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Abstract. Ongoing work in paleoclimate reconstruction prioritizes understanding the origins and magnitudes of errors that arise

when comparing models and data. One class of such errors arises from assumptions of proxy temporal representativeness (TR),

i.e. how accurately proxy measurements represent climate variables at particular times and time intervals. Here we consider

effects arising when 1) the time interval over which data average and the climate interval of interest have different durations, 2)

those intervals are offset from one another in time (including when those offsets are unknown due to chronological uncertainty),5

and 3) the paleoclimate archive has been smoothed in time prior to sampling. Because all proxy measurements are time averages

of one sort or another, and it is challenging to tailor proxy measurements to precise time intervals, such errors are expected

to be common in model-data and data-data comparisons, but how large and prevalent they are is unclear. This work provides

a first-order quantification of temporal representativity errors and to studies the interacting effects of sampling procedures,

archive smoothing, chronological offsets and errors (e.g. arising from radiocarbon dating), and the spectral character of the10

climate process being sampled.

Experiments with paleoclimate observations and synthetic time series reveals that TR errors can be large relative to paleocli-

mate signals of interest, particularly when the time duration sampled by observations is very large or small relative to the target

time duration. Archive smoothing can reduce sampling errors by acting as an anti-aliasing filter, but destroys high-frequency

climate information. The contribution from stochastic chronological errors is qualitatively similar to that when an observa-15

tion has a fixed time offset from the target. An extension of the approach to paleoclimate time series, which are sequences

of time-average values, shows that measurement intervals shorter than the spacing between samples lead to errors, absent

compensating effects from archive smoothing. Nonstationarity in time series, sampling procedures, and archive smoothing

can lead to changes in TR errors in time. Including these sources of uncertainty will improve accuracy in model-data com-

parisons and data comparisons and syntheses. Moreover, because sampling procedures emerge as important parameters in20

uncertainty quantification, reporting salient information about how records are processed and assessments of archive smooth-

ing and chronological uncertainties alongside published data is important to be able to use records to their maximum potential

in paleoclimate reconstruction and data assimilation.
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1 Introduction

Paleoclimate records provide important information about the variability, extremes, and sensitivity of Earth’s climate to green-

house gases on time scales longer than the instrumental period. As the number of published paleoclimate records has grown

and the sophistication of numerical model representations of past climates has improved, it has become increasingly important

to understand the uncertainty with which paleoclimate observations represent climate variables so that they can be compared5

to one another and to model output. Additionally, quantifying uncertainty is important for ongoing efforts to assimilate paleo-

climate data with numerical climate models (e.g., Hakim et al., 2016; Amrhein et al., 2018).

Paleoclimate records can have errors arising from many different sources: biological effects (e.g., Elderfield et al., 2002;

Adkins et al., 2003), aliasing onto seasonal cycles (Wunsch, 2000; Fairchild et al., 2006; Dolman and Laepple, 2018), spatial

representativeness (Van Sebille et al., 2015), proxy-climate calibrations (e.g., Tierney and Tingley, 2014), and instrument10

errors, to name a few. This paper focuses on errors from temporal representativeness (TR), which we define as the degree to

which a measurement averaging over one time interval can be used to represent a second, target time interval. For instance, in

a data assimilation procedure that fits a model to observations at every year, it is important to know the uncertainty associated

with relating a decadal-average proxy observation to an annual-average target interval. Furthermore, computing a mean is

often the implicit goal of binning procedures that combine observations from within a target time period such as a marine15

isotope stage, and we expect those observations to have errors that vary with their averaging duration and offsets from the

target. Importantly, the term “error” is not meant to connote a procedural error on behalf of a collector or user of observations:

Given the sparsity of data and the nature of geophysical time series, there is often a good rationale to use one time period to

approximate another that is adjacent or has a different duration. Our goal is to understand the uncertainty arising in such a

representation in a general framework.20

Much of the previous study of errors arising from sampling in time has focused on aliasing, whereby variability at one

frequency in a climate process appears at a different frequency in discrete samples of that process. Pisias and Mix (1988)

described consequences of aliasing in the study of deterministic peaks in climate spectra due to Milankovich forcing. Wunsch

and Gunn (2003) described criteria for choosing sample spacing so as not to alias low-frequency variability in sediment cores,

and Wunsch (2000) demonstrated how aliasing can lead to spurious spectral peaks in ice core records. Beer et al. (2012)25

and von Albedyll et al. (2017) describe how running means can reduce aliasing of solar cycle variability in ice core records. In

paleoclimate, measurements are often unevenly spaced in time due to changes in archive deposition rates; Jones (1972) showed

that aliasing is present and even exacerbated in unevenly-sampled records relative to regularly sampled ones. Anderson (2001)

and McGee et al. (2013) describe how bioturbation and other diagenetic processes smooth records in time and may reduce

aliasing errors.30

A second area of previous focus stems from chronological uncertainties, whereby times assigned to measurements may

be biased or uncertain. In some cases, such as for radiocarbon dating, estimates of these uncertainties are available from

Bayesian approaches that incorporate sampling procedures (Buck, 2004; Buck and Millard, 2004; Bronk Ramsey, 2009);

practices for incorporating this information into model-data or data-data comparisons vary, and developing tools for analyzing
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chronological uncertainty is an active area of research. Huybers and Wunsch (2004) include the effect of uncertainties in tie

points in order to align multiple records of Pleistocene oxygen isotopes, and Haam and Huybers (2010) developed tools for

estimating the statistics of time-uncertain series. The effect of time uncertainty on estimates of signal spectra is modest in some

cases (Rhines and Huybers, 2011), in part because time uncertainty acts to smooth high-frequency variability when computed

as an expectation over a record (Moore and Thomson, 1991).5

This paper synthesizes effects contributing to TR errors in an analytical model and explores their amplitudes and dependence

on signal spectra and sampling time scales. Extending results from time-mean measurements to time series demonstrates how

sampling practices can lead to aliasing errors when records are not sampled densely, e.g. when an ocean sediment core is

not sampled continuously along its accumulation axis. While we do not claim that TR error is the most important source of

uncertainty in paleoclimate records, it does appear to be large enough to affect results in some cases. Moreover, this work is a10

step towards reducing the number of “unknown unknowns” in paleoclimate reconstruction.

2 Origins of temporal representativeness error

Our focus is first on errors arising when a mean value computed over one time period is used to represent another time period

– for instance, when a time average over 20-19 kya (thousand years ago) is used to represent an average over 23-19 kya, the

nominal timing of the Last Glacial Maximum (Clark et al., 2012). We define the TR error θ as the difference between x and y15

θ = x− y. (1)

where y is affected by one or more type of TR error. As illustrated using a synthetic time series in Figure 1, our focus is on TR

errors arising when:

– The time interval over which an observation averages in time (τy) has a different length from that of the targeted time

interval (τx; Figure 1a).

– The time interval τy is offset in time from τx by a time ∆ (Figure 1b). These offsets can be either known or, in the presence20

of chronological uncertainty of observations, stochastic and unknown.

– The paleoclimate archive was smoothed prior to sampling, whether by by bioturbation, diagenesis, residence times in

karst systems upstream of speleothems (Fairchild et al., 2006), or other effects. In order to perform a first-order explo-

ration of smoothing effects, we represent archive smoothing moving average over a time scale τa. Figure 1c illustrates

how smoothing introduces errors for the case where τa = 2τx.25

Visual inspection of Figure 1 yields some intuitive expectations. As the observational time interval τy grows small relative to

τx, one expects TR errors to grow as the observation “feels” more of the variability at high frequencies. TR errors could also

be expected to grow as a measurement is increasingly offset from the target in time. But interactions between different types of

errors complicate the picture: for instance, in some cases a measurement interval that is short relative to τx might have smaller
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Figure 1. Several factors can contribute to temporal representativeness errors, defined here as the difference θ between a true time-average

paleoclimate quantity x and a measurement y that averages over a different time interval. These effects are illustrated using a synthetic

autoregressive time series. In each panel, the true quantity x is the same. Panel (a) shows the difference when the y averages over a time

duration τy that is 5 times shorter than the averaging interval τx of the target value. Panel (b) shows the error when the observed and target

averaging intervals are the same, but the observation is centered on a different value in time. Additional uncertainties, not shown here

but discussed in the text, arise if the time offset is a stochastic random variable, as can occur e.g. with chronological uncertainties from

radiocarbon dating. Panel (c) illustrates effects when the observation spans the correct time interval, but when the paleoclimate archive being

sampled stores a smoothed version of the true signal; here that smoothing has a timescale of τa = 2τx. These errors are merely examples and

are not meant to argue, e.g., that offset errors are always greater than errors from different averaging periods.
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error if it is also offset in time, or if it samples an archive that stores a smoothed version of the climate signal. Subsequent

sections examine interactions between various TR error sources.

This list is not exhaustive and neglects, for instance, effects from small numbers of foraminifera in sediment core records

and other errors that are inherited from the construction of r (t) from proxy observations. To isolate TR errors we assume that

observations directly sample the true climate process, r (t). This approach is intended to be complementary to proxy system5

models (PSMs; e.g., Evans et al. (2013)) that relate proxy quantities to climate variables (“forward operators” in the language

of data assimilation). The procedures described may be used to estimate TR uncertainty when PSMs do not; when they do, the

model can provide a theoretical grounding for understanding those results. Variances from multiple error sources can be added

together under the approximations that they are independent and Gaussian. When these assumptions fail, more holistic forward

modeling of errors in PSMs may be necessary.10

3 Estimating temporal representativeness error

Because in paleoclimatology we do not have complete knowledge of the underlying climate signal r(t) (it is what we are trying

to sample), it is impossible to infer what the TR error is for each measurement as done in the synthetic example (Figure 1).

Instead, our aim is to determine typical values for errors, which are important for data assimilation and for comparing models

and observations and observations to one another. We will characterize TR error θ by estimating its variance,
〈
(θ −〈θ〉)2

〉
,15

where angle brackets denote statistical expectation. To do this, we approximate r (t) as being weakly statistically stationary,

meaning that its mean and variance do not change in time; caveats surrounding this assumption are addressed later in the paper.

Under the weak stationarity assumption, the mean error 〈θ〉 is zero, and we take the expectation by evaluating θ 2 at all the

times in r (t) to compute the variance,

〈
θ

2〉= 1
τ0

t f∫
t0

(x− y)2dt, (2)20

where t0 and t f are the initial and final times in r (t), and τ0 = t f − t0. Intuitively, we are estimating the error in representing x

by y (at a single time) as the time-mean squared difference of running means of r (t) (over all times). In practice, though we do

not know r (t), knowledge of its statistics is adequate to estimate
〈
θ 2
〉
.

Representing TR error in the frequency domain (Appendix A) emerges as an intuitive way to describe errors that also

provides closed-form expressions that can be readily integrated to explore the effects of different sampling and time series25

parameters. A basic result (see Equation A13) is that in the frequency domain, TR errors are represented as

〈
θ

2〉= 1
τ0

∞∫
0

H (ν ,τx,τy,τa,∆) |r̂ (ν)|2 dν . (3)

where ν denotes frequency, H is a so-called transfer function, and |r̂ (ν)|2 is the power spectral density of the true signal r(t). In

effect, the error variance is a weighted sum of the power at different frequencies in r(t), where the weights in frequency space

(given by H) depend on how the paleoclimate record has been sampled and smoothed. This behavior is typical of aliasing,30
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where variance in the signal at one frequency appears erroneously in a measurement at a different frequency (in this case, at

the zero frequency, which is the time mean).

(b)

(a)

Figure 2. The power transfer function H (Equation 3) illustrates the dependence of temporal representativeness errors on frequencies in the

climate signal and on sampling time scales. In the case where the offset ∆ between measurement and target is 0, H is a squared difference

of sinc functions sinc(τν) (A13), illustrated here for τ = 100 years and τ = 1000 years. (b) Transfer functions for three different values of

the time offset ∆. Grey bars indicate the 1/200 and 1/1300 yr−1 frequencies, which approximately bound the frequencies contributing to TR

errors in the ∆ = 0 case.

While the details are left to the appendix, it is noteworthy that in many practical cases, TR errors can be straightforwardly

attributed to signal variability within a particular frequency band. This frequency-band behavior emerges because H is a squared

difference of sinc functions (Figure 2a), which has a bump-like shape (Figure 2b). For instance, if a centennial mean is used to5

represent a millennial mean, in the absence of archive smoothing, the expected error variance is roughly equal to the variance

in r (t) at periods between 200 and 1300 years; the error is the same if a centennial mean is used to represent a decadal mean.

Thus the difference between the sample and target averaging intervals (τy and τx) sets the frequency band that is aliased onto

the mean. These effects are modulated in the presence of archive smoothing, and when there is a time offset in the measurement

relative to the target, additional variability is aliased onto errors.10
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4 Illustrating TR error quantification at the Last Glacial Maximum by sampling a high-resolution paleoclimate

archive

Here we explore the procedure for estimating TR errors described in the previous section in the context of estimating mean

properties at the Last Glacial Maximum (LGM), the period roughly 20,000 years ago that is associated with the greatest land

ice extent during the last glacial period. Following MARGO Project Members (2009) and others, LGM target quantities are5

defined to be estimates of time means over the 4000-year-long period from 23,000 to 19,000 years ago (23-19 kya),

xLGM =
1

4000

−19,000∫
−23,000

r (t)dt.

We will consider TR errors arising from representing xLGM by an observed 1000-year time-mean value that is centered on 21

kya,

yLGM =
1

1000

−21,500∫
−20,500

r (t)dt. (4)

Qualitatively, errors from this representation have the form illustrated in Figure 1a. Such an estimate – dated to within the LGM,10

but averaging over only a subset – could reasonably be included in a binned-average compilation of LGM data. However,

because statistically robust averaging procedures must downweight uncertain observations according to observational error,

including TR errors, is important to avoid biasing any binned averages. Similarly, were we to compare yLGM to an LGM-mean

estimate of r (t) from a model without taking TR errors into account, we might erroneously conclude that the model did not fit

the data.15

How large is the TR error in representing xLGM by yLGM? We will illustrate the procedure proposed in Section 3 by taking a

high-resolution climate record to be a true climate signal r(t) and sampling it at longer time averages than the record spacing.

Here we will use the the North Greenland Ice Core Project (NGRIP; Andersen et al. (2004)) 50-year average time series of

oxygen isotope ratios (δ 18O). Equation 2 states that TR error variance is equal to the squared difference between running

means of r(t), averaged over the record length. Smoothing the NGRIP record with running means of length τx = 4000 and20

τy = 1000 yields time series of potential target and observation values x and y (black and red lines, Figure 3a). Their difference

is the error θ (thick black line, 3a), and their squared difference is the blue line in 3b. The time mean
〈
θ 2
〉

(red line, Figure 3b)

is 0.7
(
hδ 18O

)2 and is the estimate of the error variance.

A prominent feature in Figure 3b is the time variability of TR error: in some time periods (including the LGM) errors are

relatively small, whereas they are markedly larger at, e.g., 80-70 kya. This time-variability in errors arises from nonstationarities25

in the NGRIP oxygen isotope record. The transfer function (blue line, 3c), shows that for our choices of τx and τy, variability

in the frequency band lying between roughly 2200 and 5300 year periods is responsible for TR errors. A wavelet analysis

(Figure 3d) shows that increased variability in this band is coincident with increases in TR error variance: note, e.g., the the

correspondence of high wavelet values in that band near -75000 years with contemporaneous large values in the blue line in 3b.

Evidently, in the presence of nonstationary climate variability, TR errors can vary in time. They may also vary due to changes30
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in sampling procedures over the course of constructing a time series, as discussed in Section 6. Observations of intervals with

less variability in the TR error frequency band (e.g., the LGM) will be less susceptible to TR errors, an additional quantitative

justification for the long-held process of focusing study on time-means of periods with relatively less variability.

Figure 4. Error-to-signal variance fractions f (Equation 5) for estimates of time-mean values computed from the NGRIP record of Pleistocene

oxygen isotopes contoured as a function of target averaging interval τx and observation averaging interval τy. A value of 0.1 means that TR

error amplitudes are 10% of the “signal,” which defined as the typical difference between two time averages over durations τx separated by

21,000 years.

Next, we will extend our analysis of NGRIP to cover a range of different values of τx and τy. To compare the NGRIP results

to synthetic time series in the following sections with arbitrary units, we will analyze the unitless noise-to-signal standard5

deviation ratio,

f =

√
〈θ 2〉
σ

. (5)

Because one motivation of studying the LGM is inferring differences from modern climate, we adopt as our “signal” amplitude

the typical anomaly σ between two mean intervals of length τx separated by = 21,000. This quantity is estimated from the

NGRIP time series for each value of τx.10

Recall that for τx = 4000 and τy = 1000, the estimated error variance was 0.7
(
hδ 18O

)2. Figure 4 contours the results of

the same calculation (now expressed as the noise-to-signal ratio f ) for every combination of τx and τy between 10 and 4000

years. TR errors depend jointly on values of τx and τy. Errors are zero for τx = τy (corresponding to an ideal sampling scheme)

and increase monotonically away from those values. Errors are greatest (up to 30% of signal amplitudes) for small values of

τy relative to τx, where TR error dwarfs the relatively small signal amplitudes that are typical of 21,000-year differences in15

9



long-term time averages1. Subsequent sections extend this analysis to a broader set of sampling parameters (including archive

smoothing and time offsets) as well as records with different spectral characteristics.

5 Exploring interactions between sampling parameters and signal spectra

The succinct expression of TR errors in terms of power spectra (3) is a clue that the spectral character of paleoclimate processes

are an important factor for the amplitude of TR errors. To investigate how errors depend on the spectrum of r(t), we will shift5

our focus away from observations and consider climate processes with power-law spectra, i.e. those whose power spectral

densities |r̂ (ν)|2 have the form

|r̂ (ν)|2 ∝ ν
−β , (6)

where β is termed the spectral slope (when plotted in log-log space, ν−β is a straight line with slope −β ). We choose this

idealized form because spectra consistent with a power-law description are common in climate (Wunsch, 2003). White noise,10

which partitions variance equally across frequencies, has a spectral slope of 0; signals with a steeper slope (larger β ) have

a larger fraction of their variance originating from low-frequency variability. Here we consider spectral slopes β = 0.5 and

β = 1.5, motivated by Huybers and Curry (2006), who fit paleoclimate records to spectral slopes between β = 0.3 and β = 1.6.

Climatological spectral features that are not described by power laws, such as peaks due to deterministic astronomical forcing

from annual or Milankovich variability, also contribute to errors (Pisias and Mix, 1988; Wunsch, 2000) but are not considered15

specifically in these examples. All calculations are performed by numerical integration of Equation (A13) by global adaptive

quadrature.

5.1 Effects from archive smoothing and spectra

Similar to Figure 4, Figure 5 contours the noise-to-signal ratio f as a function of τx and τy, but now for four cases spanning

two values of the archive smoothing time scale τa (0 and 1000 years) and two values of spectral slope β . Signals with steeper20

spectral slopes (β = 1.5 rather than β = 0.5), show smaller f values because TR errors, which originate at relatively high

frequencies (Figure 2), are smaller relative to the greater amount of low-frequency variability, as discussed also by Wunsch

(1978) and Wunsch (2003). The close resemblance between Figure 5b the equivalent figure computed from NGRIP (4), which

has spectral slope of 1.53 (Figure 3c), is partly coincidental; analysis of synthetic records with spectral slopes of 1.5 (not

shown) reveals variability in f because of variations about the power law distribution in finite-length, stochastically generated25

time series, of which NGRIP is arguably one realization. Nevertheless, the agreement shows correspondence between results

from paleoclimate data and our idealized approach.

Dependencies on τx and τy change when we include archive smoothing (Figures 5a and 5; schematized in Figure 1a and

1c). These effects are evident primarily for τy < τa. In that “smoothed” regime, the largest values of f for small τy are reduced

because archive smoothing removes some of the high-frequency variability that would otherwise be felt by observations and30

1Error variances are equal if τx and τy are interchanged, but asymmetry in f arises because σ depends on τx.
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Figure 5. Error-to-signal fractions f for time-mean estimates plotted as a function of target averaging interval τx and observation averaging

interval τy. Climate signal spectra are approximated as power law functions of frequency (|r̂ (ν)|2 ∝ ν−β ) with spectral slopes β equal to

0.5 (left column) and 1.5 (right column). The top row corresponds to a case with no archive smoothing (τa = 0) while the bottom row

corresponds to a case where the signal r (t) is smoothed by a running mean over τa = 1000 years. Values to the left of the bold line at τy = τa

lie in the “smoothed regime” where archive smoothing qualitatively affects results. Time scales were chosen to be relevant to the problem of

time-mean estimation at the Last Glacial Maximum, ca. 20 kya. Dotted lines show values of τ̃y derived to minimize error estimated according

to Equation (A20).
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erroneously aliased onto the mean. Another effect is that τy = τx no longer minimizes f everywhere; in the smoothed regime,

smaller values of τy lead to reduced TR error. This is because archive smoothing already provides a measure of time averaging;

so that when τx = 1000, the value of τy that minimizes error is close to zero, because anything longer would be “oversmoothing”

the record and effectively giving a longer time average than τx. Archive smoothing also reduces the sensitivity of errors to the

choice of τy for τy < τa. Finally, the presence of smoothing means that arbitrarily short choices of τx can no longer be resolved5

without error, as evidenced by the monotonic growth of error as τx decreases from τa.

To the extent that these simple experiments reflect actual paleoclimate sampling procedures, one could attempt to sample

time-mean intervals to avoid TR errors. In the absence of archive sampling, the (trivial) result is that τy should be equal to

τx. But the danger of oversmoothing means that this rule is not always appropriate for τa 6= 0. Appendix A derives (A20) an

approximate expression for the error-minimizing value, τ̃y =
√

τ2
x − τ2

a , that is a function of both the target interval length and10

smoothing time scale. These values (dotted lines, Figure 5) are in good qualitative agreement with minimum TR error values.

5.2 Effects from known time offsets

Having explored how choices of τx and τy contribute to TR errors, we next illustrate effects from chronological offsets when

∆ 6= 0 (schematized in 1b). Motivated by the LGM time scale, we focus again on the case where τx is fixed to 4000 years

and integrate A13 varying τy between 10 and 6000 years and ∆ between 10 and 4000 years for values of β = (0.5,1.5) and15

τa = (0,1000).

For all values of τa and β , errors grow monotonically away from the values ∆ = 0, τy = τx, which corresponds to the case

with no TR error2 (Figure 6). As in the previous section, a “smoothed regime” is evident for τy ≤ τa across all values of

∆ shown: because archive smoothing damps variability in time, the errors from shifting an observation relative to the target

become less severe. Another qualitative difference emerges for values of ∆ that are greater or less than
∣∣τx− τy

∣∣/2 (blue line,20

Figure 6a and 6c). This boundary designates when the observed time period is sufficiently offset that it begins to fall outside

the target interval; at that point, errors grow rapidly as ∆ increases. As before, errors are more pronounced for β = 0.5 than for

β = 1.5, with errors larger than the signal ( f > 1) for small values of τy at all values of ∆ for β = 0.5.

5.3 Effects from probabilistic time offsets

When the dating of a measurement is uncertain, a range of ∆ values may be possible, as specified by a probability distribution25

function p(∆). To explore effects from chronological uncertainty, we assume that p(∆) is Gaussian about zero with standard

deviation equal to the time scale σ∆. We include this uncertainty in TR error variance by taking a second expectation (denoted

by 〈〉
∆

, in addition to the time expectation in Equation 2) to give

〈〈
θ

2〉〉
∆
=

∞∫
−∞

p(∆)
〈
θ

2〉d∆. (7)

2A small amount of oversmoothing is present at τy = τx in the τa = 1000 case, but is not qualitatively important.
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(c) (d)

No archive 
smoothing
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smoothing,
      = 1000 
years

β = 0.5 β = 1.5
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τ y
=τ
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=τ

a
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x

τ y
=τ

a

τ y
=τ

x
τ y

=τ
x

Δ =
τx − τy /2

Figure 6. Same as Figure 5, but illustrating effects of offsets ∆ between target and observational intervals on noise-to-signal ratios. Error

fractions f are plotted as a function of the observational averaging interval τy and the standard deviation σ∆ of a Gaussian distribution of

observational offset centered on zero. In all cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial

Maximum. Values along the line τy = τx strictly reflect the influence of chronological offsets. The blue line in panel (a) denotes values for

which ∆ =
∣∣τx− τy

∣∣/2, indicating the maximum values of ∆ for which τx and τy completely overlap.
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Figure 7. Same as Figure 5, but illustrating effects of chronological uncertainties in observations on noise-to-signal ratios. Error fractions f

are plotted as a function of the observational averaging interval τy and the standard deviation σ∆ of a Gaussian distribution of time offsets

centered on zero. In all cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial Maximum. Values

along the line τy = τx strictly reflect the influence of chronological uncertainty, which is zero when the observational offset is exactly known

to be zero, (i.e., σ∆ = 0).
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In practice, p(∆) can be multimodal or otherwise non-Gaussian (e.g., from radiocarbon ages; Telford et al. (2004)) which could

qualitatively change results. While not explored here, such errors can be investigated by integrating Equation (7) with different

choices of p(∆).

Integrating (7) and varying σ∆ and τy shows that TR errors in the presence of Gaussian chronological uncertainty p(∆)

with standard deviation σ∆ are qualitatively similar to those from a fixed offset ∆ = σ∆ (cf. Figures 6 and 7). The transition5

in sensitivity to σ∆ across σ∆ =
∣∣τx− τy

∣∣/2 is less pronounced than for the equivalent in Figure 6, consistent with the range

of lags that is possible for any nonzero σ∆. Nevertheless, the intuitively sensible conclusion is that chronological errors will

be gravest when uncertainties tend to place measurements outside of target intervals. Reduced errors in the smoothed regime

τy ≤ τa indicate that archive smoothing can reduce effects from chronological errors in some cases.

6 Extension to time series10

Paleoclimate time series are sequences of time-mean values; here, we discuss how the TR errors discussed for time-mean

estimation affect transient records of climate variability. We show that in the absence of archive smoothing, dense sampling

(i.e., setting the averaging interval equal to the spacing between measurements) is a nearly optimal approach to minimize TR

errors.

The sampling theorem of Shannon (1949) states that sampling r (t) instantaneously at times separated by a fixed time interval15

τs unambiguously preserves signal information only when r (t) does not contain any spectral power at frequencies greater than

1/2τs (called the Nyquist frequency, νNyq). When this criterion is not met, the discrete signal is corrupted by aliasing, whereby

variability in r (t) at frequencies greater than νNyq appears artificially at lower frequencies in the discrete signal. To mitigate

aliasing, one can either increase the sampling rate or apply a low-pass “anti-aliasing” filter to r (t) to attenuate power at

frequencies higher than νNyq.20

In the process of constructing a paleoclimate time series, sampling time-mean values serves a moving average and, thereby,

an anti-aliasing filter. Thus we expect sample averaging procedures to affect aliasing errors in time series, as also discussed by

von Albedyll et al. (2017). Appendix B uses Shannon’s theorem to obtain a frequency-domain expression for the TR errors for

individual time series measurements. The procedure is to 1) define local (in time) values of τ i
s and ν i

Nyq for the ith observation

and 2) compute the expected errors if an entire time series were sampled using those local properties. To do this, we make the25

assumption that the sampling interval τ i
s is locally constant: that is, for the ith measurement yi taken at time t i, yi−1 was taken at

time t i− τ i
s, and yi+1 was taken at time t i + τ i

s. If the sampling interval changes rapidly, conclusions from this approach might

not apply. Again leaving the details to the appendix, we note that similar to the time-mean case, the error variance
〈
θ i2
〉

for

the ith observation is a weighted integral over the power density spectrum of r (t) (B6). Unlike in the mean estimation case,

where TR errors can be zero, nonzero error is unavoidable with uniform sampling because of differences between the shape of30

the sinc function and the ideal, abrupt frequency cutoff that minimizes error according to Shannon’s theorem.3

3Sampling a paleoclimate archive nonuniformly in time could better approximate the ideal filter and reduce errors, but this may not be practical given the

challenges of recovering and sampling paleoclimate data.
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To demonstrate sensitivities to sampling parameters we again compute noise-to-signal ratios. In keeping with our local

measure of TR error, we take the signal strength to be the standard deviation of the time series that would result if r(t) were

sampled with the same averaging and sampling interval as the ith observation over 21,000 years, the approximate duration

of the last deglaciation. The results are qualitatively similar to those for the time-mean case, with two main distinctions (cf.

Figure 8 and 5). First, as discussed above, errors are always 10% or more of signal amplitudes because of errors arising from5

constructing a time series as a sequence of time mean values. Second, values of τy that minimize errors do not obey τy = τs, but

are larger by a factor of roughly 1.2, suggesting that, absent considerations from archive smoothing, the ideal sample would

span an interval slightly longer than the sampling interval to minimize errors. In practice, sampling densely (that is, without

space between observations) is a good approximation of this error minimizing strategy.

As in the time-mean case, the effects of archive smoothing are large in a regime of sampling parameter space (τy ≤ τa),10

implying that knowledge of τa is important for informing choices of τs and τy. Clearly, sampling at intervals τs < τa will result

in errors because some of the variability of interest will have been destroyed. Choosing a τs that is larger than both τy and τa

will result in aliasing errors. Finally, within the smoothed regime τy ≤ τa, TR errors are less sensitive to choices of τy than they

are for τy ≥ τa, meaning that sampling discontinuously (i.e., not densely) may not be problematic.

7 Discussion15

This paper presents a framework for quantifying temporal representativeness (TR) errors in paleoclimate, broadly defined as

resulting when one time average is represented by another. A simple model illustrates interacting effects from record sampling

procedures, chronological errors, and the spectral properties of the climate process being sampled.

We find that TR errors for time mean estimates can be large relative to climate signals, with noise-to-signal standard deviation

ratios greater than 1 in some cases, particularly where the observational interval τy is smaller than the target interval τx. These20

errors result from aliasing climate variability onto time mean estimates and can be mitigated to some degree by choices of

sampling procedures and by archive smoothing, both of which act as anti-aliasing filters. However, archive smoothing can also

destroy information about climate variability, and the combined effects of sampling and smoothing can over-smooth a record

and lead to increased errors. TR errors due to sampling are not independent of chronological errors, but interact, for instance in

the way that errors grow more quickly as a function of chronological uncertainty amplitude when that uncertainty is likely to25

place a measurement outside of a target interval (Figure 7). Given that these error variances were estimated using parameters

representative of the LGM, it seems possible that TR errors may explain some of the disagreement among proxy measurements

within that time period (e.g., MARGO Project Members, 2009; Caley et al., 2014), though nonstationarities may cause TR

errors to be overestimated for climate intervals like the LGM that appear to be quiescent relative to other time periods. While

we do not claim that TR errors are the largest source of error for any particular proxy type or reconstruction problem, they may30

be in some cases. The tools presented can be used to assess likely error amplitudes.

Though not the principal goal, these analyses provide a basis for sampling practices that minimize errors, for instance for

avoiding oversmoothing that can arise through the combined effects of sampling and archive smoothing. When constructing
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Figure 8. Same as Figure 5, but illustrating the dependence of the error-to-signal standard deviation ratio for individual measurements in a

time series as a function of local time series spacing (τ i
s) and the observational averaging time interval τ i

y.
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paleoclimate time series, it is important to bear in mind not just the Nyquist frequency but the role of sampling and smooth-

ing time scales as anti-aliasing filters; these considerations point to dense sampling (i.e., without space between contiguous

samples) in order to minimize error in the absence of effects from archive smoothing (Section 6). However, many practi-

cal considerations motivate paleoclimate sampling strategies, and may outweigh the concerns described here. For instance,

records sampled densely cannot be used as a starting point for subsequently constructing higher-resolution records. Moreover,5

preservation of natural archives for subsequent analyses is important for reproducibility and for sharing resources between

laboratories, and may be complicated by continuous sampling.

To some extent, the simple model for TR error can be generalized to more complex scenarios. If samples are nonuniform

in time – for instance, due to large changes in chronology, or because material was sampled using a syringe or drill bit with

a circular projection onto an archive – then the sinc function in (3) can be replaced by Fourier transforms of the relevant10

function. Similarly, a more complex pattern of archive smoothing can be accommodated by substituting a different smoothing

kernel. Non-Gaussian age uncertainties can be incorporated by substituting a different distribution in (7). Changes in sampling

properties through time (as might arise from non-constant chronologies or sampling procedures) can readily be accommodated

because all computations are performed on a point-by-point basis. If sampling or smoothing time scales are unknown, a similar

procedure can be adopted as was used for ∆ in (7), whereby a second integration is performed to compute the expectation over15

an estimated probability distribution of one or more time scales.

Several caveats apply to the uncertainty estimates given. First, the model neglects some effects that may be important, such as

inhomogeneities in preserved climate signals owing to e.g. diagenesis or scarcity of biological fossils. Second, nonstationarity

in record spectra leads to time variations in errors, as illustrated in Figure 3. Third, in the analysis of time series errors, we

ignore the possibility that errors covary in time, which can result from chronologies constructed by interpolating ages between20

tie points; more complete characterizations could be achieved by Monte Carlo sampling of age model uncertainty (Anchukaitis

and Tierney, 2013). More broadly, there is clear need for comprehensive approaches in uncertainty quantification that can reveal

interactions among the various sources of uncertainty in paleoclimate records. Forward proxy system models (e.g., Evans et al.,

2013; Dee et al., 2015; Dolman and Laepple, 2018) are a promising way forward to assess uncertainties holistically.

Results for time series (Section 6) hold when record spacing and chronologies do not change too rapidly and where the goal25

is to obtain a discrete representation of a continuous process. For other objectives, other sampling procedures may be preferred.

For instance, “burst sampling,” whereby rapid sequences of observations are taken at relatively long intervals, is used in modern

oceanographic procedures to estimate spectral nonstationarities in time (Emery and Thomson, 2014), and unevenly spaced

paleoclimate observations can be leveraged to give a range of frequency information using variogram approaches (Amrhein

et al., 2015) or the Lomb-Scargle periodogram (e.g., Schulz and Stattegger, 1997).30

Representativity errors due to aliasing are not limited to the time domain, and similar procedures may be useful for quan-

tifying errors due to spatial representativeness by considering how well proxy records can constrain the regional and larger

scales typically of interest in paleoclimatology. An analogous problem is addressed in the modern ocean by Forget and Wun-

sch (2007), and Zhao et al. (2018) considered spatial representativeness in choosing how to weight deglacial radiocarbon time

series in spatial bin averages. A challenge of any such approach is that the spatial averaging functions (analogous to our τy,35

18



but occupying three spatial dimensions) represented by proxy records are often not well known; Van Sebille et al. (2015),

for instance, explores how ocean advection determines three-dimensional patterns represented by sediment core observations.

Because spatial patterns and time scales of ocean and climate variability are linked, it may ultimately be necessary to consider

the full, four-dimensional spatiotemporal aliasing problem.

The hope is that these procedures may prove useful for first-order practical uncertainty quantification. A challenge is es-5

timating the signal spectrum |r̂|2, which itself can be affected by aliasing (Kirchner, 2005). One approach is to use spectra

from other records that are more highly-resolved or were sampled densely, e.g. from a sediment core at an adjacent site, or a

record believed to record similar climate variability. Alternately, measurements of archive properties that can be made cheaply

and at high resolution – such as magnetic susceptibility, wet bulk density, and other proxy properties that are routinely made

on sediment cores – could prove useful for estimating |r̂|2 if those properties are related linearly to r (t) (Herbert and Mayer,10

1991; Wunsch and Gunn, 2003). Another challenge is that time scales that we have shown affect errors are often not published

alongside paleoclimate datasets, thus turning systematic errors (where parameters like τy are known) into stochastic errors

because a range of possible values must be explored. Publishing all available information about sampling practices, age model

construction, and assessments of archive smoothing will greatly aid uncertainty quantification efforts.

Appendix A: Expressing time-mean temporal representativeness errors in the frequency domain15

This appendix describes an analytical approach for estimating temporal representativity errors in the context of estimating time

means. These errors have a compact representation in the frequency domain that rationalizes interactions between sampling

procedures, time uncertainty, and signal spectra in contributing to errors. Fore more on the theorems and properties of Fourier

analysis that are referenced see e.g. Bracewell (1986).

A1 Derivation20

Define a mean value m(t,τ) of a climate variable r (t) as a function of the duration τ and the time t on which that duration is

centered,

m(t,τ) =
∞∫
−∞

Π
(
t ′,τ
)

r
(
t + t ′

)
dt ′, (A1)

where Π(t,τ) is a normalized “boxcar” function centered on t = 0 with width τ ,

Π(t,τ) =

1/τ |t| ≤ τ/2

0 |t|> τ/2.
(A2)25

The operation in (A1) defines a moving average m(t,τ) and is known as a convolution, hereafter denoted as a star,

m(t,τ) = Π(t,τ)? r (t) . (A3)
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Then let the target quantity x be a mean of r (t) over an interval of length τx centered on t, and an observation y to be an average

over a different duration τy centered on a different time t +∆,

x = m(t,τx) (A4)

y = m(t +∆,τy) . (A5)

The Fourier transform will be written both using the operator F and by a hat. Denoting frequency by ν , it is defined as

F (x(t))≡ x̂(ν) =
∞∫
−∞

x(t)e−2πiνtdt.

Parseval’s theorem states that the integral of a squared quantity in the time domain is equal to the integral of the squared

amplitude of the Fourier transform of that quantity, so that after substituting (A5) we can write (2) as5

〈
θ

2〉= 1
τ0

∞∫
−∞

(m(t,τx)−m(t +∆t,τy))
2dt (A6)

=
1
τ0

∞∫
0

∣∣F [m(t,τx)−m(t +∆t,τy)]
∣∣2dν . (A7)

By the Fourier shift theorem,

F [m(t +∆,τy)] = e−2πiν∆F [m(t,τy)] . (A8)

Then, by the linearity of the Fourier transform,〈
θ

2〉= 1
τ0

∞∫
0

∣∣∣m̂(ν ,τy)− e−2πiν∆m̂(ν ,τx)
∣∣∣2dν . (A9)

By the convolution theorem, convolution in the time domain is equivalent to multiplication in the frequency domain. Thus, the10

Fourier transform of a time mean as defined in (A3) is

m̂(ν ,τ) = F [Π(t,τ)? r (t)] (A10)

= Π̂(ν ,τ) · r̂ (ν) . (A11)

Substituting this relation into (A9) yields

〈
θ

2〉= 1
τ0

∞∫
0

∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τy)
∣∣∣2 |r̂ (ν)|2 dν . (A12)

Finally, we represent smoothing prior to sampling by defining a new climate signal, r′ (t), that has had a running mean applied,

r′ (t) = Π(t,τa)? r (t) .

Substituting r̂′ (ν) into (A12) and applying the convolution theorem gives15 〈
θ

2〉= 1
τ0

∞∫
0

∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τa) · Π̂(ν ,τy)
∣∣∣2 |r̂ (ν)|2 dν . (A13)

Numerical integration of (A13) is used in the text to illustrate dependencies of TR error on sampling parameters.
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A2 Interpretation

The integrand of (A13) is the product of two components. The second, |r̂ (ν)|2, is the power spectral density of r (t), which

describes the variance contained at frequencies in r (t). The first component is a power transfer function,

H (ν ,τx,τy,τa,∆) =
∣∣∣Π̂(ν ,τx)− e−2πiν∆ · Π̂(ν ,τa) · Π̂(ν ,τy)

∣∣∣2 , (A14)

which describes how power at different frequencies in r (t) contributes to
〈
θ 2
〉
. The Fourier transform of the boxcar function5

is a sinc function,

Π̂(ν ,τ) = sinc(τν) =
sin(πτν)

πτν
, (A15)

which converges towards 1 at frequencies below 1/τ and oscillates with decreasing amplitude about 0 at higher frequencies

(Figure 2a).

When τx and τy are adequately separated so that the transfer function has a simple bandpass shape as seen in Figure X,10

the “cutoff frequencies” ν
†
low and ν

†
high are useful to diagnose how sampling procedures contribute to TR error. These are the

frequencies on either side of the band at which the transfer function is equal to 0.5. In the presence of zero time offsets, the

cutoff frequencies can be estimated by solving

H
(

ν
†
low

)
≈
∣∣∣sinc2

(
τxν

†
low

)
−1
∣∣∣2 = 1

2 (A16)
15

H
(

ν
†
high

)
≈
∣∣∣sinc

(
τyν

†
high

)∣∣∣2 = 1
2 . (A17)

which yields ν
†
low = 0.755τ−1

x and ν
†
high = 0.443τ−1

y . (In the case where τx is less than τy, then ν
†
low = 0.755τ−1

y and ν
†
high =

0.443τ−1
x ).

We can expect the presence of archive smoothing might reduce errors originating from high frequencies in r(t), thereby

reducing ν
†
high and narrowing the band of aliased frequencies. In the presence of archive smoothing, the expression for ν

†
high20

becomes

H
(

ν
†
high

)
=
∣∣∣sinc

(
τaν

†
high

)
sinc

(
τyν

†
high

)∣∣∣2 = 1
2
. (A18)

An approximate solution using a Taylor series representation is

ν
†
high ≈

0.443√
τ2

a + τ2
y

, (A19)

which illustrates a combined effect from sampling and archive smoothing for determining which frequencies contribute to TR25

errors. Thus when τy and τa are small relative to τx, archive smoothing reduces TR errors, consistent with numerical integrations

(comparing Figures 5a and 5b with 5c and 5d).

Using (A19), we can estimate an ideal sampling interval τ̃y in the presence of archive smoothing by minimizing the width

of the frequency band that contributes to TR error. Setting 0.443τ̃−1
x (i.e., the cutoff frequency in the case where the combined
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averaging effect of sampling and smoothing gave the desired averaging interval τx) equal to 0.443(τ2
y + τ2

a )
− 1

2 and solving

yields

τ̃y =
√

τ2
x − τ2

a for τx > τa. (A20)

Numerical experiments (see dotted lines in all panels of Figure 5) support the robustness of this approximation for two different

signal spectra.5
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Figure A1. Illustration of the frequency dependence of errors in representing an instantaneous measurement of a process r (t) at a time t by

another measurement r (t +∆). Each line represents a different frequency component of r (t), grey vertical lines represent sampling times,

and colored circles represent values of components at those times. At frequencies ν = n
∆

for n = 0,1,2, . . . , (a), the Fourier components of

x(t) will be exactly in phase when sampled at a time lag ∆, so these components do not contribute to the error variance
〈
(r (t)− r (t +∆))2

〉
.

By contrast, at frequencies ν = n
∆
+ 1

2∆
(b), the Fourier components are exactly out of phase, so these components tend to contribute most to

the error variance. At intermediate frequencies, contributions lie between the two extremes, leading to a cosine function of error contribution

as a function of frequency (Equation A22).
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To study the error contribution from a time offset ∆, consider the limit where τx, τy, and τa approach zero, corresponding to

instantaneous observations in time, so that
〈
θ 2
〉

approaches

〈
θ

2〉= 1
τ0

∞∫
0

∣∣∣1− e−2πiν∆

∣∣∣2 |r̂ (ν)|2 dν . (A21)

Expanding
∣∣1− e−2πiν∆

∣∣2 and simplifying gives

〈
θ

2〉= 1
τ0

∞∫
0

(2−2cos(2πν∆)) |r̂ (ν)|2 dν (A22)

so that the power transfer function is H = 2− 2cos(2πν∆) and the expected error due to ∆ is a cosinusoidally-weighted

function of the signal power spectrum. H takes a minimum value of 0 at frequencies5

νmin = 0,
1
∆
,

2
∆
, . . .

n
∆

for integer values of n; at these frequencies, measurements spaced by ∆ in time are in phase and are therefore exactly correlated

(Figure A1a). The weights take a maximum value of 4 at frequencies

νmax =
1

2∆
,

3
2∆

,
5

2∆
, . . .

n
∆
+

1
2∆

where measurements separated by ∆ are always exactly out of phase (Figure A1b). At those frequencies, the underlying signal

r (t) is projected twofold onto the error, so that its variance contribution is multiplied fourfold. These variations in frequency

contributions modulate effects from smoothing and sampling timescales (Figure 2b).10

Appendix B: Expressing time series temporal representativeness errors in the frequency domain

This appendix extends the analytical approach for estimating temporal representativity errors from estimating time means to

time series. Define the moving average time series associated that would result if all of r(t) were sampled as the ith observation

yi to be

yi (t) = Π
(
t,τ i

y
)
?Π
(
t,τ i

a
)
? r (t) (B1)15

where we have included a contribution from archive smoothing, so that its Fourier transform is

ŷi (ν) = Π̂
(
ν ,τ i

y
)
· Π̂
(
ν ,τ i

a
)
· r̂ (ν) . (B2)

By Shannon’s sampling theorem, an accurate discrete representation of r (t) results from sampling all frequencies in r (t) less

than or equal to the local Nyquist frequency ν i
Nyq = 1/

(
2τ i

s
)
. As such, the target value xi for the ith measurement yi is the value

of r (t) sampled at t i after filtering r (t) to remove high-frequency variability. The Fourier transform of a time series of values20

of xi is

x̂i (ν) = G
(
ν ,τ i

s
)

r̂ (ν) (B3)
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where the “ideal” transfer function G(ν ,τs) is the Heaviside function

G(ν ,τs) =

1 ν < 1/(2τ i
s)

0 ν ≥ 1/
(
2τ i

s
) (B4)

that is ideal in the sense that it eliminates variability at frequencies greater than ν i
Nyq = 1/

(
2τ i

s
)
. Then we define TR error at

the ith measurement to be

θ
i = xi− yi. (B5)5

As in the previous section, we estimate the variance of θ i by taking the expected value as if the entire record had been sampled

using the local values τ i
s and τ i

y. Then, equivalent to (A13),

〈
θ

i2〉= 1
τ0

∞∫
0

∣∣G(ν ,τ i
s
)
− Π̂

(
ν ,τ i

a
)
· Π̂
(
ν ,τ i

y
)∣∣2 |r̂ (ν)|2 dν . (B6)
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