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Abstract. Ongoing work in paleoclimate reconstruction prioritizes understanding the origins and magnitudes of errors that

arise when comparing models and data. One class of such errors arises from assumptions of proxy temporal representativeness

– broadly, the time scales over which paleoclimate proxy measurements are associated with climate variables. In the case

of estimating time mean values over an interval, errors can arise when the time interval over which data are averaged and

the interval that is being studied have different lengths, or if those intervals are offset from one another in time. Because it5

is challenging to tailor proxy measurements to precise time intervals, such errors are expected to be common in model-data

and data-data comparisons, but how large and prevalent they are is unclear. The goal of this work is to provide a framework

for first-order quantification of temporal representativity errors and to study the interacting effects of sampling error, archive

smoothing (e.g. by bioturbation in sediment cores), chronological offsets and errors (e.g. arising from radiocarbon dating), and

the spectral character of the climate process being sampled.10

In some cases, particularly for small values of target intervals τx relative to sample intervals τy, errors can be large relative to

signals of interest. Errors from mismatches in τx and τy can have magnitudes comparable to those from chronological uncer-

tainty. Archive smoothing can reduce sampling errors by acting as an anti-aliasing filter, but destroys high-frequency climate

information. An extension of the approach to paleoclimate time series, which are sequences of time-average values, shows

that measurement intervals shorter than the spacing between samples lead to errors, absent compensating effects from archive15

smoothing. Including these sources of uncertainty will improve accuracy in model-data comparisons and data comparisons and

syntheses. Moreover, because sampling procedures emerge as important parameters in uncertainty quantification, reporting

salient information about how records are processed and assessments of archive smoothing and chronological uncertainties

alongside published data is important to be able to use records to their maximum potential in paleoclimate reconstruction and

data assimilation.20

1 Introduction

Paleoclimate records provide important information about the variability, extremes, and sensitivity of Earth’s climate to green-

house gases on time scales longer than the instrumental period. As the number of published paleoclimate records has grown

and the sophistication of numerical model representations of past climates has improved, it has become increasingly important

to understand the uncertainty with which paleoclimate observations represent climate variables so that they can be compared25
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to one another and to model output. Additionally, quantifying uncertainty is important for ongoing efforts to assimilate paleo-

climate data with numerical climate models (e.g., Hakim et al., 2016; Amrhein et al., 2018).

Paleoclimate records can have errors arising from many different sources: biological effects (e.g., Elderfield et al., 2002;

Adkins et al., 2003), aliasing onto seasonal cycles (Wunsch, 2000; Fairchild et al., 2006; Dolman and Laepple, 2018), spatial

representativeness (Van Sebille et al., 2015), proxy-climate calibrations (e.g., Tierney and Tingley, 2014), and instrument5

errors, to name a few. This paper focuses on errors from temporal representativeness (TR), which we define as the degree to

which a measurement averaging over one time interval can be used to represent a second, target time interval. In this paper we

quantify TR errors arising 1) when averages are computed over different lengths of time and 2) when intervals are offset so as to

be centered on different times (Figure 1). For instance, in a data assimilation procedure that fits a model to observations at every

year, it is important to know the uncertainty associated with relating a decadal-average proxy observation to an annual-average10

target interval. Furthermore, computing a mean is often the implicit goal of binning procedures that combine observations

from within a target time period such as a marine isotope stage, and we expect those observations to have errors that vary with

their averaging duration and offsets from the target. TR errors can result both from systematic errors (e.g., knowingly using

data from a short period to represent a longer one) and from stochastic uncertainties in the duration and age of paleoclimate

observations that can originate, e.g., from uncertain radiocarbon age measurements.15

Much of the previous study of errors arising from sampling in time has focused on aliasing, whereby variability at one

frequency in a climate process appears at a different frequency in discrete samples of that process. Pisias and Mix (1988)

described consequences of aliasing in the study of deterministic peaks in climate spectra due to Milankovich forcing. Wunsch

and Gunn (2003) described criteria for choosing sample spacing so as not to alias low-frequency variability in sediment cores,

and Wunsch (2000) demonstrated how aliasing can lead to spurious spectral peaks in ice core records. Beer et al. (2012)20

and von Albedyll et al. (2017) describe how running means can reduce aliasing of solar cycle variability in ice core records. In

paleoclimate, measurements are often unevenly spaced in time due to changes in archive deposition rates; Jones (1972) showed

that aliasing is present and even exacerbated in unevenly-sampled records relative to regularly sampled ones. Anderson (2001)

and McGee et al. (2013) describe how bioturbation and other diagenetic processes smooth records in time and may reduce

aliasing errors.25

A second area of previous focus stems from chronological uncertainties, whereby times assigned to measurements may

be biased or uncertain. In some cases, such as for radiocarbon dating, estimates of these uncertainties are available from

Bayesian approaches that incorporate sampling procedures (Buck, 2004; Buck and Millard, 2004; Bronk Ramsey, 2009);

practices for incorporating this information into model-data or data-data comparisons vary, and developing tools for analyzing

chronological uncertainty is an active area of research. Huybers and Wunsch (2004) include the effect of uncertainties in tie30

points in order to align multiple records of Pleistocene oxygen isotopes, and Haam and Huybers (2010) developed tools for

estimating the statistics of time-uncertain series. The effect of time uncertainty on estimates of signal spectra is modest in some

cases (Rhines and Huybers, 2011), in part because time uncertainty acts to smooth high-frequency variability when computed

as an expectation over a record (Moore and Thomson, 1991).
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Figure 1. Schematic of temporal representativeness errors. When a target time-average quantity (x) of a paleoclimate signal (r (t)) is estimated

using an observation (y), an error (θ ) results if the averaging interval of the observation (τy) is different from that of the target period (τx),

including a nonzero offset (∆) between the centers of the two time averages. When a measurement is affected by chronological uncertainty,

∆ is characterized by a probability distribution (p(∆)) of possible offsets, parameterized in this paper as a Gaussian with standard deviation

σ∆. This paper characterizes the amplitude of θ as a function of time scales arising from 1) sampling procedures, 2) variability in r (t), 3)

archive smoothing, and 4) chronological uncertainty.
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This paper synthesizes effects contributing to TR errors in an analytical model and explores their amplitudes and dependence

on signal spectra and sampling time scales. Extending results from time-mean measurements to time series demonstrates how

sampling practices can lead to aliasing errors when records are not sampled densely, e.g. when an ocean sediment core is

not sampled continuously along its accumulation axis. While we do not claim that TR error is the most important source of

uncertainty in paleoclimate records, it does appear to be large enough to affect results in some cases. Moreover, this work is a5

step towards reducing the number of “unknown unknowns” in paleoclimate reconstruction.

The rest of the paper is as follows. Section 2 describes a statistical model for time representativeness errors in time mean

values. Section 3 illustrates the model by applying it to the analysis of Last Glacial Maximum climate properties. Section 4

extends the model to the analysis of time series. Implications, caveats, and future research questions appear in the Discussion.

Table (1) provides a glossary of functions and variables used.10

2 A statistical model for temporal representativeness errors

In paleoclimatology, a common focus is computing the mean of a climate variable (sea surface temperature, for instance, or

isotope ratios, or global ice volume) over a particular time period (for example, a marine isotope stage). This section defines

an analytical approach for estimating temporal representativity errors in the problem of mean estimation. These errors have

a compact representation in the frequency domain that allows us to understand the relative importance and interaction of15

sampling procedures, time uncertainty, and signal spectra in contributing to errors.

This approach is intended to be complementary to the output from proxy system models (PSMs; e.g., Evans et al. (2013))

that relate proxy quantities to climate variables. The analytical model may be used to estimate TR uncertainty when PSMs do

not; when they do, the model can provide a theoretical grounding for understanding those results. The starting point for the

model is a climate process, r (t), which we assume to be able to sample directly. We ignore additional errors that are inherited20

from the construction of r (t) from proxy observations. Variances from multiple error sources can be added together under the

approximations that they are independent and Gaussian. When these assumptions fail, more holistic forward modeling of errors

in PSMs may be necessary.

2.1 Errors in time-mean values

Define a mean value m(t,τ) of a climate variable r (t) as a function of the duration τ and the time t on which that duration is25

centered,

m(t,τ) =
∞∫

−∞

Π
(
t ′,τ
)

r
(
t + t ′

)
dt ′, (1)
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Variable Meaning

t Time

t0 Initial time in a time series

t f Final time in a time series

ν Frequency

νNyq Nyquist frequency

ν†
low Lower cutoff frequency

ν†
high Upper cutoff frequency

r (t) Time-varying climate process

m(t,τ) Time mean of r (t) over period τ centered on t

x Target paleoclimate quantity

y Measured paleoclimate quantity

θ Error in representing x by y

τx Averaging timescale of target quantity

τy Averaging timescale of observation

τa Timescale of archive smoothing

τs Time interval between samples in a series

τ0 Time series length (equal to t f − t0 )

τc Time between two time means being compared

∆ Measurement time offset

σ∆ Standard deviation of chronological error

στc Expected difference between two time means separated by τc

Π(t,τ) Boxcar function in time

G(ν ,τ) Heaviside function in frequency

H (ν) Power transfer function

f Error variance fraction

β Spectral slope (times -1)

Table 1. Glossary of functions and variables. Variables denoted by a superscript i in the text denote the ith value of that quantity in a time

series. Fourier transformed variables are denoted by a hat (e.g., r̂ (ν)).
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where Π(t,τ) is a normalized “boxcar” function centered on t = 0 with width τ ,

Π(t,τ) =





1/τ |t| ≤ τ/2

0 |t|> τ/2.
(2)

The operation in (1) defines a moving average m(t,τ) and is known as a convolution, hereafter denoted as a star,

m(t,τ) = Π(t,τ)? r (t) . (3)

Our focus is on errors that arise when a mean value computed over one time period is used to represent another time period5

– for instance, when a time average over over 20-19 kya (thousand years ago) is used to represent an average over 23-19 kya,

the nominal timing of the Last Glacial Maximum (Clark et al., 2012). To write this representation generally, define a target

quantity to be a mean x of r (t) over an interval of length τx centered on t, and an observation y to be an average over a different

duration τy centered on a different time t +∆,

x = m(t,τx) (4)

y = m(t +∆,τy) . (5)

(While these quantities are functions of several variables, we write them simply as x and y for brevity.) In many cases, pale-10

oclimate archive are smoothed prior to processing by bioturbation, diagenesis, residence times in karst systems upstream of

speleothems (Fairchild et al., 2006), or other effects. These processes can be complex and non-constant in time; here, to gain

a basic understanding of their effects, we assume an archive smoothing process that is a moving average over a time scale τa.

Under such smoothing, we can then write y as a twice-smoothed function of r (t),

y = Π(t,τy)?Π(t,τa)? r (t) .

TR error is defined as the error in representing x by y,15

θ = x− y. (6)

We will characterize TR error θ by estimating its variance,
〈
(θ −〈θ〉)2

〉
, where angle brackets denote statistical expectation.

This approach assumes that r (t) is weakly statistically stationary, meaning that its mean and variance do not change in time;

caveats surrounding this assumption are addressed later in the paper. Under the weak stationarity assumption, the mean error

〈θ〉 is zero, and we take the expectation by evaluating θ 2 at all the times in r (t) to compute the variance,

〈
θ 2〉=

1
τ0

t f∫

t0

(x− y)2dt, (7)20

where t0 and t f are the initial and final times in r (t), and τ0 = t f − t0. Intuitively, we are estimating the error in representing x

by y (at a single time) as the time-mean squared difference of running means of r (t). In practice, though we do not know r (t),

knowledge of its statistics is adequate to estimate
〈
θ 2
〉
. To show this, define x′ = x−〈x〉 and y′ = y−〈y〉, where 〈x〉= 〈y〉 for

6

Clim. Past Discuss., https://doi.org/10.5194/cp-2019-10
Manuscript under review for journal Clim. Past
Discussion started: 11 February 2019
c© Author(s) 2019. CC BY 4.0 License.



stationary r (t). Then expanding (7) gives an expression in terms of estimated variances σ̃2
x and σ̃2

y and the cross-covariance as

a function of lag ∆, C̃xy (∆):

〈
θ 2〉=

1
τ0

t f∫

t0

(
x′− y′

)2dt (8)

=
1
τ0




t f∫

t0

x′2dt +

t f∫

t0

y′2dt−2

t f∫

t0

x′y′ dt


 (9)

= σ̃2
x + σ̃2

y −2C̃xy (∆) . (10)

In the limit where τx = τy and ∆ = 0, σ̃2
x = σ̃2

y = C̃xy (∆), and
〈
θ 2
〉
= 0, as we would expect for the case where the measurement

exactly targets the quantity of interest. If C̃xy (∆) = 0 – i.e., the measurement and target quantity are uncorrelated – then y has

no skill in representing x, and the error variance is the sum of σ̃2
x and σ̃2

y . If there is a choice of ∆ such that x and y are5

anticorrelated, then C̃xy (∆) will be negative, leading to still larger errors. Between these extremes of zero and maximum error,

intermediate values of
〈
θ 2
〉

are set by timescales of sampling (τx, τy, and ∆) and variability in r (t). We can understand these

relationships by representing TR error in the frequency domain.

2.2 Analyzing sources of error in the frequency domain

Next we derive a frequency-domain expression for TR errors. The functional form of this expression provides insight into the10

origins of TR errors. Using Parseval’s theorem, the Fourier shift theorem, and the convolution theorem (Appendix A), denoting

frequency by ν , and denoting the Fourier transform by a hat, we can transform the expression (7) for the variance of TR errors

into the frequency domain as

〈
θ 2〉=

1
τ0

∞∫

0

∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τa) · Π̂(ν ,τy)
∣∣∣
2
|r̂ (ν)|2 dν . (11)

The integrand of (11) is the product of two components. The second, |r̂ (ν)|2, is the power spectral density of r (t), which15

describes the variance contained at frequencies in r (t). The first component is a so-called power transfer function,

H (ν) =
∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τa) · Π̂(ν ,τy)

∣∣∣
2
, (12)

which describes how power at different frequencies in r (t) contributes to
〈
θ 2
〉
. The Fourier transform of the boxcar function

is a sinc function,

Π̂(ν ,τ) = sinc(τν) =
sin(πτν)

πτν
, (13)20

which converges towards 1 at frequencies below 1/τ and oscillates with decreasing amplitude about 0 at higher frequencies

(Figure 2a).

The function H (ν) describes which frequencies in a climate signal contribute most to TR errors. The largest values in H (ν)

lie within a frequency band (Figure 2b) that can be described by low and high “cutoff frequencies” ν†
low and ν†

high at which
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H (ν) = 1/2. Cutoff frequencies can be approximated by assuming zero time offsets (∆ = 0) and assuming that τx and τy are

sufficiently separated (τx ≥ 4τy appears to be a rule of thumb) that

H
(

ν†
low

)
≈
∣∣∣sinc2

(
τxν†

low

)
−1
∣∣∣
2
= 1

2 (14)

H
(

ν†
high

)
≈
∣∣∣sinc

(
τyν†

high

)∣∣∣
2
= 1

2 . (15)5

Solving these expressions yields ν†
low = 0.755τ−1

x and ν†
high = 0.443τ−1

y . When τx is less than τy, these values are switched. If

the paleoclimate archive was smoothed prior to sampling, then the expression for ν†
high becomes

H
(

ν†
high

)
=
∣∣∣sinc

(
τaν†

high

)
sinc

(
τyν†

high

)∣∣∣
2
=

1
2
. (16)

Solving using a Taylor series representation gives

ν†
high ≈

0.443√
τ2

a + τ2
y

, (17)10

which illustrates a combined effect from sampling and archive smoothing for determining which frequencies contribute to TR

errors.

When there is a time offset, the band of nonzero values in H (ν) can extend to frequencies as low as 1/2∆, with sinusoidal

variations at time scales set by ∆ (Figure 2d; Appendix A). In subsequent sections we will express chronological uncertainty

in paleoclimate measurements by allowing ∆ to be a random variable with probability distribution p(∆). Given chronological15

uncertainty, we can compute a typical value for
〈
θ 2
〉

by computing the expectation over p(∆), denoted with a second pair of

angle brackets,

〈〈
θ 2〉〉=

∞∫

−∞

p(∆)
〈
θ 2〉d∆. (18)

2.3 Practical implications from the simple model

Given estimates of the sampling interval, archive smoothing time scale, measurement offset, and an estimate of the signal20

spectrum, (11) is a closed-form expression for estimating TR errors in time-mean estimates. This equation provides a basis for

some intuitive conclusions about errors and their implications for record sampling and uncertainty quantification:

1. TR errors can be traced to variability within a frequency band in r (t) that is aliased onto time means. For instance, if a

centennial mean is used to represent a millennial mean, in the absence of archive smoothing, the expected error variance

is equal to the variance in r (t) at periods between 226 and 1325 years (Figure 2). The error is the same if a centennial25

mean is used to represent a decadal mean.

2. The combined effects of archive smoothing and sampling can lead to over-smoothing. For instance, choosing a sampling

interval τy equal to τx when τa > 0 will over-smooth a record and lead to errors because the observed quantity averages

over a longer interval than the target.
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0.755
1000 yr

0.443
100 yr

(b)

(a)

Figure 2. Contributions to the power transfer function H (Equation 12) illustrate the dependence of temporal representativeness errors on

sampling time scales. (a) The Fourier transform of the boxcar function (Equation 2) is the sinc function (Equation 13), illustrated here for

τ = 100 and τ = 1000. (b) Power transfer function computed with τx = 1000, τy = 100, and three different values of the time offset ∆. When

∆ = 0, Equations (14) and (15) approximate the edges of the frequency band in r (t) that is aliased onto errors θ . For nonzero ∆, errors

originate from frequencies as low as 1/(2∆).
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3. We can estimate an ideal sampling interval τ̃y in the presence of archive smoothing by minimizing the width of the

frequency band that contributes to TR error. Setting 0.443τ̃−1
x = 0.443(τ2

y + τ2
a )−

1
2 and solving yields

τ̃y =
√

τ2
x − τ2

a for τx > τa. (19)

Subsequent experiments (Figure 5) show that this approximation is robust across different parameters.

4. When there is a time offset in the measurement relative to the target, additional variability is aliased onto errors.5

3 Application: Estimating errors at the Last Glacial Maximum

Next the error model is applied in the context of a particular mean estimation problem: the Last Glacial Maximum (LGM), the

period roughly 20,000 years ago that is associated with the greatest land ice extent during the last glacial period. Following

MARGO Project Members (2009) and others, LGM properties are defined to be estimates of time means over the 4000-year-

long period from 23,000 to 19,000 years ago (23-19 kya). To estimate LGM errors, we will estimate the typical errors that10

would arise in the case of representing a 4000-year long interval centered on 21 kya.

Denote the time-mean value of a climate quantity r (t) during the LGM as the target quantity xLGM ,

xLGM =
1

4000

−19,000∫

−23,000

r (t)dt.

To illustrate TR errors, we will compare averages over different time periods to xLGM . For instance, consider a 1000-year

time-mean value of r (t) centered on 19.5 kya,

yLGM =
1

1000

−20,000∫

−19,000

r (t)dt. (20)15

Such an estimate – dated to within the LGM, but averaging over only a subset – could reasonably be included in a binned-

average compilation of LGM data. However, without accounting for errors resulting from the short averaging interval and time

offset from the center of the LGM, we would expect this observation to bias a binned average. Similarly, were we to compare

yLGM to an LGM-mean estimate of r (t) from a model without taking TR errors into account, we might erroneously conclude

that the model did not fit the data.20

To compare the effects of various time scales and spectra it is helpful to analyze a normalized version of
〈
θ 2
〉
: the noise-to-

signal standard deviation ratio,

f =

√
〈θ 2〉
στc

. (21)

Because a common goal of LGM reconstructions is estimating glacial differences from modern climate, we adopt as our

“signal” amplitude the expected anomaly στc between two mean intervals of length τx separated by a time τc, where τc = 21,00025

years.
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Figure 3. Temporal representativeness error in the time and frequency domains. Errors in representing a 4000-year mean by a 1000-

year mean are estimated by computing the difference θ ((a), thick black line) between a 4000-year (red line) and 1000-year (thin black line)

running mean of the NGRIP δ 18Oice record (grey). The time average (red line, (b)) of θ 2 (blue line) is an estimate (0.7, units of
(hδ 18O

)2)

of the temporal representativeness error variance. Large values in θ 2 correspond to time periods with increased variability, as diagnosed by

a wavelet analysis (d), particularly in the band between 2257 and 5298 year periods (grey lines). These periods correspond to 1/ν†
low and

1/ν†
high, the reciprocals of the lower and upper cutoff frequencies for the power transfer function (dark blue curve, (c)). The light blue line in

panel (c) indicates a power spectrum of the form ν−β with β = 1.53 derived by a least-squares fit to the NGRIP spectrum.

3.1 Analysis of errors by subsampling a high-resolution paleoclimate record

To study the sensitivities of TR errors to sampling time scales, we first compare different moving averages of a high-resolution

climate record, the North Greenland Ice Core Project (NGRIP; Andersen et al. (2004)) 50-year average time series of oxygen

isotope ratios (δ 18O) of ice. Smoothing this record with running means of length τx = 4000 and τy = 1000 yields time series

of target and observation values x and y (black and red lines, Figure 3a). Their difference is the error θ (thick black line, Fig.5

3a); the mean
〈
θ 2
〉

(red line, Figure 3b) of θ 2 (blue line, Fig. 3b) is 0.7
(hδ 18O

)2 and is our estimate of the error variance

(corresponding to a typical deviation of
√
〈θ 2〉= 0.8h). Errors in some time periods (including the LGM) are relatively small,

whereas other times (e.g. 80-70 kya) have larger errors and contribute more to
〈
θ 2
〉
. This time-variability in errors arises from

nonstationarities in the NGRIP oxygen isotope record and highlights limitations of the stationarity assumption in our analysis.

Because error amplitudes vary in time, there will be a tendency to overestimate errors during some epochs and underestimated10
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Figure 4. Error-to-signal variance fractions f (21) for estimates of time-mean values computed from the NGRIP record of Pleistocene oxygen

isotopes contoured as a two-dimensional function of target averaging interval τx and observation averaging interval τy. A value of 0.1 means

that TR error amplitudes are 10% of the “signal,” defined as the typical difference between two intervals separated by 21,000 years.

them in others. Nevertheless, we maintain that the estimate of
〈
θ 2
〉

is a reasonable characterization of typical error variance,

particularly in the general case where information about nonstationarity is not be available.

Taking the square root of
〈
θ 2
〉

and normalizing by στ0 , which is estimated by taking the square root of the lag τc autocovari-

ance estimated over the NGRIP record, gives us the noise-to-signal ratio f for ranges of τx and τy between 10 and 4000 years

(Figure 4). Errors are zero for τx = τy and increase monotonically away from those values. Absolute errors
〈
θ 2
〉

are symmetric5

(i.e., equal if τx and τy are interchanged, not shown), but asymmetry in f arises because στ0 depends on τx. TR errors can be up

to 30% of signal amplitudes, with the largest errors occurring when a large τx is represented by a small τy. Thus, in the absence

of archive smoothing, TR errors due to sampling procedures appear to contribute meaningfully to errors in estimates of past

time-mean climate quantities.

3.2 Dependence on signal spectrum and archive smoothing10

To investigate how TR errors depend on the spectral character of the climate processes being sampled, we shift our focus away

from observations and assume power-law spectra for r (t) having the form

|r̂ (ν)|2 ∝ ν−β , (22)

where |r̂ (ν)|2 is the power spectral density and β is the spectral slope (when plotted in log-log space, ν−β is a straight line

with slope −β ). Spectra consistent with a power-law description are common in climate (Wunsch, 2003). Here we consider15

spectral slopes β = 0.5 and β = 1.5, motivated by Huybers and Curry (2006), who fit paleoclimate records to spectral slopes
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between β = 0.3 and β = 1.6. Climatological spectral features that are not described by power laws, such as peaks due to

the deterministic astronomical forcing from annual cycle or Milankovich variability, can also contribute to errors (Pisias and

Mix, 1988; Wunsch, 2000) but are not considered specifically in these examples. All calculations are performed by numerical

integration of Equation (11) by global adaptive quadrature.

Figure 5 shows the dependence of the noise-to-signal ratio f on the target interval length τx and the sampling interval length5

τy, varying the archive smoothing time scale τa to be 0 and 1000 years, and varying the spectral slope β to be 0.5 and 1.5.

The close resemblance between Figure 5b (with β = 1.5) and the corresponding figure (4) computed in the time domain from

NGRIP, which has spectral slope of 1.53 (Figure 3c), is partly coincidental; analysis of synthetic records with spectral slopes

of 1.5 (not shown) reveals variability in f because of variations about the power law distribution in finite-length, stochastically

generated time series. Nevertheless, the agreement shows correspondence between time-domain and spectral approaches.10

In the cases with no archive smoothing (τa = 0, Figures 5a and 5b), errors are minimized for τx = τy and increase mono-

tonically away from those values. Errors are greatest for small values of τy and large values of τx, where TR error can dwarf

the relatively small signal amplitudes that are typical of 21,000-year differences in long-term time averages. As spectra be-

come more “red” (here, β = 1.5 rather than β = 0.5), the signal amplitude στc increases relative to
〈
θ 2
〉
, and f decreases, as

discussed also by Wunsch (1978) and Wunsch (2003). Introducing archive smoothing (Figures 5a and 5c, shown for the case15

of τa=1000), primarily affects f for τy < τa. In that regime, the largest values of f for small τy are reduced because archive

smoothing serves as an anti-aliasing filter. Moreover, values of τy that minimize f change to reflect contributions from over-

smoothing; for instance, when τx = 1000, τ̃y is close to zero. Observational averaging lengths τy that minimize f both with and

without smoothing are well predicted by Equation (19) (dotted lines, Figure 5).

3.3 Effects from known and unknown chronological offsets20

Offsets ∆ between observed and target intervals aliases frequencies greater than 1/2∆ onto the mean and modulates errors due

to τx, τy, and τa (Section 2.2, Appendix A). Figure 6 illustrates these effects by computing f for τx = 4000 years and varying

∆, τy, τa, and β . In all cases, errors grow monotonically away from the values ∆ = 0, τy = τx. For a given value of τy, the

sensitivity of f to ∆ (visible as a kink in contours, particularly in Figure 6a) increases for ∆ >
∣∣τx− τy

∣∣/2, when the observed

time period begins to fall outside the target interval. As before, errors are more pronounced for β = 0.5 than for β = 1.5, with25

errors larger than the signal for small values of τy at all values of ∆ for β = 0.5, reflecting the smaller amplitude of aliased

variability relative to στc . Archive smoothing reduces f for τy < τa; for τy > τa, archive smoothing has no qualitative effect in

the parameter range shown.

When the dating of a measurement is uncertain, a range of ∆ values may be possible, as specified by a probability distribution

function p(∆). To explore a scaling of the effects from chronological uncertainty on representational error, we assume that p(∆)30

is Gaussian about zero with standard deviation equal to the time scale σ∆. We then compute f as
√
〈〈θ 2〉〉/στ0 , where

〈〈
θ 2
〉〉

is given by numerical integration of Equation (18). In practice, p(∆) can adopt a range of shapes, and in some cases (e.g., from

radiocarbon ages; Telford et al. (2004)) can be non-Gaussian and/or bimodal, which would introduce additional time scales

and could qualitatively change results. Such errors can be investigated by integrating Equation (18) with a non-Gaussian p(∆).
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(c) (d)

Archive 
smoothing,
      = 1000 
years
τa

τ y
=τ

a

τ y
=τ

a

(a) (b)

(c) (d)

No archive 
smoothing

β = 0.5 β = 1.5

Figure 5. Error-to-signal fractions f for time-mean estimates plotted as a function of target averaging interval τx and observation averaging

interval τy. Climate signal spectra are approximated as power law functions of frequency (|r̂ (ν)|2 ∝ ν−β ) with spectral slopes β equal to

0.5 (left column) and 1.5 (right column). The top row corresponds to a case with no archive smoothing (τa = 0) while the bottom row

corresponds to a case where the signal r (t) is smoothed by a running mean over τa = 1000 years. Time scales were chosen to be relevant

to the problem of time-mean estimation at the Last Glacial Maximum, ca. 20 kya. Dotted lines show values of τ̃y derived to minimize error

estimated according to Equation (19).
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Figure 6. Same as Figure 5, but illustrating effects of offsets ∆ between target and observational intervals on noise-to-signal ratios. Error

fractions f are plotted as a function of the observational averaging interval τy and the standard deviation σ∆ of a Gaussian distribution of

observational offset centered on zero. In all cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial

Maximum. Values along the line τy = τx strictly reflect the influence of chronological offsets. The blue line in panel (a) denotes values for

which ∆ =
∣∣τx− τy

∣∣/2, indicating the maximum values of ∆ for which τx and τy completely overlap.
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Figure 7. Same as Figure 5, but illustrating effects of chronological uncertainties in observations on noise-to-signal ratios. Error fractions f

are plotted as a function of the observational averaging interval τy and the standard deviation σ∆ of a Gaussian distribution of time offsets

centered on zero. In all cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial Maximum. Values

along the line τy = τx strictly reflect the influence of chronological uncertainty, which is zero when the observational offset is exactly known

to be zero, (i.e., σ∆ = 0).

Expected errors f as a function of σ∆ and τy (Figure 7) are qualitatively similar to those for ∆ and τy (Figure 6), though

values are everywhere slightly reduced, and the transition in sensitivity to σ∆ across σ∆ =
∣∣τx− τy

∣∣/2 is less pronounced than

for the equivalent in Figure 6, as is expected given that a range of lags is possible for any nonzero σ∆. A consequence is that

TR error arising from a chronological offset that is unknown, with standard deviation N years, is similar to the error arising

from a known chronological offset of N years. This similarity holds in the presence of archive smoothing.5
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4 Extension to time series analysis

Paleoclimate time series are sequences of time-mean values. Just as sampling, archive smoothing, and time offsets can introduce

errors in estimates of time mean properties, so too do they introduce errors in time series. However, these errors differ from the

time mean case because, as discussed below, uniform time mean measurements are not ideal for constructing time series. Here

we adapt the TR machinery to analyze individual measurements in paleoclimate time series. We show that in the absence of5

archive smoothing, dense sampling (i.e., setting the averaging interval equal to the spacing between measurements) is a nearly

optimal approach to minimize TR errors.

The sampling theorem of Shannon (1949) states that sampling r (t) instantaneously (that is, with a very short averaging

interval) at times separated by a fixed time interval τs unambiguously preserves signal information only when r (t) does not

contain any spectral power at frequencies greater than 1/2τs (called the Nyquist frequency, νNyq). When this criterion is not10

met, the discrete signal is corrupted by aliasing, whereby variability in r (t) at frequencies greater than νNyq appears artificially

at lower frequencies in the discrete signal. To mitigate aliasing, one can either increase the sampling rate or apply a low-pass

“anti-aliasing” filter to r (t) to attenuate power at frequencies higher than νNyq. In the process of constructing a paleoclimate

time series, sampling time-mean values yields a moving average that serves as an anti-aliasing filter. Thus we expect sample

averaging procedures to affect aliasing errors in time series, as also discussed by von Albedyll et al. (2017).15

We will use Shannon’s theorem to obtain a frequency-domain expression for TR errors for individual time series measure-

ments. Our procedure is to 1) define local (in time) values of τ i
s and ν i

Nyq for the ith observation and 2) compute the expected

errors if an entire time series were sampled using those local properties. To do this, we make the assumption that the sampling

interval τ i
s is locally constant: that is, for the ith measurement yi taken at time t i, yi−1 was taken at time t i− τ i

s, and yi+1 was

taken at time t i + τ i
s. If the sampling interval changes rapidly, conclusions from this approach might not apply.20

Define the moving average time series associated with yi to be

yi (t) = Π
(
t,τ i

y
)
?Π
(
t,τ i

a
)
? r (t) (23)

where we have included a contribution from archive smoothing, so that its Fourier transform is

ŷi (ν) = Π̂
(
ν ,τ i

y
)
· Π̂
(
ν ,τ i

a
)
· r̂ (ν) . (24)

By Shannon’s theorem, an accurate discrete representation of r (t) results from sampling all frequencies in r (t) less than or25

equal to the local Nyquist frequency ν i
Nyq = 1/

(
2τ i

s
)
. As such, the target value xi for the ith measurement yi is the value of r (t)

sampled at t i after filtering r (t) to remove high-frequency variability. The Fourier transform of a time series of values of xi is

x̂i (ν) = G
(
ν ,τ i

s
)

r̂ (ν) (25)

where the “ideal” transfer function G(ν ,τs) is the piecewise constant Heaviside function

G(ν ,τs) =





1 ν < 1/(2τ i
s)

0 ν ≥ 1/
(
2τ i

s
) (26)30
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that is ideal in the sense that it eliminates variability at frequencies greater than ν i
Nyq = 1/

(
2τ i

s
)
. Then we define TR error at

the ith measurement to be

θ i = xi− yi. (27)

As in the previous section, we estimate the variance of θ i by taking the expected value as if the entire record had been sampled

using the local values τ i
s and τ i

y. Then, equivalent to (11),5

〈
θ i2〉=

1
τ0

∞∫

0

∣∣G
(
ν ,τ i

s
)
− Π̂

(
ν ,τ i

a
)
· Π̂
(
ν ,τ i

y
)∣∣2 |r̂ (ν)|2 dν . (28)

Similar to the time-mean case,
〈
θ i2
〉

is a weighted integral over the power density spectrum of r (t). Weights are largest

at frequencies between νNyq and either ν†
low (if τy > τs) or ν†

high (if τy < τs). Unlike in the mean estimation case, where TR

errors can be zero, nonzero error is unavoidable with uniform sampling because of differences between the shape of the sinc

function and the abrupt frequency cutoff specified by G
(
ν ,τ i

s
)
. Sampling a paleoclimate archive nonuniformly in time could10

better approximate the ideal filter and reduce errors, but this may not be practical given the many other sources of error in

paleoclimate records.

To demonstrate sensitivities to parameters we again compute noise-to-signal ratios. We take signal strength to be the esti-

mated standard deviation σ̃xi of the time series of xi (the ideally-sampled signal, defined in (25)), so that the noise-to-signal

ratio at the ith measurement is15

f i =

√
〈θ i2〉
σ̃xi

.

Because σ̃xi can grow as a function of time series length for power-law spectra, we choose 21,000 years as the period over

which to integrate signal variance, the approximate duration of the last deglaciation.

While the dependence of f i on τ i
s and τ i

y (Figure 8) is qualitatively similar to the dependence on τx and τy in the time mean

estimation case (Figure 5), there are some differences. First, as discussed above, errors are always 10% or more of signal

amplitudes because of errors arising from constructing a time series as a sequence of time mean values. Second, values of20

τy that minimize errors do not obey τy = τs, but are larger by a factor of roughly 1.2, suggesting that samples should ideally

span an interval slightly longer than the sampling interval. In practice, sampling densely (without space between observations)

seems to be a good approximation of this error minimizing strategy. For time series constructed from short time averages

spaced out by larger intervals in time, errors can be large relative to climate signals.

As stated above, these results hold for time series whose spacing and chronologies are not changing too rapidly and where25

the goal is to obtain a discrete representation of a continuous process. For other objectives, other sampling procedures may

be preferred. For instance, “burst sampling,” whereby rapid sequences of observations are taken at relatively long intervals,

is used in modern oceanographic procedures to estimate spectral nonstationarities in time (Emery and Thomson, 2014), and

unevenly spaced paleoclimate observations can be leveraged to give a range of frequency information using variogram ap-

proaches (Amrhein et al., 2015) or the Lomb-Scargle periodogram (e.g., Schulz and Stattegger, 1997). The danger of aliasing30
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Figure 8. Same as Figure 5, but illustrating the dependence of the error-to-signal standard deviation ratio for individual measurements in a

time series as a function of local time series spacing (τ i
s) and the observational averaging time interval τ i

y.
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is omnipresent, and necessitates careful consideration of the frequencies sampled by an observation and the frequencies the

observation is being used to constrain.

5 Discussion

This paper presents a framework for quantifying temporal representativeness (TR) errors in paleoclimate, broadly defined as

resulting when one time average is represented by another. A simple model illustrates interacting effects from record sampling5

procedures, chronological errors, and the spectral properties of the climate process being sampled.

Uncertainty quantification is important for interpreting records, comparing them to other data, and incorporating them into

reconstructions using inverse modeling or data assimilation approaches. For instance, uncertainties play a crucial role in deter-

mining how observations to influence least-squares reconstructions of past climate: highly uncertain observations carry little

weight, while those with low uncertainty have more power in dictating reconstruction features. In data intercomparisons, differ-10

ing sampling strategies could contribute to disagreement among paleoclimate records obtained from different archives, while

sampling errors could be correlated measurements obtained from a single set of samples; the combination of these effects could

lead to artificially better agreement of properties within than between archives.

We find that for some cases of sampling time scales, archive smoothing, and climate spectra, TR errors are non-negligible,

with noise-to-signal ratios greater than 1 in some cases where the observational interval τy is smaller than the target interval15

τx. TR errors result from aliasing climate variability onto time mean observations and can be mitigated to some degree by

sampling procedures and by archive smoothing, both of which act as anti-aliasing filters. However, archive smoothing can also

destroy information about climate variability, and the combined effects of sampling and smoothing can over-smooth a record

and lead to increased errors. The effects from mismatches between τx and τy have similar amplitudes to uncertainties from

chronological errors in the parameter space considered. Moreover, chronological and sampling errors interact, for instance in20

the way that errors grow more quickly as a function of chronological uncertainty amplitude when that uncertainty is likely to

place a measurement outside of a target interval (Figure 7). Given that these error variances were estimated using parameters

representative of the LGM, it seems possible that TR errors may explain some of the disagreement among proxy measurements

within that time period (e.g., MARGO Project Members, 2009; Caley et al., 2014), though nonstationarities may cause TR

errors to be overestimated for climate intervals like the LGM that appear to be quiescent relative to other time periods. Impor-25

tantly, we do not claim that TR errors are the largest source of error for any particular proxy type or reconstruction problem,

though they may be in some cases. The tools presented can be used to assess likely error amplitudes.

Though not the principal goal, these analyses provide a basis for sampling practices that minimize errors, for instance for

avoiding oversmoothing through the combined effects of sampling and archive smoothing (Section 2.2 and Equation 19). When

constructing paleoclimate time series, it is important to bear in mind not just the Nyquist frequency but the role of sampling time30

scales as an anti-aliasing filter; these considerations point to dense sampling (i.e., without space between contiguous samples) in

order to minimize error in the absence of effects from archive smoothing (Section 4). However, many practical considerations

motivate paleoclimate sampling strategies, and may outweigh the concerns described here. For instance, records sampled
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densely cannot be used as a starting point for subsequently constructing higher-resolution records. Moreover, preservation of

natural archives for subsequent analyses is important for reproducibility and for sharing resources between laboratories, and

may be complicated by continuous sampling.

To some extent, the simple model for TR error can be generalized to more complex scenarios. If samples are nonuniform

in time – for instance, due to large changes in chronology, or because material was sampled using a syringe or drill bit with5

a circular projection onto an archive – then the sinc function in (11) can be replaced by Fourier transforms of the relevant

functions. Similarly, a more complex pattern of archive smoothing can be accommodated by substituting a different smoothing

kernel. Non-Gaussian age uncertainties can be incorporated by substituting a different distribution in (18). Changes in sampling

properties through time (as might arise from non-constant chronologies or sampling procedures) can readily be accommodated

because all computations are performed on a point-by-point basis. If sampling or smoothing time scales are unknown, a similar10

procedure can be adopted as was used for ∆ in (18), whereby a second integration is performed to compute the expectation

over an estimated probability distribution of one or more time scales.

Several caveats apply to the uncertainty estimates. First, the model neglects some processes that may be important. For

instance, we assume that proxy archives store information continuously, thereby neglecting errors due to small numbers of

foraminifera in sediment cores or particle size sorting in diagenesis. Second, nonstationarity in record spectra leads to time15

variations in errors, as illustrated in Figure 3. Third, by estimating errors for individual measurements, we ignore error co-

variances in time, which can result from chronologies constructed by interpolating ages between tie points; more complete

characterizations could be achieved by Monte Carlo sampling of age model uncertainty (Anchukaitis and Tierney, 2013). More

broadly, there is clear need for comprehensive approaches in uncertainty quantification that can reveal interactions among the

various sources of uncertainty in paleoclimate records. Forward proxy system models (e.g., Evans et al., 2013; Dee et al.,20

2015; Dolman and Laepple, 2018) are a promising way forward to assess uncertainties holistically.

Aliasing is not limited to the time domain, and similar procedures may be useful for quantifying errors due to spatial

representativeness by considering how well proxy records can constrain the regional and larger scales typically of interest

in paleoclimatology. An analogous problem is addressed in the modern ocean by Forget and Wunsch (2007), and Zhao et al.

(2018) considered spatial representativeness in choosing how to weight deglacial radiocarbon time series in spatial bin averages.25

A challenge of any such approach is that the spatial averaging functions (analogous to our τy, but occupying three spatial

dimensions) represented by proxy records are often not well known; Van Sebille et al. (2015), for instance, explores how

ocean advection determines three-dimensional patterns represented by sediment core observations. Because spatial patterns

and time scales of ocean and climate variability are linked, it may ultimately be necessary to consider the full, four-dimensional

spatiotemporal aliasing problem.30

The hope is that these procedures may prove useful for first-order practical uncertainty quantification, and scripts and func-

tions used in making figures are provided (see link in the Acknowledgements). A challenge is estimating the signal spectrum

|r̂|2, which itself can be affected by aliasing (Kirchner, 2005). One approach is to use spectra from other records that are more

highly-resolved or were sampled densely, e.g. from a sediment core at an adjacent site, or a record believed to record similar

climate variability. Alternately, measurements of archive properties that can be made cheaply and at high resolution – such as35
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magnetic susceptibility, wet bulk density, and other proxy properties that are routinely made on sediment cores – could prove

useful for estimating |r̂|2 if those properties are related linearly to r (t) (Herbert and Mayer, 1991; Wunsch and Gunn, 2003).

Another challenge is that time scales that we have shown affect errors are often not published alongside paleoclimate datasets,

thus turning systematic errors (where parameters like τy are known) into stochastic errors because a range of possible values

must be explored. Publishing all available information about sampling practices, age model construction, and assessments of5

archive smoothing will greatly aid uncertainty quantification efforts.

Appendix A: Expressing temporal representativeness errors in the frequency domain

The Fourier transform will be written using the operator F and by a hat, and denoting frequency by ν ,

F (x(t))≡ x̂(ν) =
∞∫

−∞

x(t)e−2πiνtdt.

Parseval’s theorem states that the integral of a squared quantity in the time domain is equal to the integral of the squared

amplitude of the Fourier transform of that quantity, so that we can write (7) as10

〈
θ 2〉=

1
τ0

∞∫

−∞

(m(t,τx)−m(t +∆t,τy))2dt (A1)

=
1
τ0

∞∫

0

∣∣F [m(t,τx)−m(t +∆t,τy)]
∣∣2dν . (A2)

By the Fourier shift theorem,

F [m(t +∆,τy)] = e−2πiν∆F [m(t,τy)] . (A3)

Then, by the linearity of the Fourier transform,

〈
θ 2〉=

1
τ0

∞∫

0

∣∣∣m̂(ν ,τy)− e−2πiν∆m̂(ν ,τx)
∣∣∣2dν . (A4)

By the convolution theorem, convolution in the time domain is equivalent to multiplication in the frequency domain, and vice15

versa. Thus, the Fourier transform of a time mean as defined in (3) is

m̂(ν ,τ) = F [Π(t,τ)? r (t)] (A5)

= Π̂(ν ,τ) · r̂ (ν) . (A6)

Substituting into (A4) yields

〈
θ 2〉=

1
τ0

∞∫

0

∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τy)
∣∣∣
2
|r̂ (ν)|2 dν . (A7)

We can represent smoothing prior to sampling by substituting a new climate signal, r (t), with a running mean applied,

r′ (t) = Π(t,τa)? r (t) .
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Substituting r̂′ (ν) into (A7) and applying the convolution theorem gives

〈
θ 2〉=

1
τ0

∞∫

0

∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τa) · Π̂(ν ,τy)
∣∣∣
2
|r̂ (ν)|2 dν . (A8)

To isolate errors from a time offset ∆, consider the limit where τx, τy, and τa approach zero, corresponding to instantaneous

observations in time, so that
〈
θ 2
〉

approaches

〈
θ 2〉=

1
τ0

∞∫

0

∣∣∣1− e−2πiν∆
∣∣∣
2
|r̂ (ν)|2 dν . (A9)

Expanding
∣∣1− e−2πiν∆

∣∣2 and simplifying gives5

〈
θ 2〉=

1
τ0

∞∫

0

(2−2cos(2πν∆)) |r̂ (ν)|2 dν (A10)

so that the power transfer function is H = 2− 2cos(2πν∆) and the expected error due to ∆ is a cosinusoidally-weighted

function of the signal power spectrum. H takes a minimum value of 0 at frequencies

νmin = 0,
1
∆

,
2
∆

, . . .
n
∆

for integer values of n; at these frequencies, measurements spaced by ∆ in time are in phase and are therefore exactly correlated

(Figure A1a). The weights take a maximum value of 4 at frequencies

νmax =
1

2∆
,

3
2∆

,
5

2∆
, . . .

n
∆

+
1

2∆

where measurements separated by ∆ are always exactly out of phase (Figure A1b). At those frequencies, the underlying signal10

r (t) is projected twofold onto the error, so that its variance contribution is multiplied fourfold. These variations in frequency

contributions to error modulate effects from smoothing and sampling timescales, as illustrated in Figure 2b.
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Figure A1. Illustration of the frequency dependence of errors in representing an instantaneous measurement of a process r (t) at a time t by

another measurement r (t +∆). Each line represents a different frequency component of r (t), grey vertical lines represent sampling times,

and colored circles represent values of components at those times. At frequencies ν = n
∆ for n = 0,1,2, . . . , (a), the Fourier components of

x(t) will be exactly in phase when sampled at a time lag ∆, so these components do not contribute to the error variance
〈
(r (t)− r (t +∆))2

〉
.

By contrast, at frequencies ν = n
∆ + 1

2∆ (b), the Fourier components are exactly out of phase, so these components tend to contribute most to

the error variance. At intermediate frequencies, contributions lie between the two extremes, leading to a cosine function of error contribution

as a function of frequency (Equation A10).
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