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Abstract. The Labrador Sea is important for the modern global thermohaline circulation system through the formation of
intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-
water circulation. The rate of LSW formation is controlled by the amount of winter heat loss to the atmosphere, the expanse
of freshwater in the convection region and the inflow of saline waters from the Atlantic. The Labrador Sea, today, receives
freshwater through the East and West Greenland Currents (EGC, WGC) and the Labrador Current (LC). Several studies have
suggested the WGC to be the main supplier of freshwater to the Labrador Sea, but the role of the southward flowing LC in
Labrador Sea convection is still debated. At the same time, many paleoceanographic reconstructions from the Labrador Shelf
focussed on late Deglacial to early Holocene meltwater run-off from the Laurentide Ice Sheet (LIS), whereas little
information exists about LC variability since the final melting of the LIS about 7,000 years ago. In order to enable better
assessment of the role of the LC in deep-water formation and its importance for Holocene climate variability in Atlantic
Canada, this study presents high-resolution middle to late Holocene records of sea surface and bottom water temperatures,
freshening and sea ice cover on the Labrador Shelf during the last 6,000 years. Our records reveal that the LC underwent
three major oceanographic phases from the Mid- to Late Holocene. From 6.2 to 5.6 ka BP, the LC experienced a cold
episode that was followed by warmer conditions between 5.6 and 2.1 ka BP, possibly associated with the late Holocene
Thermal Maximum. Although surface waters on the Labrador Shelf cooled gradually after 3 ka BP in response to the
Neoglaciation, Labrador Shelf subsurface/bottom waters show a shift to warmer temperatures after 2.1 ka BP. Although such
an inverse stratification by cooling of surface and warming of subsurface waters on the Labrador Shelf would suggest a
diminished convection during the last two millennia compared to the mid-Holocene, it remains difficult to assess whether

hydrographic conditions in the LC have had a significant impact on Labrador Sea deep-water formation.
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1 Introduction

Since the early Holocene, the Labrador Sea is an important region of the global thermohaline circulation system through the
formation of intermediate LSW in the central basin (Clarke and Gascard, 1983; Myers, 2005; Rhein et al., 2011; Yashayaev,
2007), which forms the upper part of North Atlantic Deep Water (NADW) and thereby contributes to the strength of the
Atlantic Meridional Overturning Circulation (AMOC). Modern type winter convection in the Labrador Sea (e.g. Hillaire-
Marcel et al., 2001; Hoogakker et al., 2015) was likely established through a combination of diminished meltwater run-off
following the final deglaciation of the LIS at about 7 ka BP (e.g. Jennings et al., 2015; Ullman et al., 2016) and the early
Holocene strengthening of the WGC bringing a larger proportion of warm, more saline Atlantic waters into the Labrador Sea
(e.g. Lloyd et al., 2005, Lochte et al., 2019, Seidenkrantz et al., 2013; Sheldon et al., 2016). In turn, high surface water
buoyancy may have been a limiting factor in LSW formation during the early Holocene (e.g. Hillaire-Marcel et al., 2001;
Hoogakker et al., 2015). Today, the rate of Labrador Sea convection is controlled by two main processes: heat loss to the
atmosphere and the relative supply of buoyant freshwater to the convection region. While changes in the heat loss are
predominantly related to atmospheric forcing, Labrador Sea salinity is controlled mainly by two freshwater supply routes
(Wang et al., 2018): the eastern route via the EGC that mixes with the Irminger Current (IC) south of Greenland to form the
WGC, and the western route via the LC, the extension of the Baffin Current (BC; Fig. 1). While early studies suggested the
LC as the main source of central Labrador Sea freshwater (Lazier, 1973, 1988; Khatiwala et al., 1999), more recent work
advocated the WGC as the main supplier of freshwater (Cuny et al., 2002; Straneo, 2006; Schmidt and Send, 2007).

In order to assess the relative roles of the WGC and LC in regulating the freshwater budget and convection of the Labrador
Sea, paleoceanographic reconstructions of these two main currents are critical. While several studies have provided middle
to late Holocene reconstructions of the northward flowing WGC along the western coast of Greenland (Krawczyk et al.,
2010; Lloyd et al., 2007; Moros et al., 2016; Maller et al., 2006; Seidenkrantz et al., 2007; Sha et al., 2017) or the IC (Moffa-
Sanchez et al., 2014; Moffa-Sanchez and Hall, 2017), there is less evidence for water mass conditions in the southward
flowing LC, as paleoceanographic reconstructions from the Labrador Shelf have mainly focussed on late deglacial to early
Holocene meltwater run-off from the LIS (e.g. Jennings et al., 2015, Hoffman et al., 2012; Lewis et al., 2012; Hillaire-
Marcel et al., 2007) and its impact on LC strength (Rashid et al., 2017). Conversely, most reconstructions of sea surface
temperature and sea ice cover focus on the region around Newfoundland (Keigwin et al., 2005; Solignac et al., 2011; Sicre et
al., 2014, Sheldon et al., 2015, 2016) and Orphan Knoll (Hoogakker et al., 2011; 2015), whereas very little information is
available about middle to late Holocene water mass conditions in the central LC, as high-resolution late Holocene sediment

records from the Labrador Shelf and Slope are sparse.

Here, we provide detailed reconstructions of LC temperature and salinity changes since the middle Holocene, in order to

discuss the current's potential role in central Labrador Sea convection. Paleoceanographic reconstructions are based on a
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high-resolution sediment record from the southern Labrador Shelf, providing information about sea surface and bottom water

temperatures, freshening and sea ice cover of Labrador Shelf waters during the last 6,000 years.

2 Oceanographic Setting

The Labrador Sea is the coldest and freshest basin of the North Atlantic (Yashayaev, 2007) and is one of the major areas of
open ocean convection (Marshall and Schott, 1999). It plays a crucial role in influencing the strength and variability of the
AMOC through the formation of LSW, which builds the upper part of NADW (B6ning et al., 2006; Schmidt and Send, 2007;
Schmitz and McCartney, 1993, Yashayaev, 2007; Yashayaev and Loder, 2009; 2016). Intermediate LSW forms through
convection following an intense cooling of central Labrador Sea surface waters during particularly cold winters in North
America (Clarke and Gascard, 1983). The annual variability of LSW formation was found to correlate with the NAO, the
dominant mode of atmospheric variability in the North Atlantic region (Hurrell, 1995). The mode of the NAO wields a major
influence on temperature and precipitation patterns across the North Atlantic region and is defined by the difference in
atmospheric pressure at sea level between the Icelandic low and the Azores high pressure systems (Hurrell, 1995). Positive
NAO phases (NAO*) are generally associated with strong north-westerly winds over the Labrador Sea. These strong winds
bring Arctic air southward, promoting enhanced winter cooling in the Labrador Sea region and thus stimulating deep
convection (Dickson et al., 1996) and fostering the southward advection of sea ice (Dickson et al., 2000; Deser et al., 2000,
Drinkwater, 1996).

The Labrador Sea receives freshwater through its bordering currents, the WGC and the LC (Wang et al., 2018). As an
extension of the BC, the LC flows south-eastwards along the continental margin of Labrador and Newfoundland and exports
buoyant freshwater from the Arctic Ocean to the subtropical North Atlantic (Fig. 1a). The LC is divided into two branches, a
shallow inner branch that flows over the Labrador Shelf, and an outer branch that is centred along the upper continental
slope (Lazier and Wright, 1993). The inner LC is the immediate continuation of the BC (Cuny et al., 2002), augmented by
Arctic Water outflow from Hudson Bay (Straneo and Saucier, 2008), while the outer LC receives a significant proportion of
Atlantic waters by the westward retroflection of the West Greenland Current (WGC), which itself is formed from the cold
East Greenland Current (EGC), and the warm, saline IC (Cuny et al., 2002). Mixing of the inner and outer LC branches
occurs in the saddles between the prominent banks on the Labrador Shelf (Vilks, 1980; see Fig. 2). Just south of Cartwright
Saddle, in the vicinity of Flemish Cap and Newfoundland, the LC flows into the subpolar North Atlantic (Fig. 1).
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3 Material and Methods
3.1 Material

Gravity core MSM45-31-1 (1150 cm core length) was recovered from the Labrador Shelf at 54°24.74 N, 56°00.53 W, at 566
m water depth (Fig. 1a) during the R/V Maria S. Merian cruise MSM45 in August 2015 (Schneider et al., 2016). The core
site is located next to the Cartwright Saddle, off Hamilton Inlet, in a depression associated with an over 600 m deep basin
that is part of the Labrador Marginal Trough along the inner Labrador Shelf. The sediment column consists of homogenous
olive grey, silty, clayey mud and was subsampled in 5-cm intervals on board the research vessel. A CTD (Conductivity-
Temperature-Depth) deployment at nearby station 30 at 54°28.53N, 56°04.33W provides depth profiles of temperature and
salinity (Fig. 1b) of southern Labrador Shelf waters at the time of collection. A downward increase in temperature and

salinity below 200 m depth shows that the inner LC overlies warmer and more saline waters of the outer LC (Fig. 1b, 2).

3.2 AMS radiocarbon dating

The stratigraphy of MSM45-31-1 is based on 12 Accelerator Mass Spectrometry (AMS) *C measurements on mixed
calcareous benthic foraminifera at the Leibniz Laboratory of Kiel University (CAU), Germany. Each sample contained over
1000 specimens (about 5 mg), which were picked from 1 cm thick sediment slices in 1-m intervals down-core. The “C dates
were calibrated using Calib 7.1 (Stuiver and Reimer, 1993; Stuiver et al., 2017) and the Marinel3 dataset (Reimer et al.,
2013) with a reservoir correction (AR) of 144 + 38 years, based on the present Labrador Shelf marine radiocarbon correction

(McNeely et al., 2006). Dates are reported in calibrated years BP (before present) and are presented in Table 1.

3.3 Alkenone biomarkers

218 bulk sediment samples were analysed in 5-cm intervals at the Biomarker Laboratory, Institute of Geosciences, Kiel
University. Long-chained alkenones (Cs7) were extracted from 2-3g homogenized bulk sediment, using an Accelerated
Solvent Extractor (Dionex ASE-200) with a mixture of 9:1 (v/v) of dichloromethane:methanol (DCM:MeOH) at 100°C and
100 bar N2 (g) pressure for 20 min. Extracts were cooled at -20°C and brought to near dryness by Syncore polyvap at 40°C
and 490 mbar. For the identification and quantification of Cs7:, Cs7:3and Csz.4, we used a multi-dimensional, double column
gas chromatography (MD-GC) set up with two Agilent 6890 gas chromatographs (Etourneau et al., 2010). The addition of an
internal standard prior to extraction (cholestane [C27Has] and hexatriacontane [CasHv4]) allowed quantification of the organic
compounds that are reported in nanograms per gram dry bulk sediment. The proportion of each unsaturated ketone was
obtained by integration of peak areas of the different compounds in the respective chromatograms. Alkenone concentrations

(sum of Csz:2, Caz:3and Csr.4) are used as indication of alkenone productivity.
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3.3.1 Sea Surface Temperature estimates

Sea surface temperature estimates are based on the U%s; index (Brassell et al., 1986) and the UX3; index (Prahl and
Wakeham, 1987). The UXs; index was calculated according to Brassell et al. (1986): Us; = (Ca72 — Ca7:4) / (Caz2+ Caza +
Cs7.4), while the UK3; index was calculated using the calibration of Prahl and Wakeham (1987): UX3; = (Car) / (Csr2 +
Csr:3), both resulting in standard deviations of 0.01. Rosell-Melé (1998) and Bendle and Rosell-Melé (2004) point out that
UK37 based SST estimates down to 6°C are more congruent with modern observations than those based on UX3;, However,
UK3; based SST estimates could be biased with respect to absolute values at Cs74 values above 5% (Rosell-Melé, 1998),

which is the case here, and should therefore be interpreted with caution.

3.3.2 %C37.4— proxy for meltwater or sea ice cover?

Several studies have suggested an increase in the production of tetra-unsaturated Cs; (Csz4) in polar and subpolar surface
waters at lower salinities (Bendle et al., 2005; Blanz et al., 2005; Rosell-Melé, 1998; Rosell-Melé et al., 2002; Sicre et al.,
2002). Thus, the proportion of Cs7.4 relative to the sum of alkenones [%Csza = Csra / (Car2 + Carz + Caza)] in
sedimentological records from the North Atlantic is often used to qualitatively indicate changes in salinity. However, several
studies have observed no, or even an inverse relationship between %Cs7.4 and salinity (Schwab and Sachs, 2011; Sikes and
Sicre, 2002; Filippova et al., 2016; Theroux et al., 2010; Toney et al., 2010). Bendle et al. (2005) found that higher
proportions of Csr.4 are produced in low productivity polar waters, probably because Csz.4 proportions vary in different
alkenone-producing haptophyte species (Conte et al., 1995; Marlowe et al., 1984). A culture experiment by Chivall et al.
(2014) showed that certain, not coccolith-bearing, prymnesiophytes like Chrysotila lamellosa produce between 30 — 44%
Cas7.4 in a positive relationship to salinity. Nonetheless, according to Bendle et al. (2005), highest Cs7.4 concentrations in
surface sediments from the polar Atlantic delineate the mean position of the sea ice margin off Greenland. In addition,
preliminary core-top studies imply that high (>15%) abundances of Cs7.4 are restricted to surface sediments within the limits
of seasonal sea ice extent in Baffin Bay and the Labrador Sea (Thomas Blanz, unpublished data). Although the exact
environmental factors that affect the production of Csz.4 remain ambiguous, we interpret higher proportions of Cszz.4 (>15%)

as an indicator for sea ice margin conditions.

3.4 Mg/Ca measurements

For Mg/Ca measurements, benthic foraminifera species Nonionellina labradorica was used. Due to its infaunal lifestyle, the
bottom water carbonate ion concentration has been shown to have a limited influence and this species has, in the Arctic, been
deemed a suitable recorder of Mg/Ca in shelf regions (Barrientos et al., 2018). 20 — 70 specimens of N. labradorica were
handpicked from the >315 um size fraction, weighed, and crushed between two glass plates. Two thirds of the crushed
sample were transferred into pre-leached Eppendorf vials and cleaned following the full protocol of Martin and Lea (2002),

including a reductive and oxidative cleaning step and a final leaching step with 0.001 N HNO3. After dissolving and diluting
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the samples in 0.1 N HNOs, they were measured with an ICP-OES instrument with radial plasma observation at the Institute
of Geoscience, Kiel University. The analytical error for Mg/Ca analyses was 0.1% relative standard deviation. The JCP-1
standard material (Hathorne et al., 2013) was measured each 6 sample for accuracy and drift correction. Additional
accuracy control was applied by measurements of standard BAM RS3 (Greaves et al., 2008) each 60" sample. Trace
elements (Fe, Al and Mn) were monitored to exclude possible contaminated or coated samples from the dataset. Mg/Ca
values exceeding 2.4 mmol/mol were considered unreliable and are marked as flyers in the dataset (Fig. 4d). Based on seven
duplicate downcore sample measurements, we obtained an analytic precision of 0.2 mmol/mol Mg/Ca, which translates into
2°C in respective temperature estimates. Bottom water temperature (BWT) reconstructions are based on the calibration of
Skirbekk et al. (2016) for the subpolar North Atlantic region. As the calibration is based on a temperature range of 1 — 4°C,
estimates exceeding 4°C may be less accurate, which is the case for about 35% of the samples reported here. As a result, we
refrain from interpreting individual data points exceeding 4°C. However, given the consistency of average Mg/Ca values for
different sections of the core, we are confident in our interpretation of changing average BWT for specific time intervals (see
5.2.3 below).

3.5 Stable isotope measurements

For stable isotope measurements, the remaining one third of the crushed samples of N. labradorica were cleaned with
ethanol absolute, decanted and dried at 40°C. Stable isotope analyses were carried out at the Leibniz Laboratory for
Radiometric Dating and Stable Isotope Research in Kiel. A Finnigan MAT 253 mass spectrometer coupled with a Kiel 1V
carbonate preparation device was used. Results were calibrated to the Vienna Pee Dee Belemnite (V-PDB) scale. Based on
11 downcore duplicate measurements, the standard deviation is 0.11 %o. To estimate the 5'80,, (seawater), the value of 820,
(%0 V-PDB) was first corrected for vital effects of N. labradorica by subtracting 0.15 %o (Rasmussen and Thomsen, 2009).
The corrected 50, values were then applied in the Shackleton et al. (1974) equation together with the Mg/Ca-derived
temperature estimates. To correct for the effect of global ice volume on the oceans &0, signature, a sea-level correction of
0.0083%o per m (1%o for 120 m of sea level), derived from the relative sea level curve by Austermann et al. (2013), was

applied. Based on duplicates, the standard deviation of the calculated ice volume corrected 3*8O0u-ivc is 0.35 %o.

4 Results
4.1 Chronology

The chronology of core MSM45-31-1 is based on linear interpolation of the calibrated median probability ages that are
presented in Table 1. Based on the lowermost and uppermost age constraints, the core covers at least the period from 5801
(+67/-58) to 201 (+63/-29) years BP. The age-depth model is presented in Fig. 3. The sedimentation rate varies between 0.11
and 0.35 cm per year and is lowest in the deeper part of the core, from 1150 — 900 cm depth (Fig. 3), probably due to

6
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compressional effects resulting from gravity coring. The chronological resolution is between 3 — 9 years per cm, so the core

provides a sub-decadal record of the late Holocene.

4.2 Temporal variability in southern Labrador Shelf waters

Alkenone concentrations range from 20 — 80 ng/g and, despite major fluctuations, gently increase on average towards the top
of the core (Fig. 4a). The UK37 index ranges from 0.3 to 0.43 and respective SST estimates range from 8 °C to 12 °C (Fig.
4b). The UX5; index and SST estimates range from 0.05 to 0.25 and from 0 °C to 6 °C, respectively (Fig. 4c). The proportion
of Csz.aranges from 8 % to 22 % and shows lowest values between 5.6 ka BP and 2.1 ka BP (Fig. 4d). Mg/Ca ratios range
from 1.3 mmol/mol to 3 mmol/mol (excluding values exceeding 2.4 mmol/mol, see 3.4 above) (Fig. 4e). BWT estimates
range from 0.6°C to 9.9°C and indicate a shift to warmer temperatures at 2.1 ka BP (Fig. 4e). The §'®0¢ (%0-VPD) of
N. labradorica ranges from 3.2%. to 4.0%o and does not show any significant minima/maxima (Fig. 4f). The temperature and
ice volume corrected §¥0u.ive (%0-SMOW) record ranges from —0.3%o t0 2.9%o and shows a small shift to more positive
values after 2.1 ka BP (Fig. 4g). According to major changes in surface and bottom water conditions, the record has been

divided into three main environmental intervals: From 6.2 to 5.6 ka BP, from 5.6 to 2.1 ka BP, and from 2.1 ka BP to present
(Fig. 4).

4.2.1 From 6.2 to 5.6 ka BP (1150 — 1085 cm)

Between 6.2 — 5.6 ka BP, the alkenone concentration is relatively low with average values of 33 ng/g. The UK3; and UKy,
indices and relative SST estimates show the lowest values of the record, suggesting a period of cool surface waters on the
Labrador Shelf, while the proportion of Cs7.4 is high at about 18 %. Mg/Ca levels and BWT estimates are also relatively low
at 1.6 mmol/mol and about 3°C, respectively. The 58O is at about 3.5 %o and the §*8Ow.-ivc is at about 0 %o.

4.2.2 From 5.6 to 2.1 ka BP (1080 — 435 cm)

Between 5.6 — 2.1 ka BP, alkenone concentrations vary between 25 ng/g and 80 ng/g. Two peaks up to 60 ng/g and 55 ng/g
at 5.4 ka BP and 3.8 — 3.0 ka BP are evident (Fig. 4a). UX3; indices are in medium, while UX;; indices are in maximum
ranges in this interval, leading to SST estimates of 8 — 10 °C and 2 — 6 °C, respectively. U¥;; based SST estimates show two
peaks of 5.8 °C and 6 °C at 5.4 ka BP and 3.8 — 3.0 ka BP. The proportion of Cs7.4 shows the lowest values in this interval
with an average of 12 % and two minima of 9 % and 8 % at 5.4 ka BP and 3.1 ka BP. Despite the warming of surface waters,
BWT reconstructions remain at average values of 3.1 °C, which corresponds to modern conditions at the core site (Fig. 1b,
2). However, the BWT record shows two warm peaks of 7.7 °C and 9.8 °C at 5.4 ka BP and 5.2 ka BP, respectively, and a
third warm peak to 7 °C at 3.8 ka BP. The 880, record shows a minor long-term increase with average values of 3.6 %o. The
5'80w.ivc record shows an increasing trend towards positive values of about 0.5 %o, except for a maximum of about 2 %o at

5.2 ka BP, suggesting a short increase in bottom water salinity.
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4.2.3 From 2.1 ka BP to present (435 -0 cm)

The interval after 2.1 ka BP shows an increase in alkenone concentration that peaks at 75 ng/g at 0.7 ka BP, with average
values of 48 ng/g. The UKX3; based SST record shows higher fluctuation in this interval with temperatures between 8.5 °C
and 11.5 °C, while the U¥s; based SST record reveals a general decrease with fluctuations between 0 °C and 6 °C and
average values of 2.2 °C. The Csr.arecord is characterized by a shift to values of 17 % on average, suggesting an increase in
sea ice after 2.1 ka BP. Especially in this interval, the use of either UX3; or UK 57, results in opposite SST trends. Nonetheless,
the use of the UX3; index results in SST estimates closer to the range of modern values in the upper water column (Fig. 2)
than those provided by the UX3; index. The BWT reconstructions display higher values after 2.1 ka BP, with average
temperatures of 6 °C. The 880 record continues with a slight increase to more positive levels, while the §0y.ivc record
shows higher fluctuations and generally more positive values in this interval as well as a peak to nearly 3 %o, in

correspondence with the bottom water warm peaks.

5 Discussion
5.1 The reliability of sea surface and bottom water temperature estimates with regard to modern conditions

UKs7 and UK'37 based SST estimates differ substantially in this region, due to relatively large proportions of %Csz.4. While
UK3; based SST estimates with an average of 9 °C appear too warm for this region, UXs; based SST estimates with an
average of 3 °C are congruent with modern observations of SSTs at the core site. Although the surface temperature measured
in August 2015 was 6 °C (Fig. 1b), the annual mean sea surface temperature at the core site is below 2 °C (Fig. 2). However,
alkenones neither reflect peak summer (i.e. August) nor annual mean temperatures, but rather record the average
temperatures of the plankton blooming season, which on the Labrador Shelf, today, is between May and November (Frajka-
Williams and Rhines, 2010; Harrison et al., 2013). Thus, at our core site, average UX3; based SST estimates of our down-core
record (3.3 °C) as well as of the most recent core top sample (3.3 °C) agree very well with the modern average sea surface
temperature between May and November of 3.5 °C (WOA13; 1955 — 2012; Locarnini et al., 2013). Therefore, we assume
that the UX;; index provides the most accurate SST estimates for our record, although we are aware that alkenone-based
temperature estimates become less robust with increasing proportions of %Cs7.4 and need to be interpreted with caution
(Rosell-Melé, 1998).

In our record, the down-core mean value of 3.8 °C in bottom waters is slightly above the mean value of 3.3 °C in U*;-based
SST estimates, indicating a water column temperature inversion (Fig. 5). Although our BWT estimates may be biased due to
the small temperature range of the calibration used, they are consistent with modern annual mean temperatures above 3.5 °C
at about 500 m depth. While a water column temperature inversion appears counterintuitive, it is likely caused by inflowing
warmer and more saline subsurface waters (Fig. 1b) of the outer branch of the LC that receives a large proportion of the

westward retroflection of the WGC, which, in turn, is a mixture of the cold EGC and the warm, saline IC. The outer LC, fed

8
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by the WGC, reaches the deeper regions on the Labrador Shelf, while the upper 200 m of the water column are dominated by
the cold and shallow inner LC, which carries a higher proportion of Arctic waters from Baffin Bay. Thus, we interpret the
UK37-based SST estimates to reflect the inner LC, while Mg/Ca-based BWT estimates rather reflect conditions of the outer
LC and the westward retroflection of the WGC.

5.2 Middle to late Holocene phases of Labrador Shelf oceanography

Based on the surface and bottom water records presented here, we differentiate three main climatic and oceanographic
intervals in Labrador Shelf waters during the middle to late Holocene. From 6.2 to 5.6 ka BP, the LC experienced a cool
period with a strong sea ice cover that is also evident along the western coast of Greenland (Disko Bugt; e.g. Moros et al.,
2016). This cold interval was followed by generally warmer conditions in Labrador Shelf surface waters between 5.6 and 2.1
ka BP associated with the Holocene Thermal Maximum in the western Arctic (Kaufman et al., 2004). In addition to the
gradual cooling trend of the last 3,000 years, our Csz.4 record implies a recurrence of stronger sea ice cover after 2.1 ka BP.
Simultaneously, a shift to warmer bottom water temperatures after 2.1 ka BP likely corresponded to an increased supply of

warmer Atlantic waters with the westward retroflection of the WGC reaching deeper regions on the Labrador Shelf.

5.2.1 Cold Labrador Current (6.2 — 5.6 ka BP)

From 6.2 to 5.6 ka BP, low sea surface and bottom water temperatures suggest that both surface and subsurface waters were
dominated by cold, Arctic water masses from Baffin Bay, with a significant sea ice cover indicated by relatively high %Cs7.4
(Fig. 6e,f,g). We associate this period with a cold inner LC caused by strong advection of Arctic waters and sea ice from
Baffin Bay. Colder conditions with a longer annual sea ice cover have also been detected in a northern Labrador fjord
between 7 and 5.8 ka BP (Richerol et al., 2016). A similar scenario is also seen south of our core in Trinity Bay,
Newfoundland, between 7.2 and 5.5 ka BP (Sheldon et al., 2015), with a period of cold surface waters and seasonal sea ice
cover, most likely sourced from the Arctic via the LC. Moreover, Solignac et al. (2011) estimated cold SSTs around
Newfoundland during the Mid-Holocene and ascribed these conditions to a stronger than present LC, which may have been
caused by accelerated atmospheric (westerly wind) circulation patterns (Jessen et al., 2011) combined with strong melting in
the Arctic. In contrast to this scenario, however, a decline in sortable silt (SS) mean size on the northern Labrador Shelf has
been interpreted to reflect a relatively weak LC during this period, (Site Hu2006040-40, Rashid et al., 2017, Fig. 6¢).

On the north-eastern rim of the Labrador Sea, in Disko Bugt (Greenland), high amounts of %Cs7.4 were also evident around 6
ka BP (Moros et al., 2016; Fig. 6b), which are in agreement with our findings. The authors interpreted these high proportions
of %Csr.4 to indicate strong meltwater run-off. At the same time, between 6.2 and 5.5 ka BP, they identified a severe drop in
warm water benthic foraminifera species I. norcrossi, suggesting an abrupt subsurface cooling (Moros et al., 2016). The
conditions in Disko Bugt may well have been related to a cold WGC associated with a cooling in the EGC at about this time
(Perner et al., 2015; Miller et al., 2012; Ran et al., 2006). A distinct cooling episode between 7 and 5 ka BP is also seen in

Greenland ice core data (O’Brien et al., 1995), which was likely related to changes in atmospheric circulation leading to
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increased storminess in the NE United States (Noren et al., 2002). A cold spell is evident in the Camp Century ice core
record as well, with a pronounced decrease of 580 values at 5.8 — 5.6 ka BP (Vinther et al., 2009), consistent with a
temporary cooling-freshening in oceanic conditions affecting northeast Baffin Bay. Additionally, a marked temperature drop
in the northern North Atlantic (e.g. Moros et al., 2004; Telesinski et al., 2014) is likely linked to the most pronounced North
Atlantic Holocene ice rafted debris event (Bond et al., 2001). The coincidence of cool periods in records from the western,
southwestern and eastern Labrador Sea, as well as in many other North Atlantic records (e.g., Bond et al., 2001; Moros et al.,

2004; Telesinski et al., 2014) suggests that it was a widespread phenomenon in the western North Atlantic region.

5.2.2 Sudden warming followed by gradual cooling of the Labrador Current (5.6 — 2.1 ka BP)

The start of this interval at 5.6 ka BP is marked by a pronounced increase in SSTs to over 6°C and a decline of %Cs7.4to
about 10% (Fig. 6e,f), implying a substantial warming of Labrador Shelf surface waters and less sea ice cover. Two warm
peaks can also be seen in bottom waters at the beginning of this interval, coeval with SST maxima (Fig. 6e,g). Warmer
conditions on the Labrador Shelf may be related to the shallowing of the Arctic channels at about 6 ka BP, which led to a
decrease in Arctic water flow to Baffin Bay and instead enhanced the export through Fram and Denmark straits along the
East Greenland coast (Williams et al., 1995). Warmer conditions were also indicated by the benthic foraminiferal
assemblage of Trinity Bay, Newfoundland, that showed increases in fresh food supply and primary productivity between 5.7
and 4.85 ka BP (Sheldon et al., 2015). Further south, off Cape Hatteras, Cléroux et al. (2012) described increased surface-
water salinities between 5.2 and 3.5 ka BP, which they attributed to decreased export of colder and fresh waters from the
north, allowing a northward shift of the Gulf Stream. In contrast to this proposed weakening of the LC, Rashid et al. (2017)
identified a short-lived increase in SS mean size in northern Labrador Shelf core Hu2006-040-040 (Fig. 6c), suggesting an
intensification of the LC. This latter observation is in agreement with dinocyst assemblages of two Newfoundland records
from Bonavista and Placentia Bay (Solignac et al. 2011) suggesting fresher and colder sea surface conditions between 5.6
and 4 ka BP, which the authors link to enhanced meltwater supply during a warm period in the Arctic until 4.5 — 4 ka BP.

In Disko Bugt, western Greenland, the interval from 5.5 — 3.5 ka BP is marked by a return to relatively warm subsurface
conditions and a gradual decrease of %Caz7.4 values following the peak at 6 ka BP (Moros et al., 2016; Fig. 6b), in agreement
with our findings. Diatom and dinocyst assemblages both show relatively mild surface waters despite a gradual trend
towards cooler conditions, which is also evident in our SST record between 5.5 and 3.5 ka BP. A reduction in N. labradorica
indicates lower surface water productivity that is also suggested by dinocyst assemblages (Ouellet-Bernier et al., 2014),
which Moros et al. (2016) link to the increased strength and/or warmth of the WGC. The enhanced influence of the WGC
may have resulted from a strong and relatively warm IC that is reported from the East Greenland shelf (Jennings et al., 2002,
2011) and southwest and south of Iceland (e.g. Knudsen et al., 2008). The strong influence of the WGC in Disko Bugt may
also have been the result of a largely land-based ice sheet and reduced meltwater runoff from the GIS after 6 ka BP (Briner et
al., 2010; Weidick and Bennike, 2007; Weidick et al., 1990) with minimum ice extent from ca. 5 — 3 ka BP (Briner et al.,

2014). This period as well corresponds to relatively warm air temperatures recorded in Greenland ice cores (e.g. Camp
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Century, Moros et al., 2016), which were likely a result of the Holocene Thermal Maximum between 5 and 3 ka BP over
central to southern Greenland (Kaufman et al., 2004). Additionally, several lake records near Jakobshavn Isbre display high
productivity under relatively warm terrestrial conditions, and one of the lakes, North Lake (Axford et al., 2013), indicates
relatively high chironomid-based temperatures. High lake levels linked to warmer conditions are also reported in the

Kangerlussuaq region, just south of Disko Bugt (Aebly and Fritz, 2009).

In our record, a second warm peak at 3 ka BP is evidenced by the lowest %C37.4 and the highest SSTs (Fig. 6e,f). The warm
temperatures around 3 ka BP correlate with a period of negative NAO conditions (Olsen et al., 2012; Fig. 6a), which
generally result in weaker north-westerly winds and reduced transport of Arctic waters through the Canadian gateways,
causing a weaker LC, milder winters and shorter sea ice seasons. Warmer sea surface conditions are also seen in Placentia
Bay, Newfoundland, indicated by the lowest numbers of sea-ice indicator species I. minutum between 3.2 and 2.2 ka BP
(Solignac et al., 2011). These warmer conditions around Newfoundland correlate with the lowest %Cs7.4 in our record,
suggesting that both regions experienced a reduction in sea ice cover, possibly caused by generally weak north-westerly
winds. In agreement with our records, warmer annual mean temperatures were also detected in Greenland ice core GISP2
between 4 and 2 ka BP (Alley et al., 1999), potentially also related to the predominantly negative NAO conditions at that
time. In contrast to this warm episode with likely low sea ice export from the Arctic region, northern Labrador Shelf core
Hu2006-040-040 has been interpreted to imply a relatively strong current at this time (Rashid et al., 2017; Fig. 6¢). Although
the strength of the LC has generally been tied to meltwater drainage and enhanced freshwater fluxes during the early
Holocene, no such linkage has been found for the middle to late Holocene (Rashid et al., 2017). Thus, the role of sea ice and

freshwater export on the strength of the LC remains uncertain.

After about 3 ka BP and coeval with the Neoglaciation (Kaufman et al., 2004; Vinther et al., 2009), LC surface waters
cooled gradually. The onset of the Neoglaciation between 3.2 — 2.7 ka BP was associated with a cooling in the Arctic that
reduced meltwater and sea ice export (Scott and Collins, 1996) and/or iceberg production (Andresen et al., 2011).
Correspondingly, reduced meltwater and cold bottom water conditions were detected in Disko Bugt (Greenland) between 3.5
and 2 ka BP (Lloyd et al., 2007). A similar cooling trend was implied by a general decrease in Atlantic water species in
Disko Bugt after 3.5 ka BP (Perner et al., 2011). Lake deposits from southern Greenland indicate dry and cold conditions
from 3.7 ka BP (Andresen et al., 2004) and shortly after 3.0 ka BP (Kaplan et al., 2002), respectively, while Vinther et al.
(2005) recognized a sharp decrease in the amplitude of the GRIP annual O cycles, suggesting a cooling of 1 — 2 °C ca.
3000 years ago. On the north Iceland shelf, temperatures dropped significantly at ca. 3.2 ka BP (Eiriksson et al., 2000; Jiang
et al., 2002), and in the North Atlantic, Bond et al. (1997) identified a strong ice rafted debris event at 2.8 ka BP. Hence, the
gradual cooling seen in our surface temperature record after 3 ka BP is in agreement with many North Atlantic records that

showed colder conditions associated with the Neoglaciation.
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5.2.3 Subsurface warm water intrusions on the Labrador Shelf despite further surface cooling (2.1 ka BP — present)

After 2.1 ka BP, the SST record shows a continuation of the gradual cooling trend that started around 3 ka BP with the onset
of the Neoglaciation. This continued cooling corresponds to the shift from predominantly negative to predominantly positive
NAO conditions (Olsen et al., 2012; Fig. 6a), which would have resulted in generally stronger north-westerly winds and
colder winters in the Labrador Sea region. The colder surface waters with stronger sea ice cover evident in our record during
the last 2,100 years suggest that the inner LC received a strong supply of Arctic waters from Baffin Bay in response to the
Neoglacial cooling and generally positive NAO conditions. In support of our findings, colder conditions and an increase in
the sea ice duration were also recorded in Trinity Bay, Newfoundland, after 2.1 ka BP (Sheldon et al., 2015). Additionally, a
gradual surface water cooling of about 2°C during the last 2000 years was also evident in another core from Newfoundland
(Al07-12G; Sicre et al., 2014; Fig. 6d), which further supports the surface water cooling trend observed in our record.
Coeval with this Neoglacial cooling trend, northern Labrador Shelf core Hu2006-040-040 shows a gradual decrease in SS
mean size after about 3 ka BP (Fig. 6¢), implying a LC weakening. The general positive correlation of our SST record with
the SS mean size record in Hu2006-040-040 implies that colder LC surface temperatures correspond to a weaker current.
Although LC vigour was tied to early Holocene freshwater discharge, no such linkage is apparent during the middle to late
Holocene (Rashid et al., 2017). The authors, however, suggested that the LC weakening of the last 3,000 years was related to
the Neoglacial cooling and enhanced sea ice production, which would have locked up larger amounts of freshwater, resulting
in diminished supply of freshwater and a weakening of the LC. The negative correlation of our %Cs7.4 record and the SS
record of core Hu2006-040-040 does support this scenario of enhanced sea ice cover reducing LC strength. Another
explanation for the LC weakening and cooling during the last 3,000 years may be that the shift to predominantly positive
NAO-like conditions (Olsen et al., 2012; Fig. 6a) caused stronger north-westerly winds that promoted the southward
advection of sea ice (Drinkwater, 1996) while also causing a cooling of Labrador Sea surface waters. This would, in turn,
lead to a reduced density of offshore waters relative to inshore waters, which would decrease the baroclinic pressure gradient
and weaken LC transport (Dickson et al., 1996).

Despite the gradual cooling trend of the LC during the last 3,000 years (Fig. 6e), bottom waters show a shift to warmer
conditions after 2.1 ka BP (Fig. 6g). The shift to higher BWTs occurred simultaneously to the increase in %Csz.4 (Fig. 6f),
implying a strongly stratified water column that was influenced by two different water masses. This scenario can be
compared to modern conditions of warmer waters underlying cold waters at our core site (Fig. 1, 2). Today, the cold inner
LC only dominates Labrador Shelf waters down to about 200 m depth (Lazier and Wright, 1993), while the deeper part of
the shelf, such as our core site at 566 m depth, is influenced by the warmer outer LC that is largely supplied by the westward
retroflection of the WGC. Hence, we ascribe the warmer conditions seen in Labrador Shelf bottom waters after 2.1 ka BP to
a strengthening or warming of the WGC carrying warmer Atlantic waters to the deeper regions on the Labrador Shelf.

Episodes of an increased influx of Atlantic sourced water from the IC were also seen in the central Labrador Sea, indicated
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decreases in the abundances of polar water planktic foraminifera species N. pachyderma sinistral (%Nps) at about 2.3 — 2.1
and 1.6 ka BP (RAPiD-35-COM; Moffa-Sanchez and Hall, 2017; Fig. 6h). These quite well correspond to the subsurface
warming peaks in our record. Despite the generally warmer conditions in our subsurface water record during the last 2,100
years, the record displays a trend returning to colder temperatures in this interval. A general cooling trend after 2.2 ka BP is
also evident in core RAPID-35-COM and has been linked to a weakening in LSW formation (Moffa-Sanchez and Hall,
2017).

While our surface records imply the formation of a cold inner LC with a larger seasonal sea ice cover during the last 2,100
years, central Labrador Sea records document enhanced inflow of the warm and saline IC (Moffa-Sanchez and Hall, 2017)
that is reflected by subsurface warming and higher salinity on the Labrador Shelf (Fig. 4). According to Gelderloos et al.
(2012), cold and fresh surface waters are thought to inhibit convection in the Labrador Sea, while modern observations of
warming and increased salinity in central Labrador Sea subsurface waters correlate with episodes of weak Labrador Sea
convection (Yashayaev, 2007). Furthermore, extending observational data by proxy records for the last 1,200 years,
Thornalley et al. (2018) report a strong reduction in LSW formation and Deep Western Boundary Current (DWBC) flow
during the last 150 years that seem to correspond to a trend to warmer and saltier subsurface waters in the Labrador Sea
(Moffa-Sanchez et al., 2014). According to these studies, the reconstructed surface cooling and subsurface warming and
salinity increase on the Labrador Shelf starting at 2.1 ka BP would strongly suggest that LSW formation in the western
Labrador Sea was reduced during the last two millennia compared to the mid-Holocene. In contrast, Moffa-Sanchez and Hall
(2017) infer the opposite scenario for the last 2,000 years with a stronger SPG and intensified LSW formation during warmer
eastern Labrador Sea conditions (see Fig. 6h). The latter would be congruent with the observations during more positive

NAO conditions resulting in stronger convection (e.g. Zantopp et al., 2017).

Despite the ambiguous evidence of the coupling between LC temperature and LSW formation, it appears that a colder inner
LC was coupled with a warmer and saltier IC and WGC during the last 2,100 years (see also discussion in Moffa-Sanchez et
al., 2019). This link can be explained by a reduced LC strength — as more freshwater would have been locked up in sea ice —
resulting in diminished supply of cold, Arctic waters into the North Atlantic Current, which, in turn, would have led to a
warmer IC. Nonetheless, it is currently still difficult to assess whether hydrographic conditions in the LC have had a
significant impact on deep-water formation in the central basin or just responded to general atmospheric conditions across
the Labrador Sea region, which may have been the most important driver controlling LSW production during the late

Holocene.

Interestingly, Marchitto and deMenocal (2003) reported a significant Little Ice Age (LIA) cooling in intermediate water
depths along the path of the DWBC south of Newfoundland, corresponding to the cooling seen in our subsurface water

record from the Labrador Shelf (Fig. 6i). This correspondence might indicate a coupling between outer LC and DWBC
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temperature changes at centennial time scale with the LSW formation being the link between both water masses. However,
overall short-term variability in DWBC temperatures during the last 4,000 years does not exactly match our record (Fig. 6i).
Therefore, to fully assess the interaction between LC variability and LSW formation, more high-resolution records of

changes in LSW production from the western Labrador Sea are required.

6 Conclusion

Overall, middle to late Holocene conditions in Labrador Shelf waters display variability that can partly be related to
atmospheric forcing, such as NAO-like conditions. Between 6.2 and 5.6 ka BP, our records imply a cold episode with strong
sea ice cover on the Labrador Shelf that has also been evident in other cores from the North Atlantic region. This cold
episode was followed by a generally warmer interval from about 5.6 to 2.1 ka BP corresponding to a late Holocene Thermal
Maximum, interrupted by colder surface temperatures between about 4.5 and 3.5 ka BP. After about 3 ka BP, our SST record
shows a gradual cooling trend in association with the Neoglaciation, which has also been observed in other surface records
from the Labrador Sea region. However, at 2.1 ka BP our record shows an abrupt shift to enhanced sea ice cover and warmer
bottom waters on the Labrador Shelf that corresponds to a shift from predominantly negative to predominantly positive
NAO-like conditions. We associate the cooling seen in surface waters with stronger north-westerly winds and harsher
winters in the region during positive NAO, while the warming in bottom waters was possibly related to a stronger inflow of
the westward retroflection of the WGC in response to a stronger supply of the IC that was seen in the central Labrador Sea.
Our record implies that phases of enhanced sea ice cover on the Labrador Shelf corresponded to reduced LC strength during
the last 6,000 years, which may be have been related to atmospheric conditions controlling the length of the sea ice season as
well as regulating the baroclinic pressure gradient that drives LC velocities. During the last 2,100 years, a reduced current
and diminished freshwater supply via the LC — as more freshwater would have been locked up in sea ice — would have led to
a diminished supply of freshwater through the western route to the SPG, which, in turn, could have resulted in saltier and
denser NAC and IC (Fig. 1). At the same time, intense cooling of dense SPG surface waters during generally positive NAO
conditions would have promoted winter convection and strengthened LSW formation in the central basin. Therefore, it
appears that positive NAO conditions may have been responsible for both increased Labrador Shelf sea ice cover during the
last 2,100 years and reduced freshwater supply and LC strength, while enhancing winter cooling and convection in the
central Labrador Sea. The potential indirect effect of enhanced sea ice cover and limited freshwater supply via the LC may
thus have played an additional role in enabling deeper convection forming colder and saltier LSW, a positive feedback

mechanism during positive NAO conditions.

7 Data availability

The data reported in this paper are archived in PANGAEA and available at https://doi.org/10.1594/PANGAEA.904693.
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Table 1: Twelve AMS radiocarbon dates, calibrated in Calib7.1 (Stuiver and Reimer, 1993; Stuiver et al., 2017) using the
Marinel3 dataset (Reimer et al., 2013) with a reservoir correction of AR = 144 + 38 years (McNeely et al., 2006).

AMS Depth  Reported errort 1 sigma 2 sigma Median Material dated

laboratory (cm) 14C age (yr) age range age range probability

number (yr BP) (cal yr BP) (cal yr BP) age (cal yr BP)

KIA 51561 3 715 20 145 -1682 67 —297 201 Mixed benthic foraminifera
172 — 264

KIA 51562 103 1417 29 767 — 883 709 -917 818 Mixed benthic foraminifera

KIA 51563 203 1909 21 1271-1350 1231 -1404 1313 Mixed benthic foraminifera

KIA 51564 303 2179 28 1543 - 1666 1484 - 1735 1604 Mixed benthic foraminifera

KIA 51565 403 2554 26 1982 - 2110 1904 - 2174 2045 Mixed benthic foraminifera

KIA 51566 503 2819 22 2310-2424 2266 - 2536 2373 Mixed benthic foraminifera

KIA 51567 603 3103 22 2698 —2772 2659 —-2843 2738 Mixed benthic foraminifera

KIA 51568 703 3509 23 3168 — 3301 3096 - 3351 3228 Mixed benthic foraminifera

KIA 51569 803 3763 26 3451 -3571 3390-3635 3516 Mixed benthic foraminifera

KIA 51570 903 4156 25 3951 -4093 3876 -4161 4024 Mixed benthic foraminifera

KIA 51571 1003 4795 25 4820-4925 4791 -5012 4877 Mixed benthic foraminifera

KIA 51572 1103 5572 31 5743 - 5868 5672 - 5908 5801 Mixed benthic foraminifera

Relative probability: a = 0.192, b = 0.808, according to Calib7.1.
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Figure 1: a) Map of the North Atlantic showing modern surface circulation with cold (blue) and warm (red) currents (adopted
from Lazier and Wright, 1993; Rhein et al., 2011). A shaded area indicates the convection region of LSW. Core MSM45-31-1 is
marked by a white dot, other cores referred to are marked by black dots. NF = Newfoundland. b) Depth profiles of temperature
(blue) and salinity (red) of the water column near the core site at 54°28.53N, 56°04.33W obtained from CTD deployment during
cruise MSM45 in August 2015.
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Figure 2: Comparison of different temperature profiles of the water column near the studied core site. The grey line shows the
water profile at 54°28.53N, 56°04.33W obtained during cruise MSM45 in August 2015. Coloured lines mark the profiles at the
nearest location (27km from the core site) at 54°37.50N, 56°12.50W, obtained from the World Ocean Atlas 2013 (WOA13; 1955 —
2012; Locarnini et al., 2013), showing annual mean (black), August (red) and May (green) temperatures. August data obtained
during MSM45 and from WOA13 show similar temperature profiles with a warming of up to 6 — 8°C at the sea surface. The upper
50m of the water column reflect atmospheric temperatures and therefore differ in the August, May and Annual mean profiles
from WOAI13. All profiles show temperatures of -1 to 1°C between ca. 40 — 200 m, reflecting the cold, inner LC, and higher
temperatures below 200m depth, rising up to 4°C at the shelf bottom, which reflect the influence of the warmer, outer LC strongly

influenced by the WGC.

Temperature (°C)

28

Ocean Data View

-]



6000 - r 0.5

A

- 0.45
5000 - A L 0.4 §
E: >
@ 4000 - I — A 0352
& : : — : P 03 g
g ; . . [ —— A “ 2
> . : : . . L ©
< 3000 - : : : ‘ . : 0.25 £
o H A H H c
< st A B [ 02 8
, . A . £
0100 [ R R H - 015 §
A —, £
1000 - (013
A »n

- 0.05

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Depth (cm)
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Figure 4: Down-core record of MSM45-31-1 showing a) alkenone sum, b) UK's7 index displayed with 0.01 uncertainty and
respective SST estimates, ¢) UXs7 index displayed with 0.01 uncertainty and respective SST estimates, d) %Car.4 displayed with 0.8
% uncertainty, e) Mg/Ca (mmol/mol) of N. labradorica displayed with 0.19 mmol/mol uncertainty and respective BWT estimates,
£) 60caicite (%0) of N. labradorica displayed with 0.11%o uncertainty, and g) 6®Ow-ivc (%o) displayed with 0.35%. uncertainty. Grey

vertical bars highlight periods of pronounced oceanographic change.
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Figure 5: Surface (red) and bottom (blue) water temperature reconstructions are based on the alkenone UX3; index and Mg/Ca
ratios of benthic foraminifera N. labradorica, respectively. In contrast to the surface record, the BWT record is displayed with a 3-
point-runnning mean due to the 2°C uncertainty of individual data points. Both records show a similar temperature range
between 6.1 and 2.1 ka BP. After 2.1 ka BP, the BWT record displays higher fluctuations and a shift to warmer average
temperatures, leading to a temperature reversal in the water column with generally warmer bottom waters underlying colder
surface waters in this interval. The warming of bottom waters is associated with a stronger inflow of the westward retroflection of
the WGC reaching our core site at 566m depth underneath the cold inner LC. The grey vertical bar highlights a period of

pronounced oceanographic change.
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ice season or meltwater. g) BWT estimates are based on Mg/Ca ratios in benthic foraminifera N. labradorica and reflect subsurface
conditions. h) Lower abundances of polar water planktic foraminifera species N. pachyderma in central Labrador Sea core
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representing Deep Western Boundary Current (Marchitto and deMenocal, 2003). Grey vertical bars highlight periods of

pronounced oceanographic change.
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