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Abstract. Probabilistic spatial reconstructions of past climate states are valuable to quantitatively study the climate system

under different forcing conditions because they combine the information contained in a proxy synthesis in a comprehensible

product. Unfortunately, they are subject to a complex uncertainty structure due to complicated proxy-climate relations and

sparse data, which makes interpolation between samples difficult. Bayesian hierarchical models feature promising properties to

handle these issues like the possibility to include multiple sources of information and to quantify uncertainties in a statistically5

rigorous way.

We present a Bayesian framework that combines a network of pollen and macrofossil samples with a spatial prior distribution

estimated from a multi-model ensemble of climate simulations. The use of climate simulation output aims at a physically

reasonable spatial interpolation of proxy data on a regional scale. To transfer the pollen data into (local) climate information,

we invert a forward version of the probabilistic indicator taxa model. The Bayesian inference is performed using Markov chain10

Monte Carlo methods following a Metropolis-within-Gibbs strategy.

Different ways to incorporate the climate simulations in the Bayesian framework are compared using identical twin and

cross-validation experiments. Then, we reconstruct mean temperature of the warmest and mean temperature of the coldest

month during the mid-Holocene in Europe using a published pollen and macrofossil synthesis in combination with the Paleo-

climate Modelling Intercomparison Project Phase III mid-Holocene ensemble. The output of our Bayesian model is a spatially15

distributed probability distribution that facilitates quantitative analyses which account for uncertainties.

1 Introduction

Spatial or climate field reconstructions of past near surface climate states combine information from proxy samples, which

are mostly localized, with a model for interpolation between those samples. They are valuable for comparisons of the state of

the climate system under different external forcing conditions, because they produce a comprehensible product containing the20

joint information in a proxy synthesis. Thereby, spatial reconstructions are more suitable for many quantitative analyses of past

climate than individual proxy records. Unfortunately, spatial reconstructions are subject to a complex uncertainty structure due
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to uncertainties in the proxy-climate relation and the sparseness of available proxy data which leads to additional interpolation

uncertainties. Therefore, a meaningful reconstruction has to include these uncertainties (Tingley et al., 2012). A natural way to

represent uncertainties in the proxy-climate relation are so-called probabilistic transfer functions (Ohlwein and Wahl, 2012).

To account for the uncertainties due to sparseness of proxy data, we suggest the use of stochastic interpolation techniques.

Most standard geostatistical methods like kriging or Gaussian process modeling are designed for interpolation in data rich5

situations, while in paleoclimatology we deal with sparse data. Therefore, their direct application to paleo situations is not

suitable. Instead, we propose to use interpolation schemes that contain additional physical knowledge, such that the resulting

product combines the information from a proxy network in a physically reasonable way (Gebhardt et al., 2008). Our approach

can in addition be used for structural extrapolation of the proxy data.

We use Bayesian statistics to combine the two modules mentioned above: The (local) proxy-climate relation and spatial10

interpolation. The Bayesian framework allows the combination of multiple data types. In our case, these are pollen and macro-

fossil records to constrain the local climate, and climate simulations, which produce physically consistent spatial fields for a

given set of large scale external forcings. In addition, our framework accounts for several sources of uncertainty in a statistically

rigorous way by estimating and inferring a multivariate probability distribution, the so-called posterior distribution (Gelman

et al., 2013).15

Pollen are the terrestrial proxy with the highest spatial coverage (Bradley, 2015), and there is a long tradition of using

them for inferring past climate by applying statistical transfer functions (Birks et al., 2010). In recent years, several traditional

transfer functions like indicator taxa, modern analogues, and weighted averaging have been translated to Bayesian frameworks

(e.g., Kühl et al., 2002; Haslett et al., 2006; Holden et al., 2017). Pollen records contain information on the local climate

during a time slice, where the spatial scale is constrained by the influx domain of horizontal pollen transport. Typically,20

macrofossils have a higher taxonomic resolution than pollen such that the climatic niche of the occurring taxa can be better

constrained than with pollen alone (Bradley, 2015). Equilibrium simulations with earth system models (ESMs) produce a

physically consistent estimate of the atmospheric and oceanic circulation and the regional energy balance given a set of forcings

(boundary conditions). Important boundary conditions, for which information are available from proxy data and physical

models, are insolation determined by the earth orbital parameters, greenhouse gas concentrations, ice sheet configurations, and25

land-sea masks. We use an ensemble of simulations from different ESMs to estimate a prior distribution, which contains a

wide range of physically reasonable climate states. The combination of these two sources of information can be interpreted as

a downscaling of forcing conditions via ESMs and an upscaling of local information contained in pollen records via spatial

covariance matrices. The result is a spatially distributed and physically reasonable probabilistic climate reconstruction on

continental domains.30

We apply our framework to a mid-Holocene (MH, around 6ka) example for two reasons. First, compared with other time

slices before the common era, the MH has a high proxy data coverage, particularly for Europe. Therefore, we can use pollen and

macrofossil data with a sparse but relatively uniform spatial coverage over Europe as input for probabilistic transfer functions,

while still having other reconstructions available, that can be compared with our results. Second, a multi-model ensemble of

climate simulations with boundary conditions adjusted to the MH was produced in the Paleoclimate Modelling Intercomparison35
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Project Phase III (PMIP3, Braconnot et al., 2011). This ensemble is used to estimate the spatial prior distribution. The posterior

distribution, which we estimate, is a multivariate probability distribution, with marginal distributions for each grid box, as well

as spatial correlations and correlations between two climate variables, the mean temperature of the warmest month (MTWA)

and the mean temperature of the coldest month (MTCO). For further analyses, we create samples from this distribution, such

that each sample is an equally probable estimate of the bivariate spatial field. In the context of temporal reconstructions these5

samples were called "climate histories" by Parnell et al. (2016). From the samples, quantitative properties of the climate state

during the MH, which account for uncertainties, are computed. In addition, our framework can be used to study the model-data

mismatch of ESMs, to analyze the consistency of proxy networks, and to help in the identification of potential outliers.

This work is related to several concepts that were developed for applications in paleoclimatology. In recent years, several

authors constructed Bayesian hierarchical models (BHMs) for paleoclimate reconstructions: Tingley and Huybers (2010) intro-10

duced a spatio-temporal BHM for reconstructions of the last millennium with an underlying structure that is stationary, linear,

and Gaussian. Other authors developed temporal (Parnell et al., 2015) or small-scale spatio-temporal BHMs (Holmström et al.,

2015). All of these approaches differ from our model in being purely proxy data driven. Additional information on orbital

configurations were incorporated by Gebhardt et al. (2008) and Simonis et al. (2012) via an advection-diffusion model which

is combined with proxy data using a variational inference approach. Li et al. (2010) included information on solar, greenhouse15

gas, and volcanic forcing for spatially averaged reconstructions of the last millennium. Annan and Hargreaves (2013) combined

PMIP2 simulations with proxy syntheses in a multi-linear regression model. We build on these approaches by incorporating

fields that are simulated from a set of MH forcings in a fully Bayesian framework. A different approach to combine proxy

data and climate simulations for spatio-temporal reconstructions of the common era was developed by Steiger et al. (2014)

and Dee et al. (2016) using so-called off-line data assimilation methods. They apply an ensemble Kalman filter, where the20

observation operators are forward models for proxy data, and the prior covariance is estimated from a database of transient

climate simulations. Our purely spatial reconstructions can be interpreted as an off-line data assimilation with only one time

step. This reduced dimensionality permits the exploration of the full posterior distribution despite incorporating non-linear and

non-Gaussian elements in the observation operator and the spatial interpolation scheme.

The structure of the paper is as follows. In Sect. 2, we describe the proxy synthesis and climate simulations which we use.25

This is followed by a detailed description of our proposed Bayesian framework in Sect. 3. Results from a comparison study of

different ways to incorporate the climate simulations in the Bayesian framework and from our reconstruction of the European

MH climate are presented in Sect. 4. Finally, we discuss and summarize our methodology and results in Sect. 5 and 6.

2 Data

2.1 Proxy and calibration data30

The pollen and macrofossil synthesis, that we use in this study, stems from Simonis et al. (2012) as part of the European

Science Foundation project DECVeg (Dynamic European Climate-Vegetation impacts and interactions). Out of the four time

slices (6ka, 8ka, 12ka, 13ka), which were compiled, we only use the 6ka dataset because there is no ensemble of climate
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simulations available for the other three time slices. For 50 paleosites, information on the occurrence of taxa is provided. 59

taxa occur at least at one site. For some sites, information from very nearby records are combined into a joint sample. 15 of the

sites combine macrofossil and pollen information, three samples contain just macrofossil data, and for 32 sites only pollen data

is available. In general, the macrofossil data provides more detailed taxonomic information than pollen. Because pollen is more

prevalent than macrofossil data, pollen samples are included to provide a broader spatial picture of the European vegetation at5

the MH.

The 50 paleosites are sparsely but relatively uniformly distributed over Europe. Their locations are delimited by 6.5° W,

26.5° E, 37.5° N and 69.5° N. Compared with other recent syntheses like Bartlein et al. (2011), less records are included due

to high quality control criteria (Simonis, 2009). Each site is assigned to the corresponding cell of a 2° by 2° grid which we use

for our reconstructions. The locations of the proxy samples are depicted by black dots in Fig. 1. The full list of sites included10

in the synthesis can be found in Simonis et al. (2012). The list of taxa, which occur at the sites, is published in Simonis (2009).

Modern climate and vegetation data is used for the calibration of the transfer functions. The climate data is computed from

the University of East Anglia Climatic Research Unit (CRU) 1961 to 1990 reference climatology (CRU TS v.4.01, Harris et al.,

2014; Harris and Jones, 2017)). The vegetation data stems from digitized vegetation maps (Schölzel et al., 2002). The regions

that are used for the transfer function calibration were determined individually for each taxa by pollen experts (Kühl et al.,15

2007). The number of calibration sites varies between 14.543 and 28.844, depending on the taxa.

2.2 Climate simulations

We use a multi-model ensemble of climate simulations which were run within PMIP3 with forcings adjusted to the MH. This

includes changed orbital configurations and greenhouse gas concentrations (Braconnot et al., 2011). The ensemble contains

all available MH simulations in the PMIP3 database, which have a grid spacing of at least 2°. This constraint, which retains20

only the models with the smallest grid spacings, is chosen to better match the resolutions of proxy samples and simulations.

The condition results in using seven model runs performed with the CCSM4, CNRM-CM5, CSIRO-Mk2-6-0, EC-Earth-2-2,

HadGEM2-CC, MPI-ESM-P, and MRI-CGCM3. Properties of the included simulations are given in Table 1. The ensemble is

a multi-model ensemble with common boundary conditions. Therefore, the differences within the ensemble can be interpreted

as modeling uncertainties (epistemic uncertainty).25

The mean summer climate expressed as MTWA (Fig. 1a) from the MH ensemble is warmer than the CRU reference cli-

matology (CRU TS v.4.01 over land, and HadCRUT absolute over sea, Jones et al., 1999) in large parts of Europe, especially

eastern Europe and the Norwegian Sea. These areas coincide predominantly with areas of large ensemble spreads, expressed

as point-wise empirical standard deviations in Fig. 1c. The standard deviations increase up to 4 K in some areas of southern

and eastern Europe. In contrast, the MH mean winter climate measured by MTCO in Fig. 1b shows a more dispersed struc-30

ture with cooling in Fennoscandia, warming in the Mediterranean and Balkan peninsula, and mixed patterns in western and

central Europe. The ensemble spread is predominantly small (Fig. 1d), but increases towards northern Europe with very large

inter-model differences for the Norwegian Sea and eastern Fennoscandia.

4



2.3 Reconstruction variables

It was shown in Simonis (2009) that the pollen and macrofossil synthesis is well-suited for joint reconstructions of July and

January temperature as measures for the warmth of growing season and cold of winter, because at least one of these two

variables is a limiting factor for most taxa growing in the mid and high latitudes of Eurasia during the Holocene. Instead,

testing various climate variables as indicators for moisture availability was less promising since moisture availability is rarely5

a limiting factor for European taxa (Simonis, 2009). Hence, in this study, we choose MTWA and MTCO as the target variables

for our climate reconstructions, which are bioclimatically more meaningful than July and January temperature. To calculate

MTWA and MTCO from time series of monthly averages, the data is first interpolated to the desired spatial grid. Then, for each

hydrological year (October to September), the warmest and coldest month are extracted to ensure that the months are taken

from connected seasons. Afterwards, we average over the values for each year.10

3 Methods

3.1 Bayesian framework

We use Bayesian statistics to combine a network of pollen samples with an ensemble of PMIP3 simulations because in this

approach each source of information has an associated uncertainty that is naturally included in the inference process. In this

section, we specify the quantities that are combined in our reconstruction, and describe the inference algorithm that is used to15

create the results presented below.

In the following, we denote fossil pollen and macrofossil data by Pp, past climate by Cp, modern vegetation and climate

data for the calibration of transfer functions by Pm and Cm, respectively, and additional model parameters by Θ. We are

interested in the conditional distribution of Cp and Θ given Pp, Pm, and Cm, i.e. we want to estimate the posterior distribution

P(Cp,Θ |Pp,Cm,Pm). Applying Bayes’ theorem to P(Cp,Θ |Pp,Cm,Pm) (in the following, we omit normalizing constants),20

we get:

P(Cp,Θ |Pp,Cm,Pm)︸ ︷︷ ︸
Posterior

∝ P(Pp,Pm |Cp,Cm,Θ)︸ ︷︷ ︸
Data Stage / Likelihood

· P(Cp,Cm |Θ)︸ ︷︷ ︸
Process Stage

· P(Θ)︸ ︷︷ ︸
Prior Stage

. (1)

Following Tingley and Huybers (2010), we call P(Pp,Pm |Cp,Cm,Θ) the data stage, P(Cp,Cm |Θ) the process stage, and

P(Θ) the prior stage. In paleoclimatology, the data stage is traditionally called transfer function, which in our case is formulated

in a forward way. It probabilistically models the proxy data given climate variables and is described in detail in Sect. 3.2. The25

process stage stochastically interpolates the local climate information from the proxy data to a spatial domain and is described

in Sect. 3.3. The prior stage defines prior distributions for the model parameters Θ, which are necessary to ensure that the

posterior is a valid probability distribution (Gelman et al., 2013).

To further structure the framework, we split the model parameters Θ into θ, which are parameters associated with the

data stage, and ϑ, which are parameters that influence the process stage. We assume that θ and ϑ are a priori independent30

of each other and that the data stage is conditionally independent of ϑ given Cp. Furthermore, by construction, Pm and Cm
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only contribute to the reconstruction via the transfer function parameters, i.e. they are assumed to be independent of all other

quantities. Hence, we can rewrite Eq. (1) and get

P(Cp,Θ |Pp,Cm,Pm) ∝ P(Pm |Cm,θ)︸ ︷︷ ︸
Calibration stage

P(Pp |Cp,θ)︸ ︷︷ ︸
Observation stage

P(Cp |ϑ) P(θ) P(ϑ). (2)

Here, P(Pm |Cm,θ) is called calibration stage and P(Pp |Cp,θ) is called observation stage (Parnell et al., 2015). The structure

of the Bayesian model can be expressed by a directed acyclic graph as shown in Fig. 2.5

3.2 Transfer function

The Bayesian model uses probabilistic transfer functions to model proxy data, in our case occurrence information on taxa,

given a climate state and transfer function parameters. From all the terms in Eq. (2), the calibration stage, the observation

stage, and the prior distribution of the transfer function parameters are related to the transfer function. As described above, our

main reconstruction target is the bivariate climate C = (C1,C2), where C1 is MTWA and C2 is MTCO.10

To reconstruct climate from the Simonis et al. (2012) synthesis, the probabilistic indicator taxa method (PITM) is used,

which is a well established transfer function to quantitatively constrain past climate states by occurrence information on taxa.

It uses taxa which are sensitive to MTWA and MTCO and determines the climatic niche, where they occur, by fitting response

functions. The classical indicator taxa method (Iversen, 1944) estimates binary limits. PITM, also named pdf method in the

literature (Kühl et al., 2002), is an extension where probability distributions are fitted to acknowledge that the transitions15

between climates, where taxa usually occur, and those, where they do not grow, is soft. Initially, Gaussian distributions were

used for calibration (Kühl et al., 2002) against vegetation maps (Schölzel et al., 2002). Later, the model was extended to

mixtures of Gaussians (Gebhardt et al., 2008) and quadratic logistic regression (Stolzenberger, 2011, 2017).

We integrate the forward formulation of PITM from Stolzenberger (2017) in our Bayesian framework. For each taxa, we

fit a quadratic logistic regression model describing the probability of taxa occurrence for a given value of C. The idea of20

using quadratic logistic regression stems from the BIOMOD software for predicting species distributions (Thuiller, 2003). The

regression for taxa T contains linear and quadratic terms for each of the climate variables as well as an interaction term:

P(T = 1 |C = (C1,C2)) = logit
(
βT1 +βT2 C1 +βT3 C2 +βT4 C1C2 +βT5 C

2
1 +βT6 C

2
2

)
. (3)

Here, logit denotes the logistic function and βT1 , ...,β
T
6 are regression coefficients. This regression leads to a unimodal response

function which is anisotropic but has two symmetry axes, as can be seen for dwarf birch (Betula nana) and European ivy25

(Hedera helix) in Fig. 3.

To fit response functions, vegetation data is used, because it contains more accurate information on the occurrence of a

taxa on the spatial scales of interest compared to modern pollen samples. The disadvantage of using vegetation data for the

calibration is that the probability of presence of a taxa is only valid in vegetation space on the spatial scale taken for the training

data but not in the pollen or macrofossil space, where an absence of a taxa can have multiple non-climatic reasons like local30

plant competition or pollen transport effects, as well as local climatic effects below the resolution of our reconstruction.
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For the calibration against the modern dataset, we use presence (T=1) as well as absence (T=0) information on the taxa

which is justified by assuming that the vegetation maps contain accurate information on taxa presence and absence. From the

definition given in Sect. 2.3, it follows that at any location MTWA is larger or equal than MTCO. Formally incorporating

this constraint in the inference leads to a non-linear condition on the regression parameters, which is very hard to implement.

Therefore, we choose the more practical way of adding artificial absence information for combinations of MTWA and MTCO5

such that MTCO > MTWA. This makes reconstructions of MTCO values larger than MTWA very improbable. To apply the

response functions for individual taxa to a set of proxy data, we assume that proxy samples P (s), where s= 1, ...,S subscripts

the proxy samples, are conditionally independent given a climate field and that, conditioned on C(xs), where xs is the location

of the s-th sample, P (s) is independent of the climate at all other locations. This leads to the following probabilistic model for

the set of modern vegetation samples:10

P(Pm |Cm,θ) =

Sm∏

s=1

∏

T ∈T (P )

P
(
PTm(s) |Cm(xs),β

T
1 , ...,β

T
6

)
. (4)

Here, PTm(s) is the presence or absence of taxa T in the s-th calibration sample, T (P ) is the set of all Taxa occurring in the

fossil pollen and macrofossil synthesis, and θ := (βTi , i= 1, ...,6, T ∈ T (P )).

As described above, the absence of a taxa in a pollen or macrofossil sample can have reasons that are not included in

the absence probability estimated from Eq. (4), as this calibration is only valid in the vegetation space. As information on15

the absence of a taxa in the vegetation space is not available from pollen and macrofossil data, the only reliable occurrence

information of a taxa in the respective grid box in the past is the presence of the taxa in a pollen or macrofossil sample

(Gebhardt et al., 2003). Hence, only occurring taxa are included in the reconstruction step. Violations of the assumption that

taxa are treated as conditionally independent given climate, i.e. due to co-occurrence of taxa (Kühl et al., 2002), can lead to

over-fitting. Therefore, a statistical preselection of taxa, which are present in a sample, is applied (Gebhardt et al., 2008). For20

the pollen and macrofossil synthesis used in this study, the preselection was carried out by Simonis (2009) and we follow his

results. Following these considerations, P(Pp |Cp,θ) is given by

P(Pp |Cp,θ) :=

Sp∏

s=1

∏

T ∈T (s)

P
(
PTp (s) |Cp(xs),βT1 , ...,βT6

)
, (5)

where T (s) are the taxa occurring in sample s and picked by the preselection procedure.

Finally, we define a prior distribution for θ. We use a Gaussian distribution centered at 0 and a marginal variance of 10 for25

each parameter βTi . Due to the absence of prior information on the correlation structure, we assume independence between the

taxa as well as within a taxa. Due to the high information content in the calibration data set, the influence of the prior on the

response functions is negligible for most taxa. It slightly smooths the corresponding maximum likelihood estimates particularly

for rare taxa, but does not influence the reconstructions significantly.

Using a flat prior for Cp(xs) and removing spatial correlations, local climate reconstructions at the locations of the proxy30

samples can be calculated. These reconstructions depend only on the proxy data in grid box xs. Results of local MH reconstruc-

tions for each grid box with proxy data are shown in Fig. 4, where the local reconstruction means and 90% credible intervals

7



(CIs) are plotted. Local reconstructions can also be used to evaluate the ability of the transfer functions to reconstruct modern

climate which provides a reference for possible regional biases. For the PITM model such evaluations have been performed

by Gebhardt et al. (2008) and Stolzenberger (2011). Both evaluations show that the model tends to underestimate north-south

gradients leading to positive biases in Fennoscandia, and slightly negative biases in the Mediterranean. The biases as well as the

uncertainties are larger for winter temperature than for summer. Therefore, results for MTCO in northern Fennoscandia should5

be treated with caution, while for all other regions biases of the reconstruction means are within reconstruction uncertainties.

An issue of the PITM version used in this study is the inconsistent use of calibration and fossil data by using presence and

absence information on taxa for the calibration but only occurring taxa in the reconstruction. Despite this inconsistency, the

reconstructions in this study are in agreement with previous versions of PITM, where only occurrence information were used

for calibration. However, there is no simple solution for the problem that the calibration is in vegetation space whereas the10

absence of taxa in the fossil samples is an information in the pollen or macrofossil space. A promising idea might be to model

the absence due to non-climatic reasons as zero-inflation by adding a latent variable to estimate the detection probability of a

taxa (MacKenzie et al., 2002). But the estimation of detection probabilities is a very challenging task because it depends on

many factors like pollen influx area, local topography, soil properties, and plant competition which might change over time.

In addition, the processes that influence the detection probability of macrofossils are very different than for pollen. Therefore,15

a different detection probability has to be estimated for pollen than for macrofossils. Resolving the described issues is an

interesting direction for future research but is beyond the scope of this study.

3.3 Process stage

The ensemble of climate simulations is used to control the spatial structures of the reconstruction and to constrain the range

of physically possible climate states for a given external forcing by computing a spatial prior distribution from the ensemble20

members. This distribution is combined with interpolation parameters ϑ to facilitate a more flexible adjustment to the proxy

data. The estimation of the prior distribution is hampered by the small number of ensemble members K = 7.

It is not obvious which method for estimating the prior distribution is best suited for the problem on hand and which

additional model parameters are appropriate to preserve as much physical consistency contained in the climate simulations as

possible but to correct for climate model inadequacies. Therefore, we perform a comparison study of six process stage models,25

that are composed of three techniques to formulate the process stage and two choices for the involved spatial covariance matrix.

3.3.1 Gaussian model

The most common approach in the data assimilation literature is to assume that the ensemble members are independent and

identically distributed (iid) samples from an unknown Gaussian distribution of possible climate states (Carrassi et al., 2018).

In the following, the climatological means of the K ensemble members are denoted by µk. Subsequently the spatial prior30

distribution is given by N (µ̄,Σprior), where N denotes a Gaussian distribution, µ̄ is the ensemble mean, and Σprior is a spatial
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covariance matrix, which is given by a regularized version of the empirical covariance

Σemp =
1

K − 1

K∑

k=1

(µk − µ̄) (µk − µ̄)
t
. (6)

The superscript t denotes the matrix transpose. Hence, the covariance matrix is based on the inter-model differences as an

estimate of epistemic uncertainties. The regularization techniques of Σemp are specified below. The Gaussian distribution is N

dimensional, where N is the number of grid boxes times the number of jointly reconstructed variables.5

The main advantage of this Gaussian model (GM) is that inference is simpler than in more complex probability density

estimation techniques. The disadvantage is that it relies on the strong assumption that µk are iid samples from an unknown

Gaussian distribution. This assumption tends to be more realistic for samples from just one ESM, whereas statistics of multi-

model ensembles are often not well described by purely Gaussian distributions (Knutti et al., 2010). A second disadvantage

of this model is that the absence of additional parameters limits the possibilities to adjust the posterior distribution to the10

proxy data. The third disadvantage is that spatial structures of individual ensemble members are lost by averaging over all

members. Nevertheless, in many climate prediction applications multi-model averages outperformed each individual ESM

(e.g. Krishnamurti et al., 1999).

3.3.2 Regression model

A relaxation of the assumptions of the GM is the second model, that we call the regression model (RM) because it is inspired15

by regression based models popular in postprocessing and climate change detection and attribution (Hegerl and Zwiers, 2011).

In the RM, variable weights λk,k = 1, ...,K are introduced to allow weighted averages of the ensemble members. This means,

that samples, which fit better to the proxy data, are weighted higher in the posterior. The sum of the weights is set to one such

that unrealistically warm or cold state are prevented. This leads to the process stage model

P(Cp|λ1, ...,λK) = N
(
Cp

∣∣∣
K∑

k=1

λkµk,Σprior

)
, (7)20

and an additional prior distribution for the model weights

P(λ) = Dir
(
λ1, ...,λK

∣∣ 1
2 , ...,

1
2

)
. (8)

Dir denotes a Dirichlet distribution, which guarantees that the weights take values between zero and one and sum up to one.

Conditioned on λ, the process stage distribution is Gaussian, but non-Gaussianity is permitted through the variable weights. The

parameters of the prior distribution are chosen to prefer combinations with one dominant ensemble member which is adjusted25

by the other members to improve the fit to the proxy data. Thereby, it preserves more physical structure from individual

members than the GM as better fitting models are only weakly corrected for climate model inadequacies. The RM has the

advantage of possessing more degrees of freedom compared to the GM. The inference process becomes a little more involving

than for the GM because the ensemble member weights have to be estimated, too, but the conditional Gaussian distribution of

Cp helps designing efficient inference algorithms.30
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3.3.3 Kernel model

The third model has been introduced in the data assimilation literature by Anderson and Anderson (1999) to combine particle

and Gaussian filtering approaches. This kernel model (KM) assumes that each ensemble member is a sample from an unknown

distribution of possible climate states given a set of forcings, but it does not assume that this unknown distribution is Gaussian.

Instead, non-parametric kernel density estimation techniques (Silverman, 1986), where the probability distribution is given by5

a mixture of multivariate Gaussian kernels, are used. Each ensemble member climatology corresponds to the mean of a kernel.

Ideally, the covariance matrix of each kernel would correspond to the respective ESM, such that the spatial autocorrelation

of that ESM is preserved when we sample from its kernel. Unfortunately, there is only one MH run available for each ESM

and the internal variability in those runs is much smaller than the inter-model differences. Using the internal variability of

those runs would thus lead to very distinct kernels and allow too few climate states. Therefore, the covariance of each kernel is10

estimated from the inter-model differences even though autocorrelation of the individual models is lost. This is a very common

choice in kernel based probability density approximations (Liu et al., 2016; Silverman, 1986).

Compared to the GM, the empirical covariance matrix Σemp is scaled by the Silverman factor (Silverman, 1986)

f =
(

4
K·(N+2)

) 2
N+4

, (9)

which optimizes the variances of the kernels. Hence, in the KM the scaled empirical covariance matrix Σ̃emp, given by f ·Σ̃prior,15

is regularized leading to the spatial covariance matrix Σ̃prior. Note that the small number of ensemble members leads to a

standard deviation reduction of only around 2% in our applications.

Each kernel gets an assigned weight ωk, k = 1, ...,K, which is inferred in the Bayesian framework. The weights sum up to

one. The resulting process stage is a mixture distribution

P(Cp |ω1, ...,ωK) =

K∑

k=1

ωk N
(
Cp |µk, Σ̃prior

)
. (10)20

A Dirichlet distributed prior is used for ω with parameter 1
2 for each of the K components. A computational disadvantage of

the KM is that the process stage is multi-modal and non-Gaussian. We augment the model by an additional parameter z, which

follows a categorical distribution, denoted by Cat, to restore that Cp is Gaussian conditioned on the ω and z. z selects a kernel

k according to its weight ωk, i.e. z is defined such that

P(ω) = Dir
(
ω1, ...,ωK | 12 , ..., 1

2

)
(11)25

P(z |ω) = Cat(z1, ...,zK |ω1, ...,ωK) (12)

P(Cp |z) =

K∏

k=1

(
N (Cp |µk,Σprior)

)zk . (13)

Integrating out z yields the mixture distribution Eq. (10).

Two advantages of the KM are that it is not assumed that the unknown prior distribution is Gaussian and that the kernels

do not rely on an iid assumption for their first moment properties. However, the KM still relies on an iid assumption for the30
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second moments. The KM preserves the spatial structures of each ESM in the first moments of the kernels. This preservation of

physical consistency reduces the degrees of freedom compared to the RM. For example, when the true climate state lies exactly

between µ1 and µ2, the posterior mode cannot be changed to 1
2 (µ1 +µ2), which is possible in the RM. Another disadvantage

of the KM is that the multi-modality makes the design of efficient inference algorithms a lot more challenging.

3.3.4 Glasso based covariance matrices5

The first technique to regularize the empirical covariance matrix (the scaled empirical covariance in the KM), which is applied

in this study, is the graphical lasso algorithm (glasso, Friedman et al., 2008, implemented in the R-package glasso). This

algorithm approximates the precision matrix (inverse covariance) by a positive definite, symmetric, and sparse matrix Σ−1
prior.

Therefore, Σprior is a valid N -dimensional covariance matrix. Glasso maximizes the penalized log-likelihood

logdetΣ−1
prior− trace(Σemp Σ−1

prior)− ξ ‖Σ−1
prior‖1, (14)10

where ξ is the penalty parameter, ‖·‖1 is the vector L1-norm, and the first two terms are the Gaussian log-likelihood. Because

applying the glasso algorithm is computationally expensive, it is not feasible to formally include ξ in the Bayesian framework.

Instead a suitable value of ξ has to be determined prior to the inference. In this study, ξ is chosen such that Σprior is a numerically

stable covariance matrix and the performance in cross-validation experiments (CVEs) is optimized. Technical details of the

determination of ξ are described in Appendix A.15

The advantage of the glasso approach is that the empirical matrix can be approximated very closely and the sparseness of

the precision matrix facilitates the use of efficient Gaussian Markov random field (GMRF) techniques (Rue and Held, 2005) in

the inference algorithm. A disadvantage is that no new spatial structures are added to Σemp. Therefore, the effective number of

spatial modes is much smaller than the dimension of the climate vector, which can lead to a collapse onto a very small subspace

of the N -dimensional state space and subsequently biases and under-dispersion.20

3.3.5 Shrinkage based covariance matrices

To overcome the deficiencies of the glasso approach, we propose an alternative covariance regularization technique. The so-

called shrinkage approach (Hannart and Naveau, 2014) uses a weighted average of the empirical correlation matrix and a

reference correlation matrix, which in our case contains additional spatial modes such that the effective number of spatial

modes in the covariance matrix is increased. This allows deviations from the spatial structures prescribed by the climate25

simulation ensemble and is therefore a strategy to account for climate model inadequacies.

Let Ψemp be the empirical correlation matrix of the climate simulation ensemble, which is related to Σemp by

Σemp = Diag(Σemp)
1
2 Ψemp Diag(Σemp)

1
2 , (15)

where Diag(Σemp) denotes a diagonal matrix with the same diagonal entries as Σemp, and the exponent 1
2 means that the square

root of each diagonal entry is taken. Replacing Ψemp by a weighted average of Ψemp and a shrinkage target Φ leads to the30
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shrinkage covariance matrix

Σprior = Diag(Σemp)
1
2 (αΨemp + (1−α)Φ) Diag(Σemp)

1
2 . (16)

α is the weighting parameter, which takes values between zero and one. Φ is computed from a numerically efficient GMRF

approximation of a stationary Matérn correlation matrix (Lindgren et al., 2011). The Matérn correlation matrix is controlled

by three parameters, the smoothness, the range ρ, and the anisotropy ν. We fix the smoothness for computational reasons.5

ρ controls the decorrelation length, and ν parameterizes the ratio of the meridional versus zonal decorrelation length. For

joint reconstructions of multiple climate variables, independent correlation matrices for each variable are combined in a block

structure. Details about the definition of Φ are given in Appendix B.

Ideally, the parameters α, ρ, and ν are estimated from the proxy data. But initial tests showed that the signal in the proxy

data is not informative enough to constrain the parameters. Therefore, an ensemble of parameter combinations is created from10

fitting the shrinkage model to each of the climate simulation ensemble members given all other members. This results in seven

consistent sets of α, ρ, and ν. Those are passed to the reconstruction framework, such that each parameter set is chosen with

a probability inferred from the proxy data. Thereby, each set is based on a fit against physically consistent structures, and the

problem of non-identifiability of the parameters from proxy data alone is reduced. The resulting parameter estimates cover a

wide range of possible values. The main advantage of the shrinkage approach over the glasso based matrices is that more spatial15

modes are included in the covariance matrix. Thereby, the collapsing of the reconstruction towards a very low-dimensional

subspace is mitigated.

3.4 Inference strategy

Because PITM is non-Gaussian and non-linear, the posterior climate does not belong to a standard probability distribution.

Therefore, Markov chain Monte Carlo (MCMC) techniques are used to asymptotically sample from the correct posterior20

distribution. These samples allow analyses beyond summary statistics like means and standard deviations. A Metropolis-

within-Gibbs strategy is implemented, which means that in each update of the Markov chain, we sample sequentially from

the full conditional distributions (i.e. the distribution of the respective variable given all other variables) of θ, ϑ, and Cp.

This strategy is chosen because for many variables the full conditional distributions follow probability distributions for which

efficient sampling algorithms exist, and for the remaining variables Metropolis-Hastings updates are used for sampling.25

To sample the regression parameters θ in Eq. (3) to (5) efficiently, the data augmentation scheme of Polson et al. (2013) is

used. For taxa T , the full conditional is only depending on Cp, Cm, PTp , and PTm, but not on other taxa. Therefore, we can

sample βT1 , ...,β
T
6 independently from the other taxa. Polson et al. (2013) introduce help variables γTl , l = 1, ...,L(T ), where

L(T ) is the number of observations of taxa T , such that P(γTl |βT1 , ...,βT6 ,Cm,Cp) is Pólya-Gamma (PG) distributed, and

P(βT1 , ...,β
T
6 |PTm,PTp ,γT1 , ...,γTL ) is Gaussian. Therefore, the MCMC algorithm samples alternately from a PG distribution30

using the sampler of Windle et al. (2014) and from a Gaussian distribution. The PG sampler is implemented in the R package

BayesLogit (Windle et al., 2013).
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Sampling from ϑ depends on the particular process stage model. In models with shrinkage covariance matrix, α, ρ, and ν are

sampled from the K parameter sets in a Metropolis-Hastings step. The weights λ in the RM are sampled from a random walk

type Metropolis-Hastings update. In the KM, Eq. (11) to (13) lead to full conditionals for ω and z, which are again Dirichlet

and categorically distributed but with updated parameters. Therefore, Gibbs sampling can be used to update ω and z.

To sample from the full conditional of Cp, we separate the grid boxes xP with at least one proxy record from those without5

any proxy records denoted by xQ. There is no closed form available for the full conditionals of Cp(xP ). Therefore, we use a

random walk Metropolis-Hastings algorithm to update Cp(xP ) sequentially for all members of xP . As the transfer functions

act locally, Cp(xQ) is conditionally independent of Pp given Cp(xP ) and ϑ. Therefore, we update Cp(xQ) by sampling from

P(Cp(xQ) |Cp(xP ),ϑ) which is Gaussian.

The multi-modality of the KM makes inference for this model a lot more challenging than for the GM and RM. The problem10

of efficient MCMC algorithms for multi-modal posterior distributions is a widely acknowledged issue in the literature (Tawn

and Roberts, 2018) and in this study Metropolis coupled Markov chain Monte Carlo (MC3; Geyer, 1991), which is also known

as parallel tempering, is used to overcome this issue. Details of this procedure are provided in Appendix D.

To speed up the inference, grid boxes with proxy data and those without proxy data are treated sequentially. First, Cp(xQ)

is integrated out to get an estimate of the joint distribution of Θ and Cp(xP ). In a second step, we sample from Cp(xQ) condi-15

tioned on Cp(xP ) and Θ. The remaining bottleneck in computation time is the estimation of the transfer function parameters

due to the large modern calibration set. While in theory the observation layer influences the updates of θ, in practice the influ-

ence of Eq. (5) on the posterior of θ is negligible. Therefore, a modularization approach (Liu et al., 2009; Parnell et al., 2015)

is used in CVEs, where a sequence of reconstructions with slightly changed proxy networks is computed. This means that first

MCMC samples of θ are drawn using only Eq. (4). Then, Cp is reconstructed using these samples instead of sampling θ from20

its full conditional.

Detailed formulas for the full conditional distributions are given in Appendix C. Pseudo-code for the MCMC and MC3

algorithms is provided in the Supplement. For a 798 dimensional climate posterior as it is the case in joint reconstructions of

MTWA and MTCO, and 45 grid boxes that contain at least one proxy record, 75,000 MCMC samples are created. The first

25,000 samples are discarded as burn-in. To reduce the autocorrelation of subsequent samples, every fifth sample is extracted25

to create a set of 10,000 posterior samples for further analyses. On a standard desktop computer, reconstructions with the

modularized model are computed in approximately 30 minutes. The convergence of all MCMC variables is checked using the

Gelman-Rubin-Brooks criterion (Brooks and Gelman, 1998) implemented in the R package coda (Plummer et al., 2006).

4 Results

In this section, results from a comparison study of the six different process stage models are shown. Then, the MH reconstruc-30

tion for Europe with the Simonis et al. (2012) synthesis and the PMIP3 MH ensemble is presented.
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4.1 Comparison of different process stage frameworks

In this section, the reconstruction skill of the three process stage formulations (GM, RM, KM) and the two covariance models

(glasso, shrinkage) are compared using two types of experiments. Identical twin experiments (ITEs) use the climate simula-

tion ensemble by simulating pseudo-proxy data from one ESM and trying to reconstruct that reference climatology from the

simulated proxies and the remaining ensemble members. These experiments facilitate the understanding of different modeling5

approaches for the process stage in a controlled environment. In particular, the evaluations do not have to rely on indirect

observations as it is the case in real paleoclimate applications where the true climate state is unknown. The second type of ex-

periments are CVEs, where spatial reconstructions with the Simonis et al. (2012) synthesis are performed but the samples from

one grid box are left out. Then, the reconstructions for this grid box are evaluated against the left-out sample in the vegetation

space. The advantage of these experiments is that the models are compared in a real-world setting. The disadvantage of CVEs10

is that no direct observations of paleoclimate are available such that evaluations against observations have to be indirect.

4.1.1 Identical twin experiments

The first step in an ITE is to choose a reference ESM with climate state C true
p . Then, for each grid box, that contains samples

from the Simonis et al. (2012) synthesis (denoted by xP ), pseudo-proxies are simulated from a Gaussian approximation of the

uncertainty structure of the local reconstructions depicted in Fig. 4. The pseudo-proxies are assumed to be unbiased with a15

bivariate Gaussian distribution and covariance matrix Σxs
p , i.e.

P (xs)∼N
(
C true
p (xs),Σ

xs
p

)
, xs ∈ xP . (17)

Using unbiased Gaussian pseudo-proxies is a common strategy to test climate field reconstruction techniques (e.g. Gomez-

Navarro et al., 2015). It allows a direct study of the ability of the process stage methods to estimate spatial climate fields from

sparse and noisy proxy data, without having to factor in potential biases in the transfer function. Finally, a probabilistic spatial20

reconstruction is computed from the simulated proxies and the remaining ensemble members. For each of the six different

process stage configurations and each of the seven PMIP3 ensemble members as reference climatology, five randomized ITEs

are performed. The evaluation of the ITEs focuses on biases in the reconstructions, potential under-dispersion, and the ability

of the reconstruction to probabilistically predict past climate.

Averaged over all ITEs with the same process stage model and averaged in space, the mean deviation between reference25

climate and posterior mean as a measure for systematic biases is close to 0 K for all process stage models with values between

-0.14 K for the shrinkage KM and +0.03 K for the shrinkage RM (Table 2, Fig. 5a), but the variation across ITEs is larger for

the glasso covariance models (standard deviation around 0.31 K) than for the shrinkage covariance models (standard deviation

around 0.24 K). The standard deviations for MTCO reconstructions tend to be larger than for MTWA. This can be explained by

the larger noise level in the local MTCO reconstructions, which makes the spatial MTCO reconstructions more susceptible to30

biases. Concerning the spatial patterns of mean deviations, all ITEs with glasso covariance matrices exhibit larger local biases

than those with shrinkage matrices (see additional figures in Supplement). While the magnitude of biases for the GM and RM
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models with shrinkage covariances is much smaller, the magnitude of local deviations of the shrinkage KM is just slightly

smaller than for glasso covariances. This shows that the models with shrinkage matrix can reconstruct spatial patterns better

than the models that use glasso. In addition, averaging over different ensemble members in the process stage mean seems to be

a more effective strategy as the GM and RM reconstruct the spatial structures better than the KM.

The higher number of spatial modes in the shrinkage covariances leads to larger posterior uncertainties than for the glasso5

models, because the limited information contained in the proxy data can constrain only a small number of spatial modes (Table

2). To study dispersiveness of the reconstruction, coverage frequencies for 50% and 90% CIs are calculated. This means that the

frequency of the reference climate state to be included in the respective CIs is computed. For the 50% CIs, coverage frequencies

below 50% indicate under-dispersiveness, whereas values above 50% indicate over-dispersion. Similarly, the target for the 90%

CIs is 90%. In all ITEs, the glasso models are under-dispersive, and the shrinkage models are over-dispersive (Table 2, Fig. 5c).10

The coverage frequency for 50% CIs is below 41% in all ITEs with glasso covariance matrix and above 56% in all ITEs with

shrinkage covariance matrix. Similarly, the coverage frequencies for 90% CIs are below 77% for all glasso ITEs and above

94% for all ITEs with shrinkage matrix (Fig. 5d). At most grid boxes of the ITEs with glasso based covariance matrix, the

coverage frequencies are below the target values, whereas they are above the desired values at almost all grid boxes in the ITEs

with shrinkage matrix (see additional figures in Supplement). The values are closest to the target near grid boxes with proxy15

data in all ITEs.

To analyze the combined effect of biases and dispersiveness, the continuous ranked probability score (CRPS) is computed.

This is a common strictly proper score function for evaluating probabilistic predictions (Gneiting and Raftery, 2007), in our case

the ability of a reconstruction method to probabilistically predict past climate from sparse and noisy data. It is a generalization

of the absolute error to probabilistic forecasts (Matheson and Winkler, 1976), given by20

CRPS
(
F,C true

p (x)
)

:=

∞∫

−∞

(
F (y)− δ(y≥C true

p (x))

)2

dy, (18)

where F is the cumulative distribution function of the reconstruction Cp at grid box x, and C true
p (x) is the reference climate

state at x. The CRPS has a unique minimum at 0 and is positive unless F is a perfect prediction.

With a spatially averaged mean around 1 K for all three models, the ITEs with glasso covariance matrices feature a higher

CRPS than the ITEs with shrinkage matrices that have a spatially averaged mean around 0.4 K (Table 2, Fig. 5b). This is a result25

of larger biases on the grid box level and under-dispersiveness of the posterior distribution. In addition, the variability between

the ITEs with the same process stage model is higher for models with glasso covariance, which shows that these models are

less robust. The MTWA CRPS is slightly lower than the MTCO CRPS since the local reconstructions constrain MTWA more

than MTCO. Among the process stage models with shrinkage matrix, the KM performs slightly worse than the GM and the

RM which is a result of the larger biases on the grid box level described above. The spatial structures of CRPS reflect the30

mean deviation patterns (Fig. 6). This is an effect of more pronounced spatial patterns in the mean deviations compared to

dispersiveness.
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4.1.2 Cross-validation experiments

CVEs are a way to understand the ability of a spatial reconstruction method to produce consistent estimates. In paleoclima-

tology, the issue is that all observations are indirect, which means that poor evaluations can result from errors in the process

stage or the data stage. The assumption behind CVEs is that the data stage is unbiased or at least consistently biased among

different proxy samples. Cross-validations are evaluated in the observation space. In this study, this is the vegetation space,5

i.e. the occurrence of taxa in a grid box. As the only reliable information that are available from the pollen and macrofossil

synthesis on the vegetation composition in a grid box is the presence of certain taxa, this is also the only data that is used for

the evaluation. Due to the sparseness of the proxy network, leave-one-out CVEs are performed and not more data is left out in

each experiment.

In each CVE, a reconstruction with the Bayesian framework is computed with all proxy samples except for those in one grid10

box x. Then, the reconstruction Cp(x) at grid box x is extracted and treated as probabilistic prediction of the climate at x. Next,

the PITM forward model is applied to C(x) for each sample Pp located in grid box x to produce probabilistic predictions of

the occurrence of the taxa that are found in those samples. This prediction of the occurrence of a taxa T is represented by the

probability of presence p ∈ [0,1]. A common score function for binary variables is the Brier score (BS; Brier, 1950) given by

BS(T ) := 1
2

(
(δT (1)− p)2

+ (δT (0)− (1− p))2
)

=





1 + p2− 2p if T = 1

p2 if T = 0
(19)15

where δT denotes the indicator function of taxa T . The BS takes values between zero and one, where zero corresponds to a

perfect prediction and one to the worst possible prediction. The PITM forward model is applied to each MCMC sample, which

leads to a set of probabilistic predictions pj(T ), j = 1, ...,J for taxa T . Predictions are calculated for each taxa which occurs

in sample P (s). The joint score of P (s) is then calculated by averaging the BS of each taxa and prediction:

BS(P (s)) :=
1

|T (s)|J
∑

T∈T (s)

J∑

j=1

(
1 + pj(T )2− 2pj(T )

)
. (20)20

If multiple samples are assigned to one grid box, the mean score of those samples is taken.

A problematic step in the methodology described above is that the BS is only evaluated for occurring taxa for the reasons

discussed in Sect. 3.2. This can make the BS improper when comparing statistical models that predict the presence or absence

of taxa. However, the goal of the methodology described above is an indirect evaluation of predictions of past climate via

transfer functions. In that context, it would lead to inconsistencies between the local reconstructions and the BS evaluations if25

taxa that are absent in the proxy synthesis were included. Circumventing this issue is beyond the scope of this study. It should

be noted that for each taxa the BS is a convex function of climate and minimal for a unique climate state. These two properties

make the methodology described above useful for the indirect evaluation of climate field reconstruction methods.

The models with glasso covariances perform slightly worse than those with shrinkage covariances, as the mean BS takes

values of 0.186 (GM, RM ) or 0.187 (KM) for the glasso based models compared to values between 0.161 and 0.165 for models30

with shrinkage covariances (Table 2). Similar to the ITEs, the differences between models with different covariance types are
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larger than those with the same covariance model. Accordingly, the largest differences at individual grid boxes between models

with different covariance matrix types are on the order of 10−1, but only on the order of 10−2 between models with the same

covariance type. The models with shrinkage covariance matrices tend to perform better in western Europe and Fennoscandia,

whereas in central and eastern Europe, the magnitude of the differences is very small and the models with glasso covariance

matrices perform slightly better in the majority of grid boxes.5

4.1.3 Conclusions from the comparison study

The ITEs show that the models with shrinkage matrix covariances are more dispersive, less biased, and more robust than

those with glasso covariance matrices. These properties transfer to the CVEs where the models with shrinkage covariance

matrix perform better, too. The results from models with the same covariance matrix are very similar except that the KM with

shrinkage covariance matrix is on average more biased than the respective GM and RM. This shows that the covariance matrix10

choice determines the reconstruction skill more than the general formulation of the process stage as Gaussian, regression, or

kernel model. The reason for this strong effect of the regularization technique might be the small ensemble size and that the

modes of the inter-model variability do not explain the spatial variability of the climate optimally, which further reduces the

useful spatial modes in the empirical covariance matrix.

The better performance of shrinkage covariance models shows that the low number of spatial modes as is the main reason15

for the under-dispersiveness of the glasso based models. On the other hand, the over-dispersiveness of the shrinkage models

should be an indicator that this model is not under-dispersed even in real world applications which face additional challenges

from potentially biased or under-dispersed transfer functions and a more sophisticated spatial structure of the climate state

than in the ESM climatologies. Additionally, this over-dispersiveness shows that in most regions the ensemble spread is wide

enough to lead to reconstructions which do not feature too narrow posterior distributions.20

The larger biases of the KM with shrinkage covariance matrix compared to the GM and RM are a result of ensemble member

weight degeneracy in the particle filter part of this model. The ensemble member weights tend to degenerate towards the least

deviating model such that the mean values are biased towards that model. This tendency increases with the strength of the

proxy data signal. This is a well-known issue of Bayesian model selection (Yang and Zhu, 2018), and therefore as well of

particle filter methods (Carrassi et al., 2018), which hinders the use of KMs in data assimilation problems. To mitigate this25

issue, the particle filter part of the KM is combined with a Gaussian part that is more similar to Kalman type filters. The ITEs

show that this adjustment is strong enough to avoid under-dispersiveness, but the degeneracy of the ensemble member weights

still leads to larger biases than in the RM and GM.

4.2 Spatial reconstruction of European MH climate

Based on the results presented in the previous section, the models with shrinkage matrix should be preferred over those with30

glasso covariance models. In addition, the smaller biases and more robust nature of the GM and RM with shrinkage covariance

matrix compared to the KM model, makes them superior choices. Because the RM adjusts more flexible to the proxy data than

the GM, this model is presumably better suited to deal with additional caveats of real world applications. Therefore, this model
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is used for the spatial reconstructions, whose results are presented in this section. Reconstruction results are summarized in

Table 1. Results from reconstructions with the other five process stage models are presented in the Supplement.

4.2.1 Posterior mean and uncertainty structure

The spatially averaged mean temperature of the reconstruction (posterior mean) is 18.27°C (90% CI: (17.79°C, 18.75°C)) for

MTWA and 1.81°C (90% CI: (1.22°C, 2.45°C)) for MTCO, which is in both cases warmer than the the CRU reference clima-5

tology (+0.51 K for MTWA and +0.69 K for MTCO). Larger anomalies are found for subregions (Fig. 7a,b). For MTWA as

well as MTCO, temperatures were cooler than today in many southern European areas, while in northern Europe the temper-

atures were predominantly higher than today. More specifically, MTWA was warmer over Fennoscandia, the British Islands,

and the Norwegian Sea. Most of these anomalies are significant on a 5% level. Here, a positive anomaly is called significant

if the posterior probability to exceed the reference climatology is at least 0.95. Significant negative anomalies are defined10

accordingly. The significance estimates are calculated point-wise. Negative MTWA anomalies are found in large parts of the

Mediterranean and eastern Europe, but fewer anomalies are significant on a 5% level than in north-western Europe. The largest

positive MTCO anomalies are found in Fennoscandia and off the Norwegian coast. In the other parts of the domain, the ma-

jority of MTCO anomalies are negative, but the spatial pattern is more heterogeneous than for MTWA. A lot fewer MTCO

anomalies are significant on a 5% level compared to MTWA anomalies.15

Most of the taxa, which are used in the reconstruction, are stronger confined for MTWA than for MTCO because the growth

of most European plants is more sensitive to conditions during the growing season. This results in more constrained local

MTWA reconstructions (Fig. 4c), which is in concordance with findings from Gebhardt et al. (2008). Hence, the uncertainty in

the MTWA reconstruction is smaller than in the MTCO reconstruction with spatially averaged point-wise 90% CI sizes of 4.15

K and 5.84 K, respectively (Fig. 7c,d). The uncertainty is smallest at grid boxes with proxy records, and highest in the north20

eastern and north western parts of the domain where the PMIP3 ensemble spread is large and the constraint from proxy data is

weak. For MTWA, additional regions with large uncertainties are found at the eastern and southern boundaries of the domain

due to weak proxy data constraints.

The highest reduction of uncertainty due to the inclusion of proxy data is found at grid boxes with proxy data, as quantified

by a spatially averaged reduction of point-wise CI sizes from prior to posterior of 50.1% compared to 26.0% for grid boxes25

without proxy data (Fig. 7e,f). The uncertainty reduction for MTWA is higher for terrestrial grid boxes than marine ones, but

the smaller PMIP3 ensemble spread over the British Islands, the North Sea, and the Bay of Biscay leads to similar posterior

CI sizes in these areas. For MTCO, the reduction of uncertainty is generally smaller than for MTWA due to the weaker proxy

data constraint.

To study whether the degree of spatial smoothing of the reconstruction is reasonable, a measure inspired by discrete gradients30

is calculated. For each grid box, the mean absolute difference between the value in the box and its eight nearest neighbors is

computed. Then, the spatial averages of this homogeneity measureH in the posterior, the climatologies of the PMIP3 ensemble

members, and the reference climatology are compared. A reconstruction with a good degree of smoothing is expected to have

similar spatial homogeneity than the PMIP3 ensemble and the reference climatology, as H depends mainly on local features
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like orography or land-sea contrasts, and we expect these features to affect the local climate of the MH similarly than today’s

climate. For MTWA, the posterior mean value is 1.41 K (90% CI: (1.31 K, 1.53 K)), which is in agreement with 1.39 K for

the reference climatology and values between 1.08 K and 1.54 K for the PMIP3 climatologies. The heterogeneity of MTCO is

higher than of MTWA, but the mean posterior value of 2.54 K (90% CI: (2.33 K, 2.76 K)) is of comparable magnitude as the

reference climatology (2.02 K) and the PMIP3 climatologies (between 1.89 K and 2.41 K). From these results, it is deduced5

that the posterior has a reasonable degree of spatial smoothing.

4.2.2 Comparison of unconstrained PMIP3 ensemble and posterior distribution

By comparing the posterior with the prior and the local reconstructions, it can be seen that for most areas with nearby proxy

records the posterior mean resembles the local reconstructions more than the PMIP3 ensemble mean. This shows that the

uncertainty in the prior distribution is large enough to lead to a reconstruction which is mostly determined by proxy data,10

where available. The posterior MTWA mean is warmer in northern Europe than the prior mean and cooler in southern and

eastern Europe. For MTCO, the posterior mean is much warmer than the prior mean in Fennoscandia and slightly cooler in

southern Europe.

The posterior weights λ of the PMIP3 ensemble members are a combination of the prior distribution of λ and the likelihood

of Cp for each combination of ensemble member weights (see Appendix C for details). λ provides information about which15

combination of ensemble members fits best to the proxy data. In our reconstruction, the MPI-ESM-P climatology has the

highest posterior weights (mean of 0.485) (see Fig. 8), followed by the EC-Earth-2-2 climatology (posterior mean of 0.154)

and the Had-GEM2-CC climatology (posterior mean of 0.104). Note, that the weights of the MPI-ESM-P and the EC-Earth-

2-2 are the only ones that are on average higher than the prior mean of 1/7. The large differences of the weights are a result

of the large differences between the ensemble member climatologies. Because there is less uncertainty in the local MTWA20

reconstructions, it is the major variable for determining the posterior weights. Among all included models, the MPI-ESM-P

simulation is closest to the dipole structure with MTWA warming in northern and cooling in southern Europe, which explains

the high model weight.

4.2.3 Added value of the reconstruction

CVEs provide inside into the value that is added to the unconstrained PMIP3 ensemble, represented by the process stage Eq. (7),25

by constraining it with the Simonis et al. (2012) synthesis. To quantify the added value, the BS from Eq. (20) is calculated for

the unconstrained process stage, which is called BS(Prior), and compared to the BS of the posterior, BS(Posterior), calculated

from leave-one-out CVEs. Then, the Brier skill score (BSS)

BSS :=
BS(Prior)−BS(Posterior)

BS(Prior)
(21)

is computed, which is a measure of the added value of the spatial reconstruction. For positive BSS values, the posterior30

distribution is superior to the prior. On the other hand, the posterior distribution is inferior to the prior for negative values.
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This would indicate inconsistencies in the local proxy reconstructions or the existence of spurious correlations in the spatial

covariance matrix.

For most left-out proxy samples, the BSS is positive (68.9% of grid boxes) with a median of 0.28 (Fig. 9). The BSS

values are predominantly positive for all regions but the British Islands and the Alps. This indicates a high consistency of

the reconstruction in large parts of the domain. In particular, consistent MTWA cooling in southern and eastern Europe in the5

local reconstructions compared to the prior distribution leads to cooling and reduction of uncertainty in the posterior compared

to the unconstrained PMIP3 ensemble. Similarly, the consistent MTWA and MTCO warming of the local reconstructions in

the north-eastern part of the domain leads to positive BSS values.

The persistent negative BSS values for the British Islands warrant a systematic issue. For this region, the uncertainty in

the local reconstructions is larger than for other areas, such that the local proxy records constrain the posterior less than the10

posterior ensemble member weights and some of the more distant proxy records. This leads to a reduction of the posterior

uncertainty compared to the unconstrained PMIP3 ensemble but without improving the concordance of the mean state with the

local reconstructions, which in turn results in negative BSS values. In and near the Alps, negative BSS might be a result of not

accounting enough for orographic effects in the different sources of information.

4.2.4 Joint versus separate MTWA and MTCO reconstructions15

To study the effect of reconstructing MTWA and MTCO jointly compared to separately, additional reconstructions with only

one climate variable are computed. Note that the interactions of MTWA and MTCO are twofold in the joint reconstruction: (a)

the response functions have an interaction term, and (b) the process stage contains joint ensemble member weights for MTWA

and MTCO as well as inter-variable correlations in the empirical correlation matrix.

The separate MTWA reconstruction is on average around 0.5 K warmer than the joint reconstruction, whereas the spatially20

averaged posterior mean of the separate MTCO reconstruction is 0.83 K cooler (Table 3). Hence, the seasonal difference is

smaller in the joint reconstruction, due to smoothing from the PMIP3 ensemble and slightly positive correlations between

MTWA and MTCO in most of the joint local reconstructions. The MTWA only reconstruction is warmer in most land areas,

with largest differences in southern and eastern Europe, but the differences are almost never significant on a 5% level (Fig.

10a). As this part of the domain is best constrained by proxy data, and the posterior ensemble member weights are similar to25

the joint reconstruction, it is likely that the additional warming is due to the missing interaction in the transfer function. On

the other hand, the posterior ensemble member weights change a lot for the separate MTCO reconstruction, with HadGEM2-

CC and MRI-CGCM3 being the models with the highest weights (mean λk of 0.426 and 0.199, respectively). Together with

the less constrained transfer functions for MTCO than MTWA, this leads to a cooler reconstruction for most areas but some

parts of the Mediterranean (Fig. 10b). The cooling is strongest in Scandinavia, the British Islands, the Norwegian Sea, and the30

Iberian peninsula, but almost never significant on a 5% level. As these are the regions which are least constrained by proxy

data, choosing different PMIP3 ensemble members affects the reconstruction more than in central Europe, where MTCO

is best constrained by proxy data. The reconstruction uncertainties are of similar magnitude in the joint and the separate

reconstructions (Table 3).
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The BSS pattern in the MTWA only reconstruction is mostly the same than in the joint reconstruction except for slightly

positive skill in the British Islands (Table 3, Fig. 10e). This shows that the added value of the joint reconstruction compared

to the unconstrained PMIP3 ensemble is mainly determined by the MTWA reconstruction. On the other hand, the added

value of the MTCO only reconstruction is much smaller (Table 3, Fig. 10f) due to larger uncertainties in the local MTCO

reconstructions.5

The results show that the more constrained local MTWA reconstructions have a higher influence on the joint reconstruction

than the local MTCO reconstructions. Reconstructing MTWA and MTCO jointly should in theory lead to a physically more

reasonable reconstruction by creating samples drawn from the same combination of ensemble members. On the other hand,

Rehfeld et al. (2016) show that multi-variable reconstructions from pollen assemblages can be biased when signals from a

dominant variable are transferred to a minor variable. While the PITM model might be less sensitive to this issue than the10

weighted averaging transfer function used in Rehfeld et al. (2016) because it better respects the larger MTCO uncertainties, it

will be subject to future work to study whether joint or separate reconstructions lead to more reliable results.

5 Discussion and possible extensions

5.1 Robustness of the reconstruction

Our approach is designed with the goal of being more suitable for sparse data situations than standard geostatistical models.15

To understand the robustness of the Bayesian framework with respect to the amount of data included in a proxy synthesis, five

experiments with only half of the samples are performed, which are either selected to retain the spatial distribution of proxy

samples or chosen randomly. In all of the tests, the general spatial structure of the posterior distribution, including the anomaly

patterns, is preserved, even though depending on the chosen proxy samples the local anomalies and magnitude of changes

varies which should be expected when such a large portion of the already sparse data is left out. Only the Norwegian Sea in the20

MTCO reconstruction changes substantially in some experiments. Plots from the experiments with reduced proxy samples are

provided in the Supplement.

The mean spatial averages differ up to 0.6 K for MTWA as well as MTCO, but none of the changes is significant on a 5%

level. In contrast, the uncertainty estimates are consistent across all five experiments with spatially averaged point-wise 90%

CIs that grow by up to 0.4 K from the reconstruction with the full proxy synthesis. In all experiments, the spatial homogeneity25

H is not significantly different from the values reported in Table 3, which shows that the spatial homogeneity is more controlled

by the process stage than the proxy data. In all but one experiment, the MPI-ESM-P remains the ensemble member with the

largest weight λk, and the three ESMs which are favored neither in the MTWA nor in the MTCO reconstruction retain very low

weights in all experiments. But depending on whether proxy samples in which MTCO is much less constrained than MTWA

are removed or not, the weights of the four models with the highest values in the joint and separate reconstructions can vary.30

These changes of the weights explain the MTCO changes in the Norwegian Sea as this is the region which is most influenced

by the ensemble member weights. The experiments show that the reconstruction is robust with respect to the number of proxy
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samples as long as the remaining samples are informative and relatively uniformly distributed across space. In our example,

this is not the case for the Norwegian Sea as no marine proxies are included.

The large PMIP3 ensemble spread for most grid boxes shows that the prior distribution, which is calculated from the en-

semble, contains a wide range of possible states. In areas which are well constrained by proxy data, this large total uncertainty

leads to a reconstruction which depends little on the climatologies of the ensemble members. Hence, in these areas, the recon-5

struction is not sensitive to the particular formulation of the process stage (compare with Supplement). This shows that our

method is applicable despite well-known model-data mismatches for the MH (Mauri et al., 2014). On the other hand, the spatial

correlation structure controls the spread of local information into space. Different formulations of the spatial correlation matrix

can lead to substantially different reconstructions in regions that are not well constrained by proxy samples and in particular a

spatial covariance with too few spatial modes can lead to overly optimistic uncertainty estimates.10

5.2 Comparison with previous reconstructions

Several reconstructions of European climate during the MH have been compiled previously. Here, we compare our reconstruc-

tions to those of Mauri et al. (2015), Simonis et al. (2012), and Bartlein et al. (2011).

Mauri et al. (2015) use a plant functional type modern analogue transfer function and a thin plate spline interpolation for

pollen samples stemming mostly from the European pollen database. Among other variables, summer and winter tempera-15

tures are reconstructed. We find a dipole anomaly structure similar to Mauri et al. (2015) in our reconstructions, with mostly

positive anomalies in northern Europe and negative anomalies in southern Europe. In Mauri et al. (2015) as well as in our

reconstruction, the Alps are the only region with significant warming in central and southern Europe for summer temperature.

Generally, the amplitude of summer anomalies in the two reconstructions is similar, although locally there are differences with

cooler anomalies over south-western Fennoscandia in our reconstruction as well as warmer anomalies in Finland. For winter20

temperatures, the cooling in the Mediterranean and the British Islands is less pronounced and spatially less consistent in our

reconstruction than in Mauri et al. (2015). As for summer temperatures, we find smaller anomalies in southern Fennoscandia.

In contrast, our reconstruction shows higher anomalies in northern Scandinavia.

The same pollen dataset and another version of PITM are used in Simonis et al. (2012) to reconstruct July and January

temperature, such that differences between the two reconstructions are mostly related to the different smoothing technique.25

Simonis et al. (2012) minimize a cost function which combines pollen samples with an advection-diffusion model that is

driven by insolation changes between the MH and today. In Simonis et al. (2012), the dipole structure is not found in the

same way than in our reconstruction. Both reconstructions share positive summer temperature anomalies in northern Europe

as well as negative anomalies in central Europe and the Iberian peninsula. Unlike our reconstruction, Simonis et al. (2012)

find positive anomalies in south-eastern Europe. For winter temperatures, the reconstruction of Simonis et al. (2012) shows an30

east-west dipole in contrast to the north-east to south-west dipole in our reconstruction. This different structure might be due to

the smaller proxy data control of the winter reconstructions, which leads to a higher importance of the interpolation schemes.

A reconstruction designed to evaluate the PMIP3 simulations was provided by Bartlein et al. (2011). They combine a large

number of pollen based local reconstructions from the literature to produce a gridded product of six climate variables including
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MTWA and MTCO. In contrast to our reconstruction, the used local reconstructions are not smoothed across space but only

within a grid box. Their results show a dipole structure but less pronounced than in our reconstruction. In particular, they find

a cooling for eastern Fennoscandia in summer, a much smaller warming of northern Fennoscandia, and a warming in Germany

and France. On the other hand, the reported anomalies in Bartlein et al. (2011) for the Mediterranean and eastern Europe are

similar to our results.5

The comparisons show that patterns like the dipole type anomaly structure, which are not present in the PMIP3 ensemble,

seem to be consistent across reconstructions with pollen transfer functions. While some of the differences between the existing

literature and our results can be explained by the used transfer functions and proxy syntheses, the choice of an appropriate

interpolation method plays an important role, too, especially in areas with very sparse and weakly informative proxy data.

5.3 Climate model inadequacy and process stage structure10

To account for inadequacies of climate models to simulate past climate states, we introduced flexible ensemble member weights

λ and the shrinkage matrix approach which combines the empirical covariance matrix of the climate ensemble with an inde-

pendent correlation matrix. Combining ensemble filtering methods with additional techniques to correct model biases in a

physically consistent way is an important but also challenging direction of future work on climate field reconstructions as a

balance has to be found between under-dispersion of the posterior distribution by inducing physical structure and overfitting to15

noisy proxy data by enhancing the degrees of freedom. Beyond the strategies implemented in this work, some directions that

can be envisaged are the increase of permitted spatial structures in the prior mean by adding patterns calculated from alternative

physically motivated models, and the introduction of multiple shrinkage targets in the spatial covariance matrix (Gray et al.,

2018).

The strong effect of the covariance regularization technique on the reconstructions might originate from the small ensemble20

size. This hypothesis can be tested when more simulations with sufficient resolution become available for example from the

PMIP4 project. In addition, it indicates that the modes of the empirical covariance matrix do not optimally explain the spatial

variability of the climate and the corresponding uncertainty structures. The difference between under-dispersive behavior in

ITEs with glasso models and over-dispersion for shrinkage models suggests that the optimal number of effective degrees of

freedom lies between those two models. However, an optimization procedure for the number of spatial modes in the covariance25

matrix is not straightforward and left for future research.

In the current study, we use a fixed prior distribution for the ensemble member weights (compare with Sect. 3.3). An

extension of this model would be to let the proxy data inform whether more balanced weights should be favored or weights

with one dominant ensemble member. This can be achieved by using a hyperprior that controls the concentration of the weights.

6 Conclusions30

We presented a new method for probabilistic spatial reconstructions of paleoclimate. The approach combines the strengths of

pollen and macrofossil records, which provide information about the local climate state, and of climate simulations, which
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downscale forcing conditions to physically consistent regional climate patterns. Thus, we reconstruct physically reasonable

spatial fields, which are consistent with a given proxy synthesis. Our framework can deal with probabilistic transfer functions,

which are non-linear and non-Gaussian, such that an extension to a wide range of proxies and associated transfer functions is

possible.

Using ITEs and CVEs, we showed that robust spatial reconstructions with Bayesian filtering methods that exhibit small bi-5

ases and are not under-dispersed are possible as long as the statistical framework is flexible enough to account for deficiencies

of climate simulations and to avoid filter degeneracy, which can emerge due to small ensemble sizes and biases in climate

simulations. The resulting model, which is used for spatial reconstructions of European MH climate, uses a weighted aver-

age of the involved ensemble member climatologies and a shrinkage matrix approach for spatial interpolation and structural

extrapolation of the proxy data.10

We apply our framework to reconstruct MTWA and MTCO in Europe during the MH using the proxy synthesis of Simonis

et al. (2012) and the PMIP3 MH ensemble. Brier scores from cross-validations reveal that the spatial reconstruction predomi-

nantly adds value to the unconstrained PMIP3 ensemble, and analyses of the spatial homogeneity of the posterior distribution

indicate a reasonable degree of spatial smoothing. The large scale spatial patterns of our reconstruction are in agreement with

previous work (Mauri et al., 2015; Bartlein et al., 2011). As the posterior mean is more similar to the local proxy reconstruc-15

tions than to the prior mean for most terrestrial areas, we see that a reconstruction, which is in line with reconstructions that

do not include simulation output, is possible despite well-known model-data mismatches (Mauri et al., 2014). Our framework

provides a way to quantitatively test hypotheses in paleoclimatology and to assess the consistency of a given proxy synthesis.

Code and data availability. R code for computing reconstructions with the presented Bayesian framework is provided in a Bitbucket repos-

itory available under https://bitbucket.org/nils_weitzel/spatial_reconstr_repo. The pollen and macrofossil synthesis is published in Simonis20

(2009). It is available in the Bitbucket repository. The PMIP3 MH simulations are available in the CMIP5 archives. In this study, they

were downloaded from the DKRZ long term archive CERA (https://cera-www.dkrz.de). The modern climate data was downloaded from

the University of East Anglia Climatic Research Unit, available at http://www.cru.uea.ac.uk/data/. The vegetation data for transfer function

calibration was provided by Thomas Litt and Norbert Kühl.

Appendix A: Determination of glasso penalty parameter25

To determine the glasso penalty parameter ξ, we first recognize that for values smaller than ξ = 0.3 the resulting matrices

become numerically unstable in our application due to the small ensemble size. Five values for ξ were tested: 0.3, 0.5, 0.7,

1.0, and 2.0. Larger values lead to sparser precision matrices and therefore to weaker spatial correlations. For each of the

five parameters, we perform CVEs with the RM and compare the resulting BS (see Sect. 4.1.2). While the smallest penalty

parameters have the best mean BS, the differences are generally small (see Supplement). However, the influence of the penalty30

term in Eq. (14) on the overall regression increases from 79.5% for ξ = 0.3 to 98.5% for ξ = 2.0. Based on these diagnostics,
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we choose ξ = 0.3 for the reconstructions in this study. The sensitivity of the reconstruction with respect to ξ is further studied

in the Supplement.

Appendix B: Shrinkage target matrix

The shrinkage target Φ is defined on a regular lat-lon grid following the SPDE approach of Lindgren et al. (2011). This approach

allows a computationally efficient approximation of Matérn covariances with parameters that are physically motivated in the5

context of stochastic Laplace equations, which model diffusive transport of a stochastic forcing. Setting ζ2 := 8
ρ2 , the range

parameter ρ is rewritten as a scale parameter ζ2. Moreover, we let the anisotropy parameter ν parameterize a diagonal diffusion

matrix υ := Diag(sin(νπ/2),cos(νπ/2)). Then, the stochastic partial differential equation from which Φ is deduced is given

by

(
ζ2−∇ · (υ∇)

)
X(x) =W(x). (B1)10

W denotes white noise, and X is the stationary Gaussian random field that solves Eq. (B1). Discretizing this equation with

linear finite elements, and using a diagonal approximation of the involved mass matrix leads to a GMRF with correlation

matrix Φ̂ (Lindgren et al., 2011). We use degree as distance unit on the regular lat-lon grid instead of m which means that the

decorrelation length depends on the latitude. This better reflects the mostly shorter decorrelation lengths in higher latitudes.

Φ is constructed from Φ̂ by combining spatial correlation matrices of type Φ̂ for each climate variable in a block diagonal15

structure. Different parameters ρ and ν are fitted for each climate variable.

Appendix C: Full conditional distributions

The Metropolis-within-Gibbs approach samples (asymptotically) from the full conditional distributions of each variable, i.e.

the distribution of the variable given all other variables. Some variables are treated block-wise. In this appendix, we detail the

conditional distributions that are used for sampling.20

To sample the transfer function parameters, we introduce augmented variables γTl as described in Sect. 3.4. Their full

conditional distribution is given by

γTl | βT , C(l) ∼ PG(n= 1,XC(l) ·βT ), (C1)

where XC(l) :=
(
1,C1(l),C2(l),C1(l)C2(l),C1(l)2,C2(l)2

)
. (C2)

Including the Gaussian prior defined in Sect. 3.2, the full conditional of βT is Gaussian distributed:25

βT | PTm, PTp , γT1 , ...,γTL(T ) ∼ N
(
VγX

tκT ,Vγ
)
, (C3)

where Vγ :=
(
XtΓX +B−1

)−1
. (C4)

Here, X is a matrix with rows XC(l) for l = 1, ...,L(T ), Γ is a diagonal matrix with entries γTl , B is the 6×6 prior covariance

matrix of βT , and κT is a vector with entries
(
PT (l)− 1

2

)
, where PT (l) is the presence or absence of taxa T in observation
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l. In our case, B is a diagonal matrix with all values equal to 10. Details on the definition of PG variables and the augmented

Gibbs sampler can be found in Polson et al. (2013).

Sampling from ϑ depends on the specific version of the process stage which is used. In the RM, λ= (λ1, ...,λK) is influenced

by its prior and by the Gaussian distribution of Cp given λ:

λ| Cp ∼ Dirichlet
(

1
2 , ...,

1
2

)
N
(
Cp

∣∣∣∣
∑

k=1

λkµk,Σprior

)
. (C5)5

This full conditional does not follow a probability distribution from which we can sample directly. Therefore, a random walk

type Metropolis-Hastings update is used for updating λ.

In the KM, the full conditional of ω = (ω1, ...,ωK) is Dirichlet distributed given z = (z1, ...zK) and its Dirichlet prior:

ω | z ∼ Dirichlet
(

1
2 + z1, ...,

1
2 + zK

)
. (C6)

Given ω and Cp, z is categorically distributed:10

z | ω, Cp ∼ Cat(α1, ...,αK) , (C7)

where αk :=
ωk ·exp

(
− 1

2 (Cp−µk)t Σ−1
prior (Cp−µk)

)
∑K

i=1

(
ωi ·exp

(
− 1

2 (Cp−µi)t Σ−1
prior (Cp−µi)

)) (C8)

If shrinkage covariance matrices are used, the parameters (α,ρ,ν) have to be chosen in each MCMC step from one of the

K = 7 predefined parameter sets. We use a uniform prior. Then, the full conditional of τ which indexes the parameter sets, is

given by15

τ | Cp, µ̂ ∼ N
(
Cp

∣∣∣∣
∑

k=1

µ̂,Σprior(ατ ,ρτ ,ντ )

)
, (C9)

where µ̂ is given according to conditioning on the process stage parameters of the GM, RM, or KM. We update τ using an

Metropolis-Hastings step with independent proposals, which choose τ = k with probability 1
K .

We updateCp(x) for x ∈ xP sequentially using random walk Metropolis-Hastings sampling. The set of all grid boxes besides

x is denoted by Yx, and let Σ−1
prior(a,b) be the block of the inverse covariance matrix containing the rows a and columns b. Then,20

the full conditional distribution of Cp(x) depends on the pollen samples Pp(s) with location xs = x, the climate Cp(Yx) at the

other locations, and process stage parameters ϑ. It does not follow a standard distribution:

Cp(x) | Pp, Cp(Yx), ϑ ∼ N
(
µ̃k(x),

(
Σ−1

prior(x,x)
)−1

) ∏

s
with
xs=x

∏

T∈T (s)

logit
(
XCp(x) ·βT

)
, (C10)

where µ̃k(x) := µ̂k(x)−
(

Σ−1
prior(x,x)

)−1

Σ−1
prior(x,Yx)(Cp(Yx)− µ̂k(Yx)) . (C11)

Conditioned on Cp(xP ) and ϑ, Cp(xQ) follows a Gaussian distribution:25

Cp(xQ) | Cp(xP ), ϑ ∼ N
(
µ̃k(xQ),

(
Σ−1

prior(xQ,xQ)
)−1

)
, (C12)

where µ̃k(xQ) := µ̂k(xQ)−
(

Σ−1
prior(xQ,xQ)

)−1

Σ−1
prior(xQ,xP )(Cp(xP )− µ̂k(xP )) . (C13)
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Appendix D: Metropolis coupled Markov chain Monte Carlo algorithm

As described in Sect. 3.4, the multi-modality of the KM in combination with the high dimensionality of the posterior makes the

standard MCMC algorithm very inefficient. In our specific formulation the inefficiency is manifested in a very slow mixing of

z, because conditioned on Cp the likelihood of choosing a new model zk from one MCMC step to the next one is very small.

This problem could be shifted to other variables by integrating out z, but than the conditional Gaussian structure of Cp would5

be lost which would lead to new challenges for generating efficient MCMC strategies. Therefore, we apply a MC3 or parallel

tempering strategy (Geyer, 1991; Altekar et al., 2004; Werner and Tingley, 2015).

We run A MCMC chains in parallel, and after every M steps, we use an additional Metropolis-Hastings step to swap the

states of the Markov chains a1 and a2 with probability 0 < pa1,a2 < 1, where pa1,a2 is calculated from the Metropolis-Hastings

odds ratio. The Markov chains are created by exponentiating the process stage and the data stage by constants ν1 = 1 > ... >10

νA > 0. The first Markov chain (ν1 = 1) asymptotically retains the original posterior distribution for all variables, whereas the

subsequent chains sample from a flatter posterior distribution, in which it is easier to jump from one kernel to another. Following

empirical testing, we run the European reconstructions with A= 8 parallel chains, levels ν1 = 1,ν2 = 1.25−1, ...,ν8 = 1.25−7,

and swaps after every M = 30 steps. Pseudo-code for the MC3 algorithm is given in the appendix.
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Figure 1. PMIP3 MH ensemble mean anomaly from CRU reference climatology, (a) MTWA, (b) MTCO, and ensemble spread as empirical

standard deviation of the ensemble members, (c) MTWA, (d) MTCO. Black dots depict proxy samples from Simonis et al. (2012).
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from PMIP3 ensemble
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Model parameters
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∏

s

∏
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∏
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Modern climate

Cm

Figure 2. Directed acyclic graph corresponding to the Bayesian framework Eq. (2). Involved quantities are given by nodes and arrows

indicate dependencies of variables. White: inferred quantities; gray: input data.
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Figure 3. Response functions for (a) Betula nana and (b) Hedera helix. The relative frequency of occurrence in 1K bins is shown in colors,

and the contours depict the probability of presence as estimated by the logistic response function. Gray boxes denote bins without calibration

data. In the climate space, combinations of MTWA and MTCO with MTWA < MTCO cannot occur by definition. White bins in the upper

left depict artificial absence information added to account for this constraint.
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Figure 4. Summary statistics of local reconstructions using the PITM forward model. Top row: mean anomaly from CRU reference clima-

tology (left: MTWA, right: MTCO), bottom row: uncertainty measured by the size of marginal 90% CIs (left: MTWA, right: MTCO). In the

top row, significant anomalies (5% level) are marked by black crosses.
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Figure 5. Results from ITEs. The boxplots depict the distribution of experiments with the same process stage model. (a) Mean deviation

from reference climate, (b) mean CRPS, (c) coverage frequency of 50% CIs, (d) coverage frequency of 90% CIs.
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Figure 6. Mean CRPS in ITEs for GM, RM, and KM. Top row: Models with glasso covariance matrix, MTWA. Second row: Models

with shrinkage covariance matrix, MTWA. Third row: Models with glasso covariance matrix, MTCO. Bottom row: Models with shrinkage

covariance matrix, MTCO. Grid boxes with simulated proxy data are depicted by black dots.
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Figure 7. Spatial reconstruction for MH. Top row: Posterior mean anomaly from CRU reference climatology (left: MTWA, right: MTCO),

middle row: reconstruction uncertainty plotted as size of point-wise 90% CIs (left: MTWA, right: MTCO), bottom row: reduction of uncer-

tainty from posterior to prior measured by ratio of posterior to prior point-wise 90% CI sizes (left: MTWA, right: MTCO). Black dots depict

proxy samples. In the top row, point-wise significant anomalies (5% level) are marked by black crosses.
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Figure 8. Posterior ensemble member weights (λ) of the reconstruction. Prior weights (mean of λ) are denoted by the dashed line.
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(a) Cross−validation: Histogram of BSS

Posterior superiorPrior superior

−1.0

−0.5

0.0

0.5

1.0

10° W 0° 10° E 20° E 30° E

40
° 

N
50

° 
N

60
° 

N
70

° 
N

(b) Cross−validation: BSS

and < −1

Figure 9. BSS from leave-one-out cross-validation: (a) histogram, (b) spatial distribution.
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Figure 10. Differences of joint and separate reconstructions of MTWA and MTCO. Top row: posterior mean difference (left: MTWA, right:

MTCO); bottom row: BSS of the separate reconstructions (left: MTWA, right: MTCO). Black dots depict proxy samples. In the top row,

point-wise significant differences (5% level) between the separate and the joint reconstructions are marked by black crosses.
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Table 1. Basic information on the PMIP3 climate simulations used to construct the process stage in the Bayesian framework (from

https://pmip3.lsce.ipsl.fr)

Model Institute Atmospheric grid
Simulated

years

CCSM4 NCAR 288x192xL26 301

CNRM-CM5 CNRM-CERFACS 256x128xL31 200

CSIRO-Mk3-6-0 CSIRO-QCCCE 192x96xL18 100

EC-Earth-2-2 ICHEC 320x160xL62 40

HadGEM2-CC MOHC 192x144xL60 35

MPI-ESM-P MPI-M 196x98xL47 100

MRI-CGCM3 MRI 320x160xL48 100
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Table 2. Summary measures for ITEs and CVEs with the six process stage models.

GM RM KM GM RM KM

glasso glasso glasso shrink shrink shrink

Mean deviation [K] 0.004 0.000 -0.032 0.026 0.028 -0.140

Mean 50% CI size [K] 1.189 1.194 1.238 1.583 1.592 1.755

Mean 90% CI size [K] 2.906 2.916 3.032 3.880 3.901 4.356

50% coverage frequency [%] 29.2 29.6 30.5 79.9 78.8 76.5

90% coverage frequency [%] 64.1 64.4 66.1 99.6 99.3 99.5

Mean CRPS [K] 1.03 1.032 1.010 0.399 0.408 0.468

Mean BS [p2] 0.186 0.186 0.187 0.165 0.163 0.161
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Table 3. Summary measures for the joint MTWA and MTCO reconstructions (rows 1 and 2) and the separated reconstructions of MTWA

(row 3) and MTCO (row 4). Numbers in brackets are minima and maxima of the corresponding 90% CIs.

Reconstruction Spatial Spatially Point-wise Spatial Median PMIP3 model

name mean averaged uncertainty homogeneity BSS with highest

anomaly 90% CI size reduction weight

Joint (0.03 K) (1.31 K)

reconstruction 0.51 K 4.15 K 38.1% 1.41 K

0.28 MPI-ESM-P
(MTWA) (0.99 K) (1.53 K)

Joint (0.10 K) (2.33 K)

reconstruction 0.69 K 5.84 K 19.6% 2.54 K

(MTCO) (1.32 K) (2.76 K)

Separate (0.55 K) (1.29 K)

MTWA 1.04 K 4.14 K 38.1% 1.41 K 0.27 MPI-ESM-P

reconstruction (1.51 K) (1.51 K)

Separate (-0.82 K) (2.45 K)

MTCO -0.14 K 5.72 K 20.6% 2.69 K 0.05 HadGem2-CC

reconstruction (0.60 K) (2.92 K)
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