

Interactive comment on “Timing and Structure of the 4.2 ka BP Event in the Indian Summer Monsoon Domain from an Annually-Resolved Speleothem Record from Northeast India” by Gayatri Kathayat et al.

Anonymous Referee #1

Received and published: 20 September 2018

General comments: The paper by Kathayat et al. describes a $\delta^{18}\text{O}$ record from two stalagmites from Mawmluh Cave (NE India) covering the interval corresponding to a widespread climatic anomaly, the so-called “4.2 event”.

The record has an impressive temporal resolution and strong chronological constrains thanks to intensive U/Th dating of both samples. The oxygen stable isotope record is interpreted in hydrological terms and particularly it is related to the amount of rainfall reaching the cave site and thus, due to the strong prevalence of monsoonal rain at the cave site, to the strength of the Indian Summer Monsoon (ISM hereafter). Results

C1

are compared with a previously published oxygen record from the same cave, in which the same climatic event has been identified. Thanks to the higher resolution of the presented record, the internal structure and the timing of the 4.2 event are here described in detail, and different climatic phases within or near the 4.2 events have been identified.

Overall, the data are of very good quality, the results very interesting and this research surely worth to be published in Climate of the Past. However, the structure of the paper is confused, figures are not too much effective and the Discussion section is rather poor. I recommend a substantial re-organization and a strong improvement of the Discussion before the paper can be accepted.

Specific comments:

1- Paper structure: -Part of the result are presented in the introduction. Especially, lines 107 to 110 should be moved and combined with the beginning of section 2. -Part of the discussion is within the method section, i.e. paragraph 2.2 (proxy interpretation) should be moved at the beginning of section 3. -Methods are also very confused. Please make separate paragraphs: one for sampling for stable isotope analyses, where the adopted sampling resolution should be stated (i.e. combine lines 167-171 with section 2.6); another for the U/Th dating (paragraph 2.4 is fine) and one for the age modelling procedure (paragraph 2.5 is a mix between method and results, e.g. lines 193-196 are not method, they're results). -The same for Results: I suggest a first paragraph (Chronology or similar) where periods of growth, resolution of the dating and temporal resolution of the stable isotope record are clearly stated. This information is now part in the intro, part in the methods and part in the results. Another paragraph should describe properly the new $\delta^{18}\text{O}$ record. Part now is in line 239-242 and part in section 3.2, but there is mixed with description of the previously published KM-A record, in my opinion this comparison should be moved later. It is fine to have it on a separate paragraph as it is now, but new stable isotope results, and the comparison between the two new record, should be described before. Also please remove discussion about

C2

replication from captions of figure 4. Captions should only describe the figures, they cannot contain part of the discussion. I suggest also to insert in this new paragraph a brief discussion about deposition occurring or not close to equilibrium condition. The replication of the same $\delta^{18}\text{O}$ pattern in the two new samples is a strong evidence for the “goodness” of the samples, but it needs to be clearly stated and it should be accompanied by some consideration about the petrographical features (see e.g. Frisia et al., 2002 or 2010). To this end, I think that also a description of the petrography of the samples (which is the dominant fabric? could it be interpreted as related to equilibrium condition?) is needed, maybe alongside their macroscopic appearance, which now is only briefly mentioned in lines 165-116 and 171-172)

2- Replication. I think that the use of ISCAM, Figure 4b and part of section 2.7 are not needed. The output of this method changes the final isotope values and this is, in my opinion, a little bit an artefact. I think the similarity between the ML1 and ML2 isotope curve is clear and convincing. And it can be better highlighted by some modification in Figure 4, i.e. by plotting ML1 and ML2 results on separate axes. In this way the readers can evaluate similarities and differences by themselves. And I would do the same also in Fig. 5. line 241-242: Not clear what authors exactly mean with “karst-related differences”. Do they refer to different altitudes of recharge for the drips feeding the different stalagmites? Are there information about the rainfall isotopic altitudinal gradient? In some settings, differences of few hundreds meters in the main altitude of recharge can easily explain differences up to 0.5‰ in different speleothem oxygen records, even from the same cave chamber. Also, partitioning of the plumbing system, with different compartment having different mixing and residence time may account for these small differences. Please explain more clearly.

3-Comparison with KM-A: lines 279-281: I think that authors are right and that the abrupt end of the 4.2 event in KM-A is likely to be related to dissolution features occurring near the top of the sample. However, I do not understand why the presence of aragonite should add support to this hypothesis: is it because aragonite is usually

C3

indicative of drier conditions (e.g. Frisia et al., 2002)? Or because the top mm of KM-A are not primary calcite but diagenetic calcite resulting from aragonite transformation? (but in this case, values should be anomalously enriched, and not depleted, see e.g. Zhang et al., 2014). Please explain this more clearly.

4-Discussion (section 3.3) There is no an indication on how the z-score was constructed and on what it means precisely, some explanation on this must be added. Also, I would enlarge the comparison with the other quoted records by creating a figure where all the $\delta^{18}\text{O}$ records are reported. Fig. 6 is, in my opinion, a nice synthesis, but it prevents the reader from evaluating independently the degree of coherence/dissimilarity between the different records, the different temporal resolutions and so on. So I would add a figure with all the records to be put before the synthesis represented by Fig. 6.

Finally, (but very important in my opinion!) the discussion is totally lacking some considerations about the potential causes and forcing for the observed ISM variability at time of the 4.2 event. There are several hypotheses about that, which were reported in some of the works that the author quote for comparison (e.g. solar variability, Staubwasser et al., 2003; feedbacks with mid-latitude westerlies, Berkelhammer et al., 2012; changes in large-scale tropical ocean-atmosphere dynamics, like in the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO), Dixit et al., 2014, just to quote some...). These hypotheses need to be briefly presented and discussed on the light of the new results. This would add “scientific thickness” to the new record and would greatly improve the interest of this new study.

Technical corrections:

Table 1 must be moved into the main text. As one of the strength of this work, and of speleothem works in general, is the accuracy and quality of the U/Th chronology, the readers should have information about the dating fully available.

^{230}Th dating is used throughout the text to indicate the Uranium-Thorium method and

C4

dating. I suggest replacing it with “U/Th dating”, as it is the more common and correct form to indicate this method.

line 17: I suggest to change “less clear” with “unclear” line 43: climatic anomalies is a very vague term. It can indicate almost every climatic state, from very wet and warm to very cold and dry. The global expression of the event (which is almost everywhere characterized by dryness) needs to be better explained, at least in the introduction. line 61: remove “a” before “two centuries..” line 65: add “previous” or similar before “speleothem record” line 65: Quote Fig. 1 after “Northeast India”, the same in line 89 line 88: add “expression of” before “the 4.2 event” line 91: remove “event” after “record” line 95: “only” is repeated twice in this sentence, remove one line 129: is the value of 11000 mm correct? line 265: change “manifest” with “manifests” or with “appears” line 270: change “margin of age uncertainties” with “combined age uncertainties” lines 287-288: Fig. 6 is quoted double, remove one line 299: there is a typo in “notably”

Figure 5: U/Th ages are reported in Fig. 4, there is no need to report them also here.

References:

Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. S., & Yoshimura, K. (2012). An abrupt shift in the Indian monsoon 4000 years ago. *Geophys. Monogr. Ser.*, 198(7).

Dixit, Y., Hodell, D. A., & Petrie, C. A. 2014. Abrupt weakening of the summer monsoon in northwest India~ 4100 yr ago. *Geology*, 42(4), 339-342.

Frisia, S., Borsato, A., 2010. Karst. Carbonates in continental settings. *Dev. Sedimentol.* 61, 269–318.

Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., Selmo, E.M., 2002. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): environment, fabrics, and carbonate geochemistry. *J. Sediment. Res.* 72, 687–696

Staubwasser, M., Sirocko, F., Grootes, P. M., & Segl, M. 2003. Climate change at C5

the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. *Geophysical Research Letters*, 30(8).

Zhang, H., Cai, Y., Tan, L., Qin, S., An, Z., 2014. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions. *Sediment. Geol.* 309, 1–12.

Interactive comment on *Clim. Past Discuss.*, <https://doi.org/10.5194/cp-2018-92>, 2018.