1 Derivation of wavelet transformation normalisation factor
Consider a finite time series, expressed continuously as a function of time:
z==z(t) | tel0,T] (1)

We define a Morlet wavelet as

b(at) = bexp <_MOZ> exp <—2f2> . (2)

The choice of the normalisation parameter b depends on the application. Typically we
want to normalise the individual wavelet and choose b = 779256705 In this case we get
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If we define o = a/+/2 we can use the normalisation of the Gaussian curve:
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and obtain
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Let’s Fourier transform the wavelet. To do so, we Fourier-transform parts of the
formula first:

t2 dw _; w242
exp <_%¢2) = / %e_“"ta\/ 2re” 2 (8)
w=—00
oo
exp (—i@t) = / d—we_i‘“t%ré(w - @) , (9)
a 27 a
w=—00



Since ¢(a,t) is a product, we can write ¢(a,w) as a convolution:
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So we obtain the Fourier transform as
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In practice, we want to calculate a convolution of the wavelet and the time series:
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W(at) — / dra(r)dla,t — 7). (15)
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Since this is a convolution, we can write it as a product in Fourier space:
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W(a,t) = / Z—we_mi(w)gg(a, w) . (16)
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In practice, we do the wavelet transform in the following way: We start from a time
series x1,...,xy which is the function z(¢) sampled with an equidistant time step At.
It is padded with zeros (between N/v/2 and N+/2 such that the resulting length is a
power of 2). Then &y is the fast Fourier transform of this padded time series.

Next we define a set of temporal scales a. For each of these a, we calculate the product
in Fourier space as
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Back-transformation then gives the wavelet amplitude W (a,t).

Let’s take a look at the units which we get. Assume for simplicity that x has the unit
m. Time is measured in seconds, so a has the unit s and w has the unit s~!. The relative
scale wy is dimensionless.

Equation (3) states that ¢(a,t) has the unit s7°°. So from equation (15) we can derive
a unit for W(a,t) which is m s%5 (note that dt has a unit of s). This is very impractical
since this unit has no direct physical meaning.

Let’s consider alternative normalisations. For example, let z(¢) be a harmonic oscil-
lation with a period matching that of the Wavelet and an amplitude of 1 m:

2(t) = (1m)exp(—i%t>. (18)



We may want the wavelet to have an amplitude of g = 1 m as well. In this case, we

obtain:
xg = |[W(a,t)] = / dr z(7) ¢(a,t — 1)
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However, in reality, we only have the real part of the signal. Since both the real and
the imaginary part will contribute the same to the amplitude, we need to multiply by a
factor of two. Yes, it is a factor of two and not of v/2 because we never square the signal

x(t) so W(a,t) depends linearly on x(t). We end up with
b = a7 05y2.

This means the wavelet is defined as

bla,t) — \/\/fa exp <—iw02> exp (-522) .

If we compare to the previous value of
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we find that we need to correct by a factor of 7792°¢~05,/2 and obtain
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