::::::
locations

:::
of

::
all

:::::::::::::
reconstructions

::
of

::::::::
terrestrial

::::
and

::::::
marine

:::::
mean

::::::
annual

::::::::::
temperature,

::::
and

:::::
annual

:::::::::::
precipitation.

:

2.2 Bias correction methods

2.2.1 The delta method
:::::
Delta

:::::::
Method

The delta method
:::::
Delta

:::::::
Method

::
is

:::::
based

:::
on

::::::
adding

:::
the

:::::::::
difference

:::::::
between

::::
past

::::
and

::::::::::
present-day

:::::::::
simulated105

::::::
climate

::::
(the

:::::::
’delta’)

::
to

::::::::::
present-day

::::::::
observed

:::::::
climate.

::::::
Thus,

:::
the

:::::
Delta

:::::::
Method

:
assumes that the local (i.e.

grid cell-specific) model bias is constant over time (?). For temperature , the local bias
:::::::
variables

:::::::::
(including

::::::::
terrestrial

:::
and

::::::
marine

:::::
mean

::::::
annual

:::::::::::
temperature,

:::
and

::::::::
terrestrial

::::::::::
temperature

:::
of

:::
the

:::::::
warmest

:::
and

:::::::
coldest

::::::
month,

:::::::::
considered

:::::
here),

:::
the

:::
bias

::
in
::
a
:::::::::::
geographical

::::::
location

::
x
:
is given by the difference between present-day simulated

and observed temperature, Tobs(0)−Tsim(0):::::::
observed

:::
and

::::
raw

::::::::
simulated

:::::::::::
temperature,

:::::::::::::::::::
Temp(x,0)−T raw

sim (x,0).110

Debiased temperature, T̂sim(t), ::::::::
TDM

sim (x,t),
::
in
:::::::
location

::
x at some time t is obtained by adding the bias term to the

simulated temperature, Tsim(t), at time t:
::
as:

:

TDM
sim (x,t) : = Temp(x,0)+

(
T raw

sim (x,t)−T raw
sim (x,0)

)
= T raw

sim (x,t)+
(
Temp(x,0)−T raw

sim (x,0)
)
. (1)

The second expression illustrates that T̂sim(t) ::::::::
TDM

sim (x,t)
:
is alternatively given by adding the simulated climate115

change signal to the present-day observed temperature
::::
local

::::
bias

::
to

::
the

:::::::::
simulated

::::::::::
temperature,

:::::::::
T raw

sim (x,t),
::
at

::::
time

:
t.

Precipitation is bounded below by zero and covers different orders of magnitude across different regions. A

multiplicative rather than additive bias correction is therefore more adequate when applying the delta method

for precipitation
::::
Delta

:::::::
Method

:::
for

:::::::::::
precipitation,

:::::
which

::::::::::
corresponds

::
to
::::::::
applying

:::
the

::::::::
simulated

:::::::
relative

::::::
change

::
to120

::
the

:::::::::::
observations

:
(?). Analogously to temperature, debiased precipitation is given by

PDM
sim (x,t) : = Pobs(x,0) ·

P raw
sim (x,t)

P raw
sim (x,0)

= P raw
sim (x,t) · Pobs(x,0)

P raw
sim (x,0)

. (2)

This is equivalent to log-transforming simulated and observed precipitation values, applying the additive delta

method, and back-transforming the result.125
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2.2.2 Statistical Models / GAMs

Statistical bias correction methods assume the existence of a functional relationship between
::
(i)

::::
true

:::::::
climatic

::::::::
conditions

::::::::::
(dependent

:::::::::
variables),

::::
and

:::
(ii)

:
climate model outputs as well as potentially additional

::::::::
additional

:::::
known

:
forcings such as topography , and real climate

:::::::::::
(independent

::::::::
variables)

:
(??). Transfer functions repre-

senting this relationship are calibrated on the basis of present-day simulated and observed climate, and are then130

used to derive past climate based on the appropriate simulations
:::::
using

:::
the

::::::::::
appropriate

::::::::
simulated

::::
data. Gener-

alised additive models (GAMs) have gained particular popularity as transfer functions (????). They accom-

modate potential nonlinearities in the response of the individual variables, but assume that the interactions

between predictor variables can be neglected (
::::
while

::
– owing to the computational requirements of general high-

dimensional nonlinear regressions ). GAMs compute the expected value of debiased local temperature (and,135

analogous, precipitation) as

E[T̂sim(t)|x1, . . . ,xn]=

n∑
i=1

fi(xi),

where x1, . . . ,xn are predictors provided by the climate model
:
–
::::::::
assuming

:::
that

:::
the

::::::::::
interactions

:::::::
between

::::::::
predictor

:::::::
variables

:::
can

:::
be

::::::::
neglected.

:

:::
For

:
a
:::
set

::
of

:::::::
locations

:::::::::
x1,x2, . . .,:::

we
::::::
denote

::
by

:::::::::
Vemp(xi,0):::

the
::::::::::
present-day

::::::::
observed

::::
value

::
of

::
a

::::::
climate

:::::::
variable140

::::::
denoted

:::
V ,

::
at

:::
the

:::::::
location

:::
xi.:::::

Here,
:::
the

:::::::::
x1,x2, . . . ::::::::

represent
::::
land

:::
and

:::::
ocean

::::::
points

:::
on

:::
the

::::::::::
1.25◦×0.8◦

:::
grid

:::
of

::
the

:::::::
climate

::::
data

:::
(see

:::::::
section

:::
??)

::
in

:::
the

::::
case

::
of

::::::::
terrestrial

:::
and

:::::::
marine

::::::
climate

::::::::
variables,

:::::::::::
respectively.

::
In

:
a
::::::
GAM,

::::
these

::::::::::
present-day

::::::::
observed

:::::
values

::
of

::
V

:::
are

::::::::
modelled

::
as

:::
the

::::
sum

::
of

::::::::
functions

::
of

::::::::
variables

:::
that

:::
are

::::::::
available

::::
both

::
for

:::
the

:::::::
present

:::
and

:::
the

::::
past, such as simulated temperature and precipitation, or represent other known

::::::
climate

:::::
model

:::::::
outputs

::::::::
(typically

::::::::
including

:::
the

::::
raw

:::::::::
simulated

::::
data

::
of

:::
the

:::::::
climate

:::::::
variable

::
in

::::::::
question,

::::::
V raw

sim ),
::::::
and/or145

:::::
certain

:
geographical or physical variables such as local

:::::::
quantities

::::
that

:::
are

::::::
known

::::::
across

::::
time.

::::
We

::::::
denote

:::
the

:::::
values

::
of

:::::
these

::::::::
predictor

:::::::
variables

:::
in

:::
the

:::::::
location

::
xi::

at
::::
time

:
t
:::
by

:::::::::::::::::::::
XV

1 (xi, t),X
V
2 (xi, t), . . ..::

In
:::::::
general,

:::
the

::::
XV

j

::
are

::::::::::::::
time-dependent;

:::
not

::::
only

:::::
when

::::
they

:::::::
represent

:::::::
climate

:::::
model

:::::::
outputs,

:::
but

::::
also

::::
when

::::
they

::::::::
represent

:
elevation

or the shortest distance to the ocean. f1, . . . ,fn are generally nonlinear ,
::::::
which

::::
vary

::::
over

::::
time

::
as

:::
the

::::::
result

::
of

:::
sea

::::
level

:::::::
changes.

:::::::
Finally,

:::
the

:::::
GAM

::
is

:::::
given

::
by

:::
the

:::::::::
regression150

Vemp(·,0)∼
∑
j

fj
(
XV

j (·,0)
)
,

::::::::::::::::::::::::

(3)
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:::::
where

:::
the

:::::::
f1,f2 . . .::::::::

represent
::::::
smooth

:
functions that are fitted using

::
to

::::::::
minimise

::
the

:::::::
distance

:::::::
between

:::
the

:::
left

::::
and

::
the

:::::
right

::::
hand

::::
side

::
in

:::
Eq.

:
(??)

:
.
::::
Once

:::
the

::::::
model

:::
has

::::
been

:::::::::
calibrated

::
on

:::
the

:
present-day observed and simulated

variables. Debiased past variables are calculated by applying the fitted functions to past simulated variables.

::::
data,

::
it

:::
can

::
be

:::::
used

::
to

:::::::
estimate

:::
the

::::
true

::::
(i.e.

::::::::::::
bias-corrected)

::::::
values

::
of

:::
the

:::::::
climate

:::::::
variable

::
of

:::::::
interest

::
in

:::
the155

::::::
location

:::
xi ::

at
::::
some

:::::
point

::
in

::::
past

:
t
::
as

:

V GAM
sim (xi, t) :=

∑
j

fj
(
XV

j (xi, t)
)
.

:::::::::::::::::::::::::::

(4)

Similar to ?, here we used elevation, the shortest distance to the ocean and simulated temperature as predictors

for debiased temperature , and the
::::::::
predictor

::::::::
variables

::::
XV

j :::
for

::::::::::
temperature

::::::::
variables;

::::
we

:::
use

:
elevation, the

shortest distance to the ocean
:
, and simulated precipitation, temperature,

::::::::
(absolute) wind speed, air pressure and160

relative humidity as predictors for debiased
:::::::
variables

:::
for

::::::
annual

:
precipitation. The functions fi were estimated

as piecewise third order polynomials (using thin plate splines did not change the results) using the mgcv package

(?)
::::
mgcv

::::::
package

::
? in R.

2.2.3 Quantile mapping
:::::::
Mapping

This method involves mapping quantiles of the simulated distribution of
:::::::
Quantile

::::::::
Mapping

::::
aims

::
to
:::::::

correct165

:::::::::::
distributional

:::::
biases

:::
in

:::
the

::::::::
simulated

:::::::
climate

:::::
data.

:::
For

::
a
:::::
given

:::::::
climate

::::::::
variable,

:::::::
Quantile

::::::::
Mapping

:::::::
applies

:
a
:::::::::
correction

::
to

:::::::
present

:::
and

::::
past

:::::::::
simulated

::::::
climate

::::::
values

::::
that

::
is

:::::::
specific

::
to

:::
the

:::::::
quantile

:::::::::
associated

:::::
with

:::
the

::::::
relevant

:::::
value

::::::
within

:::
the

::
set

::
of

:::
all

::::::::
simulated

:::::
values

::
at
:::
the

::::::::::
appropriate

::::
point

::
in
:::::
time.

::::
This

::::::::
correction

::
is
:::::::::
calculated

:::::
based

::
on

::::
the

::::::::
difference

::::::::
between

::::::::::
present-day

::::::::
simulated

::::
and

::::::::
observed

:::::::::
quantiles.

:::
As

:
a
::::::

result,
:::
the

::::::::::
cumulative

:::::::::
distribution

::::::::
functions

:::
of

::::::::::
present-day

::::::::
observed

:::
and

::::::::::
present-day

:::::::::
simulated

::::
data

::::
that

::::
was

::::::::::::
bias-corrected

:::::
using170

:::::::
Quantile

::::::::
Mapping

:::
are

:::::::
identical.

:

:::
For a climate variable onto the appropriate observed

::
V ,

:::
we

::::::
denote

:::
by

::::::
FV

emp[0]:::
the

::::::::::
cumulative

::::::::::
distribution

:::::::
function

::
of

:::
the

:
present-day quantiles, so as to remove systematic distributional biases in the simulation data

(?). Debiased temperature (
::::::::
empirical

::::::::::
observations

:::::::::::::::::::::::
Vemp(x1,0),Vemp(x2,0), . . .:::

(i.e.
:::::::
FV

emp[0]::
is

:::
the

:::::::
function

::::
that

::::::::::::
monotonically

::::
maps

:::::
these

::::::
values

::::
onto

:::
the

::::::
interval

::::::
[0,1]).

:::::::::::
Analogously,

:::
we

::::::
denote

:::
by

:::::::
FV,raw

sim [t]
:::
the

::::::::::
cumulative175

:::::::::
distribution

:::::::
function

:::
of

::
the

::::
raw

::::::::
simulated

::::::
values

::::::::::::::::::::::
V raw

sim (x1, t),V
raw

emp (x2, t), . . .::
at

::::
time

::
t.

:::
We

::::::
denote

::
by

:::::::::
FV

emp[0]
−1

and
::::::::::
FV,raw

sim [t]−1
::::
(both

::::::::
mapping

::::
[0,1]

::
to
:::
R)

:::
the

::::::
inverse

::::::::
functions

::
of

:::::::
FV

emp[0] :::
and

::::::::
FV,raw

sim [t],
:::::::::::
respectively.
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:::::::::::::::::
FV,raw

sim [t](V raw
sim (xi, t))::

is
::::

the
:::::::
quantile

::::::::::::
corresponding

::
to

:::
the

:::::
value

::::::::::
V raw

sim (xi, t)::
in

:::
the

:::
set

:::
of

::::::::
simulated

::::::
values

::::::::::::::::::::::
V raw

sim (x1, t),V
raw

emp (x2, t), . . . ::
of

::
the

:::::::
climate

:::::::
variable

:
V
::
at
::::
time

::
t.

:::::
Under

::::::::
Quantile

::::::::
Mapping,

::
the

:::::::
function

::::::::::::::::::::::
[FV

emp[0]
−1−FV,raw

sim [0]−1]

::::
maps

::::
each

::::
such

:::::::
quantile

::
to
::
a
:::::::::::::
quantile-specific

:::::::::
correction

:::::
term,

:::::
which

::
is

::::
then

::::::
applied

::
to

:::
the

::::
raw

::::::::
simulation

:::::
data.180

:::::
Thus,

::
we

::::::
obtain

V QM
sim (xi, t) := V raw

sim (xi, t)+
[
FV

emp[0]
−1−FV,raw

sim [0]−1
]
(FV,raw

sim [t](V raw
sim (xi, t)))︸ ︷︷ ︸

Correction term specific to the quantile of V raw
sim (xi, t)

.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

::
for

:::
the

::::::::::::
bias-corrected

:::::
value

::
at

::::
time

:
t
:::
and

:::::::
location

:::
xi.:

2.2.4
:::::::
Method

:::::::::
discussion

:::
All

::::
three

::::
bias

::::::::
correction

:::::::
methods

:::::::::
considered

::::
here

::::
aim

:
at
::::::::::
minimising

:::::
biases

::
in

::::
past

::::::::
simulated

::::
data,

:::
but

::::
they

:::::
make185

:::::::
different

::::::::::
assumptions

:::
as

::
to

::::
how

::::
this

:::
aim

::::
can

::::
best

::
be

::::::::
achieved.

::::
The

:::::
Delta

:::::::
Method

::::::::
assumes

:::
that

:::
the

::::::::
(known)

:::::::::
present-day

::::::
model

::::
bias

::
is
::::
also

::
a
:::::
good

:::::::
estimate

:::
for

::::
past

::::::
model

::::
bias.

::::::
GAM

:::::::
methods

::::
and

::::::::
Quantile

::::::::
Mapping

::::::
operate

::
on

::::
the

::::::
premise

::::
that

::::
this

:::::::::
assumption

:::
of

:::
that

:::::
Delta

:::::::
Method

::
–

::::
local

::::::
biases

::::::::
remaining

::::::::
constant

::::
over

::::
time

:
–
::
is

:::
too

::::::
strong.

:::::::
Instead,

:::::
GAM

::::::::
methods

::::::
assume

::::
that

:
a
:::::
better

::::::::
estimate

::
of

::::
past

:::::
model

::::::
biases

:::
can

:::
be

:::::::
obtained

:::
by

:::::::
deriving

:
a
::::::::
statistical

::::::::::
relationship

:::::::
between

::::::::::
present-day

::::
bias

:::
and

::::::::::
present-day

::::::::::
simulations,

::::
and

::::
then

:::::::
applying

::::
this190

:::::::::
relationship

::
to
::::
past

::::::::::
simulations

::
in

::::
order

::
to

:::::::
estimate

::::
past

::::
bias.

:::
By

:::
the

:::::
nature

::
of

:::::::::
regression

:::::::
models,

:::::
GAM

:::::::
methods

::
do

:::
not

::::::::
perfectly

::::::
explain

::::::::::
present-day

::::::
model

:::::
biases

::::::
across

:::
grid

:::::
cells

:::
via

:::
the

:::::::
predictor

::::::::
variables.

:::
As

::
a

:::::
result

::::
(and

:::::
unlike

::
in

:::
the

::::
case

::
of

:::
the

:::::
Delta

:::::::
Method), analogous, precipitation)is calculated as

T̂sim(t) = F−1obs

(
Fsim[t](Tsim(t))

)
where Fobs and Fsim[t] denote the cumulative probability functions of the global set of observed values at195

present day and of simulated values
::::::::::::
GAM-corrected

::::::::::
present-day

::::::::::
simulations

:::
are

:::
not

:::::::
identical

::
to

:::
the

::::::::::
present-day

:::::::
observed

:::::::
climate.

::::
This

::::::::
drawback

::
is

:::::::
accepted

:::::
under

:::
the

::::::::::
assumption

:::
that

:::
the

::::::
derived

::::::::
statistical

::::::
model

:::::::
captures

:::
the

::::::::::
mechanisms

:::::::::
underlying

::::
local

::::::
model

:::::
biases

:::::
better

::::
than

:::
the

::::::::::::
time-constant

::::
local

:::::::::
correction

::::
term

::::
used

::
in

:::
the

:::::
Delta

:::::::
Method,

:::
and

::::::
indeed

::
to

::
an

::::::
extent

:::
that

::::::
allows

:::::
better

::::::::
estimates

::
of

::::
past

:::::
model

::::::
biases.

:::::::::
Similarly,

:::::::
Quantile

::::::::
Mapping

:::::::
assumes

:::
that

:::
the

::::::::::::
distributional

::::::::
correction

::
of
:::::::

climate
::::::::
quantiles

:
–
::::::
whilst,

::::::
again,

:::
not

::::::::
perfectly

:::::::::
eliminating

::::::
biases200

::
in

:::::::::
present-day

::::::::::
simulations

::
–

::::::::
ultimately

:::::::::
represents

:
a
:::::
better

:::::::
strategy

:::
for

::::::::::
minimising

:::
past

::::
bias

::::
than

:::
the

::::
rigid

:::::
local

::::::::
correction

::
of

:::
the

:::::
Delta

:::::::
Method.

:
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2.3
::::::
Method

::::::::::
evaluation

::
In

:::::::::
ecological

::::::::::
applications,

::::
the

::::::::
objective

::
of

::::::::
applying

:
a
:::::::::::::
bias-correction

:::::::
method

::
to

::::
past

::::::::
simulated

:::::::
climate

::::
data

:
is
:::::::::

generally
::
to

::::::
reduce

:::
the

:::::::::
difference

:::::::
between

::::
the

::::::::
simulated

::::
and

:::
the

:::::::::
(generally

:::::::::
unknown)

::::
true

::::
past

:::::::
climate.205

::::::::
Empirical

::::::::::::
palaeoclimatic

:::::::::::::
reconstructions

:::::
allow

::
us

::
to

::::::
assess

::::
these

::::::::::
differences

:
at
:::::::

specific
::::::::
locations

:::
and

::::::
points

::
in

::::
time.

:::::
Here,

:::
we

:::::::::
determine

::::
local

::::::::::
differences

:::::::
between

::::::::
empirical

:::::::::::::
reconstructions

::::
and

::::::::::::
bias-corrected

::::::::::
simulations

::
for

:::::
each

::::::
climate

:::::::
variable

:::
and

:::::::::::::
bias-correction

:::::::
method,

::::
and

:::::
define

:
a
::::::::

spatially
:::::::::
aggregated

::::::::
measures

::
to

::::::
assess

:::
the

:::::
overall

::::::
global

:::::::::::
performance

::
of

::::
each

:::::::
method.

:::
We

::::::
denote

::
by

:::::::::
Vemp(x,t) :::

the
:::::::::
empirically

::::::::::::
reconstructed

::::
value

:
at time t

::
in

:
a
:::::::
location

::
x
::
of

:::
the

:::::::
climate

:::::::
variable210

::::::::::::::::::::::::::::::::::::
V ∈ {T ter.mean,T Tmar.mean,T cold,Twarm,P ann},

::::::::::
representing

::::::::
terrestrial

::
or

::::::
marine

:::::
mean

::::::
annual

::::::::::
temperature,

::::::::::
temperature

::
of

:::
the

::::::
coldest

::
or

:::::::
warmest

::::::
month,

::
or
::::::
annual

:::::::::::
precipitation, respectively.

2.4 Method evaluation

We assessed the local error between empirical and debiased simulated data at a given
:::
For

:::::::::::::::::::::::
M ∈ {raw,DM,GAM,QM},

::
we

::::::
denote

::
by

::::::::
V M

sim(x,t):::
the

::::::::
simulated

:::::
value

::
of

:::
the

::::::
climate

:::::::
variable

::
V

::
at

::::
time

:
t
::
in

:::::::
location

::
x,

:::::
where

:::
the

:::::::::
underlying215

::::::::
simulation

::::
data

::::
was

:::
not

::::::::
debiased

::
or

:::
was

::::::::::::
bias-corrected

:::::
using

:::
the

:::::
Delta

:::::::
Method,

:::
the

::::::
GAM

::::::
method

::
or

::::::::
Quantile

::::::::
Mapping,

::::::::::
respectively.

::::
The

::::
local

::::
bias

::::::::
between

:::
the

:::::::::
empirically

::::::::::::
reconstructed

:::
and

:::
the

:::::::::
simulation

::::
data

::
at
:
time t

and location as
::
in

:::
the

:::::::
location

::
x

:
is
::::
then

:::::
given

:::
by

measureforevaluatingandcomparingtheperformanceofthethreebiascorrectionmethodsconsideredis,weuse
::::::

themedianoftheabsolutedifferencesbetweenempiricalanddebiasedsimulateddataacrossallpointsforwhichempiricalrecordsareavailableavailablelocalabsolutebiases

{|BM
V (x

(t,V )
i , t)|}i=1,2,... .Themedianisweightedbygridcellareaforthepresent,andbytheavailablelocal

::::
inversestandarderrorsoftheempiricaldata

:::::::::::::::::
forthepast.Foragivenvariableandpointintimeofinterest,denotebyE1, . . . ,En220

the local errors (Eq. )fromalllocationsforwhichempiricaldataisavailable.Thenthemedianabsoluteerrorisgivenbyto

and where the weights wi are given by
:::
We

::::::
denote the inverse standard error associated with the appropriate

empirical reconstructions, rescaled such that
∑n

i=1wi = 1
::::
latter

::
by

:::::::::::::::::::::
{ωemp(x

(t,V )
i , t)}i=1,2,...,:::::::

rescaled
::::
such

::::
that

:::::::::::::::::::

∑
iωemp(x

(t,V )
i , t) = 1.

:::
The

:::::::
median

:::::::
absolute

:::
bias

:::
for

:::::::
variable

::
V

:::
and

:::::::::::::
bias-correction

::::::
method

:::
M

::
at

::::
time

:
t
::
is

::::
then

:::::::
formally

:::::
given

::
by

:
225

MABM
V (t) = weighted median

(
{|BM

V (x
(t,V )
i , t)|}i=1,2,...

)
= |BM

V (x
(t,V )
k , t)|, where the median index k satisfies

∑
|BM

V (x
(t,V )
i ,t)|<...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
and

∑
|BM

V (x
(t,V )
i ,t)|>...

|BM
V (x

(t,V )
k ,t)|

ωemp(x
(t,V )
i , t)≤ 1

2
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)
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:::::
Thus,

::
the

:::::::
median

:::::::
absolute

::::
bias

::
is

:
a
:::::::
measure

::
of

:::
the

:::::::
average

::::::::
difference

::::::::
between

::::::::
empirical

:::
and

:::
the

::::::::::::
bias-corrected

::::::::
simulated

::::
data. We consider a bias correction method to overall improve the raw simulation outputs if the

associated median absolute error
:::
bias

:
is smaller than the median absolute difference between raw simulations

and empirical data, which is calculated analogously.
:::
We

:::::::::
emphasise

::::
that

:::
the

::::
MAB

:
is
::
a
::::::::
summary

:::::::
statistic

::
of

:::
the230

:::::
extent

::
to

:::::
which

::
a

::::
given

:::::::::::::
bias-correction

::::::
method

:::::::
reduces

:::
the

::::::::
difference

:::::::
between

:::::::::
simulated

:::
and

::::::::
empirical

:::::::
climatic

::::
data,

:::
i.e.

:
it
::::
does

:::
not

:::::
allow

::::::::
inference

::
of

:::
the

::::::::
goodness

::
of

:::
the

:::::::
climate

::::::
model,

::
or

::
of

:::
the

::::::::::
performance

:::
of

::
the

::::::::
different

:::::::
methods

::
in

:::::::::
improving

:::::::
climatic

::::::
signals

:::
that

:::
are

:::
not

::::::::
captured

::
by

:::
the

::::::::
empirical

::::
data

::::
used

::::
here.

:

:::
We

:::::
tested

:::::::
whether

:::
the

:::::::
median

:::::::
absolute

::::::
biases

:::::::::
associated

::::
with

::::
any

:::
two

:::::::::::::
bias-correction

::::::::
methods,

::
a

::::::
certain

::::::
climate

:::::::
variable

::::
and

:::::
point

::
in

:::::
time,

:::::
were

::::::::::
statistically

::::::::::
significantly

:::::::::
different,

:::::
under

:::
the

::::::
given

:::::::::
uncertainty

:::
in235

::
the

:::::::::
empirical

:::::::::::::
reconstructions,

:::::
using

:::
the

:::::::::
following

::::::::
approach.

::::
For

::::
each

::::::
climate

:::::::
variable

::::
and

:::::
point

::
in

:::::
time,

:::
we

::::::::
generated

:::
104

::::::
Monte

:::::
Carlo

:::::::::
realisations

:::
of

::::::::
empirical

:::
past

:::::::
climatic

::::::
values

::
in

:::
the

::::::::
locations

:::::
where

:::::::::::::
reconstructions

::
are

::::::::
available

:::
by

::::::::
applying

:
a
:::::::::::::::::
normally-distributed

:::::
noise

:::::
term,

::::
with

:::::
mean

::::
zero

::::
and

:::::::
standard

:::::::::
deviation

:::::
equal

::
to

::
the

:::::
error

::
of

:::
the

:::::
local

::::::::
empirical

::::::::::::
reconstruction,

::
to

:::
the

:::::
value

::::::::
provided

::
by

:::
the

::::::::
empirical

:::::::::::::
reconstruction.

:::::
Next,

:::
we

::::::::
calculated

:::
the

::::
local

::::::::
absolute

:::::
biases

:::::::
between

:::::
these

::::::::
empirical

::::
past

::::::
climatic

:::::::
values,

:::
and

:::
the

:::::::::
appropriate

:::::::::
simulated240

:::::
values

::::::::
obtained

::::
after

::::::::
applying

:::
the

::::::::
different

::::::::::::
bias-correction

::::::::
methods.

::::
For

::::
each

:::
of

:::::
these

:::
104

::::
sets

::
of

::::::::
absolute

:::::
biases

:::::::
between

::::::::
empirical

::::
and

::::::::
simulated

:::::
data,

:::
we

::::
used

::
a

::::::::
one-sided

::::::::
Wilcoxon

:::::
rank

::::
sum

:::
test

::
to

::::::
assess

:::::::
whether

::
the

:::::::
median

::
of

:::
the

:::::::
absolute

:::::
biases

:::::::::
associated

::::
with

:::
one

:::::::::::::
bias-correction

::::::
method

::::
was

::::::::::
significantly

::::::
smaller

::::
than

::::
that

::::::::
associated

::::
with

::
a

:::::::
different

::::::::::::
bias-correction

:::::::
method

:::
(at

:
a
:::
5%

::::::::::
significance

::::::
level).

:::
We

::::
then

:::::::::
determined

:::
the

:::::::
number

::
of

::::::::
iterations,

:::
out

:::
of

:::
the

::::
total

:::
104

::::::
Monte

:::::
Carlo

:::::::::::
realisations,

::
in

:::::
which

::::
this

::::
was

:::
the

::::
case.

:::
If,

:::
for

:
a
:::::
given

:::::::
climate245

::::::
variable

::::
and

::::
point

:::
in

::::
time,

::
a

::::::::::::
bias-correction

:::::::
method

:::
was

:::::
found

::
to
:::::::
perform

:::::::::::
significantly

:::::
better

::::
than

::::::
another

::::
one

::
in

::::
more

::::
than

::::
half

::
of

:::
the

::::::::::
realisations,

:::
we

:::::
report

:::
this

:::::
result

::
in
:::::::
section

::
??.

Debiased simulated data should ideally not contain any systematic bias,
:
in that the absolute median error,

AME = |weighted median(E)|

= |Ek|, where k satisfies
∑

Ei<Ek

wi ≤
1

2
and

∑
Ei>Ek

wi ≤
1

2
,

::::::
median

::::
bias,

:
250

MBM
V (t) = weighted median

(
{BM

V (x
(t,V )
i , t)}i=1,2,...

)
:::::::::::::::::::::::::::::::::::::::::::

(7)
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::::::
(where

::
the

::::::::
weighted

:::::::
median

:
is
::::::::
calculate

::::::::::
analogously

::
as

::
in
::::
Eq. (??)

:
)
:
should not differ significantly

::::::::::
substantially

from zero. In addition to considering the median absolute error
::::
bias,

::::
here, we also examine how different meth-

ods affect the associated median error
:::
bias.

3 Results255

Overall, the delta method provided the strongest reduction in
::
In

::::
some

:::::::::::
applications,

:::
the

:::::::
climate

::::::
change

::::::
signal,

::
i.e.

:::
the

:::::::::
difference

:::::::
between

:::
past

::::
and

::::::
present

:::::::
climatic

:::::
states,

::::
may

::
be

:::::
more

:::::::
relevant

::::
than

::
the

:::::::
climate

::
at

:
a
::::
fixed

:::::
point

::
in

::::
time.

::::
The

::::::::
difference

::::::::
between

:::
the

::::::::
empirical

:::
and

:::
the

:::::::::
simulated

::::::
climate

::::::
change

::::::
signal

::
of

:
a
:::::::
climate

:::::::
variable

::
V

:::::::::::
bias-corrected

:::::
using

:::::::
method

::
M

::
at
::
a

:::::::
location

:
x
::::
and

:::::::
between

:::
the

::::::
present

:::
and

::::
time

::
t
::
in

:::
the

:::
past

::
is
:::::
given

:::
by

CCBM
V (x

(t,V )
i , t) =



(
V M

sim(x,t)−V M
sim(x,0)

)
−
(
Vemp(x,t)−Vemp(x,0)

)
if V ∈ {T ter.mean,T Tmar.mean,T cold,Twarm}

V M
sim(x,t)−V M

sim(x,0)

V M
sim(x,0)

−
V M

emp(x,t)−Vemp(x,0)

Vemp(x,0)

if V = P ann,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8)260

:::
and

:::
the

:
median absolute bias (MAE, Eq. ) for all variables and past time points

::::::::
associated

::::
with

:::
the

:::::::
climate

::::::
change

:::::
signal

::
is

:::::
given

::
by

:

CCMABM
V (t) = weighted median

(
{|CCBM

V (x
t,V )
i , t)|}i=1,2,...

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::
(9)

:::::
where

:::
the

::::::::
weighted

::::::
median

::
is

::::::::
calculated

:::::::::::
analogously

::
as

::
in

:::
Eq. (??).

:::::
Here,

:::
we

::::
also

:::::::
compare

:::
the

:::::::::::
performance

::
of

::
the

::::::::
different

::::
bias

::::::::
correction

::::::::
methods

:::
for

:::
this

::::::::
quantity.

:::
We

:::
did

:::
not

:::::::::
determine

:::
the

:::::::
median

:::::::
absolute

::::
bias

:::
for

:::
the265

::::::
climate

::::::
change

:::::
signal

::::::::
between

:::::
points

::
in

:::
the

::::
past,

::::
due

::
to

:::
the

:::::
much

::::::
smaller

:::::::
number

::
of

::::::::
empirical

:::::::::::::
reconstructions

:::
that

:::
are

::::::::
available

::::
from

:::
the

::::
same

:::::::
location

::::::
across

::::
time,

::::
and

:::
due

::
to

:::
the

::::::::
increased

:::::::::
uncertainty

::
of
:::
the

:::::
local

::::::::
empirical

::::::
climate

::::::
change

:::::::
signals,

::::::
which

:::
are

:::::
given

:::
by

:::
the

::::
sum

:::
of

:::
the

:::::::::::
uncertainties

::
of

:::
the

:::::
local

:::::::::::::
reconstructions

:::
of

:::
the

::::::
relevant

::::::
points

::
in

::::
time.

:
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3
::::::
Results270

:::
Fig.

::::::
??a–e

:::::::
compare

::::::::::
empirically

::::::::::::
reconstructed

:::
and

::::::::::::
bias-corrected

:::::::::
simulated

::::::
climate

::::
data

:::
for

::::
the

:::
five

:::::::
climate

:::::::
variables

::::::::::
considered.

::::
They

:::::
show

::::
that

:::::
biases

:::::::::
remaining

::::
after

::::::::
applying

:::
the

:::::::
different

::::::::::::
bias-correction

::::::::
methods

:::
are

:::
not

::::::::
uniformly

:::::::::
distributed

::::::
across

:::
the

:::::
range

::
of

::::::::
simulated

::::::
values.

:::
In

:
a
:::::::
number

::
of

:::::
cases,

::::
very

::::
low

:::::::::::
temperatures

::
in

::::::
several

:::::::::::
bias-corrected

::::::::::
simulations

::::
tend

::
to
:::

be
:::::
lower

::::
than

:::::::::::
reconstructed

::::::
values,

::::::
while

::::
very

::::
high

:::::::::::
temperatures

::
in

::
the

:::::::::
simulated

::::
data

::::
tend

::
to

::
be

::::::
higher

::::
than

::::
what

:::::::::
empirical

::::::::::::
reconstructions

:::::::
suggest

::::
(e.g.

::::::::::::
Mid-Holocene

::::
and

::::
Last275

:::::::::
Interglacial

:::::
mean

::::::
annual

::::::
marine

::::::::::
temperature,

:::
and

:::::::::::::
Mid-Holocene

:::
and

:::::
LGM

::::::::::
temperature

::
of

:::
the

:::::::
warmest

:::::::
month).

:::
For

::::
some

:::::::::::::
bias-correction

::::::::
methods,

::
an

:::::::::
analogous

:::::::
patterns

:::
can

::
be

::::::::
observed

::
in

:::
the

::::
case

::
of

:::::::::::
precipitation.

:

:::
All

::::::::::::
bias-correction

::::::::
methods

::::::
reduce

:::
the

:::::::
median

:::::::
absolute

::::
bias

:
(
::::
MAB

::
in

:::
Eq.

:
(??)

:
)
::
of

::::::::::
present-day

:::::::::
simulated

:::
data

:::
for

:::
all

:::::::
climate

:::::::
variables

::
–
::
as

::::::
would

:::
be

:::::::
expected

::::
(?)

:
–

::::::::
although,

:::
by

:::::::::::
construction,

::::
only

:::
the

:::::
Delta

:::::::
Method

:::::::::
completely

:::::::::
eliminates

::
all

::::::::::
differences

:::::::
between

:::::::::
simulated

:::
and

::::::::
observed

::::
data

:
(Fig. ??),

:::
??).

::::
The

:::::
Delta

:::::::
Method280

:::
also

::::::::
provides

:::
the

:::::::
strongest

:::::::::
reduction

::
in

::::::
median

:::::::
absolute

::::
bias

:
(
:::::
MAB

::
in

:::
Eq.

:
(??)

:
)
::
for

:::
all

::::::::
variables

:::
and

::::::
points

::
in

::::
time with the expection of

::::::::::
temperature

::
of

:::
the

::::::
coldest

::::::
month

::
at

::
the

:::::::::::::
Mid-Holocene,

:::
and

:
precipitation at the LGM

, where quantile mapping performs better. The relatively
:::
(Fig.

::::
??).

::::
The

::::::::::::
comparatively good performance of the

delta method
::::
Delta

:::::::
Method is also reflected in the correlations between present-day and past model bias

::::::
biases,

:::::
which

:::
the

:::::
Delta

:::::::
Method

::::::::
assumes

::
to

:::
be

::::::
similar

:
(Fig. ??). Quantile mapping significantly increased original285

biases in continental mean annual temperature throughout the time periods considered, as well as in present-day

and mid-Holocene precipitation. GAMs generally led
::::
The

:::::
GAM

::::::
method

::::
and

:::::::
Quantile

::::::::
Mapping

::::::::
generally

::::
lead

to a reduction in bias, even though
:::::
overall

:
not as effectively as the delta method ; however, for LGM continental

::::
Delta

::::::::
Method.

::
In

::
a

:::
few

:::::
cases,

::::
the

::::::
original

::::
bias

::
is
:::::::
actually

::::::::
increased

:::::
after

:::::::
applying

::
a
:::::::::
correction

::::::
method

:::::
(Fig.

:::
??).

:
290

:::::
These

:::::
trends

:::
in

:::
the

:::::::::::
performances

::
of
::::

the
:::::::
different

:::::::::::::
bias-correction

:::::::
methods

::
in
:::::

terms
:::

of
:::
the

::::::
median

::::::::
absolute

:::
bias

:::
are

::::
not

::::::
always

::::::::::
statistically

:::::::::
significant.

::::
The

:::::::
median

:::::::
absolute

::::
bias

:::::::::
associated

::::
with

:::
the

:::::
Delta

:::::::
Method

::::
was

::::::::::
significantly

::::::
smaller

::
(p

::
<

::::
0.05)

::::
than

:::
that

:::::::::
associated

::::
with

:::::::
Quantile

::::::::
Mapping

:::
and

:::
the

:::::
GAM

::::::
method

:::
for

::::::::::::
Mid-Holocene

::::::::
terrestrial

:::::
mean

::::::
annual

:::::::::::
temperature

:::
(in

::::
96%

::::
and

::::
83%

:::
of

::::::
Monte

:::::
Carlo

::::::::::
realisations

::::
(see

:::::::
section

::::
??)

:::::
when

::::::::
compared

::::::
against

::::::::
Quantile

::::::::
Mapping

::::
and

:::
the

:::::
GAM

:::::::
method,

::::::::::::
respectively),

::::::
marine

:::::
mean

::::::
annual

:::::::::::
temperature295

::
(in

:::::
93%

:::
and

:::::
89%

::
of

::::::::::
realisations,

::::::::::::
respectively),

::::::::
terrestrial

:::::
mean

:::::::::::
temperature

::
of

:::
the

::::::::
warmest

:::::
month

:::
(in

:::::
92%

:::
and

:::::
100%

:::
of

::::::::::
realisations,

::::::::::::
respectively),

:::
and

:::::::::::
precipitation

:::
(in

:::::
100%

::::
and

::::::
100%

::
of

::::::::::
realisations,

::::::::::::
respectively).
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(a)
:::::::
Terrestrial

::::
mean

::::::
annual

:::::::::
temperature

(b)
:::::
Marine

::::
mean

::::::
annual

:::::::::
temperature

13



(c)
::::
Mean

:::::::::
temperature

::
of

:::
the

::::::
warmest

:::::
month

(d)
:::::
Mean

:::::::::
temperature

::
of

::
the

::::::
coldest

:::::
month

14



(e)
:::::
Annual

::::::::::
precipitation

Figure 1.
::::::::
Comparison

:::
of

::::::::::
bias-corrected

::::::::
simulated

:::
and

:::::::::
empirically

::::::::::
reconstructed

::::::
climate

::::::::
variables.

::::
Black

:::::
lines

::::
show

:::
1:1

::::::::::
relationships.

:::
Red

::::
lines

:::
and

:::::
shades

::::
show

:::
5th

:::::
degree

:::::::::
polynomial

::::::::
regression

:::
and

::::
95%

::::::::
confidence

:::::::
intervals,

:::::::::
respectively.

:::
The

:::::
Delta

:::::::
Method

::::
also

::::::::::
performed

::::::::::
significantly

::::::
better

::::
than

:::
the

::::::
GAM

:::::::
method

:::
for

::::::::::::
Mid-Holocene

:::::::::
terrestrial

::::
mean

:::::::::::
temperature

::
of

:::
the

::::::
coldest

::::::
month

:::::
(86%

::
of

:::::::::::
realisations),

::::
and

::::::::::
significantly

:::::
better

:::::
than

:::::::
Quantile

::::::::
mapping

::
for

:::::
LGM

:::::::
marine mean annual temperature , the bias was actually increased

::::
(65%

:::
of

:::::::::::
realisations).

:::
The

::::::
GAM300

::::::
method

:::::::::
performed

::::::::::
significantly

:::::
better

::::
than

:::::::
Quantile

::::::::
mapping

:::
for

:::::
LGM

::::::::::
precipitation

::::::
(100%

::
of

:::::::::::
realisations).

:::
By

::::::::::
construction,

:::
the

:::::
Delta

:::::::
Method

::::
has

:
a
:::::::::::
significantly

:::::
lower

::::::
median

::::::::
absolute

::::
bias

:::::::
(namely

:::::
zero)

::::
than

::::
both

:::::
other

:::::::
methods

:::
for

::
all

::::::::
variables

::
at

::::::
present

:::
day.

On average, raw simulations underestimated
:::::::
terrestrial

::::
and

::::::
marine

:
mean annual temperature and

::::::::
terrestrial

::::::::::
temperature

::
of

:::
the

::::::::
warmest

::::::
month,

::::
and overestimated annual precipitation across time periods (Fig. ??

::
??).305

These trends were not completely removed by any bias correction method, although both the delta method and

GAMs
:::
are

::
as

:::::::
present

::
in

:::
the

::::::::::::
bias-corrected

:::::
data.

::::::
Indeed,

::::::::
methods

:
consistently reduced the original absolute

median error. GAMs, in particular, minimised the absolute median errors for past
::::::
absolute

:::::
value

::
of

:::
the

:::::::
median

:::
bias

:
(
:::
MB

:
in

::::
Eq. (??)

:
)
::
of

:::
the

::::
raw

::::::::::
simulations,

::::::
except

::
in

:::
the

:::
case

:::
of

::::::::
terrestrial

::::::::::
temperature

::
of

:::
the

::::::
coldest

::::::
month.

:

:::
The

::::::::::
differences

::
in

::::
how

:::
raw

::::
and

:::::::::::
bias-corrected

::::::::::
simulation

::::::
outputs

:::::::
improve

:::
the

::::::::::::
representation

::
of

:::
the

:::::::
climate310

::::::
change

:::::
signal

:
(
:::::::
CCMAB

:
in

:::
Eq.

:
(??)

:
)
:::
are

::::::::
negligible

:::
in

::
all

::::::::
scenarios

::::::
except

:::
for

::::::
marine mean annual temperature

15



Figure 2. Median absolute errors
::::
biases

:
(MAE

::::
MAB, Eq. (??)) of the simulated

:::
raw and bias-corrected climate

::::::::
simulation

data. Error bars represent 25% and 75%
:::::::
weighted quantiles . Figs. A1 – A5 show the complete scatter plots of empirical

against raw
::
the

::::
local

::::::
absolute

:::::
biases

:::::::
available

:::
for

::
the

:::::
given

::::::
climatic

::::::
variable and debiased simulated data

:::
point

::
in
::::
time.

and mid-Holocene and LGM precipitation
:::::
during

:::
the

::::
Last

::::::
Glacial

:::::::::
Maximum,

::::::
where

:::
the

:::::
GAM

::::::
method

::::::::
performs

::::::
slightly

:::::
better

::::
than

:::::
other

:::::::
methods (Fig. ??

::
??).

The performance of the different methods is not uniform across space nor time. Fig. ??
::
?? illustrates this

heterogeneity for the delta method
::::
Delta

:::::::
Method. For example, the delta method

::::
Delta

:::::::
Method significantly re-315

duced the original bias of modelled precipitation in Eastern North America in the mid-Holocene
:::::::::::
Mid-Holocene,

but hardly improved the raw simulations in the Sahara, whereas the opposite pattern can be observed at the

LGM.

The performances of the methods relative to each other also varied significantly across both space and time.

While the delta method
:::
For

::::::::
example,

::::
while

:::
the

:::::
Delta

:::::::
Method has a slight overall edge over the GAM approach,320

the comparison of the two methods in Fig. ?? shows that even within small geographical regions neither method

performs consistently better than the other. Moreover, a better performance of one method in a specific location

at a certain point in time generally does not guarantee the same result at a different time. For example, the delta

16



Figure 3. Reduction of the original model bias by the delta method
::::
Delta

::::::
Method for continental

:::::::
terrestrial

:
and marine mean

annual temperature and continental
:::::::
terrestrial annual precipitation. The lower end of the colour scale was capped at -100%

(i.e. a doubling of the original error
:::
bias).

method
:::::::
instance,

:::
the

::::
Delta

:::::::
Method

:
overall reduced the original error

:::
bias

:
of modelled precipitation more than

the GAM approach in Eastern North America during the Mid-Holocene, but less during the LGM.325

4 Discussion

Whilstthe delta method
:
,
:::::::
overall,

:::
the

:::::
Delta

::::::
Method

:
performs slightly better at debiasing temperature and pre-

cipitation compared to GAMs
:::
and

:::::::
Quantile

::::::::
mapping for the empirical data considered here, we note that this

17



Figure 4. Relative performances of the delta method
::::
Delta

::::::
Method and a

::
the

:
GAM approach in terms of debiasing simulated

mean annual temperature (left column) and annual precipitation (right column). The colour spectrum represents the interval

[0,1], and marker colours are calculated as the ratio of the absolute
::::
value

::
of

::
the

:
local error

::
bias

:
(Eq. (??)) of the GAM-based

approach divided by the sum of the absolute local errors
::::
biases

:
of both methods.

method is only appropriate for a given land conformation. Thus, it is only appropriate for the Late Quaternary,

and even for this period, changes in sea levels are problematic as they expose areas for which we have no330

bias information as well as changing the areas affected by maritime climate. GAMs should, in theory, obviate

these problems by quantifying local processes as statistical relationships with appropriate proxies. Whilst this

approach might be the only option for the deeper past, our results point to the fact that reconstructing such local

processes in such a way is challenging, as demonstrated by its inferior performance to the delta method
:::::
Delta

18



::::::
Method. A possible limitation of GAMs as currently applied to bias correction and downscaling is that they335

assume additivity, thus estimating the effect of given proxies for the prevaling climate state observed at present

day. By fitting interactions, it would be possible to allow for these effects to differ depending on the local

climatic conditions, but the computational complexitiy of interactions with such large datasets is non-trivial.

A major limitation of current approaches to debias climate model data is that they all assume biases in present-

day climate to be fully representative of the past. With the progressive increase in the number of empirical340

reconstructions of past climatic conditions, it might be possible to soon move from a situation where past data

are use to verify correction schemes (as we did in this manuscript) to using those data to actively calibrate the

bias correction function. Fig. ?? suggests an intriguing relationship between the temporal variation of the local

model bias and the simulated climate change signal of the variable of interest. Such a statistical relationship

could, in principle, be used to refine the delta method
::::
Delta

:::::::
Method by accounting for the change in local model345

bias with time. However, uncertainties are large, patterns do not seem fully consistent across time, and available

data points do not represent the world uniformly. A robust statistical model will require not only additional data

from currently underrepresented geographical areas (specifically the southern hemisphere), but also curating

empirical reconstructions, as successfully done for the last millenium (??).

5 Conclusions350

Our comparison of global debiased paleosimulation
:::::::::::::
palaeosimulation

:
data and empirical reconstructions sug-

gests that, overall, the delta method
:::::
Delta

::::::
Method

:
provides slightly better performance at debiasing compared

to GAMs , whilst quantile mapping is a poor choice for removing bias
:::
and

:::::::
Quantile

::::::::
Mapping

::
–
::::::
though

::::
not

::
in

::
all

:::::
cases

::
to

::
at
::

a
::::::::::
statistically

::::::::::
significanty

:::::
extent. Given our results, we suggest that the delta method

:::::
Delta

::::::
Method

:
is good starting point for bias removal of simulated Late Quaternary climate data , bearing in mind355

that its effectiveness varies regionally.
::
at

:
a
::::::

global
::::::

scale.
::::::::
However,

:::::
given

:::
the

:::::::::::
considerable

:::::::::
variability

:::
in

:::
the

::::::::::
effectiveness

::
of
:::

the
::::::::
different

:::::::
methods

::
in

::::::::
different

::::::::
locations,

:::
we

::::
echo

::::::
earlier

::::::::::
propositions

::::
that

::::::
studies

::::::::
focussing

::
on

:::::::
specific

:::::::
regions

::::::
require

:::::::::::
case-by-case

:::::::::::
assessments

::
of

::::::
which

:::::::::::::
bias-correction

:::::::
method

::
is

:::::
most

:::::::
suitable

:::
for

::::::::
improving

::::::::::::
palaeoclimate

:::::
model

:::::::
outputs

:::
(?).

:
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Figure 5. Differences between local past and present model bias (at locations for which reconstructions are available)

against the local simulated climate change signal (i.e. the difference between past and present simulated value) of the

variable of interest. Red, blue and green markers represent data from the mid-Holocene
:::::::::::
Mid-Holocene, the LGM and the

Last Interglacial
:::::
Period, respectively. Error bars represent standard errors of the empirical reconstructions. Lines

:::
and

:::::
shades

show robust linear regressions
:::
and

:::
95%

:::::::::
confidence

:::::::
intervals,

:::::::::
respectively.

:::::
Whilst

:::::
weak,

::
the

::::::::::
relationships

::::::
suggest

:::
that

:
it
::::
may

::
be

::::::
possible

::
to

:::::
model

::::
some

::
of

:::
the

::::::::
variability

::
of

::::
local

:::::
model

:::::
biases

:::
over

::::
time,

:::::
using

::::
only

::::::
available

:::::::::
simulation

:::
data.

:::::
Such

::
an

:::::::
approach

::::
could

::::::::
potentially

::::::::::
significantly

::::::
enhance

::
the

:::::
Delta

::::::
Method,

:::::
which

:::::::
currently

:::::::
operates

::
on

::
the

:::::::::
simplifying

:::::::::
assumption

:::
that

:::
this

::::::::
variability

:
is
::::::::
negligible.

Whilst the datasets used in this paper are a step in the right direction, they are still too sparse and diverse360

for the purpose of actively parameterising debiasing functions. We believe that such
::::
Such

:
a resource would

:::::::
arguably allow bias removal methods to greatly improve in their effectivness.
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Code and data availability. Code and datasets used in this analysis will be made publicly available on the Open Science

Framework repository upon acceptance of the manuscript.

Empirical reconstructions of continental mean annual temperature against raw and debiased simulation data.365

Lines show 1:1 relationships.

Empirical reconstructions of marine mean annual temperature against raw and debiased simulation data.

Lines show 1:1 relationships.

Empirical reconstructions of continental temperature of the warmest month against raw and debiased simulation

data. Lines show 1:1 relationships.370

Empirical reconstructions of continental temperature of the coldest month against raw and debiased simulation

data. Lines show 1:1 relationships.

Empirical reconstructions of continental annual precipitation against raw and debiased simulation data. Lines

show 1:1 relationships.

Comparison of present-day and past model biases in locations where reconstructions are available. Lines375

show 1:1 relationships.

Median errors of the simulated and bias-corrected climate data. Error bars represent 25% and 75% quantiles.
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Figure A1.
:::::::::
Comparison

::
of

:::::::::
present-day

:::
and

:::
past

:::::
model

:::::
biases

:::::
(which

:::
the

::::
Delta

::::::
Method

::::::
assumes

::
to

::
be

::::::
similar)

::::
from

:::::::
locations

::::
where

::::::::::::
reconstructions

::
are

::::::::
available.

::::
Lines

:::::::
represent

:::
1:1

::::::::::
relationships.
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Figure A2.
::::::
Median

:::::
biases

::
of

::
the

:::
raw

:::
and

:::::::::::
bias-corrected

:::::
climate

::::::::
simulation

::::
data.

::::
Error

::::
bars

:::::::
represent

:::
25%

:::
and

::::
75%

:::::::
weighted

::::::
quantiles

::
of
:::
the

::::
local

:::::
biases

:::::::
available

::
for

:::
the

::::
given

:::::::
climatic

::::::
variable

:::
and

::::
point

::
in

::::
time.

Figure A3.
:::::
Median

:::::::
absolute

:::::
biases

::
of

:::
the

::::::
climate

:::::
change

:::::
signal

:
(
:::::::
CCMAB,

:::
Eq.

:
(??)

:
).

::::
Error

::::
bars

:::::::
represent

::::
25%

:::
and

::::
75%

:::::::
weighted

:::::::
quantiles

:
of
:::

the
::::
local

:::::::
absolute

:::::
climate

::::::
change

:::::
biases

:::::::
available

::
for

:::
the

::::
given

::::::
climatic

:::::::
variable

:::
and

::::
point

::
in

::::
time.
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