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We thank the referee for taking the time to review our discussion paper, and for helpful
and interesting comments which will improve the quality of our manuscript. As a
response to the referee’s suggestions, we plan substantial changes of the manuscript.
In the following, referee’s comments (RC) are given in blue italicised text and followed
by our respective responses (AR).

"What is the meaning of the covariance Σ? if it really is the inter-model variability,
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why mix over ωkN(µk,Σ) instead of just using the distribution N(µ̄,Σ)? What is the
meaning of this distribution that your are mixing over? Σ is the covariance of the
model ensemble, not a particular realization µk, thus the distribution you propose
doesn’t make much sense to me as a meaningful statsitical object. I’m open to being
convinced that this idea makes sense, but right now I don’t see the purpose.
Also, using this mixing distribution is likely to eliminate the spatial autocorrelation in the
µk as neighboring locations are now no longer draws from the same climate model.
Instead, it might be simpler and make more sense to mix over ωkµk. This mixing
distribution is over the climate model ensemble and will preserve the spatial autocor-
relations in the climate models. Ultimately, I’m not convinced that this covariance is
what you want to model."

The general motivation for using the kernel mixture distribution is that each ensemble
member is seen as a sample from an unknown distribution of all possible climate
states. Because of limitations of the climate models and the small amount of available
simulations this is of course a very small subset of possible states. We agree with
the referee that ideally one would like the covariance matrix Σk of each kernel µk to
correspond to the climate model k such that the spatial autocorrelation of model k is
preserved by Σk and such that a draw from kernel k is a draw from climate model k.
Unfortunately, for each model there is only one run available for the mid-Holocene and
the internal variability in those runs is much smaller than the inter-model differences.
Therefore, using the internal variability of those runs would lead to very distinct kernels
and therefore the range of possible states would be very small. Another possibility
would be to use long PI control runs, from which more samples could be extracted but
still the problem persists that in these runs the internal variability is much smaller than
the inter-model differences. Therefore, we estimate Σ from the inter-model differences
as a compromise that allows to sample from a much broader range of states even
though autocorrelation from the individual models is lost. To our knowledge, using the
empirical covariance of the samples is a very common choice in kernel based prob-
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ability density approximations (Silverman, 1986, Chapter 3 and 4) if there is no good
estimate of the covariance corresponding to each sample available. Two advantages
of mixing over ωkN (µk,Σ) compared to using simply N (µ̄,Σ) are that we do not have
to assume that the unknown prior distribution is Gaussian and that we do not rely on an
iid assumption for the first moment properties of the kernels. In other words, for the first
moment properties of the spatial prior distribution, we do not assume that the model
runs are iid samples from a Gaussian distribution but just that there exists an abstract
probability density of possible states and that the kernel corresponding to each µk is
Gaussian. On the other hand, we do rely on an iid assumption for the second moment
properties, which is the compromise we make as described above, due to not seeing a
better alternative unless one prescribes second moment properties that are not calcu-
lated from climate models. In a meteorology context, the advantages of kernel filters
compared to standard Gaussian filtering are described in Anderson and Anderson
(1999). A more recent application of kernel filtering in data assimilation is Liu et al.
(2016). In both examples, the sample covariance is used as covariance of the samples.

The referee suggests two other models for the spatial prior distribution which would
make the inference procedure easier, namely using a Gaussian distribution with the
ensemble mean as mean and the inter-model variability to estimate the covariance,
i.e. N (µ̄,Σ), or mixing just over ωkµk, i.e. N (

∑K
k=1 ωkµk,Σ). Both models have

advantages and disadvantages that we want to mention.

Using N (µ̄,Σ) is the most common approach in data assimilation applications in
climatology. It is based on the assumption that the ensemble members are iid samples
from an unknown Gaussian distribution which contains all possible climate states.
The main advantage of this model is that inference becomes much simpler because
the prior distribution is unimodal and Gaussian and not multi-modal as in the kernel
approach that we applied. The disadvantage is that it relies on the very strong as-
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sumption that the samples µk are iid samples from an unknown Gaussian distribution.
This assumption tends to be more realistic for samples from just one climate model,
whereas statistics of multi-model ensembles are often not well described by purely
Gaussian distributions (Knutti et al., 2010). A second disadvantage of this model is
that it reduces the degrees of freedom in the model compared to the kernel model,
and therefore limits the possibilities of the model to adjust the posterior distribution to
the data. This could be particularly important due to the small ensemble size in our
application.

The prior distribution N (
∑K

k=1 ωkµk,Σ) has the advantage that similar to the kernel
approach, it is not relying on an iid assumption of the samples for the first moment
properties of the distribution. In addition, it introduces more degrees of freedom, as
it allows weighted averages of the ensemble members beyond choosing individual
members with a certain probability. In addition, the inference becomes easier com-
pared to the kernel approach as this model allows smooth transitions between the
µk such that the MC3 (parallel tempering) method is not required to achieve efficient
sampling. Similar models are popular in postprocessing of climate model ensembles
as in many applications weighted averages outperformed each individual ensemble
member (Krishnamurti et al., 1999). A disadvantage of this type of mixing is that
even more spatial structure of the µk could be lost compared to the kernel approach
because in addition to using the inter-model covariances, the prior mean is a linear
combination of the different climate models and does not represent just one single
model.

Summarizing, there are good arguments to use each of the three models, the one that
we proposed as well as the two suggested be the referee. Similarly, each of the models
has disadvantages. Therefore, we decided to test all three models. We additionally
compared the performance of using the empirical covariance matrix regularized by the
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glasso algorithm with a shrinkage approach, where the empirical correlation matrix
is combined with a Matérn type correlation matrix. This is an approach to account
for potential model inadequacies to explain the data (see the response to Referee 2).
By estimating the shrinkage weight α from the proxy data, this allows deviations from
the spatial structures prescribed by the climate simulations if the spatial modes of the
Matérn type correlation matrix fit the proxy data better than the inter-model differences.

To compare these six different models, we use cross-validation experiments as
described in Sect. 3.5 and 4.2. In addition, we perform identical twin experiments (also
named pseudo-proxy experiments or observation system simulation experiments),
where one climate model is left out as reference climatology, pseudo-proxies are
simulated from this reference climatology and the skill of the corresponding posterior
distribution to predict the reference climatology is analysed (see also the response to
Referee 2). Initial results suggest that the three statistical models where the glasso
regularized covariance matrix Σ is used, perform on a similar level, with almost equal
Brier scores in the cross-validation experiments and similar skill in the identical twin
experiments. On the other hand, the statistical models with the shrinkage covariance
matrix outperfom the glasso regularized covariance models in cross-validation as well
as identical twin experiments. The main reason for this better performance seems to
be a strong reduction of the underdispersion of the posterior distribution due to the
increase of spatial modes in the covariance matrix.

In the revised manuscript, we will enhance the motivation for our statistical models.
In addition, we will discuss the three different statistical models, the one which we
proposed in the manuscript as well as the two that the referee suggested. Moreover,
we will describe the two types of covariance matrices, which we compared as a
response to the suggestions of the referees. A section on the comparison of the
statistical models based on cross-validation and identical twin experiments will be
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added. We hope that these changes will not just improve the results of this study but
can also provide guidelines for future applications of Bayesian filtering methods in
paleoclimate applications.

"I would also suggest the title should be "... using Bayesian Filtering" rather than
"Bayesian Modelling." You aren’t modeling the climate, just assimilating the proxy data
to filter the climate model ensemble. For instance, if the proxies suggest a temperature
higher than all of the climate models, then the best your framework can do is the
highest temperature from the climate model ensemble (plus a little error from Σ).
Hence, your models are only as reasonable as the climate models (which are likely
not great estimates for a given time and location...)."

We agree with the referee that the current manuscript title is slightly misleading
and that replacing "Bayesian modelling" by "Bayesian filtering" is a more accurate
description of our study. Therefore, we will change the title according to the suggestion
of the referee in the revised manuscript.

"The fit of the pollen data by a normal distribution is really poor. The fitted distributions
in Figure 3 look nothing like the data distributions. Perhaps a better model is needed."

While we agree with the referee that there is room for improvement of the response
surfaces parametrized by Eq. (7) in the manuscript, we do not think that the fit is
"really poor". But maybe the visualisation of the response surfaces in Fig. 3 can be
improved. To underline that the chosen parametrization is a reasonable approximation
of the probability of presence of the taxa, we plot an alternative to Fig. 3 at the end
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of this response. In that plot the coloured raster represents the ratio of taxa presence
in bins of size 1K × 1K, and the contour lines visualize the fitted response surface.
Considering that the imperfect sampling of the climate space by the calibration dataset
leads to weaker signals in some parts of the climate space, particularly at the edges
of the sampled area of the climate space, we think that our current parametrization is
a reasonable choice. Therefore, we do not plan to change the parametrization of the
response surfaces given by Eq. (7) in the revised manuscript but will look at options to
improve the visualisation of the data.

"In addition, if you are only using presences in the fossil pollen, your calibration
is biased. It would be better to treat absences as a zero-inflated model where an
absence could be a true absence or a missing presence due to non-climatic reasons.
This is easily done by introducing a latent variable (like you did for the z). In the
ecological literature on occupancy modeling, this is known as detection modeling
(MacKenzie et. a. 2002)"

The idea of the indicator taxa method is to use taxa which are sensitive to certain
climate variables to constrain past climate based on the presence of a taxa in a
fossil sample. The probabilistic indicator taxa method (PITM) is an extension of this
method where probability distributions have been used to characterize the climate
space at which a taxa occurs instead of using binary limits (e.g. a taxa occurs above a
certain temperature but not below it) to acknowledge that most taxa have a preferred
climate space but the transitions between climates where they usually occur and
those where they do not grow is soft. This extension was named pdf method in the
literature (Kühl et al., 2002). To estimate these distributions, vegetation data is used
instead of modern pollen data, because it contains more accurate information on the
presence or absence of a taxa on the spatial scales that we are interested in. As
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our Bayesian model is more straightforward formulated by modelling vegetation given
climate (forward model) instead of climate given vegetation (inverse model), we have
rewritten the pdf method as a forward model by fitting the quadratic logistic regression
model, but the aim of this reformulation is to imitate this well-tested method as closely
as possible because an extension or improvement of this method is beyond the scope
of this study. Because of the reliability of the modern vegetation and climate data, we
use presence and absence data to fit the logistic regression. The disadvantage of
using vegetation data for the calibration is that the probability of presence of a taxa is
only valid in vegetation space on the spatial scale taken for the training data but not in
the pollen or macrofossil space, where an absence of a taxa in a pollen or macrofossil
sample can have multiple non-climatic reasons like local plant competition or pollen
transport effects, as well as local climate effects below the resolution of our study such
that the taxa did not grow in the immediate surrounding of the sample. Therefore, the
only reliable information on the presence or absence of a taxa in the respective spatial
domain (grid box) in the past is the occurrence of the taxa in a pollen or macrofossil
sample. Hence, we only use presence information in the reconstruction step.

We agree with the referee that using only present taxa in the fossil pollen is inconsis-
tent with the modern calibration. Despite this inconsistency, our reconstructions are
in agreement with previous versions of the probabilistic indicator taxa method, where
this inconsistency with the calibration did not appear as previously only presence
information were used to fit the probability density functions.

However, we do not see a simple solution for the problem that our calibration is in
vegetation space whereas the absence of taxa is an information in the pollen or
macrofossil space. The referee suggests to model the absence due to non-climatic
reasons as a zero-inflated model by adding a latent variable to estimate the detection
probability of a taxa. We think that this is a very promising idea but while the
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formulation of this model is simple, the estimation of the detection probability is a very
challenging task because it depends on many factors like pollen influx area of the fossil
sample, local topography, soil properties, and plant competition which might change
over time. It is a priori unclear which of these factor can be marginalized and whether
a single detection probability for each taxa is a reasonable approximation. In addition,
our fossil dataset combines macrofossils with pollen. The processes that influence
the detection probability of macrofossils are very different than for pollen. Therefore, a
different detection probability has to be estimated for pollen than for macrofossils.

To our knowledge, the detection probability has never been estimated explicitly as
a probability of a presence of a taxa in a pollen or macrofossil sample given the
occurrence of the taxa in the respective grid box, but only as a combination of climate
as well as non-climate related zero-inflation (e.g Salter-Townshend and Haslett,
2012). We acknowledge that extending the indicator taxa method to include presence
and absence information in fossil pollen and macrofossil samples by modelling
detection probabilities of taxa should be a focus of future research. But resolving
all the described issues requires extensive cooperation of (paleo)climatologists,
(paleo)botanists, and statisticians, and is beyond the scope of this study.

To acknowledge the comment of the referee, we will change the following in the revised
manuscript: We will describe the underlying assumptions of the PITM model more
detailed and elaborate on the inconsistency between the calibration and reconstruction
procedure. In addition, we will mention the modelling of detection probabilities as
a topic for future research and name the involved issues that need to be solved to
accurately model detection probabilities. Finally, we will point out more explicitly that
the proxy dataset contains pollen and macrofossil data and the differences of those
two data types.
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"Equation 13: If mixing over the z’s is the problem, why not integrate/marginalize
them out? You can always recover them using composition sampling later. It seems
like an awfully complex computational framework (MCËĘ3) for such a simple model
framework that could be fixed simply by marginalization."

The reason for using the MC3 (parallel tempering) framework is not the mixing of z but
the multi-modality of the prior distribution Eq. (6). The poor mixing of z in our case if
we do not use MC3 is just the manifestation of that problem. It is widely acknowledged
in the literature that the design of efficient MCMC methods for multi-modal models is
a challenging task, in particular in multivariate settings. The main issue is the con-
struction of efficient proposal samples, which explore the distribution of the individual
modes and jump from one mode to another. MC3 (parallel tempering) is a common
technique to solve this issue (Tawn and Roberts, 2018).

Marginalization of z just shifts the general issue to another part of the inference
algorithm, as it makes the creation of efficient proposal samples for C a lot more
complicated. The introduction of z leads to a conditional Gaussian prior distribution
of C which facilitates sampling from the full conditional distribution of C for the grid
boxes without proxy data and sequential updates of the grid boxes with proxy data. We
do not see a simpler strategy which produces efficient proposal samples, when z is
marginalized (for example, a recent study shows that gradient based MCMC methods
like Hamiltonian Monte Carlo are not faster than random walk Metropolis-Hastings
algorithms for multi-modal problems (Mangoubi et al., 2018), which is intractable in our
case due to the degrees of freedom of the posterior distribution).

Summarizing, we agree that MC3 is a complex framework, for a model which looks
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simple at first sight. However, we do not think that marginalization of z is a simple
solution because it only shifts the problem. Therefore, we do not see a simple modifi-
cation of our MCMC algorithm to fit the kernel model, which would make the algorithm
less complex. When the two other models suggested by the referee (see above)
are fitted, the multi-modality of the posterior distribution vanishes such that a much
simpler MCMC algorithm without parallel tempering can be used. This would indicate
an additional advantage of those two models in the case of proper reconstruction
performance of the two added models.

"Maybe I missed it but what is the size of the model ensemble K and the number of
calibration sites?"

The model ensemble has K = 7 members (implicitly stated in Sect. 2.2 and Table 1 of
the manuscript). The regions that have been used for the transfer function calibration
were determined separately for each taxa by pollen experts (Kühl et al., 2007). The
number of calibration sites varies between 14.543 and 28.844, depending on the taxa.
We will report these numbers in the revised manuscript.

"How to you evaluate the Brier score when you don’t include the absences? This
seems to introduce a bias and could make the Brier score improper (which limitis its
usefulness in comparing models)."

We agree with the referee that using only occurring taxa to evaluate the Brier score
is problematic and could make the Brier score improper when it is used to compare
general models for predicting taxa presence and absence. However, our goal is an
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indirect evaluation of predictions of past climate via transfer functions. In that context,
it would lead to inconsistencies between the local reconstructions and the Brier
score evaluations when we would include absences as there is currently no model
available to accurately estimate detection probabilities for the reasons described
above. In that context, inconsistencies mean that the local reconstructions could prefer
systematically different climates than the Brier scores, when in one case absences
would be included but not in the other case.

Therefore, we think that the evaluation would be much improved from future research
to accurately estimate detection probabilities as this would allow the inclusion of
present and absent taxa. But for the reasons described above, such an estimation is
beyond the scope of this study. We think that the way how we use the Brier scores is
still a useful technique to indirectly evaluate climate reconstructions. It should be noted
that for each taxa the Brier scores are minimal for a unique climate state, but that
minimum is bounded away from zero because the occurrence probability is bounded
below one by the response surfaces. In addition, they are a convex function of the
climate state for each taxa. We think that these two properties make our methodology
useful for the comparison of climate reconstructions but it has to be noted that the
comparison is conditioned on the correctness of the response surfaces.

Alternatively, predictions of past climate could be directly compared with probabilistic
local reconstructions from the inversion of forward models, but this would mean that the
local reconstruction have to be treated as (noisy) observations and not as an inferred
product. Hence, we prefer to apply the forward model to the climate reconstructions
and then compare the resulting predictions with observations in taxa space. This
indirect strategy is also a recent way to infer skill of weather predictions.

In the revised manuscript, we will discuss the limitations of our evaluation methodology
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more extensively and describe more detailed in which way it should be seen and
interpreted. However, we do not plan to change the methodology because we do not
see an easy way to fix its disadvantages for the reasons described above.

"Scientific quality: Are the scientific approach and applied methods valid? Are the
results discussed in an appropriate and balanced way (consideration of related work,
including appropriate references)?
There are some questions about the implementation of the statistical model that are
not completely resolved. (particularly the mixing distribution for climate doesn’t make
sense and the lack of absence data introduces bias in the estimates). The comments
above can provide some guidance in resolving these issues."

We hope that our changes according to the responses to the referee’s comments
above will improve the scientific quality of the revised manuscript.

"Presentation quality: Are the scientific results and conclusions presented in a clear,
concise, and well-structured way (number and quality of figures/tables, appropriate
use of English language)?
The paper is reasonably well written from a technical perspective, although more
motivation of why particular methods/equations are chosen would be useful. In other
words, there is a lot written about what the methods are by not much about why the
methods are chosen and what the ideas are trying to solve."

We agree with the referee that more motivation for the statistical models and the re-
spective inference algorithm would improve the quality of the manuscript substantially.
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Therefore, we will explain our modelling choices in Sect. 3 (Methods) more extensively
in the revised manuscript.

"Are the scientific methods and assumptions valid and clearly outlined?
Not always (at least for the statistical methods)."

We hope that our changes according to the responses to the referee’s comments
above will improve the validity of the scientific methods and assumptions as well as its
presentation.

"Does the title clearly reflect the contents of the paper?
Yes, with a small change of emphasis"

The title of the revised manuscript will be changed according to the referee’s sugges-
tion.

"Is the description of experiments and calculations sufficiently complete and precise to
allow their reproduction by fellow scientists (traceability of results)?
For the most part. A gitHub repository/code base would go a long way."
"Is the amount and quality of supplementary material appropriate?
I would like to see more done for reproducibility. The computational methods seem
overly complex and making code availalbe for replication would be useful."
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The revised manuscript will include paragraphs on data and code availability. We will
create a repository to share our code. This repository will be referenced in the revised
manuscript.
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Figure 1: Response surfaces for Betula nana (a) and Hedera helix (b). The ratio of presence versus absence in the modern calibration data in each
bin with at least one data point is shown in colours. Gray bins are bins without data. The response surfaces (probability of presence
according to Eq. (7) in the original manuscript) are depicted by contour lines. In the climate space, combinations of MTWA and MTCO
above a line at MTWA = MTCO cannot occur by definition. The white triangle in the upper left are artificial absence information added
to account for this constraint, as described in the original manuscript.
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We thank the referee for taking the time to review our discussion paper, and for helpful
and interesting comments which will improve the quality of our manuscript. As a
response to the referee’s suggestions, we plan substantial changes of the manuscript.
In the following, referee’s comments (RC) are given in blue italicised text and followed
by our respective responses (AR).

"I have some minor criticism of the presentation which often appears poorly-organised
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to me. Specifically, many parameters and concepts are used prior to their definition
and introduction which made the manuscript tough going for me."

We will go through the manuscript and try to rework Sect. 2 and 3 to improve the
structure of the manuscript.

"A more fundamental concern I have is demonstrated in the results, which (unless
I have misunderstood something) show a strong degree of instability and overcon-
fidence. This is a common occurrence in situations where all members of a model
ensemble are inadequate and a Bayesian framework is used which does not allow for
this - for instance, by the explicit use of model inadequacy or model error terms. The
z weight of 0.98 when all data are used is itself likely to indicate a problem, and this
feeling is only strengthened by the fact that the weight on this model was essentially 0
when half the data were used, in which event two different models are preferred. What
seems to be happening here is that the method is homing in on the model(s) for which
the data are most likely, while in fact these data are incompatible with any model.
I’ve seen this in a variety of contexts and am sure this sort of phenomenon will be
familiar to the authors. A trivial demonstration of the phenomenon can be given by
considering a situation in which we have two models which generate data according to
N(0,1) and N(10,1) respectively, whereas the data are in fact generated by N(5,1). A
naive filtering which ignores the possibility of model inadequacy will assign essentially
all weight to whichever model happens to be closer to the sample mean of the data
set (which is of course close to, but not precisely, 5). As more data are sampled,
the weight will jump randomly from one model to the other with extremely high
confidence, rather than converging to the answer that the models are equiprobable
but poor, which might be found if a reasonable model error term was considered.
This issue seems to me to undermine the results and details of the application in a
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fairly fundamental manner but I would hope that the authors could revise their method
to adequately account for it, ie by accounting for model inadequacy in a formal manner."

We agree with the referee that the ensemble member weights in our model tend
to degenerate towards the least wrong model and this degeneracy increases with
increasing signal in the proxy data. This is a general problem of particle filter type
models (or more general, Bayesian model selection problems). For that reason, we
combine the particle part of our model with a part that is more similar to Kalman type
filters by adjusting the ensemble members according to a prior covariance and the
signal in the proxy data.

On the other hand, the strong changes of model weights between the joint reconstruc-
tion and the MTCO only reconstruction are a result of a different proxy data calibration
and not of leaving out half the data. The proxy data in the MTCO only reconstruction is
still the same but instead of calibrating it against a bivariate climate, it is only calibrated
against MTCO. It is not surprising that different models perform better for winter than
for summer climate. The reason that the joint reconstruction is dominated by the
model performance for summer climate is a result of the higher signal to noise ratio
for local MTWA reconstructions because most taxa are more sensitive to temperature
during the growing season than in winter. We briefly report in Sect. 5.1 results from
experiments where half of the proxy data is left out. In each of these results the same
model than in the reconstruction with the full dataset is preferred, but because of the
smaller signal in the proxy data the weights can be less degenerate (see Fig. at the
end of this response). Moreover, the experiments show that the reconstructions are
reasonably stable with respect to leaving out substantial parts of the data. We think
that the issue of very different model weights between the joint reconstruction and
the MTCO only reconstruction rather indicates that the joint reconstruction could be
improved from different weights for MTWA and MTCO, even though this would reduce
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the physical consistency of the estimates.

Nevertheless, we agree with the referee that our model produces overconfident esti-
mates and an under-dispersed posterior distribution similar to many ensemble filtering
models, and that this could be reduced by techniques to formally account for model
inadequacy. The main reason for this behaviour is the small number of ensemble
members leading to a small number of mixture kernels and a small number of spatial
modes in the covariance matrix Σ. Accounting for model inadequacy in a physically
reasonable way is a challenging issue and an active research area particularly in
postprocessing applications. To reduce the underdispersion of our model and reduce
reconstruction biases, we introduce two extensions of the model compared to the
original manuscript.

First, we compare the proposed kernel model with a statistical model that facilitates a
more flexible prior mean structure by mixing directly over ωkµk, which was suggested
by the other referee (see also response to Referee 1). This means that weighted
averages of the ensemble member climatologies are used and the weights are
adjusted according to the proxy data. Thereby, we increase the degrees of freedom
but ensure that the spatial structures are still physically motivated. In particular, the
model weights are less degenerate with this adjustment and the model can better
cope with situations like the one described by the referee where the truth is located
between two kernels.

Second, we compare the covariance matrix regularized by the glasso algorithm
with a shrinkage matrix (Hannart and Naveau, 2014), where the empirical corre-
lation matrix of the ensemble is combined with a Matérn type correlation matrix.
This increases the spatial modes of the prior covariance matrix and estimating
the shrinkage weight from the proxy data ensures that the amount of deviations
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from the ensemble correlation matrix is in agreement with the proxy data. Initial
results of identical twin experiments reveal that this increase of modes in the prior
covariance matrix reduces the underdispersion of the posterior distribution significantly.

Combining ensemble filtering methods with additional techniques to account for model
inadequacy should be an important part of future work on climate field reconstructions
as a balance has to be found between underdispersion of the posterior distribution
and overfitting to noisy proxy data by enhancing the degrees of freedom too much.
Beyond our adjustments compared to the original manuscript, some directions that
can be envisaged are the increase of permitted spatial structures in the prior mean by
combining the climate simulation ensemble with patterns calculated from alternative
physically motivated models, and the introduction of multiple shrinkage targets (Gray
et al., 2018) in the prior covariance matrix which allows the proxy data to weight
multiple spatial correlation modes. Identical twin experiments and cross-validation
experiments with proxy compilations will be important techniques to understand the
appropriateness of different modelling options as described below.

In the revised manuscript, we will extend the report on results from experiments with
reduced data as a way to analyse the robustness of our reconstructions. In addition,
we will include the two adjustments in the model described above in the methods
section. Afterwards, we will add a section that compares these adjusted models with
the original kernel method and the other alternative models described in the response
to Referee 1. This section will include identical twin and cross-validation experiments
as described below. Finally, we will put a focus in the discussion of future research
strategies on additional methods to account for model inadequacy.

"Related to this, the Brier score analysis seems to indicate that the posterior is

C5

generally closer to the data than the prior, but it does not indicate whether the posterior
is valid in the sense of having reasonably calibrated uncertainties. Also, while the
data are in taxa-space, the aim of the paper is actually to recreate a climate, so it is
important that the validity of this estimate is assessed. Perhaps a cross-validation (in
which one model is used as a target) could be tried."

We agree with the referee that ideally we want to evaluate the ability of our method to
reconstruct climate. However, there are no direct observations of paleoclimate avail-
able such that evaluations against real observations have to be indirect. Therefore,
evaluations with cross-validation experiments against indirect observations are a valu-
able tool to analyse the ability of reconstruction methods to reconstruct past climate. In
particular, evaluating the reconstruction in taxa space by applying the forward model is
a methodologically more stringent method than comparing reconstructions with other
inferred quantities like local climate reconstructions. Therefore, for the evaluation of a
reconstruction against observations, we do not see a way around evaluations against
indirect data. This is also a recent way of model skill evaluation in weather forecasting.

The referee suggests to perform identical twin experiments, i.e. experiments in which
one model is excluded from the ensemble as reference climatology and the goal is
to reconstruct this reference climatology from the remaining models. This is a useful
method to study the validity of the posterior distributions which is difficult to analyse
in evaluations against observations. Therefore, we designed such experiments by
simulating pseudo-proxies from the reference climatology using the proxy uncertainty
structure from the local reconstructions, reconstructing the reference climatology from
the pseudo-proxies with the model proposed in the original manuscript as well as
alternative statistical models proposed by the referees, and analysing the skill of the
corresponding posterior distributions to predict the reference climatology. In particular,
this methodology is well-suited for studying potential underdispersion of the posterior
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distributions and for comparing different statistical models.

Initial results from these experiments suggest that the models with the shrinkage
matrix are substantially less under-dispersed than the models with the glasso opti-
mized covariance matrices as a result of containing more spatial modes and therefore
more degrees of freedom. Moreover, the kernel model that we proposed in the
original manuscript performs similar to the purely Gaussian model and the mixture
over ωkµk which were suggested by the first referee. Therefore, it seems like adding
spatial modes to the covariance structure results in the biggest improvements of
reconstruction skill.

In the revised manuscript, we will add a description of the design of identical twin
experiments, and report on the results of these experiments. In addition, we will
dedicate a section to the comparison of the different statistical models, the one that is
proposed in the original manuscript as well as alternatives that were suggested by the
referees, using identical twin experiments as well as cross-validations in taxa space.

"However, I am not convinced that the details of the application as presented here are
adequate, nor, therefore, can I believe that their results are credible. I urge them to
modify and extend their work in order to address this."

As described above, we will extend our work by addressing the comments and include
the new results in the revised manuscript. We hope that this will increase the credibility
of our results.

C7

"As I mentioned, the ordering of some of the paper made it hard work for me.
The prior is introduced in Sect 2.2 and Fig 1 but only explained in Sect 3.2. The
variables w and z are first mentioned in 3.1, but for their definitions we are referred
forward to 3.2. It is only after substantial usage of the variables, right at the end of 3.2,
that we are informed that z was only introduced as a help parameter, with its definition
and explanation again pushed forward another two sections to 3.4 with the largely
unrelated discussion of the transfer function (two words for this please, and note also
that burn-in should be hyphenated) intervening in section 3.3. I would have found it far
more straightforward to have had the variables explained as they were introduced.
The multinomial with n=1 would I think be better described as the categorical distribu-
tion.
In 3.4, "alternately" usually refers to two alternates, not a sequence. "Sequentially"
might be better."

We thank the referee for pointing out several issues that hamper the readability of our
manuscript. We will reorder Sect. 2 and 3 according to the referee’s suggestions and
incorporate the linguistic advises.

References

Gray, H., Leday, G. G., Vallejos, C. A., and Richardson, S.: Shrinkage estimation of large
covariance matrices using multiple shrinkage targets, arXiv:1809.08024v1, pp. 1–32, 2018.

Hannart, A. and Naveau, P.: Estimating high dimensional covariance matrices: A new look at
the Gaussian conjugate framework, Journal of Multivariate Analysis, 131, 149–162, 2014.

Interactive comment on Clim. Past Discuss., https://doi.org/10.5194/cp-2018-87, 2018.

C8



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ensemble member weights (z)

W
ei

gh
t (

z)

CCSM CNRM CSIRO EC HadGEM MPI MRI

Full Data
Reduced 1
Reduced 2
Reduced 3
Reduced 4
Reduced 5

Figure 1: Posterior ensemble member weights (mean of z) of the the joint reconstruction and of five experiments where half of the proxy samples
are left out. The black diamonds correspond to the reconstruction with the full dataset, whereas the coloured diamonds represent the
experiments with reduced data. Prior weights (mean of z) are denoted by the dashed line.1

Fig. 1.

C9



Changes made to the manuscript

• We changed the title of the manuscript to emphasize that the proxy synthesis contains

pollen and macrofossil data, and that the focus is on 'Bayesian �ltering' instead of 'Bayesian

modelling'.

• In the abstract, we added a sentence on the comparison study that we performed to address

the referee's comments.

• We emphasize the joint use of pollen and macrofossils in the proxy synthesis more by

referring to 'pollen and macrofossils' wherever applicable instead of just 'pollen'.

• We changed 'transferfunction' into transfer function' and 'burnin' into 'burn-in' throughout

the manuscript.

• We added a description of the strengths of macrofossils in the introduction.

• We reordered Sect. 2 and 3 to improve readability and motivation of the statistical mod-

elling choices.

• In Sect. 2.1, we added more information on the role of macrofossils in the proxy synthesis.

In addition, we added a paragraph on the vegetation and climate data used to calibrate

the transfer functions.

• In Sect. 2.2, we removed references to the prior distribution, as it is not de�ned before

Sect. 3.

• We shortened Sect. 3.1 to a general introduction of the Bayesian framework, such that no

variables are used that are not de�ned until later sections.

• We changed the order of the description of the transfer function (now Sect. 3.2) and the

role of the climate simulation ensemble in the Bayesian framework (now Sect. 3.3).

• In Sect. 3.2 (Transfer function), we enhanced the motivation and description of assumptions

of the probabilistic indicator taxa model. We discuss the inconsistency between using

present and absent taxa in the calibration but only occurring taxa in the reconstruction,

mention detection probabilities as a way to overcome this issue at least for pollen data,

and highlight the challenges of estimating detection probabilities, which make the use of

them not feasible in this study.

• In Sect. 3.3 (Process stage), we add two more ways to formulate the process stage (as

Gaussian model or as regression model, in addition to the kernel model of the previous

manuscript version) and another approach for the spatial covariance structure (the shrink-

age approach, in addition to the glasso approach of the previous manuscript version). We

enhance the motivation of all the models, and discuss advantages and disadvantages of the

di�erent modelling choices.

• In order to improve the readability of the manuscript, some technical parts of the inference

strategy (Sect. 3.4) are moved to the appendices.
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• Sect. 3.5 (Assessing the added value of reconstructions) has been removed and the di�erent

measures to evaluate the reconstruction skill are described when they are �rst used in Sect.

4.1 and Sect. 4.2.3.

• Sect. 4.1 (Comparison of di�erent process stage frameworks) is added to the previous

manuscript version. It describes results from comparing the di�erent process stage models

described in Sect. 3.3 (Process stage) with identical twin and cross-validation experiments.

• The results from the spatial reconstruction of European mid-Holocene climate (Sect. 4.2

in the revised manuscript) have been updated to reconstructions with the regression model

using the shrinkage covariance matrix (instead of the kernel model with glasso covariance

matrix), since this model has produced the best results in the comparison study of Sect.

4.1.

• Sect. 4.2.1 (Comparison of unconstrained PMIP3 ensemble and posterior distribution)

has been added instead of the previous section on 'Posterior ensemble member weights' to

emphasize stronger on the di�erences between the unconstrained PMIP3 ensemble and the

posterior distribution instead of just the ensemble member weights.

• The section on 'Sensitivity with respect to the glasso penalty parameter' has been moved

to the supplement.

• Sect. 5.1 (Robustness of the reconstruction) focuses more on the experiments with reduced

proxy synthesis and the sensitivity with respect to the process stage formulation.

• Sect. 5.2 (Comparison with previous reconstructions) has been updated to account for the

updated reconstruction results.

• In Sect. 5.3 (Climate model inadequacy and process stage structure), we discuss strategies

to account for climate model inadequacy, as well as alternative ways to formulate the

process stage.

• The section 'Towards global and spatio-temporal reconstructions' has been removed. Parts

of it are moved to the section on 'Climate model inadequacy and process stage structure'.

• In the 'Conclusions', we added a paragraph on the results of the process stage model

comparison study.

• We shortened some paragraphs that discussed possible directions of future research.

• We added a paragraph on 'Code and data availability'.

• We added appendices on the 'Determination of glasso penalty parameter', the ' Shrinkage

target matrix', and the 'Metropolis coupled Markov chain Monte Carlo algorithm'. The

description of the 'Full conditional distributions' has been updated to account for the added

process stage models.

• We updated the Acknowledgments.

• Fig. 1 does not refer to the prior distribution anymore.

• Fig. 2 has been updated to account for the added process stage models.

• Fig. 3 has been updated to better visualize the calibration data and the estimated response

surfaces.
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• Fig. 5 and Fig. 6 have been added to visualize results from the process stage model

comparison study.

• Fig. 7 to 10 are updated to present the updated results from Sect. 4.2.

• Table 1 has been shortened.

• Table 2 has been added to summarize results from the process stage model comparison

study.

• Table 3 has been updated to the new results presented in Sect. 4.2.

• A Bitbucket repository has been created to improve reproducibility of our results. The link

to the repository is given in 'Code and data availability'.

• We added a Supplement with pseudo-code for the MCMC and MC3 algorithm, additional

�gures, results from spatial reconstructions with the other process stage models, and results

from studying the sensitivity with respect to the glasso penalty parameter.

• Numerous small changes to improve clarity and readability of the manuscript are not listed

here explicitly, but can be seen in the marked up version of the manuscript.
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Abstract. Probabilistic spatial reconstructions of past climate states are valuable to quantitatively study the climate system

under different forcing conditions because they combine the information contained in a proxy synthesis in a comprehensible

product. Unfortunately, they are subject to a complex uncertainty structure due to complicated proxy-climate relations and

sparse data, which makes interpolation between samples difficult. Bayesian hierarchical models feature promising properties to

handle these issues like the possibility to include multiple sources of information and to quantify uncertainties in a statistically5

rigorous way.

We present a Bayesian framework that combines a network of pollen
::
and

::::::::::
macrofossil

:
samples with a spatial prior distribution

estimated from a multi-model ensemble of climate simulations. The use of climate simulation output aims at a physically

reasonable spatial interpolation of proxy data on a regional scale. To transfer the pollen data into (local) climate information,

we apply
::::
invert

:
a forward version of the probabilistic indicator taxa model. The Bayesian inference is performed using Markov10

chain Monte Carlo methods following a Metropolis-within-Gibbs strategy.

We
:::::::
Different

:::::
ways

::
to

::::::::::
incorporate

:::
the

::::::
climate

::::::::::
simulations

::
in

:::
the

::::::::
Bayesian

:::::::::
framework

:::
are

::::::::
compared

:::::
using

:::::::
identical

::::
twin

::::
and

:::::::::::::
cross-validation

:::::::::::
experiments.

:::::
Then,

:::
we

:
reconstruct mean temperature of the warmest and mean temperature of the coldest

month during the mid-Holocene in Europe using a published pollen and macrofossil synthesis in combination with the Paleo-

climate Modelling Intercomparison Project Phase III mid-Holocene ensemble. The output of our Bayesian model is a spatially15

distributed probability distribution that facilitates quantitative analyses which account for uncertainties. Our reconstruction

performs well in cross-validation experiments and shows a reasonable degree of spatial smoothing.

1 Introduction

Spatial or climate field reconstructions of past near surface climate states combine information from proxy samples, which

are mostly localized, with a model for interpolation between those samples. They are valuable for comparisons of the state20

of the climate system under different external forcing conditions, because they produce a comprehensible product containing

the joint information in a proxy synthesis. Thereby, spatial reconstructions are more suitable for many quantitative analyses
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of past climate than individual proxy records. Unfortunately, spatial reconstructions are subject to a complex uncertainty

structure due to uncertainties in the proxy-climate relation and the sparseness of available proxy data which leads to additional

interpolation uncertainties. Therefore, a meaningful reconstruction has to include these uncertainties (Tingley et al., 2012).

A natural way to represent uncertainties in the proxy-climate relation are so called probabilistic transferfunctions
:::::::
so-called

::::::::::
probabilistic

:::::::
transfer

:::::::
functions

:
(Ohlwein and Wahl, 2012). To account for the uncertainties due to sparseness of proxy data, we5

suggest the use of stochastic interpolation techniques. Most standard geostatistical methods like kriging or Gaussian modelling

with Matérn covariances are designed for interpolation in data rich situations, while in paleoclimatology we deal with sparse

data. Therefore, their direct application to paleo situations is not suitable. Instead, we propose to use interpolation schemes

that contain additional physical knowledge, such that the resulting product combines the information from a proxy network in

a physically reasonable way (Gebhardt et al., 2008). As will be shown, our
:::
Our

:
approach can in addition be used for structural10

extrapolation
::
of

:::
the

:::::
proxy

::::
data.

We use Bayesian hierarchical modelling
:::::::
statistics to combine the two modules mentioned above: The (local) proxy-climate

relation and spatial interpolation. The Bayesian framework allows the combination of multiple data types. In our case, these

are pollen
:::
and

::::::::::
macrofossil

:
records to constrain the local climate, and climate simulations, which produce physically consistent

spatial fields for a given set of large scale external forcings. In addition, our framework accounts for several sources of uncer-15

tainty in a statistically rigorous way by estimating and inferring a multivariate probability distribution, the so-called posterior

distribution (Gelman et al., 2013).

Pollen are the terrestrial proxy with the highest spatial coverage (Bradley, 2015), and there is a long tradition of using

them for inferring past climate by applying statistical transferfunctions
:::::::
transfer

::::::::
functions (Birks et al., 2010). In recent years,

several traditional transferfunctions
::::::
transfer

::::::::
functions

:
like indicator taxa, modern analogues, and weighted averaging have20

been translated to Bayesian frameworks (e.g., Kühl et al., 2002; Haslett et al., 2006; Holden et al., 2017). Pollen records

contain information on the local climate during a time slice, where the spatial scale is constrained by the influx domain of

horizontal pollen transport.
::::::::
Typically,

:::::::::::
macrofossils

::::
have

::
a
::::::
higher

:::::::::
taxonomic

:::::::::
resolution

::::
than

::::::
pollen

::::
such

::::
that

:::
the

::::::::
climatic

::::
niche

:::
of

:::
the

::::::::
occurring

::::
taxa

::::
can

::
be

:::::
better

::::::::::
constrained

::::
than

:::::
with

:::::
pollen

:::::
alone

::::::::::::::
(Bradley, 2015).

:
Equilibrium simulations with

earth system models (ESMs) produce a physically consistent estimate of the atmospheric and oceanic circulation and the25

regional energy balance given a set of forcings (boundary conditions). Important boundary conditions, for which information

are available from proxy data and physical models, are insolation determined by the earth orbital parameters, greenhouse

gas concentrations, ice sheet configurations, and land-sea masks. We use an ensemble of simulations from different ESMs to

estimate a prior distribution, which contains a wide range of physically reasonable climate states. The combination of these

two sources of information can be interpreted as a downscaling of forcing conditions via ESMs and an upscaling of local30

information contained in pollen records via spatial covariance matrices. The result is a spatially distributed and physically

reasonable probabilistic climate reconstruction on continental domains.

We apply our framework to a mid-Holocene (MH, around 6ka) example for two reasons. First, compared with other time

slices before the common era, the MH has a high proxy data coverage, particularly for Europe. Therefore, we can use raw

pollen and macrofossil data with a sparse but relatively uniform spatial coverage over Europe as input for probabilistic35
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transferfunctions
::::::
transfer

::::::::
functions, while still having other reconstructions available, that can be compared with our results.

Second, a multi-model ensemble of climate simulations with boundary conditions adjusted to the MH was produced in the

Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) project (Braconnot et al., 2011). This ensemble is used to

estimate the spatial prior distribution. The posterior distribution, which we estimate, is a multivariate probability distribution,

with marginal distributions for each grid box, as well as spatial correlations and correlations between two climate variables,5

the mean temperature of the warmest month (MTWA) and the mean temperature of the coldest month (MTCO). For further

analyses, we create samples from this distribution, such that each sample is an equally probable estimate of the bivariate spatial

field. In the context of temporal reconstructions these samples were called "climate histories" by Parnell et al. (2016). From the

samples, quantitative properties of the climate state during the MH, which account for uncertainties, are computed. In addition,

our framework can be used to compare the model-data mismatch of multiple ESMs, to analyse the consistency of a given proxy10

network, and to help in the identification of potential outliers.

This work is related to several concepts that were developed for applications in paleoclimatology. In recent years, several

authors constructed Bayesian hierarchical models (BHMs) for paleoclimate reconstructions: Tingley and Huybers (2010) in-

troduced a spatio-temporal BHM for reconstructions of the last millennium with an underlying structure that is stationary, lin-

ear, and Gaussian. Other authors developed temporal (Li et al., 2010; Parnell et al., 2015)
::::::::::::::::
(Parnell et al., 2015) or small-scale15

spatio-temporal BHMs (Holmström et al., 2015). All of these approaches differ from our model in being purely proxy data

driven. Additional information on orbital configurations were incorporated by Gebhardt et al. (2008) and Simonis et al. (2012)

via an advection-diffusion model which is combined with proxy data using a variational inference approach. Li et al. (2010)

included information on solar, greenhouse gas, and volcanic forcing for spatially averaged reconstructions of the last millen-

nium via linear regression. Annan and Hargreaves (2013) combined Paleoclimate Modelling Intercomparison Project Phase20

II (PMIP2) simulations with the syntheses of Bartlein et al. (2011) and MARGO Project Members (2009) in a multi-linear

regression model. We build on these approaches by incorporating fields that are simulated from a set of MH forcing conditions

in a fully Bayesian framework. A different approach to combine proxy data and climate simulations for spatio-temporal recon-

structions of the common era was developed by Steiger et al. (2014) and Dee et al. (2016) using so called
::::::::
so-called off-line data

assimilation methods. They apply an ensemble Kalman filter, where the observation operators are forward models for proxy25

data, and the prior covariance is estimated from a database of transient climate simulations. Our purely spatial reconstructions

can be interpreted as an off-line data assimilation with only one time step. This reduced dimensionality permits the exploration

of the full posterior distribution despite incorporating non-linear and non-Gaussian elements in the observation operator and a

multi-modal spatial prior distribution estimated from a multi-model ensemble
:::
the

:::::
spatial

:::::::::::
interpolation

::::::
scheme.

The structure of the paper is as follows. In Sect. 2, we describe the pollen synthesis and climate simulations which we30

use. This is followed by a detailed description of our proposed Bayesian framework in Sect. 3. Results from applying our

methodology to the data a
::::::::::
comparison

:::::
study

::
of

:::::::
different

:::::
ways

::
to

:::::::::
incorporate

:::
the

::::::
climate

::::::::::
simulations

::
in

:::
the

::::::::
Bayesian

:::::::::
framework

:::
and

::::
from

::::
our

::::::::::::
reconstruction

::
of

::::
the

::::::::
European

::::
MH

::::::
climate

:
are presented in Sect. 4. Finally, we discuss and summarize our

methodology and results in Sect. 5 and 6.

3



2 Data

2.1 Proxy
:::
and

::::::::::
calibration

:
data

The pollen and macrofossil synthesis, that we use in this study, stems from Simonis et al. (2012) as part of the European Sci-

ence Foundation project DECVeg (Dynamic European Climate-Vegetation impacts and interactions). In the following, we refer

only to pollen instead of pollen and macrofossils for linguistic simplicity. Out of the four time slices (6ka, 8ka, 12ka, 13ka),5

which were compiled, we only use the 6ka dataset because there is no ensemble of climate simulations available for the other

three time slices. For 50 paleosites, presence and absence information for
:::::::::
information

::
on

:::
the

::::::::::
occurrence

::
of

:::
taxa

::
is
::::::::
provided.

:
59

taxa are provided. The data is already statistically preprocessed to remove co-occurring taxa that lead to an underestimation of

uncertainty (Kühl et al., 2002; Gebhardt et al., 2008). The synthesis is optimised for the use in local climate reconstructions

with different versions of the probabilistic indicator taxa model (PITM, originally called "pdf method"; Kühl et al., 2002),10

and is therefore well-suited for the implementation in a BHM that combines probabilistic transferfunctions with stochastic

interpolation methods. The PITM model is described in detail in Sect. ??
:::::
occur

::
at

::::
least

::
at

:::
one

::::
site.

:::
For

:::::
some

:::::
sites,

::::::::::
information

::::
from

::::
very

::::::
nearby

::::
sites

:::
are

:::::::::
combined

::::
into

:
a
:::::
joint

::::::
sample.

:::
15

::
of

::::
the

::::
sites

:::::::
combine

::::::::::
macrofossil

::::
and

:::::
pollen

:::::::::::
information,

:::::
three

::::::
samples

:::::::
contain

:::
just

::::::::::
macrofossil

:::::
data,

:::
and

:::
for

:::
32

::::
sites

::::
only

:::::
pollen

::::
data

::
is
::::::::
available.

:::
In

:::::::
general,

:::
the

:::::::::
macrofossil

::::
data

::::::::
provides

::::
more

:::::::
detailed

:::::::::
taxonomic

:::::::::::
information

::::
than

::::::
pollen.

:::::::
Because

::::::
pollen

::
is

:::::
more

::::::::
prevalent

::::
than

::::::::::
macrofossil

:::::
data,

::::::
pollen

:::::::
samples15

::
are

::::::::
included

::
at

::::
sites

:::::
with

::::::::::
macrofossils

:::
as

::::
well

::
as

:::::
from

::::::::
additional

:::::
sites

::
to

:::::::
provide

:
a
:::::::
broader

::::::
spatial

::::::
picture

::
of

:::
the

:::::::::
European

::::::::
vegetation

::
at

:::
the

::::
MH.

The 50 paleosites are sparsely but relatively uniformly distributed over Europe. Their locations are delimited by 6.5° W,

26.5° E, 37.5° N and 69.5° N. Compared with other recent syntheses like Bartlein et al. (2011), less records are included

due to high quality control criteria. The raw pollen
::
or

::::::::::
macrofossil

:
data and radiocarbon measurements, from which at least20

one was supposed to be close to 6ka, had to be available to recalculate age-depth models and ensure the use of calibrated

radiocarbon dates as common time scale. Each site is assigned to the corresponding cell of a 2° by 2° grid which we use for

our reconstructions. The locations of the proxy samples are depicted by black dots in Fig. 1. The full list of sites included in

the synthesis can be found in Simonis et al. (2012). The list of taxa, which remain for each site after statistical preprocessing,

is given
::::
occur

::
at

:::
the

:::::
sites,

:
is
:::::::::
published in Simonis (2009).25

::::::
Modern

:::::::
climate

:::
and

:::::::::
vegetation

:::
data

::
is

::::
used

:::
for

:::
the

::::::::
calibration

:::
of

::
the

:::::::
transfer

::::::::
functions.

::::
The

::::::
climate

::::
data

:
is
:::::::::
computed

::::
from

:::
the

::::::::
University

::
of

::::
East

::::::
Anglia

:::::::
Climatic

::::::::
Research

::::
Unit

::::::
(CRU)

::::
1961

::
to

::::
1990

::::::::
reference

::::::::::
climatology

:::::::::::::::::::::::::::::::::::::::::::::::::
(CRU TS v.4.01, Harris et al., 2014; Harris and Jones, 2017)

:
).
::::
The

:::::::::
vegetation

::::
data

:::::
stems

::::
from

::::::::
digitized

:::::::::
vegetation

::::
maps

:::::::::::::::::::
(Schölzel et al., 2002).

::::
The

::::::
regions

::::
that

:::
are

::::
used

:::
for

:::
the

:::::::
transfer

:::::::
function

:::::::::
calibration

::::
were

:::::::::
determined

::::::::::
individually

:::
for

::::
each

::::
taxa

::
by

::::::
pollen

::::::
experts

:::::::::::::::
(Kühl et al., 2007)

:
.
:::
The

:::::::
number

::
of

:::::::::
calibration

::::
sites

:::::
varies

:::::::
between

::::::
14.543

:::
and

:::::::
28.844,

:::::::::
depending

::
on

:::
the

::::
taxa.

:
30

2.2 Climate simulations

We use a multi-model ensemble of climate simulations which were run within PMIP3 with forcings adjusted to the MH. This

includes changed orbital configurations and greenhouse gas concentrations (Braconnot et al., 2011). The ensemble contains

4



all available MH simulations in the PMIP3 database (downloaded from the German Climate Computing Center (DKRZ) long

term archive, available under https://cera-www.dkrz.de), which have a grid spacing of at most
:::
least

:
2°. This constraint, which

retains only the models with the smallest grid spacings, is chosen to better match the resolutions of pollen
::::
proxy

:
samples and

simulations. The condition results in using seven model runs performed with the CCSM4, CNRM-CM5, CSIRO-Mk2-6-0, EC-

Earth-2-2, HadGEM2-CC, MPI-ESM-P, and MRI-CGCM3. Properties of the included simulations are given in Table 1. The5

ensemble is a multi-model ensemble with common boundary conditions. The models are run to an equilibrium state (spin-up),

followed by typically around 100 simulated years to minimize noise due to high frequency internal variability. Therefore, the

differences within the ensemble can be interpreted as modelling uncertainties (epistemic uncertainty).

The mean summer climate expressed as MTWA (Fig. 1a) from the MH ensemble is warmer than the University of East

Anglia Climatic Research Unit (CRU ) 1961 to 1990
::::
CRU reference climatology (CRU TS v.4.01 over land, Harris et al.10

(2014), Harris and Jones (2017), and HadCRUT absolute over sea, Jones et al. (1999)) in large parts of Europe, especially

eastern Europe and the Norwegian Sea. These areas coincide predominantly with areas of large ensemble spreads, expressed

as the size of point-wise 90% credible intervals (CIs) of the prior distribution
::::::::
empirical

:::::::
standard

:::::::::
deviations

:
in Fig. 1c. The

construction of the prior distribution is described in Sect. ??. The spread increases up to 10K
:::::::
standard

::::::::
deviations

::::::::
increase

::
up

::
to

::
4 K in some areas of southern and eastern Europe, which might originate from varying change patterns of the general15

circulation over Europe in the models. In contrast, the MH mean winter climate measured by MTCO in Fig. 1b shows a more

dispersed structure with cooling in Fennoscandia, warming in the Mediterranean and Balkan peninsula, and mixed patterns in

western and central Europe. The ensemble spread is predominantly small (Fig. 1d), but increases towards northern Europe with

very large inter-model differences for the Norwegian Sea and eastern Fennoscandia. Most of the grid box anomalies for MTWA

as well as MTCO are not significant on a 5% level. Here, a positive anomaly is called significant if the probability of the prior20

temperature to exceed the reference climatology is at least 0.95. Significant negative anomalies are defined accordingly. The

significance estimates are calculated point-wise.

2.3 Reconstruction variables

The spatial distribution of taxa is limited by three climatic factors: Temperature during growing season and in winter, and

moisture availability (Huntley, 2012). Therefore, these three factors, translated into quantitative variables, are important for25

climate reconstructions from pollen. For large parts of Europe, it was shown in Simonis (2009) that the PITM model (see

Sect. ??)
:::::
pollen

:::
and

::::::::::
macrofossil

::::::::
synthesis is well-suited for joint reconstructions of July and January temperature as measures

for the warmth of growing season and cold of winter, because at least one of these two variables is a limiting factor for

most taxa growing in the mid and high latitudes of Eurasia during the Holocene. Instead, testing various climate variables as

indicators for moisture availability was less promising since the moisture availability is rarely a limiting factor for European30

taxa (Simonis, 2009). Hence, in this study, we choose MTWA and MTCO as the target variables for our climate reconstructions.

This is a compromise between variables that are bioclimatically meaningful and variables for which accurate data is available

to calibrate the transferfunctions
::::::
transfer

::::::::
functions

:
against modern vegetation and climate data. In the mid to high latitudes,

MTWA and MTCO are highly correlated with July and January temperature, respectively, which is why they are also described

5



as "functionally equivalent" (Bartlein et al., 2011).

To calculate MTWA and MTCO from time series of monthly averages, the data is first interpolated to the desired spatial

grid. Then, for each hydrological year (October to September), the warmest and coldest month are extracted. We choose

the hydrological instead of the calendar year to ensure that the months are taken from connected seasons. Afterwards, the

climatological mean is calculated by averaging over the values for each year.5

3 Methods

3.1 Bayesian framework

We use Bayesian statistics to combine a network of pollen samples with an ensemble of PMIP3 simulations because in this

approach each source of information has an associated uncertainty that is naturally included in the inference process. In this

section, we specify the quantities that are combined in our reconstruction, and describe the inference algorithm that is used to10

create the results presented belowas well as the statistical measures which we use to assess the reconstructions.

In the following, we denote fossil pollen
:::
and

::::::::::
macrofossil data by Pp, past climate by Cp, modern vegetation and climate

data for the calibration of transferfunctions
:::::::
transfer

::::::::
functions by Pm and Cm, respectively, and additional model parameters

by Θ := (ω,z,θ). Here, ω and z represent weights of the PMIP3 ensemble members as defined in Sect. ?? and ??, and θ

are transferfunction parameters, which are specified in Sect. ??
::
Θ. We are interested in the conditional distribution of Cp and15

Θ given fossil pollen
:::
and

::::::::::
macrofossil, modern vegetation, and modern climate data, i.e. we want to estimate the posterior

distribution P(Cp,Θ |Pp,Cm,Pm).

Applying Bayes’ theorem to P(Cp,Θ |Pp,Cm,Pm) (in the following, we omit normalizing constants), we get:

P(Cp,Θ |Pp,Cm,Pm)︸ ︷︷ ︸
Posterior

∝ P(Pp,Pm |Cp,Cm,Θ)︸ ︷︷ ︸
Data Stage / Likelihood

· P(Cp,Cm |Θ)︸ ︷︷ ︸
Process Stage

· P(Θ)︸ ︷︷ ︸
Prior Stage

. (1)

Following Tingley and Huybers (2010), we call P(Pp,Pm |Cp,Cm,Θ) the data stage, P(Cp,Cm |Θ) the process stage, and20

P(Θ) the prior stage. The structure of the Bayesian model can be expressed by a directed acyclic graph as shown in Fig. 2. In

the graph, each node represents a variable and the arrows indicate dependences of variables.

We assume that the model weights ω and z are a priori independent of the transferfunction parameters θ, and that the data

stage is conditionally independent of ω and z given Cp. Furthermore, by construction, Pm and Cm only contribute to the

reconstruction via the transferfunction parameters, i.e. they are assumed to be independent of all other quantities. Hence, we25

can rewrite Eq. (??) and get

P(Cp,Θ |Pp,Cm,Pm) ∝ P(Pm |Cm,θ) P(Pp |Cp,θ) P(Cp |z) P(z |ω) P(ω) P(θ).

In paleoclimatology, the data stage is traditionally called transferfunction
::::::
transfer

:::::::
function, which in our case is formulated in

a forward way. It probabilistically models the proxy data given climate variables and is assumed to act locally, i.e. given the

climate at location x, a pollen sample at x is conditionally independent of the climate and proxy data at all other locations. A30

more rigorous formulation is given
::::::::
described

::
in

:::::
detail

:
in Sect. ??.
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:::
3.2.

:
The process stage stochastically interpolates the local climate information from the proxy data to a spatial domain . In

our model, this interpolation is performed using a mixture of Gaussian distributions calculated from the ensemble of PMIP3

simulations, which
:::
and

:
is described in detail in Sect. ??. Note that our approach is not restricted to interpolation between

proxy samples, but allows structural extrapolation through the eigenvectors of the covariance matrix and the weights of the

ensemble members. Hence, we can infer climate beyond the domain of the proxy synthesis
::::
Sect.

:::
3.3. The prior stage defines5

prior distributions for the model parameters Θ. These prior distributions are necessary to get a closed Bayesian model which

ensures that the posterior is a valid probality
:::::::::
probability distribution (Gelman et al., 2013).

3.2 Preprocessing of PMIP3 simulations

We model the process stage in Eq. (??) and the prior distributions for ω and z based on the ensemble of PMIP3 simulations

described in Sect. ?? following the ensemble kernel dressing approach of Schölzel and Hense (2011). Six steps are applied10

successively: All simulations are projected to a 2° by 2° grid using bilinear interpolation. We calculate the climatological means

for MTWA and MTCO from the full timeseries of each simulation as described in Sect. ??. This minimizes high frequency

internal variability which cannot be resolved by the pollen data because it is a time integrated quantity (Annan and Hargreaves, 2013)

. The resulting climatologies from step two define the means µk, k = 1, ...,K, of the mixture components, where K is the

number of ensemble members. Each mixture component is assumed to be multivariate Gaussian. The dimension N of each15

Gaussian vector is either the number of grid boxes in the case of single variable reconstructions or twice the number of grid

boxes in the case of joint reconstructions of MTWA and MTCO. Following the kernel approach in Silverman (1986), we

calculate the covariance matrix Σ̃prior as the empirical covariance of the inter-model differences scaled by the Silverman factor

f :=

(
4

K · (N + 2)

) 2
N+4

.

Hence, Σ̃prior is given by20

Σ̃prior = f · 1

K − 1

K∑

k=1

(µk − µ̄) (µk − µ̄)
t
,

where µ̄ is the mean over all mixture components, and the superscript t denotes the matrix transpose. To get a non-singular

covariance matrix and avoid spurious correlations, we apply the graphical lasso algorithm (Friedman et al. (2008), implemented

in the R-package glasso, https://cran.r-project.org/package=glasso) to Σ̃prior. This algorithm approximates the precision matrix

(inverse covariance) by a positive definite, symmetric, and sparse matrix Σ−1
prior. Therefore, Σprior is a valid N -dimensional25

covariance matrix that we use as covariance matrix of the mixture components. The sparseness of the precision matrix has

the additional advantage that computationally efficient Gaussian Markov random field techniques (Rue and Held, 2005) can be

used, which reduces the computational burden significantly.Glasso maximizes the penalized log-likelihood

logdetΣ−1
prior− trace(Σ̃prior Σ−1

prior)− ρ‖Σ−1
prior‖1,
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where ρ is the penalty parameter, ‖·‖1 is the vector L1-norm, and the first two terms are the Gaussian log-likelihood. To

determine ρ, we first recognize that for values smaller than ρ= 0.3 the resulting matrices become numerically unstable in our

application due to the small ensemble size. Five values for ρ were tested: 0.3, 0.5, 0.7
::
To

::::::
further

::::::::
structure

:::
the

::::::::::
framework,

:::
we

:::
split

::::
the

:::::
model

::::::::::
parameters

::
Θ

::::
into

::
θ,

:::::
which

:::
are

::::::::::
parameters

:::::::::
associated

::::
with

:::
the

::::
data

:::::
stage,

::::
and

::
ϑ,

::::::
which

:::
are

:::::::::
parameters

::::
that

:::::::
influence

:::
the

:::::::
process

:::::
stage.

:::
We

::::::
assume

:::
that

::
θ

:::
and

::
ϑ

::
are

::
a

::::
priori

:::::::::::
independent

::
of

::::
each

::::
other

::::
and

:::
that

:::
the

::::
data

::::
stage

::
is

:::::::::::
conditionally5

::::::::::
independent

::
of

::
ϑ

:::::
given

:::
Cp.

:::::::::::
Furthermore,

:::
by

:::::::::::
construction,

::::
Pm :::

and
::::
Cm ::::

only
:::::::::
contribute

::
to

:::
the

::::::::::::
reconstruction

:::
via

:::
the

:::::::
transfer

:::::::
function

:::::::::
parameters, 1.0, and 2.0. Larger values lead to sparser precision matrices and therefore to smaller spatial correlations.

This in turn means that the local information from the proxy data is spread less into space. For each of the five parameters

we perform a cross-validation experiment and compare the resulting Brier scores (see Sect. ??). While the smallest penalty

parametershave the best mean Brier scores, the differences are generally small (Fig.??). On the other hand, the influence of10

the penalty term in
:::
i.e.

::::
they

:::
are

::::::::
assumed

::
to

:::
be

::::::::::
independent

:::
of

::
all

:::::
other

:::::::::
quantities.

::::::
Hence,

::::
we

:::
can

::::::
rewrite

:
Eq. (??) on the

overall regression increases from 79.5% for ρ= 0.3 to 98.5% for ρ= 2.0. Based on these diagnostics, we choose ρ= 0.3 for

the reconstructions in Sect. ?? to get a numerically stable covariance which performs at least as good as other choices of ρ in

cross-validations, and is comparably little influenced by the penalty term. The sensitivity of the reconstruction with respect to

ρ is further studied in Sect. ??. Note that for other applications of our framework different values of ρ can produce the best15

results. The result of the previous steps is a mixture distribution

P(Cp |ω,µ1, ...,µK ,Σprior) =

K∑

k=1

ωk N (Cp |µk,Σprior) ,

where ω = (ω1, ...,ωK) are the prior weights. We define a Dirichlet distributed prior for ω with parameter 1
2 for each of the K

components. This corresponds to an objective prior (Jeffrey’s prior; Gelman et al., 2013) in the Dirichlet-multinomial model.

The variable z is added as a help parameter, which simplifies the inference algorithm as described in Sect. ??.
::
1)

:::
and

:::
get

:
20

P(Cp,Θ |Pp,Cm,Pm) ∝ P(Pm |Cm,θ)︸ ︷︷ ︸
Calibration stage

P(Pp |Cp,θ)︸ ︷︷ ︸
Observation stage

P(Cp |ϑ) P(θ) P(ϑ).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

::::
Here,

::::::::::::
P(Pm |Cm,θ)::

is
:::::
called

:::::::::
calibration

:::::
stage

:::
and

:::::::::::
P(Pp |Cp,θ)::

is
:::::
called

::::::::::
observation

::::
stage

:::::::::::::::::
(Parnell et al., 2015)

:
.
:::
The

::::::::
structure

::
of

:::
the

::::::::
Bayesian

:::::
model

::::
can

::
be

::::::::
expressed

:::
by

::
a

:::::::
directed

::::::
acyclic

:::::
graph

::
as

::::::
shown

::
in

::::
Fig.

::
2.

::
In

:::
the

::::::
graph,

::::
each

:::::
node

::::::::
represents

::
a

::::::
variable

::::
and

:::
the

::::::
arrows

::::::
indicate

:::::::::::
dependences

::
of

:::::::::
variables.

3.2 Transferfunctions
:::::::
Transfer

::::::::
function25

The Bayesian model uses probabilistic transferfunctions to model the pollen-climate relation
::::::
transfer

::::::::
functions

::
to

::::::
model

:::::
proxy

::::
data,

::
in

:::
our

::::
case

:::::::::
occurrence

::::::::::
information

:::
on

::::
taxa,

:::::
given

:::::::
climate

:::
and

:::::::
transfer

:::::::
function

:::::::::
parameters

:::
for

::::::
which

::::
prior

:::::::::::
distributions

::::
have

::
to

::
be

::::::
defined. From all the terms in Eq. (??

:
2), the calibration layer (Pm |Cm,θ)::::

stage, the observation layer P(Pp |Cp, ,θ)::::
stage,

and the prior distribution of the transferfunction
::::::
transfer

:::::::
function parameters P(θ) are related to the transferfunction (Parnell et al., 2015)

.30
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To reconstruct climate from the Simonis et al. (2012) synthesis, we need a transferfunction that converts presence-absence

information on taxa to climate variables
:::::::
transfer

:::::::
function. As described above, our main reconstruction target is the bivariate

climate C = (C1,C2), where C1 is MTWA and C2 is MTCO. Previously, reconstructions

::
To

::::::::::
reconstruct

::::::
climate

:
from the Simonis et al. (2012) dataset were performed using PITM, orginially named "pdf method

" (Kühl et al., 2002)
::::::::
synthesis,

:::
the

:::::::::::
probabilistic

::::::::
indicator

::::
taxa

:::::::
method

:::::::
(PITM)

:::::
model

::
is
:::::

used, which is an extension of the5

classical indicator species method (Iversen, 1944) . PITM fits probability distributions to presence-absence maps of taxa

(Schölzel et al., 2002), which are plotted in the bivariate climate space . The reference climatology for this mapping is derived

from the CRU TS v.4.01 1961 to 1990 monthly averages following the definitions of MTWA and MTCO described in Sect. ??
:
a

:::
well

::::::::::
established

:::::::
transfer

:::::::
function

::
to

::::::::::::
quantitatively

::::::::
constrain

::::
past

::::::
climate

:::::
states

:::
by

:::::::::
occurrence

::::::::::
information

:::
on

::::
taxa

::::::::
extracted

::::
from

:::::
pollen

::::
and

:::::::::
macrofossil

::::::::
samples.

::
It

:::
uses

::::
taxa

::::::
which

:::
are

:::::::
sensitive

::
to

::::::
MTWA

::::
and

::::::
MTCO

:::
and

::::::::::
determines

:::
the

::::::
climatic

::::::
niche,10

:::::
where

::::
they

:::::
occur,

::
by

::::::
fitting

:::::::
response

::::::::
functions.

::::
The

:::::::
classical

::::::::
indicator

:::
taxa

:::::::
method

:::::::::::::
(Iversen, 1944)

:::::::
estimates

::::::
binary

:::::
limits,

::::
e.g.

:
a
::::
taxa

::::::
occurs

:::::
above

:
a
::::::
certain

::::::::::
temperature

::::
but

:::
not

:::::
below

::
it.

::::::
PITM,

::::
also

::::::
named

:::
pdf

:::::::
method

::
in

:::
the

:::::::
literature

::::::::::::::::
(Kühl et al., 2002)

:
,
::
is

::
an

:::::::::
extension

::
of

::::
this

::::::
method

::::::
where

::::::::::
probability

::::::::::
distributions

::::
are

::::
fitted

:::
to

:::::::::::
acknowledge

::::
that

::::
most

:::::
taxa

::::
have

::
a

::::::::
preferred

::::::
climate

:::::
space

:::
but

:::
the

:::::::::
transitions

::::::::
between

:::::::
climates

::::::
where

::::
they

::::::
usually

:::::
occur

::::
and

:::::
those

:::::
where

::::
they

:::
do

:::
not

:::::
grow

::
is

::::
soft. Ini-

tially, Gaussian distributions were used for calibration (Kühl et al., 2002)
::::::
against

:::::::::
vegetation

:::::
maps

::::::::::::::::::
(Schölzel et al., 2002).15

Later, the model was extended to mixtures of Gaussians (Gebhardt et al., 2008) . Taxa are treated as conditionally independent

given climate. A statistical pre-selection of taxa, which are present in a sample, is applied to avoid over-fitting originating

from violations of the independence assumption between taxa, i.e. due to co-occurrence of taxa (Kühl et al., 2002). This

procedure uses the Mahalanobis distance (Mahalanobis, 1936) between the fitted distributions
:::
and

::::::::
quadratic

::::::
logistic

:::::::::
regression

::::::::::::::::::::::
(Stolzenberger, 2011, 2017).20

We reformulate PITM in a forward way using quadratic logistic regression similar to Stolzenberger (2017)
:::::::
integrate

:::
the

::::::
forward

::::::::::
formulation

::
of

::::::
PITM

::::
from

::::::::::::::::::
Stolzenberger (2017)

::
in

:::
our

::::::::
Bayesian

:::::::::
framework. For each taxa, we fit a

:::::::
quadratic

:::::::
logistic

regression model (response function) describing the probability of observing the taxa
:::
taxa

::::::::::
occurrence for a given value of C.

The idea of using quadratic logistic regression stems from the BIOMOD (BIOdiversity MODelling) software which is a model

to predict species distributions (Thuiller, 2003). The regression for taxa T contains linear and quadratic terms for each of the25

climate variables as well as an interaction term:

P(T = 1 |C = (C1,C2)) = logit
(
βT1 +βT2 C1 +βT3 C2 +βT4 C1C2 +βT5 C

2
1 +βT6 C

2
2

)
. (3)

Here, logit denotes the logistic function and βT1 , ...,β
T
6 are regression coefficients. This regression leads to a unimodal response

function which is anisotropic but has two symmetry axes, as can be seen for dwarf birch (Betula nana) and European ivy

(Hedera helix) in Fig. 3.30

::
To

::
fit

::::::::
response

:::::::::
functions,

:::::::::
vegetation

::::
data

::
is

::::
used

::::::
instead

:::
of

::::::
modern

::::::
pollen

::
or

::::::::::
macrofossil

:::::
data,

:::::::
because

::
it

:::::::
contains

:::::
more

:::::::
accurate

::::::::::
information

::
on

:::
the

:::::::::
occurrence

::
of

:
a
::::
taxa

::
on

:::
the

::::::
spatial

:::::
scales

::
of

:::::::
interest

::::::::
compared

::
to

::::::
modern

::::::
pollen

:::::::
samples.

:::::::::
Moreover,

::
the

::::::
nature

::
of

:::::::::::
macrofossils

:::::
makes

::
it

:::::::::
impossible

::
to

:::::
create

:
a
:::::::
modern

:::::::::
calibration

::::::
dataset

:::
that

:::::::
contains

::::::
pollen

:::
and

:::::::::::
macrofossils.

::::
The

::::::::::
disadvantage

:::
of

::::
using

:::::::::
vegetation

::::
data

:::
for

:::
the

:::::::::
calibration

::
is

:::
that

:::
the

:::::::::
probability

:::
of

:::::::
presence

::
of

::
a

::::
taxa

:
is
::::
only

:::::
valid

::
in

:::::::::
vegetation

9



::::
space

:::
on

:::
the

::::::
spatial

::::
scale

:::::
taken

:::
for

:::
the

:::::::
training

::::
data

:::
but

:::
not

::
in

:::
the

::::::
pollen

::
or

::::::::::
macrofossil

:::::
space,

::::::
where

::
an

:::::::
absence

::
of

::
a
::::
taxa

::
in

:
a
:::::
pollen

:::
or

:::::::::
macrofossil

:::::::
sample

:::
can

::::
have

:::::::
multiple

:::::::::::
non-climatic

:::::::
reasons

:::
like

::::
local

:::::
plant

::::::::::
competition

::
or

::::::
pollen

:::::::
transport

:::::::
effects,

::
as

::::
well

::
as

:::::
local

:::::::
climatic

::::::
effects

:::::
below

:::
the

:::::::::
resolution

::
of

:::
our

::::::::::::
reconstruction

:::::
such

:::
that

:::
the

::::
taxa

::::
did

:::
not

::::
grow

:::
in

:::
the

:::::::::
immediate

::::::::::
surrounding

::
of

:::
the

::::
core

:::::::
location.

:

For the calibration against the modern dataset, we use presence (T=1) as well as absence (T=0) information of
::
on the taxa5

which can be justified by assuming that the vegetation maps contain accurate information on the presence or absence of taxa.

On the other hand, for the fossil pollen samples, we do not include absent taxa in the reconstruction, as the absence of a taxain

a pollen assemblage can have multiple non-climatic reasons like changing biologic competition or pollen transport effects

(Gebhardt et al., 2003)
:::::::
presence

:::
as

::::
well

::
as

:::::::
absence

:::
of

::::
taxa. From the definition given in Sect. ??

::
2.3, it follows that at any

location MTWA is larger or equal than MTCO. Formally incorporating this constraint in the inference leads to a non-linear10

condition on the regression parameters, which is very hard to implement. Therefore, we choose the more practical way of

adding artificial absence information for combinations of MTWA and MTCO such that MTCO > MTWA. While this leads to

transferfunctions
::::::
transfer

::::::::
functions, which do not preclude reconstructions of MTCO values larger than MTWA, it is at least

very improbable. To apply the response functions for individual taxa to a set of proxy data, we assume that proxy samples P (s),

where s= 1, ...,S subscripts the proxy samples, are conditionally independent given a climate field and that, conditioned on15

C(xs), where xs is the location of the s-th sample, P (s) is independent of the climate at all other locations. This leads to the

following probabilistic model for the set of modern vegetation samples

P(Pm |Cm,θ) =

Sm∏

s=1

∏

T ∈T (P )

P
(
PTm(s) |Cm(xs),β

T
1 , ...,β

T
6

)
. (4)

Here, PTm(s) is the presence or absence of taxa T in the s-th calibration sample, T (P ) is the set of all Taxa occurring in the

fossil pollen samples
:::
and

:::::::::
macrofossil

::::::::
synthesis, and θ := (βTi , i= 1, ...,6, T ∈ T (P )).20

::
As

::::::::
described

::::::
above,

:::
the

:::::::
absence

:::
of

:
a
::::
taxa

::
in

::
a
:::::
pollen

:::
or

::::::::::
macrofossil

::::::
sample

:::
can

:::::
have

::::::
reasons

::::
that

:::
are

:::
not

:::::::
included

:::
in

:::
the

::::::
absence

::::::::::
probability

::::::::
estimated

:::::
from

:::
Eq.

::::
(4),

::
as

::::
this

:::::::::
calibration

::
is

::::
only

:::::
valid

::
in

:::
the

:::::::::
vegetation

::::::
space.

:::
As

::::::::::
information

:::
on

:::
the

::::::
absence

:::
of

:
a
::::
taxa

::
in
::::

the
::::::::
vegetation

::::::
space

:::
(i.e.

:::::::
absence

:::
of

:::
the

::::
taxa

::
in

:::
the

::::
grid

::::
box

::
of

:::::::
interest

::
at

:::
the

:::::::::
respective

::::
time

:::::
slice)

::
is

:::
not

:::::::
available

:::::
from

:::::
pollen

::::
and

:::::::::
macrofossil

:::::
data,

:::
the

::::
only

::::::
reliable

:::::::::
occurrence

::::::::::
information

:::
of

:
a
::::
taxa

::
in

:::
the

::::::::
respective

::::
grid

::::
box

::
in

::
the

::::
past

::
is
:::
the

::::::::
presence

::
of

:::
the

::::
taxa

::
in

::
a
:::::
pollen

:::
or

::::::::::
macrofossil

::::::
sample

:::::::::::::::::::
(Gebhardt et al., 2003).

::::::
Hence,

::::
only

:::::::::
occurring

::::
taxa

:::
are25

:::::::
included

::
in

:::
the

::::::::::::
reconstruction

::::
step.

:

::::::::
Violations

::
of

:::
the

::::::::::
assumption

:::
that

::::
taxa

:::
are

:::::
treated

::
as
:::::::::::
conditionally

:::::::::::
independent

::::
given

:::::::
climate,

:::
i.e.

:::
due

::
to

::::::::::::
co-occurrence

::
of

::::
taxa

:::::::::::::::
(Kühl et al., 2002),

:::
can

::::
lead

::
to

:::::::::
over-fitting

::::
and

:::::::::::
subsequently

:::::::::::::
underestimation

::
of

:::::::::
uncertainty

::
in

:::
the

:::::::
transfer

::::::::
functions.

:::::::::
Therefore,

:
a
::::::::
statistical

:::::::::::
preselection

::
of

:::::
taxa,

:::::
which

:::
are

:::::::
present

::
in

::
a
:::::::
sample,

::
is

:::::::
applied.

::::
This

:::::::::
procedure

::::
uses

:::
the

:::::::::::
Mahalanobis

::::::::
distance

:::::::::::::::::
(Mahalanobis, 1936)

:::::::
between

:::
the

::::
fitted

:::::::::::
distributions

:::
and

::
is
::::::::
described

::
in
:::::
detail

::
in
::::::::::::::::
Kühl et al. (2002)

:::
and

::::::::::::::::::
Gebhardt et al. (2008)30

:
.
:::
For

:::
the

:::::
pollen

:::
and

::::::::::
macrofossil

::::::::
synthesis

::::
used

::
in

::::
this

:::::
study,

:::
the

::::::::::
preselection

:::
was

::::::
carried

::::
out

::
by

:::::::::::::
Simonis (2009)

:::
and

:::
we

::::::
follow

::::
their

::::::
results.

10



:
It
::
is

:::::::
assumed

::::
that

:::
the

:::::::
transfer

:::::::
function

:::
acts

:::::::
locally,

:::
i.e.

:::::
given

:::
the

::::::
climate

::
at

:::::::
location

::
x,

:
a
::::::
pollen

::::::
sample

::
at

::
x

::
is

:::::::::::
conditionally

::::::::::
independent

::
of

:::
the

::::::
climate

::::
and

:::::
proxy

::::
data

::
at

::
all

:::::
other

::::::::
locations.

:::::::::
Following

::::
these

:::::::::::::
considerations, P(Pp |Cp,θ) is given by

P(Pp |Cp,θ) :=

Sp∏

s=1

∏

T ∈T (s)

P
(
PTp (s) |Cp(xs),βT1 , ...,βT6

)
, (5)

where T (s) are the taxa occurring in sample s
:::
and

::::::
picked

:::
by

:::
the

::::::::::
preselection

::::::::
procedure

::
of

:::::::::::::
Simonis (2009).

Finally, we define a prior distribution for θ. We use a Gaussian distribution centred at 0 and a marginal variance of 10 for5

each parameter βTi . Due to the absence of prior information on the correlation structure, we assume independence between the

taxa as well as within a taxa. Hence, we get

P(θ = (βTi , i= 1, ...,6, T ∈ T (P ))) =
∏

T∈T (P )

6∏

i=1

N
(
βTi |0,10

)
.

Due to the high information content in the calibration data set, the influence of the prior (Eq. ??) on the parameter estimates

is negligible. Using a flat prior for Cp(xs) and removing spatial correlations, local climate reconstructions at the locations of10

the proxy samples can be calculated. These reconstructions depend only on the proxy data in grid box xs. Results of local MH

reconstructions for each grid box with proxy data are shown in Fig. 4, where the local reconstruction means and the marginal

90% CIs
:::::::
credible

:::::::
intervals

:::::
(CIs) are plotted for MTWA and MTCO.

Local reconstructions can also be used to evaluate the ability of the transferfunctions
::::::
transfer

:::::::::
functions to reconstruct modern

climate which provides a reference for possible regional biases. For the PITM model such evaluations have been performed15

by Gebhardt et al. (2008) and Stolzenberger (2011). Both evaluations show that the model tends to underestimate north-south

gradients leading to positive biases in Fennoscandia, and slightly negative biases in the Mediterranean. The biases as well as the

uncertainties are larger for winter temperature than for summer. Therefore, results for MTCO in northern Fennoscandia should

be treated with caution, while for all other regions biases of the reconstruction means are within reconstruction uncertainties.

3.3 Inference and computational performance20

Because the PITM model is
::
A

::::::::::
disadvantage

:::
of

:::
the

:::::
PITM

:::::::
version

::::
used

::
in

:::
this

::::::
study,

::
is

:::
the

::::::::::
inconsistent

:::
use

::
of

:::::::::
calibration

::::
and

::::
fossil

::::
data

:::
by

::::
using

::::::::
presence

:::
and

:::::::
absence

::::::::::
information

:::
on

:::
taxa

:::
for

:::
the

:::::::::
calibration

:::
but

::::
only

::::::::
occurring

::::
taxa

::
in

:::
the

:::::::::::::
reconstruction.

::::::
Despite

::::
this

::::::::::::
inconsistency,

:::
the

:::::::::::::
reconstructions

::
in

::::
this

:::::
study

:::
are

:::
in

:::::::::
agreement

::::
with

::::::::
previous

:::::::
versions

::
of

::::::
PITM,

::::::
where

::::
this

:::::::::::
inconsistency

::::
with

:::
the

:::::::::
calibration

::::
did

:::
not

::::::
appear

::
as

:::::::::
previously

::::
only

::::::::::
occurrence

::::::::::
information

::::
were

:::::
used

::
to

::
fit

:::
the

::::::::::
probability

::::::
density

::::::::
functions.

::::::::
However,

:::::
there

::
is

::
no

::::::
simple

:::::::
solution

:::
for

:::
the

:::::::
problem

::::
that

:::
the

:::::::::
calibration

::
is

::
in

:::::::::
vegetation

:::::
space

:::::::
whereas

:::
the25

::::::
absence

::
of
::::
taxa

::
in
:::
the

:::::
fossil

:::::::
samples

::
is

::
an

::::::::::
information

::
in

:::
the

::::::
pollen

::
or

::::::::::
macrofossil

:::::
space.

::
A

:::::::::
promising

::::
idea

:::::
might

::
be

::
to

::::::
model

::
the

:::::::
absence

::::
due

::
to

:::::::::::
non-climatic

::::::
reasons

::
as

::::::::::::
zero-inflation

::
by

::::::
adding

::
a

:::::
latent

:::::::
variable

::
to

:::::::
estimate

:::
the

::::::::
detection

:::::::::
probability

::
of

::
a

:::
taxa

:::::::::::::::::::::
(MacKenzie et al., 2002).

::::
But

:::
the

:::::::::
estimation

::
of

::::::::
detection

:::::::::::
probabilities

::
is

:
a
::::
very

::::::::::
challenging

::::
task

:::::::
because

::
it
:::::::
depends

:::
on

::::
many

::::::
factors

::::
like

::::::
pollen

:::::
influx

::::
area,

:::::
local

::::::::::
topography,

:::
soil

::::::::::
properties,

:::
and

:::::
plant

::::::::::
competition

:::::
which

::::::
might

::::::
change

::::
over

:::::
time.

:
It
::
is
::
a

:::::
priori

::::::
unclear

::::::
which

::
of

:::::
these

:::::
factor

:::
can

:::
be

:::::::::::
marginalized

:::
and

::::::
which

::::
have

::
to

:::
be

:::::::
included

:::
as

:::::::::
covariates.

::
In

::::::::
addition,

:::
the30

11



:::::::::::::::::
Simonis et al. (2012)

::::::::
synthesis

::::::::
combines

::::::::::
macrofossils

:::::
with

:::::
pollen

::::
data.

::::
The

::::::::
processes

::::
that

::::::::
influence

:::
the

:::::::
detection

::::::::::
probability

::
of

::::::::::
macrofossils

::::
are

::::
very

:::::::
different

::::
than

:::
for

::::::
pollen.

:::::::::
Therefore,

::
a
:::::::
different

::::::::
detection

::::::::::
probability

:::
has

::
to

:::
be

::::::::
estimated

:::
for

::::::
pollen

:::
than

:::
for

::::::::::::
macrofossils.

::::::::
Resolving

:::
the

:::::::::
described

:::::
issues

::
is

::
an

:::::::::
interesting

::::::::
direction

:::
for

:::::
future

::::::::
research,

::::::
which

:::::::
requires

::::::::
extensive

:::::::::
cooperation

:::
of

:::::::::::::::::
(paleo)climatologists,

::::::::::::::
(paleo)botanists,

::::
and

::::::::::
statisticians,

:::
but

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
study.

3.3
::::::

Process
:::::
stage5

::::::
Similar

::
to

::::
data

::::::::::
assimilation

::::::::::
approaches

::
in

:::::::::
numerical

:::::::
weather

:::
and

:::::::
climate

:::::::::
prediction,

:::
the

::::::::
ensemble

::
of

:::::::
climate

::::::::::
simulations

::
is

::::
used

::
to

::::::
control

:::
the

::::::
spatial

::::::::
structures

::
of
::::

the
::::::::::::
reconstruction

:::
and

::
to

::::::::
constrain

:::
the

:::::
range

::
of

:::::::::
physically

:::::::
possible

:::::::
climate

:::::
states

:::
for

:
a
:::::
given

:::::::
external

::::::
forcing

:::
by

:::::::::
computing

:
a
::::::
spatial

:::::
prior

:::::::::
distribution

:::::
from

:::
the

::::::::
ensemble

::::::::
members.

:::::
This

:::::::::
distribution

::
is
:::::::::
combined

::::
with

::::::::::
interpolation

::::::::::
parameters

:
ϑ
:::

to
:::::::
facilitate

::
a

::::
more

:::::::
flexible

:::::::::
adjustment

::
to
:::
the

::::::
proxy

::::
data

::
in

:::
the

::::::
process

:::::
stage

::
of

::::
Eq.

:::
(2).

::::
The

::::::::
estimation

::
of
:::

the
:::::
prior

::::::::::
distribution

:
is
:::::::::
hampered

::
by

:::
the

:::::
small

:::::::
number

::
of

::::::::
ensemble

::::::::
members

::::::
K = 7.10

:
It
::

is
::::

not
:::::::
obvious

:::::
which

:::::::
method

:::
for

:::::::::
estimating

::::
the

::::
prior

::::::::::
distribution

:::
is

::::
best

:::::
suited

:::
for

:::
the

::::::::
problem

:::
on

::::
hand

::::
and

::::::
which

::::::::
additional

::::::
model

:::::::::
parameters

:::
are

:::::::::
appropriate

:::
to

:::::::
preserve

::
as

:::::
much

:::::::
physical

::::::::::
consistency

::::::::
contained

::
in
:::
the

:::::::
climate

::::::::::
simulations

::
as

:::::::
possible

:::
but

::
to

::::::
correct

::
for

:::::::
climate

:::::
model

:::::::::::
inadequacies.

:::::::::
Therefore,

:::
we

:::::::
perform

:
a
::::::::::
comparison

:::::
study

::
of

:::
six

::::::
process

:::::
stage

:::::::
models,

:::
that

:::
are

::::::::
composed

::
of
:::::
three

:::::::::
techniques

::
to

::::::::
formulate

:::
the

::::::
process

:::::
stage

:::
and

::::
two

::::::
choices

:::
for

:::
the

:::::::
involved

::::::
spatial

:::::::::
covariance

::::::
matrix.

:::
All

::::
those

:::::::
models

:::
are

:::::::
inspired

::
by

:::::::
methods

:::::
used

::
in

:::
data

:::::::::::
assimilation,

:::::::::::::
postprocessing

::
of

::::::::
forecasts,

:::
and

:::::::
climate

::::::
change

::::::::
detection15

:::
and

:::::::::
attribution.

::::
The

:::
use

:::
of

::::::
climate

::::::::::
simulations

::
in

:::
the

:::::::
process

:::::
stage

:::::
allows

::::
not

:::
just

:::::::::::
interpolation

:::::::
between

::::::
proxy

:::::::
samples

:::
but

:::
also

::::::::
structural

:::::::::::
extrapolation

:::::::
through

:::
the

::::::::::
eigenvectors

:::
of

:::
the

:::::
spatial

:::::::::
covariance

::::::
matrix

:::
and

:::
the

:::::::
process

:::::
stage

:::::::::
parameters.

:

3.3.1
::::::::
Gaussian

::::::
model

:::
The

:::::
most

:::::::
common

::::::::
approach

::
in

:::
the

::::
data

:::::::::::
assimilation

:::::::
literature

::
is
:::
to

::::::
assume

::::
that

:::
the

::::::::
ensemble

::::::::
members

:::
are

::::::::::
independent

::::
and

::::::::
identically

::::::::::
distributed

::::
(iid)

:::::::
samples

::::
from

:::
an

::::::::
unknown

::::::::
Gaussian

::::::::::
distribution

::
of

:::::::
possible

:::::::
climate

:::::
states

::::::::::::::::::
(Carrassi et al., 2018)20

:
.
::
In

:::
the

:::::::::
following,

:::
the

::::::::::::
climatological

::::::
means

::
of

:::
the

:::
K

::::::::
ensemble

::::::::
members

:::
are

:::::::
denoted

::
by

::::
µk.

:::::::::::
Subsequently

:::
the

::::::
spatial

:::::
prior

:::::::::
distribution

::
is

:::::
given

:::
by

::::::::::
N (µ̄,Σprior),

::::::
where

::
N

:::::::
denotes

:
a
::::::::
Gaussian

::::::::::
distribution,

::̄
µ
::
is

:::
the

::::::::
ensemble

:::::
mean,

::::
and

:::::
Σprior ::

is
:
a
::::::
spatial

:::::::::
covariance

::::::
matrix,

:::::
which

::
is

:::::
given

::
by

::
a
:::::::::
regularized

:::::::
version

::
of

:::
the

::::::::
empirical

:::::::::
covariance

Σemp =
1

K − 1

K∑

k=1

(µk − µ̄) (µk − µ̄)
t
.

::::::::::::::::::::::::::::::::

(6)

:::
The

::::::::::
superscript

:
t
:::::::
denotes

:::
the

::::::
matrix

:::::::::
transpose.

::::::
Hence,

:::
the

:::::::::
covariance

::::::
matrix

::
is
:::::
based

:::
on

:::
the

::::::::::
inter-model

::::::::::
differences

::
as

:::
an25

:::::::
estimate

::
of

:::::::::
epistemic

:::::::::::
uncertainties.

::::
The

::::::::::::
regularization

:::::::::
techniques

:::
of

:::::
Σemp :::

are
::::::::
specified

::::::
below.

::::
The

::::::::
Gaussian

::::::::::
distribution

:
is
:::::::::::

multivariate
:::
and

::::
the

::::
state

::::::
vector

:::
has

:::::::::
dimension

::::
N ,

:::::
where

:::
N

::
is

:::
the

:::::::
number

:::
of

::::
grid

:::::
boxes

:::::
times

:::
the

:::::::
number

:::
of

::::::
jointly

:::::::::::
reconstructed

::::::::
variables.

:::
The

:::::
main

:::::::::
advantage

::
of

::::
this

::::::::
Gaussian

::::::
model

:::::
(GM)

::
is

::::
that

::::::::
inference

::::::::
becomes

::::::
simpler

::::
than

:::
in

:::::
more

:::::::
complex

::::::::::
probability

::::::
density

:::::::::
estimation

:::::::::
techniques

:::::::
because

:::
the

:::::
prior

::::::::::
distribution

::
is

::::::::
unimodal

:::
and

:::::::::
Gaussian.

::::
The

:::::::::::
disadvantage

::
is

:::
that

::
it
:::::
relies

:::
on30

::
the

::::::
strong

::::::::::
assumption

:::
that

:::
the

:::::::
samples

:::
µk:::

are
:::
iid

:::::::
samples

::::
from

:::
an

::::::::
unknown

::::::::
Gaussian

::::::::::
distribution.

::::
This

::::::::::
assumption

:::::
tends

::
to

12



::
be

:::::
more

:::::::
realistic

:::
for

:::::::
samples

::::
from

::::
just

:::
one

::::::
ESM,

:::::::
whereas

:::::::
statistics

:::
of

::::::::::
multi-model

:::::::::
ensembles

:::
are

:::::
often

:::
not

::::
well

:::::::::
described

::
by

::::::
purely

::::::::
Gaussian

::::::::::
distributions

:::::::::::::::::
(Knutti et al., 2010).

::
A
:::::::

second
:::::::::::
disadvantage

::
of

:::
this

::::::
model

::
is

::::
that

:::
the

:::::::
absence

::
of

:::::::::
additional

:::::::::
parameters

:::::
limits

:::
the

:::::::::::
possibilities

::
to

::::::
adjust

:::
the

::::::::
posterior

::::::::::
distribution

::
to

:::
the

::::::
proxy

::::
data

:::
and

:::::::
correct

:::
for

:::::::
climate

:::::::::
simulation

:::::::::::
inadequacies.

::::
The

::::
third

:::::::::::
disadvantage

::
of

:::
the

::::
GM

::
is

:::
that

::::::
spatial

::::::::
structures

:::
of

:::
the

::::::::
individual

:::::::
models,

::::::
which

:::
are

::::::
directly

:::::::
derived

::::
from

:::
the

:::::::
physical

:::::::::
equations

::::::
solved

::
in

:::
the

::::::
ESMs,

:::
get

::::
lost

:::
by

::::::::
averaging

::::
over

:::
all

::::::::
ensemble

:::::::::
members.

:::::::::::
Nevertheless,

:::
in

:::::
many5

::::::
climate

::::::::
prediction

:::::::::::
applications

::::::::::
multi-model

:::::::
averages

::::::::::::
outperformed

::::
each

:::::::::
individual

::::
ESM

::::::::::::::::::::::::::
(Krishnamurti et al., 1999, e.g.).

:

3.3.2
:::::::::
Regression

::::::
model

:
A
:::::::::
relaxation

::
of

:::
the

:::::::::::
assumptions

::
of

:::
the

:::
GM

::
is
:::
the

::::::
second

::::::
model,

::::
that

:::
we

:::
call

:::
the

:::::::::
regression

:::::
model

:::::
(RM)

:::::::
because

::
it

::
is

:::::::
inspired

::
by

:::::::::
regression

:::::
based

::::::
models

:::::::
popular

::
in

::::::::::::
postprocessing

:::
and

:::::::
climate

::::::
change

::::::::
detection

:::
and

:::::::::
attribution

::::::::::::::::::::::
(Hegerl and Zwiers, 2011)

:
.
::
In

:::
the

::::
RM,

:::
the

::
iid

::::::::::
assumption

::
is

:::::::
dropped

:::
for

:::
the

::::
first

:::::::
moments

:::
of

:::
the

::::::
process

:::::
stage

::
by

::::::::::
introducing

::::::::
weighted

::::::::
averages

::
of

:::
the10

::::::::
ensemble

::::::::
members

::::
with

:::::::
variable

:::::::
weights

:::::::::::::
λk,k = 1, ...,K.

:::::
This

::::::
means,

::::
that

:::::::
samples,

::::::
which

::
fit

:::::
better

:::
to

:::
the

:::::
proxy

:::::
data,

:::
are

:::::::
weighted

::::::
higher

::
in

:::
the

::::::::
posterior.

:::
The

::::
sum

::
of

:::
the

:::::::
weights

::
is

::
set

::
to

::::
one

::::
such

:::
that

::::::::::::
unrealistically

:::::
warm

::
or

::::
cold

::::
state

:::
are

:::::::::
prevented.

::::
This

::::
leads

::
to

:::
the

:::::::
process

::::
stage

::::::
model

P(Cp|λ1, ...,λK) = N
(
Cp

∣∣∣
K∑

k=1

λkµk,Σprior

)
,

:::::::::::::::::::::::::::::::::::::::

(7)

:::
and

::
an

:::::::::
additional

::::
prior

::::::::::
distribution

:::
for

:::
the

:::::
model

:::::::
weights15

P(λ) = Dir
(
λ1, ...,λK

∣∣ 1
2 , ...,

1
2

)
.

::::::::::::::::::::::::::
(8)

:::
Dir

::::::
denotes

::
a
::::::::
Dirichlet

::::::::::
distribution,

::::::
which

::
is

::::::
chosen

::
as

:::::
prior

:::::::::
distribution

:::::::
because

::
is
:::::::::
guarantees

::::
that

:::
the

:::::::
weights

::::
take

::::::
values

:::::::
between

::::
zero

:::
and

::::
one

::::
and

::::
sum

::
up

:::
to

::::
one.

::::::::::
Conditioned

:::
on

:::
the

::::::::
ensemble

::::::::
member

:::::::
weights,

:::
the

:::::::
process

:::::
stage

::::::::::
distribution

::
is

::::::::
Gaussian,

:::
but

:::::::::::::
non-Gaussianity

::
is
::::::::
permitted

:::::::
through

:::
the

:::::::
variable

:::::::
weights.

:

::
In

:::::::
addition,

:::
the

::::
RM

:::
has

:::
the

:::::::::
advantage

::
of

:::::::::
possessing

:::::
more

::::::
degrees

:::
of

:::::::
freedom

::::::::
compared

::
to

:::
the

:::::
GM.

:::
The

::::::::
inference

:::::::
process20

:::::::
becomes

::
a

::::
little

:::::
more

::::::::
involving

::::
than

:::
for

:::
the

::::
GM

:::::::
because

:::
the

::::::::
ensemble

::::::::
member

:::::::
weights

::::
have

::
to

:::
be

:::::::::
estimated,

:::
too,

::::
but

:::
the

:::::::::
conditional

::::::::
Gaussian

::::::::::
distribution

::
of

:::
Cp ::::

helps
:::::::::
designing

:::::::
efficient

:::::::
inference

::::::::::
algorithms.

::::::
Similar

::
to
:::
the

:::::
GM,

:::::
spatial

:::::::::
structures

::
of

::
the

:::::::::
individual

::::::
models

::::
can

:::
get

:::
lost,

:::
as

::
we

:::::::
average

::::
over

:::::::
different

:::::
ESM

::::::::::::
climatologies.

3.3.3
::::::
Kernel

::::::
model

:::
The

::::
third

::::::
model

:::
has

::::
been

::::::::::
introduced

::
in

:::
the

:::
data

:::::::::::
assimilation

:::::::
literature

:::
by

::::::::::::::::::::::::::
Anderson and Anderson (1999)

::
to

:::::::
combine

:::::::
particle25

:::
and

::::::::
Gaussian

:::::::
filtering

:::::::::::
approaches,

:::::
where

::::
the

:::::::
particle

::::
part

:::::
helps

::::::::
capturing

:
non-Gaussian and non-linear

::::::
features

:::
but

::::
the

::::::::
efficiency

::
of

::::::::
Gaussian

::::::::::::::
approximations

::
in

::::
high

:::::::::::
dimensional

:::::::
filtering

:::::::::
situations

::
is

::::
still

::::::::
exploited.

:::::
This

::::::
kernel

:::::
model

::::::
(KM)

:::::::
assumes

:::
that

::::
each

::::::::
ensemble

:::::::
member

::
is

:
a
::::::
sample

:::::
from

::
an

::::::::
unknown

:::::::::
distribution

::
of

:::::::
possible

:::::::
climate

::::
states

:::::
given

::
a

::
set

::
of

::::::::
forcings,

:::
but

:
it
::::
does

:::
not

:::::::
assume

:::
that

:::
this

::::::::
unknown

::::::::::
distribution

::
is

::::::::
Gaussian.

:::::::
Instead,

::::::::::::
non-parametric

::::::
kernel

::::::
density

:::::::::
estimation

:::::::::
techniques

13



:::::::::::::::
(Silverman, 1986),

::::::
where

:::
the

:::::::::
probability

::::::::::
distribution

::
is

:::::
given

::
by

::
a
:::::::
mixture

::
of

::::::::::
multivariate

::::::::
Gaussian

:::::::
kernels,

:::
are

:::::
used.

:::::
Each

::::::::
ensemble

:::::::
member

::::::::::
climatology

::::::::::
corresponds

::
to

:::
the

:::::
mean

::
of

:
a
::::::
kernel.

:

::::::
Ideally,

:::
the

:::::::::
covariance

::::::
matrix

::
of

::::
each

::::::
kernel

:::::
would

::::::::::
correspond

::
to

:::
the

::::::::
respective

::::::
ESM,

::::
such

:::
that

:::
the

::::::
spatial

:::::::::::::
autocorrelation

::
of

:::
that

:::::
ESM

::
is

::::::::
preserved

:::::
when

:::
we

::::::
sample

:::::
from

::
its

:::::::
kernel.

::::::::::::
Unfortunately,

::::
there

::
is
::::
only

::::
one

::::
MH

:::
run

::::::::
available

:::
for

::::
each

:::::
ESM

:::
and

:::
the

:::::::
internal

:::::::::
variability

::
in

:::::
those

::::
runs

::
is

:::::
much

:::::::
smaller

::::
than

:::
the

::::::::::
inter-model

::::::::::
differences.

::::::
Using

:::
the

::::::
internal

:::::::::
variability

:::
of5

::::
those

::::
runs

::::::
would

::::
thus

::::
lead

::
to

::::
very

::::::
distinct

:::::::
kernels

:::
and

:::::
allow

:::
too

::::
few

::::::
climate

::::::
states.

:::::::::
Therefore,

:::
the

:::::::::
covariance

::
of

::::
each

::::::
kernel

:
is
::::::::
estimated

:::::
from

:::
the

::::::::::
inter-model

:::::::::
differences

::
as

:
a
:::::::::::
compromise

:::
that

::::::
allows

::
to

::::::
sample

:::::
from

:
a
:::::
much

:::::::
broader

::::
range

:::
of

:::::
states

::::
even

::::::
though

::::::::::::
autocorrelation

::
of

:::
the

:::::::::
individual

::::::
models

::
is

::::
lost.

::::
This

::::::::::
compromise

::
is
::
a

::::
very

:::::::
common

::::::
choice

::
in

:::::
kernel

:::::
based

::::::::::
probability

::::::
density

:::::::::::::
approximations

:::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2016; Silverman, 1986, Chapter 3 and 4)

:
if

:::::
there

::
is

:::
no

:::::
good

:::::::
estimate

:::
for

:::
the

::::::::::
covariance

:::::::::::
corresponding

::
to
:::::
each

:::::
kernel

::::::::
available.

:
10

::::::::
Compared

::
to
:::
the

:::::
GM,

::
the

:::::::::
empirical

:::::::::
covariance

:::::
matrix

:::::
Σemp ::

is
:::::
scaled

:::
by

:::
the

::::::::
Silverman

:::::
factor

::::::::::::::::
(Silverman, 1986)

f :=
(

4
K·(N+2)

) 2
N+4

,
::::::::::::::::::

(9)

:::::
which

::::::::
optimizes

:::
the

::::::::
variances

::
of

:::
the

:::::::
kernels,

::::::
Hence,

::
in

::
the

::::
KM

:::
the

:::::
scaled

::::::::
empirical

:::::::::
covariance

::::::
matrix

:::::
Σ̃emp,

:::::
given

::
by

::::::::
f · Σ̃prior,

:
is
::::::::::
regularized

::::::
leading

:::
to

:::
the

:::::
spatial

::::::::::
covariance

:::::
matrix

::::::
Σ̃prior.::::

Note
::::
that

:::
the

:::::
small

:::::::
number

::
of

::::::::
ensemble

::::::::
members

:::::::::
compared

::
to

::
the

:::::::::
dimension

::
of

:::
the

::::::::::
probability

:::::::::
distribution

:::::
leads

::
to

:
a
::::::::
standard

::::::::
deviation

::::::::
reduction

::
of

::::
only

::::::
around

:::
2%

::
in

:::
our

:::::::::::
applications.15

::::
Each

::::::
kernel

::::
gets

::
an

::::::::
assigned

::::::
weight

:::
ωk, the posterior climate follows again a mixture distribution

::::::::::
k = 1, ...,K,

::::::
which

::
is

::::::
inferred

::
in
:::
the

::::::::
Bayesian

::::::::::
framework.

:::
The

:::::::
weights

::::
sum

:::
up

::
to

:::
one.

::::
The

::::::::
resulting

::::::
process

:::::
stage

::
is

:
a
:::::::
mixture

:::::::::
distribution

:

P(Cp |ω1, ...,ωK) =

K∑

k=1

ωk N
(
Cp |µk, Σ̃prior

)
.

:::::::::::::::::::::::::::::::::::::::

(10)

:
A
::::::::
Dirichlet

:::::::::
distributed

::::
prior

::
is
::::
used

:::
for

::
ω

::::
with

::::::::
parameter

::

1
2:::

for
::::
each

::
of

:::
the

::
K

:::::::::::
components.

::
A

::::::::::::
computational

:::::::::::
disadvantage

::
of

::
the

::::
KM

::
is

:::
that

:::
the

:::::::
process

::::
stage

::
is
:::::::::::
multi-modal

:::
and

::::::::::::
non-Gaussian.

:::
We

:::::::
augment

:::
the

::::::
model

::
by

::
an

:::::::::
additional

::::::::
parameter

::
z,
::::::
which20

::::::
follows

:
a
::::::::::
categorical

::::::::::
distribution,

:::::::
denoted

::
by

::::
Cat,

::
to

::::::
restore

:::
that

:::
Cp::

is
::::::::
Gaussian

::::::::::
conditioned

::
on

:::
the

::
ω

:::
and

:::
z.

:
z
::::::
selects

:
a
::::::
kernel

:
k
::::::::
according

:::
to

::
its

::::::
weight

:::
ωk,

:::
i.e.

::
z

:
is
:::::::
defined

::::
such

:::
that

:

P(ω)
::::

= Dir
(
ω1, ...,ωK | 12 , ..., 1

2

)
::::::::::::::::::::::

(11)

P(z |ω)
::::::

= Cat(z1, ...,zK |ω1, ...,ωK)
:::::::::::::::::::::::

(12)

P(Cp |z)
:::::::

=

K∏

k=1

(
N (Cp |µk,Σprior)

)zk .
::::::::::::::::::::::::

(13)25

:::::::::
Integrating

:::
out

:
z
::::::
yields

:::
the

::::::
mixture

::::::::::
distribution

:::
Eq.

:::::
(10).

:::
Two

::::::::::
advantages

::
of

:::
the

::::
KM

:::
are

:::
that

::
it

::
is

:::
not

:::::::
assumed

::::
that

::
the

::::::::
unknown

:::::
prior

:::::::::
distribution

::
is
::::::::
Gaussian

::::
and

:::
that

:::
the

::::::
kernels

:::
do

:::
not

:::
rely

:::
on

::
an

:::
iid

:::::::::
assumption

:::
for

:::::
their

:::
first

:::::::
moment

:::::::::
properties.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::
KM

:::::
relies

::
on

:::
an

::
iid

::::::::::
assumption

:::
for

:::
the

14



::::::
second

:::::::
moment

::::::::
properties,

::::::
which

:
is
:::
the

:::::::::::
compromise

::::::::
described

:::::
above

:::
due

::
to

:::
the

::::::
absence

::
of
::
a
::::::
suitable

:::::::
estimate

:::
of

::
the

::::::::::
uncertainty

::::::::
structures

::::::::::::
corresponding

::
to

::::
each

::::::::
ensemble

:::::::
member.

::::
The

::::
KM

::::::::
preserves

:::
the

:::::
spatial

::::::::
structures

:::
of

::::
each

::::
ESM

::
in
:::
the

::::
first

::::::::
moments

::
of

:::
the

::::::
kernels

:::
and

:::::
when

::::::::
sampling

:::::
from

:::
Eq.

:::::
(13),

:::
the

::::
mean

:::
of

:::
the

::::::
sample

:::::::
belongs

::
to

:::
one

:::::
ESM

::::
and

:
is
::::

not
:
a
::::::::
weighted

:::::::
average

:::
over

:::
all

::::::::
ensemble

:::::::::
members.

::::
This

::::::::::
preservation

:::
of

:::::::
physical

::::::::::
consistency

::::::
reduces

::::
the

::::::
degrees

:::
of

:::::::
freedom

::::::::
compared

::
to
::::

the
::::
RM.

:::
For

::::::::
example,

::::
when

:::
the

::::
true

:::::::
climate

::::
state

:::
lies

::::::
exactly

::::::::
between

::
µ1::::

and
:::
µ2 :::

and
:::
far

::::
away

:::::
from

:::
all

::::
other

::::::::
ensemble

:::::::::
members,

:::
the5

::::::
weights

:::
of

::
µ1::::

and
:::
µ2 :::

can
:::
be

::::::::
increased

::::::::
compared

:::
to

:::
the

:::::
other

::::::::
members

::
in

:::
the

::::
KM, but the components do not belong to a

standard probability distribution, that could be used for sampling
:::::
mode

:::::
cannot

:::
be

:::::::
changed

::
to

::::::::::

1
2 (µ1 +µ2),

::::::
which

::
is

:::::::
possible

::
in

::
the

:::::
RM.

:::::::
Another

:::::::::::
disadvantage

::
of

:::
the

::::
KM

::
is

::::
that

:::
the

::::::::::::
multi-modality

::::::
makes

:::
the

::::::
design

::
of

:::::::
efficient

::::::::
inference

:::::::::
algorithms

::
a
:::
lot

::::
more

::::::::::
challenging.

:

3.3.4
::::::
Glasso

:::::
based

::::::::::
covariance

::::::::
matrices10

:::
The

::::
first

:::::::::
technique

::
to

:::::::::
regularize

:::
the

:::::::::
empirical

:::::::::
covariance

::::::
matrix

::::
(the

::::::
scaled

::::::::
empirical

::::::::::
covariance

::
in

::::
the

:::::
KM),

::::::
which

::
is

::::::
applied

::
in

::::
this

:::::
study,

::
is
::::

the
::::::::
graphical

:::::
lasso

::::::::
algorithm

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(glasso, Friedman et al., 2008, implemented in the R-package glasso)

:
.

::::
This

::::::::
algorithm

:::::::::::
approximates

::::
the

::::::::
precision

::::::
matrix

:::::::
(inverse

::::::::::
covariance)

::
by

::
a
:::::::
positive

:::::::
definite,

::::::::::
symmetric,

:::
and

::::::
sparse

::::::
matrix

:::::
Σ−1

prior.:::::::::
Therefore,

::::
Σprior::

is
::
a

::::
valid

:::::::::::::
N -dimensional

:::::::::
covariance

::::::
matrix.

::::::
Glasso

:::::::::
maximizes

:::
the

::::::::
penalized

::::::::::::
log-likelihood

:

logdetΣ−1
prior− trace(Σemp Σ−1

prior)− ρ‖Σ−1
prior‖1,

:::::::::::::::::::::::::::::::::::::

(14)15

:::::
where

:
ρ
::
is
:::
the

:::::::
penalty

:::::::::
parameter,

::::
‖·‖1 :

is
:::
the

::::::
vector

::::::::
L1-norm,

:::
and

:::
the

::::
first

:::
two

:::::
terms

:::
are

:::
the

::::::::
Gaussian

:::::::::::::
log-likelihood.

:::::::
Because

:::::::
applying

:::
the

:::::
glasso

:::::::::
algorithm

:
is
::::::::::::::
computationally

:::::::::
expensive,

:
it
::
is
:::
not

:::::::
feasible

::
to

:::::::
formally

:::::::
include

:
ρ
::
in

:::
the

::::::::
Bayesian

::::::::::
framework.

::::::
Instead

:
a
:::::::
suitable

::::
value

::
of

::
ρ
:::
has

::
to

::
be

::::::::::
determined

::::
prior

::
to

:::
the

::::::::
inference.

::
In

:::
this

:::::
study,

::
ρ
::
is

::::::
chosen

::::
such

:::
that

:::::
Σprior :is::

a
::::::::::
numerically

:::::
stable

:::::::::
covariance

::::::
matrix

:::
and

:::
the

:::::::::::
performance

::
in
::::::::::::::

cross-validation
::::::::::
experiments

:::::::
(CVEs)

::
is

:::::::::
optimized.

::::::::
Technical

::::::
details

:::
of

:::
the

:::::::::::
determination

::
of

::
ρ

:::
are

::::::::
described

::
in

::::::::
Appendix

:::
A.20

:::
The

:::::::::
advantage

::
of

:::
the

::::::
glasso

::::::::
approach

::
is

:::
that

:::
the

::::::::
empirical

::::::
matrix

:::
can

:::
be

::::::::::::
approximated

::::
very

::::::
closely

:::
and

:::
the

:::::::::
sparseness

:::
of

::
the

::::::::
precision

::::::
matrix

::::::::
facilitates

:::
the

:::
use

::
of

:::::::
efficient

::::::::
Gaussian

:::::::
Markov

::::::
random

::::
field

::::::::
(GMRF)

:::::::::
techniques

::::::::::::::::::
(Rue and Held, 2005)

::
in

::
the

::::::::
inference

:::::::::
algorithm.

::
A

:::::::::::
disadvantage

::
is

:::
that

:::
no

::::
new

:::::
spatial

:::::::::
structures

:::
are

:::::
added

::
to

:::::
Σemp.

:::::::::
Therefore,

:::
the

:::::::
effective

:::::::
number

::
of

:::::
spatial

::::::
modes

::
is

:::::
much

::::::
smaller

::::
than

:::
the

::::::::
dimension

::
of

:::
the

:::::::
climate

:::::
vector,

::::::
which

:::
can

::::
lead

::
to

:
a
:::::::
collapse

::::
onto

:
a
::::
very

:::::
small

::::::::
subspace

::
of

:::
the

::::::::::::
N -dimensional

:::::
state

::::
space

::::
and

:::::::::::
subsequently

:::::
biases

::::
and

::::::::::::::
under-dispersion.25

3.3.5
:::::::::
Shrinkage

:::::
based

::::::::::
covariance

::::::::
matrices

::
To

:::::::::
overcome

:::
the

::::::::::
deficiencies

::
of

:::
the

::::::
glasso

:::::::::
approach,

:::
we

:::::::
propose

::
an

:::::::::
alternative

:::::::::
covariance

::::::::::::
regularization

:::::::::
technique,

::::::
which

::::::::
combines

:::
the

::::::::
empirical

:::::::::
correlation

::::::
matrix

::
of

:::
the

:::::::
climate

:::::::::
simulation

::::::::
ensemble

::::
with

::
a
::::::
regular

:::::::::
correlation

:::::::
matrix.

::
A

::::::::
so-called

::::::::
shrinkage

::::::::
approach

:::::::::::::::::::::::
(Hannart and Naveau, 2014)

::
is

::::
used,

::::::
which

::
is

:
a
::::::::
weighted

:::::::
average

::
of

:::
the

::::::::
empirical

:::::::::
correlation

::::::
matrix

::::
and

:
a
::::::::
reference

::::::
matrix,

::::::
which

::
in

:::
our

::::
case

:::::::
contains

:::::::::
additional

:::::
spatial

::::::
modes

::::
such

::::
that

:::
the

:::::::
effective

:::::::
number

::
of

::::::
spatial

::::::
modes

::
in

:::
the30

:::::::::
covariance

:::::
matrix

::
is

::::::::
increased.

::::
This

::::::
allows

:::::::::
deviations

::::
from

:::
the

:::::
spatial

:::::::::
structures

::::::::
prescribed

:::
by

:::
the

::::::
climate

:::::::::
simulation

::::::::
ensemble

:::
and

::
is

:::::::
therefore

::
a
:::::::
strategy

::
to

::::::
account

:::
for

:::::::
climate

:::::
model

:::::::::::
inadequacies.

:
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:::
Let

::::
Ψemp:::

be
:::
the

::::::::
empirical

:::::::::
correlation

::::::
matrix

::
of

:::
the

::::::
climate

:::::::::
simulation

:::::::::
ensemble,

:::::
which

::
is

::::::
related

::
to

::::
Σemp:::

by

Σemp = Diag(Σemp)
1
2 Ψemp Diag(Σemp)

1
2 ,

:::::::::::::::::::::::::::::::::
(15)

:::::
where

::::::::::
Diag(Σemp)

:::::::
denotes

:
a
::::::::
diagonal

:::::
matrix

:::::
with

:::
the

:::
the

::::
same

::::::::
diagonal

::::::
entries

::
as

:::::
Σemp,

::::
and

:::
the

:::::::
exponent

::

1
2::::::

means
::::
that

:::
the

:::::
square

::::
root

::
of

::::
each

::::::::
diagonal

:::::
entry

:
is
::::::

taken.
:::::::::
Replacing

::::
Ψemp:::

by
:
a
::::::::
weighted

:::::::
average

::
of

:::::
Ψemp :::

and
::
a

::::::::
shrinkage

:::::
target

::
Φ

:::::
leads

::
to

::
the

:::::::::
shrinkage

:::::::::
covariance

::::::
matrix5

Σprior = Diag(Σemp)
1
2 (αΨemp + (1−α)Φ) Diag(Σemp)

1
2 .

:::::::::::::::::::::::::::::::::::::::::::::::
(16)

:
α
::
is
:::
the

:::::::::
weighting

:::::::::
parameter,

:::::
which

:::::
takes

::::::
values

:::::::
between

::::
zero

::::
and

::::
one.

::
Φ

::
is

::::::::
computed

:::::
from

:
a
::::::::::
numerically

:::::::
efficient

:::::::
GMRF

::::::::::::
approximation

::
of

::
a
:::::::::
stationary

::::::
Matérn

::::::::::
correlation

::::::
matrix

:::::::::::::::::::
(Lindgren et al., 2011).

:::::::
Matérn

::::::::::
correlation

::::::::
functions

::::::::::
correspond

::
to

:::::::
diffusive

::::::::
transport

:::
of

::::::
spatial

:::::
white

:::::
noise

:::::::
forcing.

::::
The

::::::
Matérn

::::::::::
correlation

::::::
matrix

::
is

:::::::::
controlled

:::
by

::::
three

::::::::::
parameters,

::::
the

::::::::::
smoothness,

:::
the

:::::
range

::
ρ,

::::
and

:::
the

:::::::::
anisotropy

::
ν.

::::
We

::
fix

:::
the

::::::::::
smoothness

:::
at

:
a
:::::
value

::::::
which

::::::::::
corresponds

::
to

:::
the

::::::::::
application

::
of

::
a10

:::::::
standard

:::::::
Laplace

:::::::
operator.

::
ρ
:::::::
controls

:::
the

:::::::::::
decorrelation

::::::
length,

::::
and

:
ν
::::::::::::
parameterizes

:::
the

::::::
length

::
of

:::
the

:::::::::
meridional

:::::::::
compared

::
to

::
the

:::::
zonal

::::::::::::
decorrelation

::::::
length.

:::
For

:::::
joint

:::::::::::::
reconstructions

::
of

:::::::
multiple

:::::::
climate

::::::::
variables,

:::::::::::
independent

:::::::::
correlation

::::::::
matrices

:::
for

::::
each

:::::::
variable

::
are

:::::::::
combined

::
in

:
a
:::::
block

::::::::
structure.

::::::
Details

:::::
about

:::
the

::::::::
definition

:::
of

::
Φ

:::
are

::::
given

::
in
:::::::::
Appendix

::
B.

:

::::::
Ideally,

:::
the

:::::::::
parameters

::
α,

::
ρ,

::::
and

:
ν
:::
are

::::::::
estimated

::::
from

:::
the

:::::
proxy

:::::
data.

:::
But

:::::
initial

::::
tests

::::
with

::::::
weakly

::::::::::
informative

:::::
priors

:::::::
showed

:::
that

:::
the

:::::::::
parameters

::::::
cannot

:::
be

:::::::::
constrained

:::
by

:::
the

::::::::
available

:::::
proxy

::::
data,

:::::::
because

:::
the

::::::
signal

::
in

:::
the

:::::
proxy

::::
data

::
is

:::
not

::::::::::
informative15

::::::
enough

::
to

::::
infer

::::::
second

::::::::
moment

::::::::
properties

::
of

:::
the

:::::::
process

:::::
stage.

:::::::::
Therefore,

::
an

::::::::
ensemble

:::
of

::::::::
parameter

::::::::::::
combinations

:
is
:::::::
created

::::
from

:::::
fitting

:::
the

::::::::
shrinkage

::::::
model

::
to

::::
each

::
of

:::
the

:::::::
climate

:::::::::
simulation

::::::::
ensemble

::::::::
members

::::
given

:::
all

:::::
other

::::::::
members.

::::
This

::::::
results

::
in

::::
seven

:::::::::
consistent

::::
sets

::
of

::
α,

::
ρ,

::::
and

::
ν.

:::::
Those

:::
are

::::::
passed

::
to
:::
the

::::::::::::
reconstruction

::::::::::
framework,

::::
such

::::
that

::::
each

:::::::::::
combination

::
is

::::::
chosen

::::
with

:
a
::::::::::
probability

:::::::
inferred

::::
from

::::
the

:::::
proxy

:::::
data.

:::::::
Thereby,

:::::
each

::::::::
parameter

:::::::::::
combination

::
is
::::::

based
::
on

::
a
::
fit

:::::::
against

:::::::::
physically

::::::::
consistent

:::::::::
structures,

:::
and

::::::::::
uncertainty

::
in

:::
the

::::::::::
parameters

:
is
::::::::

included
::
in

:::
the

:::::::::
inference,

:::
but

:::
the

:::::::
problem

::
of

:::::::::::::::
non-identifiability

:::
of20

::
the

::::::::::
parameters

::::
from

:::::
proxy

::::
data

:::::
alone

::
is

:::::::
reduced.

::::
The

::::::::
parameter

::::::::
estimates

::::::
depend

:::::::
strongly

:::
on

:::
the

::::::
chosen

:::::
ESM,

:::::
which

:::::
leads

::
to

:::::::::::
combinations

:::
that

:::::
cover

::
a

::::
wide

:::::
range

::
of

:::::::
possible

::::::
values.

:

:::
The

:::::
main

::::::::
advantage

:::
of

:::
the

::::::::
shrinkage

::::::::
approach

::::
over

::::
the

::::::
glasso

:::::
based

::::::::
matrices

::
is

:::
that

:::::
more

::::::
spatial

::::::
modes

:::
are

::::::::
included

::
in

::
the

::::::::::
covariance

::::::
matrix.

:::::::
Thereby,

:::
the

:::::::::
collapsing

::
of

:::
the

::::::::::::
reconstruction

:::::::
towards

:
a
::::
very

::::::::::::::
low-dimensional

::::::::
subspace

:
is
::::::::
mitigated

::::
and

:::::::
stronger

::::::::
deviations

::
of

:::
the

::::::::::::
reconstruction

:::::
from

::
the

:::::::
climate

:::::::::
simulation

::::::::
ensemble

:::
are

:::::::::
facilitated.

::
A

::::::::::
disadvantage

:::::::::
compared

::
to

:::
the25

:::::
glasso

::::::::
estimated

:::::::::
covariance

::::::::
matrices

::
is

:::
that

::::::
neither

::::
the

::::::::
shrinkage

:::::::::
covariance

::::::
matrix

:::::
Σprior :::

nor
::
its

:::::::
inverse

:::
are

:::::
sparse

::::::::
matrices

::::
such

:::
that

:::
the

:::::::::
numerical

::::::::
inference

:::::::::
algorithms

:::
are

::::
more

::::::
costly.

3.4
::::::::
Inference

:::::::
strategy

:::::::
Because

:::::
PITM

::
is

::::::::::::
non-Gaussian

:::
and

::::::::::
non-linear,

:::
the

::::::::
posterior

::::::
climate

::::
does

::::
not

::::::
belong

::
to

:
a
::::::::

standard
:::::::::
probability

::::::::::
distribution.

Therefore, we use Markov chain Monte Carlo (MCMC) techniques
:::
are

::::
used to asymptotically sample from the correct posterior30

distribution. These samples allow analyses beyond summary statistics like means and standard deviations. We choose a
::
A

Metropolis-within-Gibbs strategy
:
is
:::::::::::
implemented, which means that we sample alternately

:
in
:::::

each
::::::
update

::
of

::::
the

:::::::
Markov
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:::::
chain,

:::
we

::::::
sample

::::::::::
sequentially

:
from the full conditional distributions (i.e. the distribution of the respective variable given all

other variables) of θ, ω, z
:
ϑ, and Cp.

::::
This

::::::
strategy

::
is

::::::
chosen

:::::::
because

:::
for

::::
many

::::::::
variables

:::
the

:::
full

::::::::::
conditional

::::::::::
distributions

::::::
follow

:::::::::
probability

::::::::::
distributions

:::
for

::::::
which

:::::::
efficient

::::::::
sampling

:::::::::
algorithms

:::::
exist,

::::
and

:::
for

:::
the

:::::::::
remaining

::::::::
variables

:::::::::::::::::
Metropolis-Hastings

::::::
updates

:::
are

::::
used

:::
for

::::::::
sampling.

:

To sample the regression parameters θ in Eq. (??
:
3) to (??

:
5) efficiently, the data augmentation scheme of Polson et al. (2013)5

is used. For taxa T , the full conditional is only depending on Cp, Cm, PTp , and PTm, but not on other taxa. Therefore, we can

sample βT1 , ...,β
T
6 independently from the other taxa. Polson et al. (2013) introduce help variables γTl , l = 1, ...,L, where L

is the number of observations (absence and presence) of taxa T , such that P(γTl |βT1 , ...,βT6 ,Cm,Cp) is Pólya-Gamma (PG)

distributed, and P(βT1 , ...,β
T
6 |PTm,PTp ,γT1 , ...,γTL ) is Gaussian. Therefore, we sample

::
the

:::::::
MCMC

::::::::
algorithm

:::::::
samples alternately

from a PG distribution using the sampler of Windle et al. (2014) and from a multivariate Gaussian
:::::::
Gaussian

::::::::::
distribution. The10

PG sampler is implemented in the R package BayesLogit (Windle et al., 2013).

An easy way to sample from the climate mixture distribution is to introduce a multinomially distributed augmentation

variable z = (z1, ...,zK) such that

P(ω) = Dirichlet
(
ω1, ...,ωK | 12 , ..., 1

2

)

P(z |ω) = Multinomial(z1, ...,zK |n= 1, ω1, ...,ωK)15

P(Cp |z) =
∏K
k=1

(
N (Cp |µk,Σprior)

)zk ,

i.e. Cp, conditioned on z selecting model k, is Gaussian. Integrating out z yields the mixture distribution Eq. (??). Equations

(17) to (17) lead to full conditionals for ω and z, which are again Dirichlet and multinomially distributed but with updated

parameters. Therefore, we can use Gibbs sampling to update ω and z. Preliminary tests revealed that in our application the

prior distribution of ω has a negligible influence on the posterior distributions of z andCp.To sample from the full conditional of20

Cp, we separate the grid boxes xP with at least one proxy record from those without any proxy records denoted by xQ. There is

no closed form available for the full conditionals of Cp(xP ). Therefore, we use a random walk Metropolis-Hastings algorithm

to update Cp(xP ) sequentially for all members of xP . As these updates are two-dimensional and the target distributions are

in most cases close to Gaussian, the random walk proposals are very efficient. As the transferfunctions
::
the

:::::::
transfer

::::::::
functions

act locally, Cp(xQ) is conditionally independent of Pp given Cp(xP ) and z
:
ϑ. Therefore, we subsequently update Cp(xQ) by25

sampling from P(Cp(xQ) |Cp(xP ),z)
::::::::::::::::::
P(Cp(xQ) |Cp(xP ),ϑ)

:
which is Gaussian. Detailed formulas for the full conditional

distributions are given in Appendix C.

The mixture distribution Eq. (??) leads to a multimodal posterior. Due to the high dimensionality of Cp, the likelihood of

choosing a new model zk from one MCMC stepto the next one is very small. This leads to very slow mixing of the MCMC

algorithm described above. To speed up the mixing, we apply a Metropolis coupled MCMC strategy (MC3) , also called parallel30

tempering, which was developed by Geyer (1991) and adapted to parallel computer architectures by Altekar et al. (2004) and

Werner and Tingley (2015). We runAMCMC chains in parallel, and after everyM steps, we use an additional Metropolis-Hastings

step to swap the states of the Markov chains a1 and a2 with probability 0 < pa1,a2 < 1, where pa1,a2 is calculated from the

::::::::
Sampling

::::
from

::
ϑ

:::::::
depends

::
on

:::
the

:::::::::
particular

::::::
process

:::::
stage

::::::
model.

::
In

::::::
models

:::::
with

::::::::
shrinkage

:::::::::
covariance

::::::
matrix,

:::
α,

::
ρ,

:::
and

::
ν

:::
are
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:::::::
sampled

::::
from

:::
the

:::
K

:::::::::
parameter

:::::::::::
combinations

::
in

::
a
:::::::::::::::::
Metropolis-Hastings

::::
step.

::::
The

:::::::
weights

::
λ

::
in

:::
the

::::
RM

:::
are

::::::::
sampled

::::
from

::
a

::::::
random

::::
walk

::::
type

:
Metropolis-Hastings odds ratio. The Markov chains are created by exponentiating the process stage and the

data stage by constants ν1 = 1 > ... > νA > 0. The first Markov chain (ν1 = 1) asymptotically retains the original posterior

distribution for all variables, whereas the subsequent chains sample from a flatter posterior distribution, in which it is easier to

jump from one mixture component to another. Following empirical testing, we run the European reconstructions with A= 85

parallel chains, levels ν1 = 1,ν2 = 1.25−1, ...,ν8 = 1.25−7, and swaps after every M = 30 steps
:::::
update.

:::
In

:::
the

::::
KM,

:::
Eq.

::::
(11)

::
to

:::
(13)

::::
lead

::
to

::::
full

::::::::::
conditionals

:::
for

::
ω

:::
and

::
z,

:::::
which

:::
are

:::::
again

::::::::
Dirichlet

:::
and

:::::::::::
categorically

:::::::::
distributed

:::
but

::::
with

:::::::
updated

::::::::::
parameters.

::::::::
Therefore,

::::::
Gibbs

:::::::
sampling

::::
can

::
be

::::
used

::
to
::::::
update

::
ω

:::
and

::
z.
:

:::
The

:::::::::::::
multi-modality

::
of

::::
the

::::
KM

::::::
makes

::::::::
inference

:::
for

::::
this

:::::
model

::
a
:::
lot

:::::
more

::::::::::
challenging

::::
than

:::
for

::::
the

::::
GM

:::
and

:::::
RM.

::::
The

:::::::
problem

::
of

:::::::
efficient

::::::
MCMC

:::::::::
algorithms

:::
for

:::::::::::
multi-modal

:::::::
posterior

:::::::::::
distributions

:
is
::
a
::::::
widely

::::::::::::
acknowledged

::::
issue

::
in

:::
the

::::::::
literature10

:::::::::::::::::::::
(Tawn and Roberts, 2018)

:::
and

::
in

::::
this

::::
study

::::::::::
Metropolis

::::::
coupled

:::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

::::::::::::::::
(MC3; Geyer, 1991)

:
,
:::::
which

::
is

::::
also

:::::
known

:::
as

::::::
parallel

:::::::::
tempering,

::
is

::::
used

::
to

:::::::::
overcome

:::
this

:::::
issue.

::::::
Details

::
of

::::
this

::::::::
procedure

:::
are

::::::::
provided

::
in

::::::::
Appendix

::
D.

As a second strategy to
::
To speed up the inference, we treat the grid boxes with proxy data and those without proxy data

::
are

::::::
treated

:
sequentially. Because of the Gaussian mixture components in

:::::::::
conditional

:::::::
Gaussian

::::::::
structure

::
of

:
the process stage

and because the grid boxes without proxy data are not influencing the posterior model weights, we can first integrate out15

::
of

::
ϑ,

:
Cp(xQ) and

::
is

::::::::
integrated

:::
out

:::
to get an estimate of the joint distribution of ω, z,

:
Θ

:
and Cp(xP ). In a second step, we

sample from Cp(xQ) conditioned on Cp(xP ) and z
:
Θ, which leads to joint samples of Cp from the asymptotically correct

posterior distribution. In practice, this is done by drawing a sample of Cp(xQ) conditioned on each of the MCMC samples

from (Cp(xP ),z,ω,θ). This strategy reduces the number of MCMC chains needed in the MC3 algorithm, and it reduces the

computation time of each MCMC update due to faster matrix operations. Pseudo-code for the MC3 algorithm is given in20

Appendix ??.

The remaining bottleneck in computation time is the estimation of the transferfunction
:::::::
transfer

:::::::
function parameters due to

the large modern calibration set. While in theory the observation layer influences the updates of θ, in practice the influence of

Eq. (??
:
5) on the posterior of θ is negligible. Therefore, we use a modularization approach (Liu et al., 2009)

:
is
:::::
used similar to

Parnell et al. (2015) in cross-validation experiments
:::::
CVEs, where a sequence of reconstructions with slightly changed proxy25

networks is computed(see Sect. ??). This means that we cut feedback between Eq. (??
:
4) and Eq. (??)

::
5)

::
is

:::
cut by first drawing

as many MCMC samples as necessary from θ using only Eq. (??) and Eq. (??
:
4). Thereafter, we reconstruct Cp ::

is
:::::::::::
reconstructed

using these samples instead of sampling θ from its full conditional.

:::::::
Detailed

::::::::
formulas

:::
for

:::
the

:::
full

::::::::::
conditional

:::::::::::
distributions

:::
are

:::::
given

::
in

:::::::::
Appendix

::
C.

:::::::::::
Pseudo-code

:::
for

:::
the

:::::::
MCMC

::::
and

:::::
MC3

:::::::::
algorithms

:
is
::::::::

provided
::
in

:::
the

:::::::::::
Supplement. For a 798 dimensional climate posterior as it is the case in joint reconstructions of30

MTWA and MTCO, and 45 grid boxes that contain at least one proxy record, we create 75,000 MCMC samples for each of

eight parallel chains, where every chain runs on one central processing unit (CPU)
::
are

::::::
created. The first 25,000 samples are

discarded as burnin
::::::
burn-in. To reduce the autocorrelation of subsequent samples, we extract every fifth sample

::
is

::::::::
extracted

to create a set of 10,000 posterior samples which is used for further analyses. On a standard desktop computerwith at least

eight CPUs, reconstructions with the modularized model can be computed in approximately 30 minutes. The convergence of35
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all MCMC variables is checked using the Gelman-Rubin-Brooks criterion (Brooks and Gelman, 1998) implemented in the R

package coda (Plummer et al., 2006).

3.5 Assessing the added value of reconstructions

To analyse the added value of combining proxy data and PMIP3 simulations compared to only using

4
::::::
Results5

::
In

:::
this

:::::::
section,

:::::::
results

::::
from

::
a
::::::::::
comparison

:::::
study

:::
of

:::
the

:::
six

::::::::
different

:::::::
process

:::::
stage

:::::::
models

:::
are

:::::::::
presented.

:::::
Then,

::::
the

::::
MH

:::::::::::
reconstruction

:::
for

:::::::
Europe

::::
with

:::
the

::::::::::::::::::
Simonis et al. (2012)

:::::::
synthesis

::::
and

:::
the

:
PMIP3 simulations and to assess the consistency

:::
MH

:::::::::
ensemble

::
is

:::::::::
presented.

:::
We

:::::
study

:::
the

::::::
mean

:::
and

::::::::::
uncertainty

::::::::
structure

::
of

::::
the

:::::::
posterior

:::::::::::
distribution,

:::
the

:::
fit

::
of

::::::::
different

::::::::
ensemble

:::::::
members

::
to
:::
the

:::::
proxy

:::::
data,

:::
the

:::::
added

:::::
value of the reconstruction, we perform leave-one-out cross validation. Due to

the sparseness of the proxy network, we do not leave out larger amounts of data. In addition, the cross-validations can be used10

to identify systematic mismatches between proxy data and simulations as well as potential outliers in the data.

The cross-validation is performed in the observation space and consists of three steps: A reconstruction with all proxy

samples except for those in grid box x is computed. The forward model Eq. (??)is applied to the posterior and the prior

distribution ofCp(x) to get two probabilistic predictions for each proxy samplePp(s) with xs = x. Proper scores (Gneiting and Raftery, 2007)

are computed for both probabilistic predictions . Then, the corresponding skill score, which is a measure of the added value15

from constraining the
:::
and

:::
the

:::::
results

::
of

:::::
joint

::::::::
compared

::
to

:::::::
separate

:::::::
MTWA

:::
and

::::::
MTCO

::::::::::::::
reconstructions.

4.1
::::::::::
Comparison

::
of

::::::::
different

:::::::
process

:::::
stage

:::::::::::
frameworks

::
In

:::
this

:::::::
section,

:::
the

::::::::::::
reconstruction

::::
skill

::
of

:::
the

::::
three

:::::::
process

::::
stage

:::::::::::
formulations

:::::
(GM,

::::
RM,

:::::
KM)

:::
and

:::
the

:::
two

:::::::::
covariance

:::::::
models

::::::
(glasso,

:::::::::
shrinkage)

:::
are

::::::::
compared

:::::
using

::::
two

::::
types

::
of

:::::::::::
experiments.

::::::::
Identical

::::
twin

::::::::::
experiments

:::::
(ITEs)

::::
use

::
the

:::::::
climate

:::::::::
simulation

::::::::
ensemble

::
by

::::::::::
simulating

:::::::::::
pseudo-proxy

:::::
data

::::
from

::::
one

:::::
ESM

::::
and

:::::
trying

:::
to

:::::::::
reconstruct

::::
that

::::::::
reference

:::::::::::
climatology

::::
from

::::
the20

::::::::
simulated

::::::
proxies

:::
and

:::
the

:::::::::
remaining

::::::::
ensemble

::::::::
members.

:::::
These

:::::::::::
experiments

:::::::
facilitate

:::
the

::::::::::::
understanding

::
of

:::::::
different

:::::::::
modelling

:::::::::
approaches

:::
for

:::
the

::::::
process

::::
stage

::
in
::
a

::::::::
controlled

:::::::::::
environment.

::
In

:::::::::
particular,

::
the

::::::
ability

::
of

:::
the

::::::::
Bayesian

:::::::::
frameworks

::
to
::::::::::
reconstruct

::
the

:::::::
climate

:::
can

:::
be

::::::::
evaluated

:::::::
without

:::::
having

:::
to

:::
rely

:::
on

:::::::
indirect

::::::::::
observations

::
as

::
it
::
is

:::
the

::::
case

::
in

::::
real

::::::::::
paleoclimate

:::::::::::
applications

:::::
where

:::
the

::::
true

::::::
climate

:::::
state

::
is

::::::::
unknown.

::::
The

::::::
second

::::
type

:::
of

::::::::::
experiments

:::
are

::::::
CVEs,

::::::
where

::::::
spatial

::::::::::::
reconstructions

:::::
with

:::
the

:::::::::::::::::
Simonis et al. (2012)

::::::::
synthesis

:::
are

:::::::::
performed

:::
but

:::
the

:::::::
samples

:::::
from

:::
one

::::
grid

::::
box

:::
are

::::
left

:::
out.

::::::
Then,

:::
the

:::::::::::::
reconstructions

:::
for25

:::
this

::::
grid

:::
box

::::
are

::::::::
evaluated

::::::
against

:::
the

:::::::
left-out

::::::
sample

::
in
::::

the
:::::::::
vegetation

:::::
space

::
by

::::::::
applying

:::
the

::::::
PITM

:::::::
forward

:::::
model

:::
to

:::
the

::::::::::::
reconstruction.

:::
The

:::::::::
advantage

::
of

:::::
these

::::::::::
experiments

:
is
::::
that

:::
the

::::::
models

:::
are

::::::::
compared

::
in

:
a
:::::::::
real-world

::::::
setting.

::::
The

:::::::::::
disadvantage

::
of

:::::
CVEs

::
is

:::
that

:::
the

::::
goal

::
of

:
a
::::::::::::
reconstruction

::
is

::
to

::::::::::
reconstruct

::::::
climate

:::
but

::::
there

:::
are

:::
no

:::::
direct

::::::::::
observations

::
of

:::::::::::
paleoclimate

::::::::
available

::::
such

:::
that

::::::::::
evaluations

::::::
against

::::::::::
observations

::::
have

::
to
:::
be

:::::::
indirect.

:::::::::
Evaluating

::::::::
prediction

:::::::
models

::::::
against

::::::
indirect

:::::::::::
observations

::
in

:::
the

:::::::::
observation

:::::
space

:::::::
through

:::::::
forward

::::::::
modelling

::
is
::::
also

:
a
::::::
recent

::::
way

::
of

:::::
model

::::
skill

:::::::::
evaluation

::
in

:::::::
weather

::::::::::
forecasting.30
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4.1.1
::::::::
Identical

::::
twin

:::::::::::
experiments

::::
ITEs

:::::
make

:::
use

::
of

:::
the

::::
fact

::::
that

:::
the PMIP3 ensemble by pollen data, is calculated. The PITM forward model maps a climate

field to a binary field (presence or absence of a taxa), where the probabilistic prediction
::::::::
ensemble

::
is

:
a
:::::::::::
multi-model

::::::::
ensemble

::::
such

:::
that

:::
the

:::::::
models

:::
can

:::::::
produce

:::::
fairly

:::::::
different

::::::::::::
climatologies.

:::::::::
Therefore,

:::::
trying

::
to

::::::::::
reconstruct

:::
the

::::::
climate

::::
state

:::
of

:::
one

:::::
ESM

::::
given

:::
the

::::::
others

::
is

::
a

::::
more

:::::::
realistic

::::
test

::::::::::
environment

:::::
than

:::::
doing

:::
the

:::::
same

::::
with

:::::::::::
single-model

::::::::::
ensembles.

:::
The

::::
first

::::
step

::
in

:::
an5

:::
ITE

::
is

::
to

::::::
choose

::
a
::::::::
reference

::::::
climate

::::::
model

::::
with

:::::::
climate

::::
state

:::::
C true
p .

:::::
Then,

:::
for

::::
each

::::
grid

::::
box,

::::
that

:::::::
contains

:::::::
samples

:::::
from

:::
the

:::::::::::::::::
Simonis et al. (2012)

::::::::
synthesis

:::::::
(denoted

::
by

:::
xP::

in
::::::::::
accordance

::::
with

:::
the

:::::::
notation

::
in

::::
Sect.

::::
3.4),

:::::::::::::
pseudo-proxies

::
are

:::::::::
simulated.

::::
The

::::::
proxies

:::
are

::::::::
simulated

:::::::::
according

::
to

:
a
::::::::
Gaussian

::::::::::::
approximation

::
of

:::
the

::::::::::
uncertainty

:::::::
structure

::
of

:::
the

:::::
local

::::::::::::
reconstructions

::::::::
depicted

::
in

:::
Fig.

:::
4,

:::::
which

::::::
means

::::
that

:
it
::
is
:::::::::
described

::
by

::
a
:::::::
bivariate

::::::::::
covariance

::::::
matrix

:::
Σxs
p :::

for
:::::

each
::::
grid

:::
box

:::
xs::::

with
:::::
proxy

:::::
data.

::::
The

::::::::::::
pseudo-proxies

:::
are

::::::::
assumed

::
to

::
be

::::::::
unbiased

::::
with

:
a
:::::::
bivariate

::::::::
Gaussian

::::::::::
distribution,

:::
i.e.

:
10

P (xs)∼N
(
C true
p (xs),Σ

xs
p

)
, xs ∈ xP .

:::::::::::::::::::::::::::::::::

(17)

:::::
Using

:::::::
unbiased

::::::::
Gaussian

:::::::::::::
pseudo-proxies

:
is
::
a

:::::::
common

:::::::
strategy

::
to

:::
test

::::::
climate

::::
field

::::::::::::
reconstruction

:::::::::
techniques

:::::::::::::::::::::::::::
(e.g. Gomez-Navarro et al., 2015)

:
.
:
It
::::::
allows

:
a
:::::
direct

:::::
study

::
of

:::
the

:::::
ability

::
of

:::
the

::::::
process

:::::
stage

:::::::
methods

::
to

:::::::
estimate

::::::
spatial

::::::
climate

:::::
fields

::::
from

::::::
sparse

:::
and

:::::
noisy

:::::
proxy

::::
data,

::::::
without

::::::
having

::
to
::::::

factor
::
in

:::::::
potential

::::::
biases

::
in

:::
the

::::::
transfer

::::::::
function.

::::
With

:::
the

:::::::::
simulated

:::::::
proxies,

:::
the

:::::::
Bayesian

::::::::::
framework

:
is
:::::::
applied

::
to

:::::::
compute

::
a
::::::::::
probabilistic

::::::
spatial

:::::::::::::
reconstruction,

:::
but

:::
the

::::::::
reference

:::::
model

::::::::::
climatology

::
is
::::::::
removed

::::
from

:::
the

:::::::
climate15

:::::
model

:::::::::
ensemble.

::::
ITEs

:::
are

:::::::::
performed

:::::
with

::::
each

::
of

:::
the

::::::
seven

::::::
PMIP3

::::::::
ensemble

::::::::
members

:::
as

::::::::
reference

::::::
climate

:::::
state,

::::
and

:::
the

::
six

::::::::
different

::::::
process

:::::
stage

::::::::::::
configurations.

::::
For

::::
each

::
of

:::::
those

::
42

::::::::::::
combinations,

::::
five

::::::::::
randomized

::::
ITEs

:::
are

:::::::::
computed

::
to

:::::::
separate

::::::
random

::::
from

:::::::::
systematic

::::::
issues.

:

:::
The

:::::::::
evaluation

::
of

:::
the

::::
ITEs

::::::
focuses

:::
on

:::::
biases

::
in

:::
the

:::::::::::::
reconstructions,

:::::::
potential

::::::::::::::
under-dispersion

:::::
which

::
is

:
a
::::::
typical

:::::::::::
phenomenon

::
in

:::
data

::::::::::
assimilation

:::::::::::
applications,

::::
and,

::
as

:
a
:::::::::::
combination

::
of

:::::
those

:::
two

::::::
issues,

:::
the

:::::
ability

::
of

:::
the

::::::::::::
reconstruction

::
to

::::::::::::::
probabilistically20

::::::
predict

:::
past

:::::::
climate.

:

::::::::
Averaged

::::
over

::
all

:::::
ITEs

::::
with

:::
the

:::::
same

:::::::
process

::::
stage

::::::
model

::::
and

:::::::
averaged

:::
in

:::::
space,

:::
the

:::::
mean

::::::::
deviation

::::::::
between

::::::::
reference

::::::
climate

:::
and

::::::::
posterior

:::::
mean

::
as

:
a
:::::::
measure

:::
for

:::::::::
systematic

:::::
biases

::
is
:::::
close

::
to

:
0
:
K

::
for

:::
all

::::::
process

:::::
stage

::::::
models

::::
with

::::::
values

:::::::
between

::::
-0.14

:
K

:::
for

:::
the

::::::::
shrinkage

::::
KM

::::
and

::::::
+0.03 K

::
for

:::
the

:::::::::
shrinkage

::::
RM,

:::
but

::::
the

::::::::
variation

:::::
across

:::::
ITEs

::
is
::::::
larger

:::
for

:::
the

::::::
glasso

:::::::::
covariance

::::::
models

::::::::
(standard

::::::::
deviation

::::::
around

::::
0.31

:
K)

::::
than

:::
for

:::
the

:::::::::
shrinkage

:::::::::
covariance

::::::
models

:::::::::
(standard

::::::::
deviation

::::::
around25

::::
0.24 K

::
).

::::
This

:::::
shows

:::
that

:::
the

:::::::::
additional

:::::
spatial

::::::
modes

::
in

:::
the

::::::::
shrinkage

::::::::::
covariances

:::::
make

:::
the

::::::::::::
reconstructions

:::::
more

:::::
robust

::::::
(Table

::
2,

:::
Fig.

::::
5a).

::::
The

:::::::
standard

:::::::::
deviations

:::
for

::::::
MTCO

:::::::::::::
reconstructions

::::
tend

::
to

:::
be

:::::
larger

::::
than

:::
for

::::::
MTWA

::::::
which

:::
can

:::
be

::::::::
explained

:::
by

::
the

::::::
larger

:::::
noise

::::
level

::
in

:::
the

:::::
local

::::::
MTCO

:::::::::::::
reconstructions.

:::::
This

:::::
makes

:::
the

::::::
spatial

:::::::
MTCO

::::::::::::
reconstructions

:::::
more

::::::::::
susceptible

::
to

:::::
biases.

::::::::::
Concerning

:::
the

::::::
spatial

:::::::
patterns

::
of

:::::
mean

::::::::::
deviations,

::
all

:::::
ITEs

::::
with

::::::
glasso

:::::::::
covariance

:::::::
matrices

::::
have

::::::
larger

::::
local

::::::
biases

:::
than

:::::
those

:::::
with

::::::::
shrinkage

::::::::
matrices

::::
(see

::::::::
additional

::::::
figures

:::
in

:::::::::::
Supplement).

::::::
While

:::
the

:::::::::
magnitude

::
of

::::::
biases

:::
for

:::
the

::::
GM

::::
and30

:::
RM

::::::
models

:::::
with

::::::::
shrinkage

::::::::::
covariances

::
is

:::::
much

::::::
smaller,

:::
the

:::::::::
magnitude

:::
of

::::
local

:::::::::
deviations

::
of

:::
the

::::::::
shrinkage

::::
KM

:::::
model

::
is
::::
just

::::::
slightly

::::::
smaller

::::
than

:::
for

::::::
glasso

::::::::::
covariances.

::::
This

::::::
shows

:::
that

:::
the

::::::
models

::::
with

:::::::::
shrinkage

:::::
matrix

::::
can

:::::::::
reconstruct

::::::
spatial

:::::::
patterns

:::::
better

::::
than

:::
the

::::::
models

::::
that

:::
use

::::::
glasso

:::
due

::
to

:::::
more

:::::::
degrees

::
of

:::::::
freedom

:::
in

:::
the

:::::::::
covariance

::::::
matrix.

::
In
::::::::

addition,
:::::::::
averaging

::::
over
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:::::::
different

::::::
climate

:::::::
models

::
in

:::
the

:::::
mean

::
of

:::
the

::::::
process

:::::
stage

:::::
seems

::
to
:::
be

:
a
:::::
more

:::::::
effective

:::::::
strategy

::
as

:::
the

::::
GM

::::
and

:::
RM

:::::::::
reproduce

::
the

::::::
spatial

::::::::
structures

:::::
better

::::
than

:::
the

:::::
KM.

:::
The

::::::
higher

:::::::
number

::
of

::::::
spatial

::::::
modes

:::
in

:::
the

::::::::
shrinkage

:::::::::::
covariances

:::::
leads

::
to

:::::
larger

::::::::::
uncertainty

::::::::
estimates

:::
in

:::
the

::::::::
posterior

:::::::::
distribution

::::
than

:::
for

:::
the

:::::
glasso

:::::::
models,

:::::::
because

:::
the

::::::
limited

::::::::::
information

::::::::
contained

::
in
:::
the

::::::
proxy

:::
data

::::
can

:::::::
constrain

:::::
only

:
a
:::::
small

::::::
number

::
of

::::::
spatial

:::::
modes

::::::
(Table

::
2).

:::
To

:::::
study

::::::::::::
dispersiveness

::
of

::
the

::::::::::::
reconstruction

::::::::
coverage

::::::::::
frequencies

::
for

::::
50%

::::
and

::::
90%

:::
CIs

:::
are5

:::::::::
calculated.

::::
This

:::::
means

::::
that

::
the

:::::::::
frequency

::
of

:::
the

::::::::
reference

::::::
climate

::::
state

::
to

::
be

::::::::
included

::
in

::
the

:::::::::
respective

:::
CIs

::
is

:::::::::
computed.

:::
For

:::
the

::::
50%

:::
CIs,

::::::::
coverage

::::::::::
frequencies

:::::
below

::::
50%

:::::::
indicate

::::::::::::::::::
under-dispersiveness,

:::::::
whereas

:::::
values

:::::
above

:::::
50%

::::::
indicate

::::::::::::::
over-dispersion.

::::::::
Similarly,

:::
the

:::::
target

:::
for

:::
the

::::
90%

:::
CIs

::
is

::::
90%.

:::
In

::
all

:::::
ITEs,

:::
the

:::::
glasso

:::::::
models

:::
are

::::::::::::::
under-dispersive,

:::
and

:::
the

:::::::::
shrinkage

::::::
models

:::
are

::::::::::::
over-dispersive

::::::
(Table

::
2,

:::
Fig.

::::
5c).

:::
The

::::::::
coverage

::::::::
frequency

:::
for

::::
50%

::::
CIs

:
is
::::::
below

::::
41%

::
in

::
all

:::::
ITEs

::::
with

:::::
glasso

:::::::::
covariance

::::::
matrix

:::::
(mean

:::::
close

::
to

::::
30%

::
in

::
all

:::::
three

:::::::::::
experiments)

:::
and

:::::
above

::::
56%

::
in

:::
all

::::
ITEs

::::
with

::::::::
shrinkage

:::::::::
covariance

::::::
matrix

:::::
(mean

::::::
around

::::::
78%).10

::::::::
Similarly,

:::
the

:::::::
coverage

::::::::::
frequencies

:::
for

::::
90%

:::
CIs

:::
are

::::::
below

::::
77%

:::
for

::
all

::::::
glasso

::::
ITEs

:::
and

::::::
above

::::
94%

:::
for

::
all

::::
ITEs

::::
with

:::::::::
shrinkage

:::::
matrix

:::::
(Fig.

:::
5d).

:

::
At

::::
most

::::
grid

:::::
boxes

:::
of

:::
the

::::
ITEs

::::
with

::::::
glasso

:::::
based

:::::::::
covariance

::::::
matrix,

::::
the

:::::::
coverage

::::::::::
frequencies

:::
are

:::::
below

:::
the

::::::
target

::::::
values,

:::::::
whereas

::::
they

:::
are

:::::
above

:::
the

::::::
desired

::::::
values

::
at
::::::
almost

:::
all

::::
grid

:::::
boxes

::
in

:::
the

:::::
ITEs

::::
with

::::::::
shrinkage

::::::
matrix

::::
(see

:::::::::
additional

::::::
figures

::
in

:::::::::::
Supplement).

::::
The

:::::
values

::::
are

::::::
closest

::
to

:::
the

:::::
target

::::
near

::::
grid

::::::
boxes

::::
with

:::::
proxy

::::
data

:::
in

:::
the

:::::
glasso

:::
as

::::
well

::
as

:::
the

:::::::::
shrinkage15

:::::
matrix

:::::
ITEs.

:::::
This

:::::
effect

::
is

:::::
more

::::::::::
pronounced

:::
for

:::
the

::::
50%

::::::::
coverage

::::::::::
frequencies

::::
than

:::
the

:::::
90%

::::::::
coverage

::::::::::
frequencies,

::::::
which

:::::::
indicates

::::
that

:::
the

:::::::::::
reconstruction

::::::::
identifies

:::
the

::::::
centers

::
of
:::
the

::::::::::
probability

:::::::::
distribution

:::::
better

::::
than

:::
its

::::
tails,

:::::
which

::
is
:::
not

:::::::::
surprising

:::::::::
considering

:::
the

:::::::::
simplicity

::
of

:::
all

:::
the

::::::
process

:::::
stage

::::::
models

:::
and

:::
the

:::::
small

::::::::
ensemble

::::
size.

:::
In

::::::::
particular,

:::
the

:::::::
process

::::
stage

:::::::
models

::
do

:::
not

::::::
contain

::::::::::
parameters

:::::
which

::::::
control

:::
the

:::
tail

:::::::::
behaviour.

:

::
To

:::::::
analyse

:::
the

::::::::
combined

:::::
effect

::
of

::::::
biases

:::
and

:::::::::::::
dispersiveness,

:::
the

:::::::::
continuous

::::::
ranked

:::::::::
probability

:::::
score

:::::::
(CRPS)

::
is

:::::::::
computed.20

::::
This

::
is

:
a
::::::::
common

::::::
strictly

::::::
proper

:::::
score

:::::::
function

:::
for

:::::::::
evaluating

::::::::::
probabilistic

::::::::::
predictions

::::::::::::::::::::::::
(Gneiting and Raftery, 2007),

::
in
::::

our

:::
case

:::
the

::::::
ability

::
of

:
a
::::::::::::
reconstruction

::::::
method

::
to

::::::::::::::
probabilistically

::::::
predict

:::
past

::::::
climate

:::::
from

:::::
sparse

:::
and

:::::
noisy

::::
data.

::
It

::
is

:
a
::::::::::::
generalization

::
of

:::
the

:::::::
absolute

::::
error

::
to

:::::::::::
probabilistic

:::::::
forecasts

:::::::::::::::::::::::::
(Matheson and Winkler, 1976)

:
,
:::::
given

::
by

:

CRPS
(
F,C true

p (x)
)

:=

∞∫

−∞

(
F (y)− δ(y≥C true

p (x))

)2

dy,

::::::::::::::::::::::::::::::::::::::::::::

(18)

:::::
where

::
F

::
is

::
the

::::::::::
cumulative

:::::::::
distribution

:::::::
function

::
of

:::
the

:::::::::::
probabilistic

:::::::::::
reconstruction

:::
Cp::

at
::::
grid

:::
box

::
x,

:::
and

:::::::
C true
p (x)

::
is

:::
the

::::::::
reference25

::::::
climate

::::
state

::
at

::
x.

:::::::
Defined

::
in

::::
that

::::
way,

:::
the

:::::
CRPS

:::
has

::
a

::::::
unique

::::::::
minimum

::
at

:
0
::::
and

:
is
:::::::
positive

::::::
unless

::
F

::
is

:
a
::::::
perfect

:::::::::
prediction.

:

::::
With

:
a
::::::::

spatially
::::::::
averaged

:::::
mean

::::::
around

::
1 K

:::
for

::
all

:::::
three

:::::::
models,

:::
the

:::::
ITEs

::::
with

:::::
glasso

::::::::::
covariance

:::::::
matrices

::::
have

::
a
::::::
higher

:::::
CRPS

::::
than

:::
the

::::
ITEs

::::
with

::::::::
shrinkage

:::::::
matrices

::::
that

::::
have

:
a
:::::::
spatially

::::::::
averaged

:::::
mean

:::::
around

:::
0.4

:
K

:::::
(Table

::
2,

:::
Fig.

::::
5b).

::::
This

::
is

:
a
:::::
result

::
of

:::::
larger

:::::
biases

:::
on

:::
the

:::
grid

::::
box

::::
level

:::
and

::::::::::::::::::
under-dispersiveness

::
of

:::
the

:::::::
posterior

::::::::::
distribution.

::
In
::::::::
addition,

:::
the

:::::::::
variability

:::::::
between

::
the

:::::
ITEs

::::
with

:::
the

:::::
same

::::::
process

:::::
stage

::::::
model

::
is

:::::
higher

:::
for

:::::::
models

::::
with

:::::
glasso

::::::::::
covariance,

:::::
which

::::::
shows

::::
that

::::
these

:::::::
models

:::
are30

:::
less

::::::
robust.

::::
The

::::::
MTWA

::::::
CRPS

::
is

::::::
slightly

:::::
lower

::::
than

:::
the

::::::
MTCO

::::::
CRPS

::::
since

:::
the

:::::
local

:::::::::::::
reconstructions

:::::::
constrain

:::::::
MTWA

:::::
more

:::
than

:::::::
MTCO.

:::::::
Among

:::
the

:::::::
process

::::
stage

:::::::
models

::::
with

::::::::
shrinkage

:::::::
matrix,

:::
the

:::
KM

::::::::
performs

:::::::
slightly

:::::
worse

::::
than

:::
the

::::
GM

::::
and

:::
the

:::
RM

::::::
which

::
is

:
a
:::::
result

:::
of

:::
the

:::::
larger

::::::
biases

::
on

::::
the

:::
grid

::::
box

:::::
level

::::::::
described

::::::
above.

::::
The

::::::
spatial

::::::::
structures

::
of

::::::
CRPS

::::::
reflect

:::
the
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::::
mean

::::::::
deviation

:::::::
patterns

:::::
(Fig.

:::
6).

::::
This

::
is

:::
an

:::::
effect

::
of

:::::
more

::::::::::
pronounced

::::::
spatial

:::::::
patterns

::
in

:::
the

:::::
mean

:::::::::
deviations

:::::::::
compared

::
to

::::::::::::
dispersiveness.

4.1.2
::::::::::::::
Cross-validation

:::::::::::
experiments

:::::
CVEs

:::
are

:
a
::::
way

:
to
::::::::::
understand

::
the

::::::
ability

::
of

:
a
::::::
spatial

::::::::::::
reconstruction

::::::
method

::
to

:::::::
produce

::::::::
consistent

:::::::::
estimates.

::
In

::::::::::::::
paleoclimatology,

::
the

:::::
issue

::
is

:::
that

::
all

:::::::::::
observations

:::
are

:::::::
indirect,

:::::
which

::::::
means

:::
that

:::::::
negative

:::::::::
evaluations

::::
can

:::::
result

::::
from

:::::
errors

::
in

:::
the

::::::
process

:::::
stage

::
or5

::
the

::::
data

:::::
stage.

::::
For

:::::::
example,

:::::
even

:
if
:::
the

:::::::
climate

::::::::::::
reconstruction

:
at
::::
grid

::::
box

:
x
::
is

::::::::
accurate,

:::
the

::::::::
evaluation

:::::::
against

:::
the

::::::
left-out

::::
data

:::
can

::
be

:::::::
negative

::
if

:::
the

::::::
transfer

:::::::
function

::::
that

::::::::
translates

:::
data

::::::
Cp(x)

:::
into

::::::
Pp(x)

::
is

:::::
biased

::
or

:::
its

:::::::::
uncertainty

:::::::
estimate

::
is

:::::::::::
misspecified.

::::::
Hence,

:::
the

:::::::::
assumption

:::::::
behind

:::::
CVEs

::
is

::::
that

:::
the

::::
data

::::
stage

::
is
::::::::

unbiased
::
or
:::

at
::::
least

::::::::::
consistently

::::::
biased

::::::
among

:::::::
different

::::::
proxy

:::::::
samples.

::::::::::::::
Cross-validations

:::
are

::::::::
evaluated

::
in
:::
the

::::::::::
observation

::::::
space.

::
In

:::
this

:::::
study,

::::
this

:
is
:::
the

:::::::::
vegetation

::::::
space,

:::
i.e.

::
the

::::::::::
occurrence

::
of

::::
taxa

::
in

::
a

::::
grid

::::
box.

:::
As

:::
the

::::
only

:::::::
reliable

::::::::::
information

::::
that

:::
are

::::::::
available

::::
from

:::
the

::::::
pollen

::::
and

::::::::::
macrofossil

::::::::
synthesis

:::
on

:::
the10

::::::::
vegetation

:::::::::::
composition

::
in

:
a
::::
grid

:::
box

::
is

:::
the

:::::::
presence

::
of

::::::
certain

::::
taxa,

::::
this

:
is
::::
also

:::
the

::::
only

::::
data

:::
that

::
is

::::
used

:::
for

:::
the

:::::::::
evaluation.

::::
Due

::
to

:::
the

:::::::::
sparseness

:::
of

:::
the

:::::
proxy

:::::::
network,

::::::::::::
leave-one-out

:::::
CVEs

:::
are

:::::::::
performed

:::
and

:::
not

:::::
more

::::
data

:
is
::::
left

:::
out

::
in

::::
each

::::::::::
experiment.

::
In

::::
each

:::::
CVE,

::
a

::::::::::::
reconstruction

::::
with

:::
the

::::::::
Bayesian

:::::::::
framework

::
is
:::::::::

computed
::::
with

:::
all

:::::
proxy

:::::::
samples

::::::
except

:::
for

:::::
those

::
in

::::
one

:::
grid

::::
box

::
x.

:::::
Then,

:::
the

::::::::::::
reconstruction

:::::
Cp(x)

::
at
::::
grid

:::
box

::
x
::
is

::::::::
extracted

:::
and

::::::
treated

::
as

:::::::::::
probabilistic

::::::::
prediction

::
of

:::
the

:::::::
climate

::
at

::
x.

::::
Next,

:::
the

:::::
PITM

:::::::
forward

::::::
model

:
is
:::::::
applied

::
to

::::
C(x)

:::
for

::::
each

::::::
sample

:::
Pp::::::

located
::
in
::::
grid

:::
box

::
x
::
to

:::::::
produce

::::::::::
probabilistic

::::::::::
predictions15

::
of

:::
the

:::::::::
occurrence

::
of

:::
the

::::
taxa

::::
that

:::
are

:::::
found

::
in

:::::
those

:::::::
samples.

:::::
This

::::::::
prediction

::
of
:::

the
::::::::::

occurrence
::
of

::
a

:::
taxa

::
T
:

is represented by

the probability of presence p ∈ [0,1]. A common proper score function for binary variables is the Brier score (BS; Brier, 1950)

given by

BS(T ) := 1
2

(
(δT (1)− p)2

+ (δT (0)− (1− p))2
)

=





1 + p2− 2p if T = 1

p2 if T = 0
(19)

where δT denotes the indicator function of taxa T . The BS takes values between zero and two
:::
one, where zero corresponds to20

a perfect prediction and two
:::
one to the worst possible prediction. In a recent study, Stolzenberger (2017) used the BS to assess

the skill of PMIP3 simulations for the MH using a network of pollen records. To calculate the BS for a set of climate samples,

either MCMC samples from the posterior or independent samples from the prior mixture distribution, the
:::
and

::::::::::
macrofossil

::::::
records.

::::
The

:
PITM forward model is applied to each sample

::::::
MCMC

:::::::
sample,

:
which leads to a set of probabilistic predictions

pj(T ), j = 1, ...,J for taxa T . Predictions are calculated for each taxa which occurs in sample P (s). The joint score of P (s) is25

then calculated by averaging the BS of each taxa and prediction:

BS(P (s)) :=
1

|T (s)|J
∑

T∈T (s)

J∑

j=1

(
21
:

+ 2pj(T )2− 42
:
pj(T )

)
. (20)

If multiple samples are assigned to one grid box, the mean score of those samples is taken. Finally, the Brier skill score (BSS)is

computed by comparing BS for posterior and prior:

BSS :=
BS(Prior)−BS(Posterior)

BS(Prior)
.30
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5 Results

In this section, results from the MH reconstruction for Europe with the Simonis et al. (2012) synthesis and the PMIP3 MH

ensemble are presented. We study the mean
:
A

::::::::::
problematic

::::
step

::
in
::::

the
:::::::::::
methodology

::::::::
described

::::::
above

::
is

:::
that

:::
the

:::
BS

::
is
:::::

only

::::::::
evaluated

::
for

::::::::
occurring

::::
taxa

::::
and

:::
not

::
for

:::::
those

:::::
which

:::
are

::::::
absent

::
in

:::
the

::::::
sample.

::::
This

::::
can

::::
make

:::
the

:::
BS

::::::::
improper

:::::
when

:::::::::
comparing

::::::::
statistical

::::::
models

::::
that

::::::
predict

:::
the

::::::::
presence

::
or

:::::::
absence

::
of

:::::
taxa.

::::::::
However,

:::
the

::::
goal

::
of

:::
the

::::::::::::
methodology

::::::::
described

:::::
above

::
is
:::
an5

::::::
indirect

:::::::::
evaluation

::
of

:::::::::
predictions

::
of

::::
past

::::::
climate

:::
via

:::::::
transfer

::::::::
functions.

::
In

::::
that

::::::
context,

::
it
:::::
would

::::
lead

::
to

:::::::::::::
inconsistencies

:::::::
between

::
the

:::::
local

::::::::::::
reconstructions

::::
and

:::
the

:::
BS

:::::::::
evaluations

::
if

:::
taxa

::::
that

:::
are

:::::
absent

::
in

:::
the

:::::
proxy

::::::::
synthesis

::::
were

::::::::
included

::
as

::::
there

::
is

::::::::
currently

::
no

:::::
model

::::::::
available

::
to

:::::::::
accurately

:::::::
estimate

:::::::
detection

:::::::::::
probabilities

::
of

:::::
pollen

::::
and

:::::::::
macrofossil

::::
data

::::
(see

:::
the

::::::::
discussion

::
in

:::::
Sect.

::::
3.2).

::::::::::::
Circumventing

:::
this

:::::
issue

::
is

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

:::::
study.

::
It
::::::
should

::
be

:::::
noted

::::
that

:::
for

::::
each

::::
taxa

:::
the

:::
BS

:::
are

:
a
:::::::
convex

:::::::
function

::
of

::::::
climate

:::
and

::::::::
minimal

:::
for

:
a
::::::
unique

::::::
climate

:::::
state.

:::::
These

::::
two

::::::::
properties

:::::
make

:::
the

:::::::::::
methodology

::::::::
described

::::::
above

:::::
useful

:::
for

:::
the10

:::::::::
comparison

::
of
:::::::
climate

:::::::::::::
reconstructions

:::
and

:::
the

:::::::
indirect

::::::::
evaluation

::
of

:::::::
climate

::::
field

::::::::::::
reconstruction

::::::::
methods.

:::
The

:::::::
models

::::
with

:::::
glasso

::::::::::
covariances

:::::::
perform

:::::::
slightly

:::::
worse

:::::
than

::::
those

:::::
with

::::::::
shrinkage

:::::::::::
covariances,

::
as

:::
the

:::::
mean

:::
BS

:::::
takes

:::::
values

::
of

::::::
0.186

:::::
(GM,

:::
RM

::
)
::
or

:::::
0.187

:::::
(KM)

:::
for

:::
the

::::::
glasso

:::::
based

:::::::
models

::::::::
compared

::
to
::::::

values
:::::::
between

::::::
0.161 and uncertainty

structure of the posterior distribution, the added value of the reconstruction, the performance of different ensemble members,

the sensitivity with respect to the glasso penalty parameter,
:::::
0.165

:::
for

::::::
models

::::
with

:::::::::
shrinkage

::::::::::
covariances

:::::
(Table

:::
2).

:::::::
Similar15

::
to

:::
the

:::::
ITEs,

:::
the

:::::::::
differences

::::::::
between

::::::
models

::::
with

::::::::
different

:::::::::
covariance

:::::
types

:::
are

:::::
larger

::::
than

:::::
those

:::::
with

:::
the

::::
same

::::::::::
covariance

::::::
model.

::::::::::::
Accordingly,

:::
the

::::::
largest

:::::::::
differences

::
at
:::::::::

individual
:::::::::
gridboxes

:::::::
between

:::::::
models

::::
with

::::::::
different

:::::::::
covariance

::::::
matrix

:::::
types

::
are

:::
on

:::
the

:::::
order

:::
of

:::::
10−1,

:::
but

::::
only

:::
on

:::
the

:::::
order

::
of

:::::
10−2

::::::::
between

::::::
models

::::
with

:::
the

:::::
same

::::::::::
covariance

::::
type.

::::
The

::::::
models

:::::
with

::::::::
shrinkage

:::::::::
covariance

::::::::
matrices

::::
tend

::
to

:::::::
perform

:::::
better

:::
in

:::::::
western

::::::
Europe

::::
and

::::::::::::
Fennoscandia,

:::::::
whereas

:::
in

::::::
central

:::
and

:::::::
eastern

::::::
Europe,

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::::
differences

::
is

::::
very

::::
small

::::
and

:::
the

::::::
models

::::
with

::::::
glasso

:::::::::
covariance

:::::::
matrices

:::::::
perform

:::::::
slightly

:::::
better20

::
in

:::
the

::::::::
majority

::
of

::::
grid

:::::
boxes.

:

:::
The

::::::::
generally

:::::
better

:::::::::::
performance

::
of

:::
the

::::::
models

::::
with

::::::::
shrinkage

:::::::::
covariance

:::::::
matrices

:::::
might

:::
be

:
a
:::::
result

::
of

:::
the

::::::::::::::
under-dispersive

and
:::::::::
less-robust

::::::::
behaviour

:::
of

:::
the

::::::
models

::::
with

:::::
glasso

::::::::::
covariance

:::::::
matrices

:::
that

::::
was

:::::::::
diagnosed

::
in

::::
Sect.

:::::
4.1.1.

::::
This

::::::::::
explanation

::
is

:::::::::
underlined

::
by

:::
the

:::::
spatial

:::::::
patterns

::
of

:::
the

::::::::::
performance

::::::::::
differences.

::
In

:::::::
western

::::::
Europe

:::
and

::::::::::::
Fennoscandia,

:::
the

::::
local

:::::::::::::
reconstructions

:::
tend

:::
to

::
be

::::
less

:::::::::
informative

::::
than

:::
in

::::::
central

:::
and

::::::
eastern

:::::::
Europe.

:::::::::
Therefore,

:::
the

:::::::::::::
reconstructions

::
at

:::
the

:::::::::
respective

:::
grid

::::::
boxes

:::
are25

:::
less

::::::::::
constrained

::
by

::::::
nearby

::::
local

::::::::::::
reconstruction

:::
and

:::::
more

::
by

:::
far

::::
away

::::::
proxy

:::::::
samples.

::::
This

:::::
effect

::
is

::::::::
enhanced

:
in
:::
the

::::::
glasso

:::::
based

::::::
models

::::
with

:::
less

::::::
spatial

::::::
degrees

:::
of

:::::::
freedom.

:::::::::
Therefore,

:::::::::::::
reconstructions

::::
with

:::::
glasso

:::::::
matrices

::::
can

::
be

:::::
more

:::::
biased

::
if

::::::::::
information

::
are

:::::::::::
inadequately

:::::::::
transferred

::::
over

:::::
large

::::::::::
differences.

::
In

::::::
central

:::
and

:::::::
eastern

::::::
Europe

:::
this

::::::
effect

:
is
::::
less

:::::::::::
problematic,

::
as

:::
the

::::::
nearby

:::::
proxy

:::::::
samples

::
are

:::
the

:::::
main

::::::::::
contributors

::
to

:::
the

:::::::::::::
reconstructions

:
at
:::
the

:::::::
left-out

:::
grid

::::::
boxes.

::::
That

:::
the

::::::
glasso

:::::
based

::::::
models

:::::::
perform

::::
even

::::::
slightly

::::::
better

::
in

::::::
central

::::
and

::::::
eastern

::::::
Europe

::::::
could

::::
than

::
be

:::
an

:::::
effect

:::
of

:::
the

:::
less

:::::::::
dispersive

:::::::::
behaviour

::::::::
compared

:::
to

:::
the30

::::::
models

::::
with

::::::::
shrinkage

::::::::::
covariances.

:

4.0.1
::::::::::
Conclusions

:::::
from

:::
the

:::::::::::
comparison

:::::
study
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:::
The

:::::
ITEs

:::::
show

:::
that

::::
the

::::::
models

::::
with

:::::::::
shrinkage

::::::
matrix

::::::::::
covariances

:::
are

:::::
more

:::::::::
dispersive,

::::
less

::::::
biased,

::::
and

:::::
more

::::::
robust

::::
than

::::
those

::::
with

::::::
glasso

:::::::::
covariance

::::::::
matrices.

::::::
These

:::::::::
properties

:::::::
transfer

::
to

:::
the

:::::
CVEs

::::::
where

:::
the

:::::::
models

::::
with

::::::::
shrinkage

::::::::::
covariance

:::::
matrix

:::::::
perform

::::::
better,

:::
too.

::::
The

::::::
results

::::
from

::::::
models

::::
with

:::
the

:::::
same

:::::::::
covariance

::::::
matrix

:::
are

::::
very

::::::
similar

:::::
except

::::
that

:::
the

::::
KM

::::
with

::::::::
shrinkage

:::::::::
covariance

::::::
matrix

:
is
:::
on

::::::
average

:::::
more

::::::
biased

::::
than

::
the

:::::::::
respective

::::
GM

:::
and

::::
RM.

::::
This

::::::
shows

:::
that

:::
the

:::::::::
covariance

::::::
matrix

:::::
choice

::::::::::
determines

:::
the

::::::::::::
reconstruction

::::
skill

::::
more

::::
than

:::
the

:::::::
general

::::::::::
formulation

::
of

:::
the

:::::::
process

:::::
stage

::
as

::::::::
Gaussian,

:::::::::
regression,

:::
or5

:::::
kernel

::::::
model.

:::
The

:::::
better

:::::::::::
performance

::
of

::::::::
shrinkage

:::::::::
covariance

:::::::
models

:::::
shows

::::
that

:::
the

:::
low

:::::::
number

::
of

::::::
spatial

:::::
modes

::
as

::
a
:::::
result

::
of

:::
the

:::::
small

::::::::
ensemble

:::
size

::
is
::::

the
::::
main

::::::
reason

:::
for

:
the results of joint compared to separate MTWA and MTCO reconstructions. Results

from all reconstructions
::::::::::::::::
under-dispersiveness

:::
of

:::
the

:::::
glasso

::::::
based

:::::::
models.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::::::::::::
over-dispersiveness

:::
of

:::
the

::::::::
shrinkage

::::::
models

::::::
should

:::
be

::
an

::::::::
indicator

::::
that

::::
this

:::::
model

::
is
::::

not
:::::::::::::
under-dispersed

::::
even

:::
in

:::
real

::::::
world

::::::::::
applications

::::::
which

::::
face10

::::::::
additional

:::::::::
challenges

:::::
from

:::::::
potential

::::::
biases

::
or

::::::::::::::
under-dispersed

:::::::
transfer

::::::::
functions

:::
and

:::::
from

::
a

:::::::::
potentially

:::::
more

:::::::::::
sophisticated

:::::
spatial

::::::::
structure

::
of

:::
the

::::::
climate

:::::
state

::::
than

::
in

:::
the

:::::
ESM

:::::::::::
climatologies.

:::::::::::
Additionally,

::::
this

::::::::::::::::
over-dispersiveness

::::::
shows

:::
that

::
in

:::::
most

::::::
regions

:::
the

::::::::
ensemble

::::::
spread

::
is

::::
wide

::::::
enough

::
to
::::

lead
::
to
:::::::::::::
reconstructions

::::::
which

::
do

:::
not

::::::
feature

:::
too

:::::::
narrow

:::::::
posterior

:::::::::::
distributions

::
as

::::
long

::
as

::::::
enough

::::::
spatial

:::::::
degrees

::
of

:::::::
freedom

:::
are

::::::::::
incorporated

:::
in

::
the

:::::::
second

:::::::
moment

::::::::
properties

::
of

:::
the

:::::::
process

:::::
stage.

:::
The

:::::
larger

:::::
biases

:::
of

::
the

::::
KM

::::
with

::::::::
shrinkage

:::::::::
covariance

::::::
matrix

::::::::
compared

::
to

:::
the

::::
GM

:::
and

::::
RM

::
are

::
a
:::::
result

::
of

::::::::
ensemble

:::::::
member15

:::::
weight

::::::::::
degeneracy

::
in

:::
the

:::::::
particle

::::
filter

:::
part

:::
of

:::
this

::::::
model.

::::
The

::::::::
ensemble

:::::::
member

:::::::
weights

::::
tend

::
to

:::::::::
degenerate

:::::::
towards

:::
the

::::
least

:::::
wrong

::::::
model

::::
such

:::
that

:::
the

:::::
mean

::::::
values

:::
are

:::::
biased

:::::::
towards

::::
that

::::::
model.

::::
This

:::::::
tendency

::::::::
increases

::::
with

:::
the

:::::::
strength

:::
of

:::
the

:::::
proxy

:::
data

::::::
signal.

::::
This

::
is
::

a
::::::::::
well-known

:::::
issue

::
of

::::::::
Bayesian

::::::
model

:::::::
selection

:::::::::::::::::::
(Yang and Zhu, 2018),

::::
and

:::::::
therefore

:::
as

::::
well

::
of

:::::::
particle

::::
filter

:::::::
methods

::::::::::::::::::
(Carrassi et al., 2018),

::::::
which

::::::
hinders

:::
the

::::
use

::
of

:::::
KMs

::
in

::::
data

::::::::::
assimilation

::::::::
problems.

:::
To

:::::::
mitigate

::::
this

:::::
issue,

:::
the

::::::
particle

::::
filter

::::
part

::
of

:::
the

::::
KM

::
is

::::::::
combined

::::
with

::
a

:::::::
Gaussian

::::
part

::::
that

:
is
:::::
more

::::::
similar

::
to

:::::::
Kalman

::::
type

:::::
filters.

::::
The

:::::
ITEs

::::
show

::::
that20

:::
this

:::::::::
adjustment

::
is

:::::
strong

:::::::
enough

::
to

:::::
avoid

:::::::::::::::::
under-dispersiveness,

:::
but

:::
the

::::::::::
degeneracy

::
of

:::
the

::::::::
ensemble

:::::::
member

:::::::
weights

:::
still

:::::
leads

::
to

:::::
larger

:::::
biases

::::
than

::
in

:::
the

:::::::
process

::::
stage

::::::
models

::::
that

::::
rely

::
on

:::::
direct

::::::::
averaging

:::
of

::
the

:::::::::
ensemble

::::::::
members.

4.1
::::::
Spatial

::::::::::::
reconstruction

:::
of

::::::::
European

::::
MH

:::::::
climate

:::::
Based

::
on

:::
the

::::::
results

:::::::::
presented

::
in

:::
the

:::::::
previous

:::::::
section,

:::
the

::::::
models

::::
with

:::::::::
shrinkage

:::::
matrix

::::::
should

:::
be

::::::::
preferred

::::
over

:::::
those

::::
with

:::::
glasso

:::::::::
covariance

:::::::
models.

::
In

:::::::
addition,

:::
the

:::::::
smaller

:::::
biases

:::
and

:::::
more

:::::
robust

::::::
nature

::
of

:::
the

::::
GM

:::
and

:::
RM

::::
with

:::::::::
shrinkage

:::::::::
covariance25

:::::
matrix

:::::::::
compared

::
to

:::
the

::::
KM

::::::
model,

::::::
makes

:::::
them

:::::::
superior

:::::::
choices.

:::::::
Because

::::
the

:::
RM

:::::::
adjusts

::::
more

:::::::
flexible

::
to

:::
the

::::::
proxy

::::
data

:::
than

:::
the

:::::
GM,

:::
this

::::::
model

:
is
::::::::::
presumably

:::::
better

::::::
suited

::
to

:::
deal

::::
with

:::::::::
additional

::::::
caveats

::
of
::::

real
:::::
world

::::::::::
applications

:::::::::
compared

::
to

:::
the

::::::::
controlled

:::
test

:::::::::::
environment

::
of

:::::
ITEs.

:::::::::
Therefore,

::::
this

:::::
model

::
is

::::
used

:::
for

:::
the

::::::
spatial

:::::::::::::
reconstructions,

::::::
whose

::::::
results

:::
are

::::::::
presented

::
in

:::
this

::::::
section.

:::::::::::::
Reconstruction

::::::
results are summarized in Table 1.

::::::
Results

::::
from

:::::::::::::
reconstructions

::::
with

:::
the

::::
other

::::
five

::::::
process

:::::
stage

::::::
models

:::
are

::::::::
presented

::
in

:::
the

::::::::::
Supplement.

:
30
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4.2 Posterior mean and uncertainty structure

4.1.1
::::::::
Posterior

:::::
mean

::::
and

::::::::::
uncertainty

::::::::
structure

The spatially averaged mean temperature of the reconstruction (posterior mean) is 17.77
::::
18.27°C (90% CI: (17.44

::::
17.79°C,

18.09
::::

18.75°C)) for MTWA and 2.24
::::
1.81°C (90% CI: (1.87

::::
1.22°C, 2.62

::::
2.45°C)) for MTCO, which is in the former case equal

to
::::
both

:::::
cases

::::::
warmer

::::
than

::::
the the CRU reference climatology (+0.01

::::
0.51 K ) and in the latter 1.11

::
for

:::::::
MTWA

:::
and

::::::
+0.695

K warmer. Larger differences
::
for

::::::::
MTCO).

::::::
Larger

:::::::::
anomalies are found for subregions (Fig. 7a,7b):

::
b).

:
For MTWA as well

as MTCO, cooler temperatures than today are found in most areassouth of 54° N, while north of this line the temperatures

are
::::::::::
temperatures

:::::
were

::::::
cooler

::::
than

:::::
today

::
in

:::::
many

::::::::
southern

::::::::
European

:::::
areas,

:::::
while

::
in

::::::::
northern

::::::
Europe

:::
the

:::::::::::
temperatures

:::::
were

predominantly higher than todaywith the exception of a cooling in parts of Fennoscandia. The on average higher MTCO

anomalies compared to MTWA stem from higher anomalies in Fennoscandia. Many of the warming anomalies in the northern10

part as well as the cooling anomalies in the southern part
:
.
:::::
More

::::::::::
specifically,

:::::::
MTWA

:::
was

:::::::
warmer

::::
over

:::::::::::::
Fennoscandia,

:::
the

:::::
British

:::::::
Islands,

::::
and

:::
the

:::::::::
Norwegian

::::
Sea.

:::::
Most

:::
of

::::
these

:::::::::
anomalies

:::
are

:::::::::
significant

:::
on

:
a
::::

5%
:::::
level.

:::::
Here,

:
a
:::::::
positive

::::::::
anomaly

::
is

:::::
called

:::::::::
significant

::
if

:::
the

:::::::::
probability

:::
to

::::::
exceed

:::
the

::::::::
reference

:::::::::::
climatology

::
is

::
at

::::
least

:::::
0.95.

:::::::::
Significant

::::::::
negative

:::::::::
anomalies

:::
are

::::::
defined

::::::::::
accordingly.

::::
The

::::::::::
significance

::::::::
estimates

:::
are

::::::::
calculated

::::::::::
point-wise.

:::::::
Negative

:::::::
MTWA

:::::::::
anomalies

:::
are

:::::
found

::
in

::::
large

:::::
parts

::
of

:::
the

::::::::::::
Mediterranean

:::
and

::::::
eastern

:::::::
Europe,

:::
but

:::::
fewer

:::::::::
anomalies

:::
are

::::::::
significant

:::
on

:
a
:::
5%

:::::
level

::::
than

::
in

:::::::::::
north-western

:::::::
Europe.

::::
The15

:::::
largest

:::::::
positive

::::::
MTCO

:::::::::
anomalies

:::
are

:::::
found

::
in

:::::::::::
Fennoscandia

::::
and

::
off

:::
the

::::::::::
Norwegian

:::::
coast.

::
In

:::
the

::::
other

:::::
parts of the domain

:
,
:::
the

:::::::
majority

::
of

::::::
MTCO

:::::::::
anomalies

:::
are

::::::::
negative,

:::
but

:::
the

:::::
spatial

::::::
pattern

::
is
:::::
more

::::::::::::
heterogeneous

::::
than

:::
for

:::::::
MTWA.

::
A

::
lot

:::::
fewer

:::::::
MTCO

::::::::
anomalies

:
are significant on a 5% level (see Sect. ?? for the definition of significance in the Bayesian context). In particular,

using
::::::::
compared

::
to

::::::
MTWA

:::::::::
anomalies.

:::::
Using

:
the joint information in the pollen

::::::::
contained

::
in

:::
the

:::::
proxy synthesis and combining

it with the spatial structure of the PMIP3 ensemble leads to more significant signals than in any of the individual data products.20

Most of the taxa, which are used in the reconstruction, are stronger confined for MTWA than for MTCO because the growth

of most European plants is more sensitive to conditions during the growing season. This results in more constrained local

MTWA reconstructions (Fig. 4a
:
c), which is in concordance with findings from Gebhardt et al. (2008). Hence, the uncertainty

in the MTWA reconstruction is smaller (spatially averaged point-wise 90% CI size of 2.90 ) than in the MTCO reconstruction

(
:::
with

:
spatially averaged point-wise 90% CI size of 3.18

:::
sizes

:::
of

::::
4.15 K )

:::
and

::::
5.84 K,

::::::::::
respectively

:
(Fig. 7c,7d). The uncertainty25

is smallest for
:
at
:
grid boxes with proxy records, and highest in the north eastern and north western parts of the domain where

the PMIP3 ensemble spread is large and the constraint from proxy data is weak.
::
For

::::::::
MTWA,

::::::::
additional

:::::::
regions

::::
with

:::::
large

::::::::::
uncertainties

:::
are

::::::
found

::
at

:::
the

::::::
eastern

::::
and

::::::::
southern

:::::::::
boundaries

::
of

::::
the

::::::
domain

::::
due

::
to

:::::
weak

:::::
proxy

::::
data

::::::::::
constraints.

:
Besides,

the reconstruction uncertainty has small spatial variations. The ratio of the CI size of spatially averaged temperatures and the

spatially averaged point-wise CIs can be interpreted as a measure for the spatial degrees of freedom in the reconstruction.30

The highest reduction of uncertainty due to the inclusion of proxy data is found at grid boxes with proxy data, as quantified

by a spatially averaged reduction of point-wise CI sizes from prior to posterior of 69.5
::::
50.1% compared to 60.5

:::
26.0% for grid

boxes without proxy data (Fig. 7e,7f). The uncertainty reduction for MTWA is higher for terrestrial grid boxes than marine

ones, but the smaller PMIP3 ensemble spread over sea
:::
the

::::::
British

:::::::
Islands,

:::
the

:::::
North

::::
Sea,

::::
and

:::
the

::::
Bay

::
of

:::::::
Biscay leads to
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similar CI sizes
:::::::
posterior

::
CI

:::::
sizes

::
in

:::::
these

:::::
areas. For MTCO, the reduction of uncertainty is highest for terrestrial areas and

the Norwegian Sea and lowest for the Mediterranean Sea and off the French and Iberian coast. But since the PMIP3 ensemble

spread is small in these areas, the reconstruction uncertainty is still lower than in some land parts of the domain
::::::::
generally

::::::
smaller

::::
than

:::
for

::::::
MTWA

::::
due

::
to

:::
the

::::::
weaker

:::::
proxy

::::
data

::::::::
constraint.

To study whether the degree of spatial smoothing of the reconstruction is reasonable, we calculate a measure inspired by5

discrete gradients
:
is
:::::::::
calculated. For each grid box, we calculate the mean absolute difference between the value in the box

and its eight nearest neighbours
::
is

::::::::
computed. Then, we compare the spatial averages of this homogeneity measure H in the

posterior, the climatologies of the PMIP3 ensemble members,
:
and the reference climatology . We expect a

:::
are

:::::::::
compared.

::
A

reconstruction with a good degree of smoothing
:
is

::::::::
expected to have similar spatial homogeneity than the PMIP3 ensemble and

the reference climatology, as H depends mainly on local features like orography or land-sea contrasts, and we expect these10

features to affect the local climate of the MH similarly than today’s climate since reconstructions suggest only small changes

in topography between the MH and today. For MTWA, we get a posterior mean of 1.48
:::
the

::::::::
posterior

:::::
mean

::::
value

::
is
:::::

1.41 K

(90% CI: (1.40
:::
1.31

:
K, 1.57

:::
1.53

:
K)), which is in agreement with 1.39 K for the reference climatology and values between

1.08 K and 1.54 K for the PMIP3 climatologies. The heterogeneity of MTCO is higher than of MTWA, but again, the mean

posterior value of 2.18
:::
2.54

:
K (90% CI: (2.09

:::
2.33

:
K, 2.27

:::
2.76

:
K)) is in concordance with

::
of

:::::::::
comparable

:::::::::
magnitude

:::
as the15

reference climatology (2.02 K) and the PMIP3 climatologies (between 1.89 K and 2.41 K). From these results, we deduce
:
it
::
is

:::::::
deduced that the posterior has a reasonable degree of spatial smoothing.

4.2 Added value of the reconstruction

The skill of the reconstruction is measured using the BSS, defined in Eq. (??), in cross-validation experiments. For positive

BSS values,20

4.1.1
:::::::::::
Comparison

::
of

::::::::::::
unconstrained

:::::::
PMIP3

::::::::
ensemble

::::
and

::::::::
posterior

:::::::::::
distribution

::
By

:::::::::
comparing

:::
the

::::::::
posterior

::::
with

:::
the

:::::
prior

:::
and

:::
the

:::::
local

:::::::::::::
reconstructions,

::
it

:::
can

:::
be

::::
seen

:::
that

:::
for

:::::
most

::::
areas

::::
with

::::::
nearby

::::::
proxy

::::::
records

:::
the

::::::::
posterior

:::::
mean

:::::::::
resembles

:::
the

::::
local

:::::::::::::
reconstructions

:::::
more

::::
than

::::
the

::::::
PMIP3

::::::::
ensemble

::::::
mean.

::::
This

::::::
shows

::::
that

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::
prior

::::::::::
distribution

::
is

:::::
large

::::::
enough

:::
to

::::
lead

::
to

:
a
:::::::::::::

reconstruction
:::::
which

::
is
::::::
mostly

::::::::::
determined

:::
by

:::::
proxy

:::::
data,

:::::
where

::::::::
available.

::::
The

::::::::
posterior

:::::::
MTWA

:::::
mean

::
is

::::::
warmer

::
in
::::::::

northern
::::::
Europe

::::
than

::::
the

::::
prior

:::::
mean

::::
and

:::::
cooler

:::
in

:::::::
southern

::::
and25

::::::
eastern

:::::::
Europe.

:::
For

:::::::
MTCO,

:::
the

::::::::
posterior

:::::
mean

::
is

:::::
much

::::::
warmer

::::
than

:::
the

:::::
prior

:::::
mean

::
in

::::::::::::
Fennoscandia

:::
and

:::::::
slightly

::::::
cooler

::
in

:::::::
southern

:::::::
Europe.

:::
The

::::::::
posterior

::::::
weights

::
λ
::
of

:::
the

::::::
PMIP3

::::::::
ensemble

::::::::
members

:::
are

:
a
:::::::::::
combination

::
of

:::
the

::::
prior

::::::::::
distribution

::
of

::
λ

:::
and

:::
the

:::::::::
likelihood

::
of

:::
Cp :::

for
::::
each

::::::::::
combination

:::
of

::::::::
ensemble

:::::::
member

:::::::
weights

::::
(see

::::::::
Appendix

::
C

:::
for

:::::::
details).

::
λ

:::::::
provides

::::::::::
information

:::::
about

::::::
which

::::::::::
combination

::
of

::::::::
ensemble

::::::::
members

:::
fits

::::
best

::
to

:::
the

:::::
proxy

::::
data.

::
In

:::
our

:::::::::::::
reconstruction, the posterior distribution is superior to the30

prior, which means that constraining the
::::::::::
MPI-ESM-P

::::::::::
climatology

:::
has

:::
the

::::::
highest

::::::::
posterior

:::::::
weights

:::::
(mean

:::
of

:::::
0.485)

::::
(see

::::
Fig.

::
8),

::::::::
followed

::
by

:::
the

::::::::::::
EC-Earth-2-2

::::::::::
climatology

::::::::
(posterior

:::::
mean

::
of

::::::
0.154)

:::
and

:::
the

:::::::::::::
Had-GEM2-CC

:::::::::::
climatology

::::::::
(posterior

:::::
mean

::
of

::::::
0.104).

:::::
Note,

::::
that

:::
the

:::::::
weights

::
of

:::
the

:::::::::::
MPI-ESM-P

:::
and

:::
the

::::::::::::
EC-Earth-2-2

:::
are

:::
the

::::
only

::::
one

:::
that

:::
are

:::
on

:::::::
average

::::::
higher

::::
than
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::
the

:::::
prior

:::::
mean

::
of

::::
1/7.

:::
The

:::::
large

:::::::::
differences

::
of

:::
the

:::::::
weights

:::
are

:
a
:::::
result

:::
of

:::
the

::::
large

:::::::::
differences

::::::::
between

:::
the

::::::::
ensemble

:::::::
member

:::::::::::
climatologies.

::::::::
Because

::::
there

::
is
::::
less

:::::::::
uncertainty

:::
in

:::
the

::::
local

:::::::
MTWA

:::::::::::::
reconstructions,

::
it
::
is

:::
the

:::::
major

:::::::
variable

:::
for

:::::::::::
determining

::
the

::::::::
posterior

:::::::
weights.

:::::::
Among

:::
all

:::::::
included

:::::::
models,

:::
the

:::::::::::
MPI-ESM-P

:::::::::
simulation

::
is

::::::
closest

::
to

:::
the

:::::
dipole

::::::::
structure

::::
with

:::::::
MTWA

:::::::
warming

::
in

:::::::
northern

::::
and

::::::
cooling

::
in
::::::::
southern

:::::::
Europe,

:::::
which

:::::::
explains

:::
the

::::
high

::::::
model

::::::
weight.

4.1.2
::::::
Added

:::::
value

::
of

:::
the

:::::::::::::
reconstruction5

:::::
CVEs

:::::::
provide

:::::
inside

::::
into

::::
the

:::::
value

::::
that

::
is

::::::
added

::
to

:::
the

::::::::::::
unconstrained

:
PMIP3 ensembleby proxy data adds valueto the

reconstruction.
:
,
:::::::::
represented

:::
by

:::
the

::::::
process

:::::
stage

:::
Eq.

:::
(7),

::
by

::::::::::
constraining

::
it
::::
with

:::
the

:::::::::::::::::
Simonis et al. (2012)

::::::::
synthesis.

:::
To

:::::::
quantify

::
the

::::::
added

:::::
value,

:::
the

::
BS

:::::
from

:::
Eq.

::::
(20)

:
is
:::::::::
calculated

:::
for

::
the

::::::::::::
unconstrained

::::::
process

:::::
stage,

::::::
which

:
is
::::::
called

::::::::
BS(Prior),

:::
and

:::::::::
compared

::
to

:::
the

:::
BS

:::
of

:::
the

::::::::
posterior,

::::::::::::
BS(Posterior),

::::::::
calculated

:::::
from

:::::::::::
leave-one-out

::::::
CVEs.

:::::
Then,

:::
the

::::
Brier

::::
skill

:::::
score

::::::
(BSS)

BSS :=
BS(Prior)−BS(Posterior)

BS(Prior)
::::::::::::::::::::::::::::

(21)10

:
is
::::::::::

computed,
:::::
which

::
is
::

a
:::::::
measure

:::
of

:::
the

::::::
added

:::::
value

::
of

::::
the

::::::
spatial

::::::::::::
reconstruction.

::::
For

:::::::
positive

::::
BSS

:::::::
values,

:::
the

::::::::
posterior

:::::::::
distribution

::
is

:::::::
superior

::
to

:::
the

:::::
prior. On the other hand, the posterior distribution is inferior to the prior for negative values. This

would indicate inconsistencies in the local proxy reconstructions, a scaling mismatch of simulations and data, or the existence

of spurious correlations in the prior covariance matrix.

For most left-out proxy samples
:
,
:
the BSS is positive (80

:::
68.9% of grid boxeswith left-out pollen data) with a median of15

0.39
:::
0.28

:
(Fig. 9). The BSS values are predominantly positive for all regions but the British Islands and Norway

:::
the

::::
Alps. This

indicates a high consistency of the reconstruction in large parts of the domaindue to a good fit of the local reconstructions

with the spatial correlation structure. In particular, we see a consistent MTWA cooling south of 54° N
::
in

:::::::
southern

::::
and

::::::
eastern

::::::
Europe in the local reconstructions compared to the prior distribution . This leads to a mean

::::
leads

::
to
:
cooling and reduction

of uncertainty in the posterior which is transported to grid boxes without proxy data, including those with left-out proxy20

data, via spatial correlations and higher weights for cooler ensemblemembers
:::::::
compared

::
to
:::
the

::::::::::::
unconstrained

::::::
PMIP3

::::::::
ensemble.

Similarly, the consistent MTWA and MTCO warming of the local reconstructions in the north-eastern part of the domain lead

to positive BSS values.

The persistent negative BSS values for the British Islands and Norway cannot be explained by data outliers but warrant a

more systematic issue. For these two regions
:::
this

:::::
region, the uncertainty in the local reconstructions is larger than for other25

areas(Fig. 4), such that the local proxy records constrain the posterior less than the posterior ensemble member weights and

some of the more distanced
:::::
distant

:
proxy records. The spatial correlations and degenerated weights (see Sect. ??) lead

::::
This

::::
leads

:
to a reduction of the posterior uncertainty compared to the unconstrained PMIP3 ensemble (Fig. 7e, 7f) but without

improving the concordance of the mean state with the local reconstructions, which in turn results in negative BSS values. In

and near the Alps, BSS values are near zero indicating no added value from constraining the PMIP3 ensemble by proxy data.30

This
:::::::
negative

::::
BSS might be a result of not accounting enough for orographic effects in the different sources of information.
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4.2 Posterior ensemble member weights

The posterior weights of the PMIP3 ensemble members are determined by ω and z. The posterior of ω is a combination of its

prior and the distribution of model choices z. As we defined a Jeffrey’s prior and choose only one ensemble member in each

MCMC step, the posterior of ω is a flattened version of the posterior of z (Fig. 8). z is more relevant for the posterior of the

state Cp as it determines which ensemble member is chosen in each MCMC step. The posterior of z combines the distribution5

of ω and the likelihood of Cp for each of the ensemble members (see Appendix C). The latter term is more informative and

therefore more important for determining z.

In our reconstruction, the posterior weights are dominated by the MPI-ESM-P climatology, with a posterior mean of z of

0.98 (blue diamonds in Fig. 8). The degeneracy of weights can be explained by large differences between PMIP3 climatologies.

Because there is less uncertainty in the local MTWA reconstructions, it is the major variable for determining the posterior10

ensemble member weights. Among all included models, the MPI-ESM-P simulation is closest to the dipole structure with

MTWA warming in northern and cooling in southern Europe, which explains the high model weight.

The prior climate state is changed in two ways during the inference: The ensemble member weights are updated, and each

of the mixture components is modified according to the proxy data. By comparing the posterior with the prior and the local

reconstructions, it can be seen that for most terrestrial areas the posterior mean resembles the local reconstructions more than15

the PMIP3 ensemble mean. This shows that the uncertainty in the prior distribution is large enough to lead to a reconstruction

which is mostly determined by proxy data wherever available. The main exceptions are the British Islands and Norway, where

the local reconstructions are not informative enough to strongly affect the joint signal from posterior ensemble member weights

and farther away proxy samples. The aforementioned changes of the prior lead to a posterior mean which is cooler than the

prior mean for MTWA for most of the domain except northern areas. For MTCO, the posterior mean is much warmer in20

northern Europe than the prior mean and slightly cooler in southern Europe.

4.2 Sensitivity with respect to the glasso penalty parameter

As described in Sect. ??, the glasso algorithm, which regularizes the covariance matrix estimated from the PMIP3 ensemble,

requires the specification of a penalty parameter ρ. Values of at least 0.3 produce numerically stable matrices. Larger values

lead to smaller correlations, and therefore higher posterior uncertainties due to less spatial transfer of information from the25

proxy data. To test the influence of ρ on the reconstruction results, we compute reconstructions and cross-validations for

ρ= 0.3,0.5,0.7,1.0,2.0.

The fraction of the penalty term on the total cost given by Eq. (??) increases from 79.5% for ρ= 0.3 to 98.5% for ρ= 2.0

(Fig. ??) showing the generally high influence of the penalty term due to the small ensemble size and the increasing importance

for larger ρ. While the mean BS is lowest for ρ= 0.3 with 0.37 and increases with ρ, the differences are small in total with30

0.44 being the highest value for ρ= 2.0 (Fig. ??). The mean value of the posterior climate and the posterior ensemble member

weights are insensitive to changes in ρ with differences in the mean spatial average of at most 0.3 (Fig. ??) as well as no

substantial regional differences, and mean z values for MPI-ESM-P of more than 0.98 in all cases. On the other hand, the
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posterior uncertainty grows substantially for larger ρ values. While the spatially averaged size of point-wise 90% CIs is 3.03

for ρ= 0.3, the value increases to 6.34 for ρ= 2.0 (Fig. ??).

4.2 Joint versus separate MTWA and MTCO reconstructions

To compare

4.1.1
::::
Joint

::::::
versus

::::::::
separate

:::::::
MTWA

::::
and

::::::
MTCO

::::::::::::::
reconstructions5

::
To

:::::
study

:
the effect of reconstructing MTWA and MTCO jointly compared to separately, additional reconstructions with only

one climate variable are computed. Note that the interactions of MTWA and MTCO are twofold in the joint reconstruction: (a)

the response functions have an interaction term in the logistic regression Eq. (??
:
3), and (b) the process stage Eq. (??) contains

joint ensemble member weights for MTWA and MTCO as well as inter-variable correlations in the covariance
::::::::
empirical

:::::::::
correlation matrix.10

The separate MTWA reconstruction is
::
on

:::::::
average

::::::
around

:::
0.5

:
K warmer than the joint reconstruction, with the spatially

averaged posterior mean being 0.63 warmer. On the other hand,
::::::
whereas

:
the spatially averaged posterior mean of the separate

MTCO reconstruction is 1.05
:::
0.83

:
K cooler

:::::
(Table

::
3). Hence, the seasonal difference is smaller in the joint reconstruction,

due to smoothing from the PMIP3 ensemble and slightly positive correlations between MTWA and MTCO in most of the joint

local reconstructions. The MTWA only reconstruction is warmer in most land areas, with largest differences in southern
:::
and15

::::::
eastern Europe, but most of the differences are not

:::::
almost

:::::
never significant on a 5% level (Fig. 10a). As this part of the domain

is best constrained by proxy data, and because the posterior ensemble member weights are similar to the joint reconstruction

(mean z of 0.93
::
λk:::

of
:::::
0.419 for MPI-ESM-P, Fig. 8), it is likely that the additional warming is due to the missing interaction

in the transferfunction
::::::
transfer

:::::::
function. On the other hand, the posterior ensemble member weights are very different

:::::
change

::
a

::
lot

:
for the separate MTCO reconstruction, with HadGEM2-CC and MRI-CGCM3 being the models with the highest weights20

(mean z of 0.65 and 0.34
::
λk::

of
::::::

0.426
:::
and

:::::
0.199, respectively). Together with the less constrained transferfunctions

::::::
transfer

:::::::
functions

:
for MTCO than MTWA and the missing interaction term, this leads to a cooler reconstruction for all

::::
most

:
areas but

some parts of central Europe and the Mediterranean (Fig. 10b). The cooling is strongest in Scandinavia, the British Islands,

the Norwegian Sea, and the Iberian peninsula,
:::
but

::::::
almost

:::::
never

:::::::::
significant

:::
on

:
a
:::
5%

:::::
level. As these are the regions which are

least constrained by proxy data(Fig. 4d), choosing different PMIP3 ensemble members affects the reconstruction more than25

in other areas. Many of the differences in Fennoscandia and the south-western part of the domain are significant (5% level),

which indicates that for these areas our method might underestimate the reconstruction uncertainty.

The missing interaction of MTWA and MTCO also leads to a higher uncertainty in the separate reconstructions, in particular

in areas which are not well
::::::
central

:::::::
Europe,

:::::
where

:::::::
MTCO

::
is

::::
best constrained by proxy data. For MTWA, the difference is

relatively small with spatially averaged only 0.2 larger point-wise 90% CIs. The spatial average of the point-wise 90% CIs30

for MTCO is 0.96 larger than
:::
The

::::::::::::
reconstruction

:::::::::::
uncertainties

:::
are

::
of

::::::
similar

:::::::::
magnitude

:
in the joint reconstruction, showing

again that reconstructing the variables jointly has a larger effect on MTCO than on MTWA. The larger MTCO uncertainties

are mostly due to much larger CIs at the Norwegian Sea (Fig. 10d)
:::
and

:::
the

:::::::
separate

:::::::::::::
reconstructions

::::::
(Table

:::
3),

:::::::
because

:::
the
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:::::::::
interactions

:::
in

:::
the

:::::::
transfer

::::::::
functions

:::
do

:::
not

::::::
reduce

:::
the

::::::::
marginal

:::::::::::
uncertainties

:::
and

::::
the

::::::::
shrinkage

:::::
target

::
Φ
:::::

does
:::
not

:::::::
contain

:::::::::
correlations

:::
of

::::::
MTWA

::::
and

::::::
MTCO.

The sign of the BSS
:::
BSS

::::::
pattern

:
in the MTWA only reconstruction is mostly the same than in the joint reconstruction , but

the magnitude is smaller for most grid boxes (
:::::
except

:::
for

::::::
slightly

:::::::
positive

::::
skill

::
in

:::
the

::::::
British

::::::
Islands

::::::
(Table

::
3,

:
Fig. 10e). This

shows that the added value of the joint reconstruction compared to the unconstrained PMIP3 ensemble is mainly determined5

by the MTWA reconstruction. In particular, the negative BSS at the British Islands and Norway, which is found in the joint

reconstruction, is also present in the MTWA only reconstruction but not in the MTCO only reconstruction. For most of the

domain, the BSS values of the MTCO only reconstruction are small (Fig. 10f), which indicates no or only little added value

from including proxy data. Particularly in central Europe, the values are very close to zero because
:::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::::
added

:::::
value

::
of

:::
the

:::::::
MTCO

::::
only

::::::::::::
reconstruction

::
is
::::::

much
::::::
smaller

::::::
(Table

::
3,
::::

Fig.
::::

10f)
::::

due
::
to

::::::
larger

:::::::::::
uncertainties

::
in

:::
the

:::::
local10

::::::
MTCO

:::::::::::::
reconstructions.

:::
The

::::::
results

::::
show

::::
that

:::
the

::::
more

::::::::::
constrained

::::
local

:::::::
MTWA

::::::::::::
reconstructions

::::
lead

::
to

:
a
::::::
higher

::::::::
influence

::
on

:::
the

::::
joint

::::::::::::
reconstruction

:::
than

::::
the

::::
local

:::::::
MTCO

:::::::::::::
reconstructions.

::::::::::
Therefore, the comparably small PMIP3 ensemble spread (Fig. 1d) is just weakly

constrained by local reconstructions
::::::
MTCO

::::
only

:::::::::::
reconstruction

::::::
differs

::::
more

:::::
from

:::
the

::::::
MTCO

:::::::
estimate

::
in

::
the

:::::
joint

::::::::::::
reconstruction.

::::::::::::
Reconstructing

:::::::
MTWA

:::
and

:::::::
MTCO

::::::
jointly

::::::
should

::
in

::::::
theory

:::
lead

:::
to

:
a
:::::::::
physically

:::::
more

:::::::::
reasonable

::::::::::::
reconstruction

:::
by

:::::::
creating15

::::::
samples

::::::
drawn

::::
from

:::
the

:::::
same

::::::::::
combination

::
of

::::::::
ensemble

:::::::::
members.

::
In

:::
the

:::::::
example

::
of

:::
this

::::::
study,

:::
this

:::::
effect

:::
can

::
be

::::
seen

:::::
from

:::
the

::::::
smaller

:::::::
seasonal

:::::::::
differences

::
in
:::
the

::::
joint

::::
than

::
in

:::
the

:::::::
separate

:::::::::::::
reconstructions.

:::
On

:::
the

:::::
other

:::::
hand,

:::::::::::::::::
Rehfeld et al. (2016)

::::
show

::::
that

:::::::::::
multi-variable

:::::::::::::
reconstructions

:::::
from

:::::
pollen

:::::::::::
assemblages

:::
can

:::
be

:::::
biased

:::::
when

::::::
signals

:::::
from

:
a
::::::::
dominant

:::::::
variable

:::
are

::::::::::
transferred

::
to

:
a
:::::
minor

::::::::
variable.

:::::
While

:::
the

:::::
PITM

::::::
model

:::::
might

:::
be

:::
less

::::::::
sensitive

::
to

:::
this

:::::
issue

::::
than

:::
the

::::::::
weighted

::::::::
averaging

:::::::
transfer

:::::::
function

::::
used

::
in

:::::::::::::::::
Rehfeld et al. (2016)

:::::::
because

::
it

:::::
better

:::::::
respects

:::
the

:::::
larger

::::::
MTCO

:::::::::::
uncertainties

::::
and

:::::::
because

:
it
::
is
:::::::
unclear

:::::::
whether

::::
taxa20

:::::::::
occurrence

::
is

:::::::
similarly

::::::::::
susceptible

::
to

:::
the

:::::
issue

::::
than

::::::
pollen

:::::
ratios,

::
it
::::
will

::
be

:::::::
subject

::
to

:::::
future

:::::
work

::
to

:::::
study

:::::::
whether

::::
joint

:::
or

:::::::
separate

::::::::::::
reconstructions

::::
lead

::
to

:::::
more

::::::
reliable

::::::
results.

5 Discussion and possible extensions

5.1 Robustness of the reconstruction

Our approach is designed with the goal of being more suitable for sparse data situations than standard geostatistical models. In25

a subsequent paper, we plan to apply the method to data from the Last Glacial Maximum, for which considerably less proxy

samples are available than for the MH. To understand the robustness of our method
:::
the

::::::::
Bayesian

:::::::::
framework

:
with respect to

the amount of data included in a proxy synthesis, we perform
:::
five experiments with only half of the samples

::
are

:::::::::
performed,

which are either selected to retain the spatial distribution
::
of

:::::
proxy

:::::::
samples or chosen randomly. In all of the tests, the general

spatial structure of the posterior distribution, including the anomaly patterns, is preserved. Only the northern part of the MTCO30

reconstruction, especially ,
::::
even

:::::::
though

::::::::
depending

:::
on

:::
the

::::::
chosen

:::::
proxy

:::::::
samples

:::
the

::::
local

::::::::
anomalies

::::
and

:::::::::
magnitude

::
of

:::::::
changes

:::::
varies

:::::
which

::::::
should

::
be

::::::::
expected

::::
when

::::
such

::
a
::::
large

::::::
portion

::
of

:::
the

:::::::
already

:::::
sparse

::::
data

::
is

:::
left

:::
out.

:::::
Only the Norwegian Sea ,

::
in

:::
the

::::::
MTCO

::::::::::::
reconstruction changes substantially in some experiments. While in each experiment MPI-ESM-P remains the favoured
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ensemble member, other members can reach weights, which are higher than in the prior. The spatially averaged temperatures

::::
Plots

::::
from

:::
the

:::::::::::
experiments

::::
with

::::::
reduced

::::::
proxy

:::::::
samples

:::
are

:::::::
provided

::
in

:::
the

:::::::::::
Supplement.

:::
The

:::::
mean

::::::
spatial

:::::::
averages

:::::
differ

:::
up

::
to

:::
0.6

:
K

::
for

:::::::
MTWA as well as the spatial homogeneity H stay within the uncertainty

ranges of the reference reconstruction. The uncertainty structure of all tests is similar to the reference reconstruction but the

lower number of proxy records leads to an increase of the overall uncertainty. For example, the spatially
::::::
MTCO,

:::
but

:::::
none5

::
of

:::
the

:::::::
changes

::
is

:::::::::
significant

:::
on

:
a
:::
5%

:::::
level.

:::
In

:::::::
contrast,

:::
the

::::::::::
uncertainty

::::::::
estimates

:::
are

:::::::::
consistent

:::::
across

:::
all

:::::::::::
experiments

::::
with

::::::
reduced

::::::
proxy

::::::
samples

:::::
with averaged point-wise 90% CIs

:::
that

:
grow by up to 0.5

::
0.4

:
K . This number is still lowcompared to

the overall uncertainty keeping in mind that the number of proxy samples
:::
from

:::
the

::::::::::::
reconstruction

::::
with

:::
the

:::
full

:::::
proxy

:::::::::
synthesis.

::::::::::
Considering

:::
that

::::
half

:::
the

:::::
proxy

:::::::
samples

:::
are

:::
left

::::
out,

::::
this

::::::
number

::
is

::::
low.

::
In

:::
all

:::::::::::
experiments,

:::
the

:::::
spatial

:::::::::::
homogeneity

:::
H

::
is

:::
not

::::::::::
significantly

:::::::
different

:::::
from

:::
the

:::::
values

:::::::
reported

::
in
:::::
Table

::
3,

::::::
which

:::::
shows

::::
that

:::
the

:::::
spatial

:::::::::::
homogeneity

::
as

::
a
::::
local

::::::
feature

::
is

:::::
more10

::::::::
controlled

:::
by

:::
the

::::::
process

:::::
stage

::::
than

:::
the

:::::
proxy

::::
data.

::
In

:::
all

:::
but

:::
one

::::::::::
experiment,

:::
the

:::::::::::
MPI-ESM-P

:::::::
remains

:::
the

::::::::
ensemble

:::::::
member

::::
with

::
the

::::::
largest

::::::
weight

:::
λk,

:::
and

:::
the

:::::
three

:::::
ESMs

:::::
which

:::
are

::::::::
favoured

:::::
neither

::
in
:::
the

:::::::
MTWA

:::
nor

::
in

:::
the

::::::
MTCO

::::::::::::
reconstruction

:::::
retain

::::
very

:::
low

:::::::
weights

::
in

::
all

:::::::::::
experiments.

:::
But

:::::::::
depending

:::
on

:::::::
whether

:::::
proxy

:::::::
samples

::
in

:::::
which

:::::::
MTCO

::
is

:::::
much

:::
less

::::::::::
constrained

::::
than

::::::
MTWA

:::
are

:::::::
removed

:::
or

:::
not,

:::
the

:::::::
weights

::
of

:::
the

:::
four

:::::::
models

::::
with

:::
the

::::::
highest

:::::
values

::
in
:::
the

::::
joint

::::
and

:::::::
separate

::::::::::::
reconstructions

::::
can

::::
vary

::::
such

:::
that

::
in

:::
one

::::
case

:::
the

:::::::
average

::::::
weight

::
of

:::
the

:::::::::::
EC-Earth-2-2 is reduced by 50%

:::
0.1

:::::
higher

::::
than

:::
the

::::::
weight

::
of

:::::::::::
MPI-ESM-P.15

:::::
These

:::::::
changes

::
of

:::
the

::::::
weights

::::::
explain

:::
the

:::::::
MTCO

::::::
changes

::
in

:::
the

:::::::::
Norwegian

::::
Sea

::
as

:::
this

::
is

:::
the

:::::
region

::::::
which

:
is
:::::
most

::::::::
influenced

:::
by

::
the

:::::::::
ensemble

:::::::
member

::::::
weights. The experiments show that our method

:::
the

::::::::::::
reconstruction is robust with respect to the number

of proxy samples as long as the remaining samples are informative and relatively uniformly distributed across space. In our

example, this is not the case for the Norwegian Sea. Combining pollen records with sea surface temperature proxies could

potentially overcome this issue.20

The more constrained local MTWA reconstructions lead to a higher influence on the joint reconstruction than the local

MTCO reconstructions. Therefore, the MTCO only reconstruction differs more from the MTCO estimate in the joint reconstruction.

Reconstructing MTWA and MTCO jointly should in theory lead to a physically more reasonable reconstruction by creating

samples drawn from the same ensemble member and therefore corresponding to a physically consistent MTWA and MTCO

simulation. On the other hand, Rehfeld et al. (2016) show that multi-variable reconstructions can be biased when signals from25

a dominant variable are transferred to a minor variable. While we believe that the PITM model is less sensitive to this issue

than the weighted averaging partial least squares (WA-PLS) method used in Rehfeld et al. (2016) because it better respects the

larger MTCO uncertainties, it will be subject to future work to study whether joint or separate reconstructions lead to more

reliable results.

The large PMIP3 ensemble spread for most grid boxes shows that the prior distribution, which is calculated from the en-30

semble, contains a wide range of possible states. In areas which are well constrained by proxy data, this large total uncertainty

leads to a reconstruction which depends little on the climatologies of the ensemble members. Hence, in these areas,
:
the recon-

struction is not much influenced by the ensemble member weights
:::::::
sensitive

::
to

:::
the

::::::::
particular

::::::::::
formulation

::
of

:::
the

:::::::
process

:::::
stage

::::::::
(compare

::::
with

:::::::::::
Supplement).

::::
This

:::::
shows

::::
that

:::
our

::::::
method

::
is

:::::::::
applicable

::::::
despite

::::::::::
well-known

:::::::::
model-data

::::::::::
mismatches

:::
for

:::
the

::::
MH

::::::::::::::::
(Mauri et al., 2014). On the other hand, the spatial correlation structure estimated from the ensemble controls the smoothness35

31



of the reconstruction and the
::::::
controls

::::
the spread of local information into space. As the correlation structure becomes more

robust for larger ensemble sizes, it would be desirable to have larger ensembles available for future applications of our method.

In addition, the current ensemble covers only modelling uncertainty, while internal variability and uncertainties in forcings

are not explicitly included. A possible extension of our method would use ensembles which account for all these types of

uncertainty in a structured way allowing the estimation of a better constrained prior distribution. For most of terrestrial Europe,5

the posterior mean is more similar to the local proxy reconstructions than to the prior mean from the unconstrained ensemble.

This shows that the spatial structure is the more important part of the prior distribution compared to the mean state as long as

the prior uncertainty is larger than the proxy uncertainty . Therefore, our method is applicable despite well-known model-data

mismatches for the MH (Mauri et al., 2014)
:::::::
Different

:::::::::::
formulations

::
of

:::
the

::::::
spatial

:::::::::
correlation

::::::
matrix

::::
can

::::
lead

::
to

:::::::::::
substantially

:::::::
different

:::::::::::::
reconstructions

::
in

::::::
regions

::::
that

:::
are

:::
not

::::
well

::::::::::
constrained

::
by

:::::
proxy

:::::::
samples

::::
and

::
in

::::::::
particular

::
a

:::::
spatial

::::::::::
covariance

::::
with10

:::
too

:::
few

::::::
spatial

:::::
modes

::::
can

::::
lead

::
to

:::::
overly

:::::::::
optimistic

:::::::::
uncertainty

::::::::
estimates.

5.2 Comparison with previous reconstructions

Several reconstructions of European climate during the MH have been compiled previously. Here, we compare our reconstruc-

tions to those of Mauri et al. (2015), Simonis et al. (2012), and Bartlein et al. (2011).

Mauri et al. (2015) use a plant functional type modern analogue transferfunction
::::::
transfer

:::::::
function

:
and a thin splate

:::::
spline15

interpolation for pollen samples stemming mostly from the European pollen database. The simpler interpolation method allows

the treatment of the samples as point data and the interpolation of the local reconstructions to an arbitrary grid. Among other

variables, summer and winter temperatures are reconstructed. We find a dipole anomaly structure similar to Mauri et al. (2015)

in our reconstructions, with mostly positive anomalies in northern Europe and negative anomalies in southern Europe. In

Mauri et al. (2015) as well as in our reconstruction, the Alps are the only region with significant warming in central and20

southern Europe for summer temperature. Generally, the amplitude of summer anomalies in the two reconstructions are
::
is

similar, although locally there are differences with cooler anomalies at the British Islands and southern
::::
over

::::::::::::
south-western

Fennoscandia in our reconstruction as well as warmer anomalies in south-eastern Europe and Finland. For winter temperatures,

we do not find the cooling over
:::
the

:::::::
cooling

::
in

:::
the

::::::::::::
Mediterranean

::::
and the British Islands that is reported

:
is

::::
less

::::::::::
pronounced

:::
and

:::::::
spatially

::::
less

:::::::::
consistent

::
in

:::
our

::::::::::::
reconstruction

::::
than

:
in Mauri et al. (2015). As for summer temperatures, we find smaller25

anomalies in southern Fennoscandia. In contrast, our reconstruction shows higher anomalies in northern Scandinavia. In all

other regions, the amplitude of anomalies are similar between the two reconstructions despite some local disagreements.

The same pollen dataset and a closely related transferfunction than in our reconstruction
::::::
another

::::::
version

::
of

::::::
PITM are used

in Simonis et al. (2012) to reconstruct July and January temperature, such that differences between the two reconstructions are

mostly related to the different smoothing technique. Simonis et al. (2012) minimize a cost function which combines pollen30

samples with an advection-diffusion model that is driven by insolation changes between the MH and today. In Simonis et al.

(2012), the dipole structure is not found in the same way than in our reconstruction, which might be due to the different way

how regions which are not well constrained by proxy data are treated. Both reconstructions share positive summer temper-

ature anomalies in northern Europe as well as negative anomalies in central Europe and the Iberian peninsula. Unlike our
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reconstruction, Simonis et al. (2012) find positive anomalies in western and south-eastern Europe. For winter temperatures,

the reconstruction of Simonis et al. (2012) shows an east-west dipole in contrast to the north-east to south-west dipole in our

reconstruction. This different structure might be due to the smaller proxy data control of the winter reconstructions, which

leads to a higher importance of the interpolation schemes.

A reconstruction designed to evaluate the PMIP3 simulations was provided by Bartlein et al. (2011). They combine a large5

number of pollen based local reconstructions from the literature to produce a gridded product of six climate variables including

MTWA and MTCO. In contrast to our reconstruction, the used local reconstructions are not smoothed across space but only

within a grid box. Their results show a dipole structure but less pronounced than in our reconstruction and in Mauri et al. (2015).

In particular, they find a cooling for eastern Fennoscandia in summer, a much smaller warming of northern Fennoscandia than

our reconstruction, and a warming in Germany and France. On the other hand, the reported anomalies in Bartlein et al. (2011)10

for the Mediterranean and eastern Europe are similar to our results.

The comparisons show that patterns like the dipole type anomaly structure, which are not present in the PMIP3 ensemble,

seem to be consistent across pollen transferfunctions
::::::
transfer

::::::::
functions. While some of the differences between the existing

literature and our results can be explained by the used transferfunctions
::::::
transfer

::::::::
functions

:
and proxy syntheses, the choice of

an appropriate interpolation method plays an important role, too, especially in areas with very sparse and weakly informative15

proxy data and to determine the degree of smoothing.

To facilitate more quantitative comparisons of reconstructions and allow a fair testing of modelling assumptions, we plan to

expand our current framework to

5.3
::::::

Climate
::::::
model

::::::::::
inadequacy

::::
and

:::::::
process

:::::
stage

::::::::
structure

::
To

:::::::
account

::
for

:::::::::::
inadequacies

::
of

:::::::
climate

::::::
models

::
to

:::::::
simulate

:::
past

:::::::
climate

:::::
states,

:::
we

:::::::::
introduced

::::::
flexible

::::::::
ensemble

:::::::
member

:::::::
weights20

:
λ
:::
and

:::
the

::::::::
shrinkage

::::::
matrix

::::::::
approach

:::::
which

::::::::
combines

:::
the

::::::::
empirical

:::::::::
covariance

:::::
matrix

::
of
:::
the

:::::::
climate

::::::::
ensemble

:::
with

::
a
:::::
matrix

::::
that

:
is
:::::::
derived

::::
from

::
an

:::::::::::
independent

::::::::
physically

:::::::::
motivated

::::::
model.

:::::::::
Combining

::::::::
ensemble

:::::::
filtering

:::::::
methods

::::
with

:::::::::
additional

:::::::::
techniques

::
to

::::::
correct

:::::
model

::::::
biases

::
in

:
a
:::::::::
physically

::::::::
consistent

::::
way

::
is

::
an

:::::::::
important

:::
but

:::
also

::::::::::
challenging

::::::::
direction

::
of

:::::
future

:::::
work

::
on

:::::::
climate

::::
field

::::::::::::
reconstructions

:::
as

:
a
:::::::
balance

:::
has

::
to

::
be

::::::
found

:::::::
between

::::::::::::::
under-dispersion

::
of

:::
the

::::::::
posterior

:::::::::
distribution

:::
by

::::::::
inducing

:::::::
physcial

:::::::
structure

::::
and

:::::::::
overfitting

::
to

:::::
noisy

::::::
proxy

::::
data

::
by

:::::::::
enhancing

::::
the

::::::
degrees

:::
of

::::::::
freedom.

:::::::
Beyond

:::
the

::::::::
strategies

:::::::::::
implemented

:::
in25

:::
this

:::::
work,

:::::
some

::::::::
directions

::::
that

:::
can

:::
be

::::::::
envisaged

:::
are

::::
the

:::::::
increase

::
of

::::::::
permitted

::::::
spatial

::::::::
structures

:::
in

:::
the

::::
prior

:::::
mean

:::
by

::::::
adding

::::::
patterns

:::::::::
calculated

:::::
from

:::::::::
alternative

:::::::::
physically

:::::::::
motivated

:::::::
models,

:::
and

:::
the

:::::::::::
introduction

::
of

::::::::
multiple

::::::::
shrinkage

::::::
targets

:::
in

:::
the

:::::
spatial

:::::::::
covariance

::::::
matrix

:::::::::::::::
(Gray et al., 2018)

:
.

::
In

:::::::
addition

::
to

:::::
those

::::::::::
extensions

::
of

:::
the

:::::::
current

:::::::
filtering

::::::::::
framework, different types of transferfunctions and interpolation

techniques. In particular, an implementation of a parametric process stage using the model of Simonis et al. (2012), which is30

independent of climate simulation output, is envisaged
::::::
process

::::::
stages

:::
can

::
be

:::::::::
envisaged

:::::
which

:::
are

:::::::::::
independent

::
of

::::::::::
simulations

::::
with

:::::
ESMs

:::
but

::::
still

::::::::
computed

::::
from

::::::::
physical

:::::::::
principles.

:::
One

::::::::
example

:::
are

::::::::
stochastic

::::::
energy

:::::::
balance

::::::
models,

::::::
which

:::
are

::::::
simple

::::::::
stochastic

::::::
climate

:::::::
models

:::
that

::::::::
simulate

:::
the

::::::
energy

:::::
fluxes

::::::::
between

:::::::
external

::::::
forcing,

:::::::::::
atmosphere,

:::
and

:::::::
surface.

::::::
These

::::
types

:::
of

::::::
models

::::
have

:::::::
become

::::::::
important

::::
tools

::
in

::::::
studies

::
of

:::::::
climate

::::::::
variability

:::::::::::::::::
Rypdal et al. (2015)

:::
and

:::::
could

::
be

:::::::::::
reformulated

::
as

:::::::
process
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::::
stage

::
in

:::::::
BHMs.

:::
The

:::::::::
advantage

::
of

::::
such

::
a

::::::
process

:::::
stage

::
is

:::
that

::
it

:::
can

::
be

:::::
fully

::::::::
integrated

::
in

:::
the

:::::
BHM

:::::::
instead

::
of

:::::
using

::
an

::::::
offline

:::
run

::::
with

::
an

:::::
ESM

:::::
which

:::::
does

:::
not

::::
learn

:::::
from

:::
the

:::::
proxy

::::
data.

:::
In

:::::::
addition,

::::::
spatial

:::::::::::::
reconstructions

:::
that

:::
are

:::::::::::
independent

::
of

:::::
ESM

::::::
output,

:::
are

::::
more

:::::::
suitable

:::
for

::::::::::
comparisons

::
of
::::::
proxy

:::
data

::::
and

::::::
climate

::::::::::
simulations

::::
than

:::
the

::::::::
Bayesian

:::::::
filtering

:::::::
approach.

5.4 Towards global and spatio-temporal reconstructions

A
::::::
Another

:
valuable extension of our approach would be the computation of reconstructions on hemispheric to global scales. In5

this case, a more flexible structure for the ensemble member weights is desirable to account for the varying skill of climate mod-

els in different regions. On the other hand, the weights should not change too much within small domains to avoid unreasonable

spatial heterogeneity. A way to combine those two aspects would be a cost function for the model weights, which combines a

spatial smoothing term and the local fit of the ensemble members with proxy data. The balancing of those two terms to optimize

the degree of smoothing and to respect the local proxy reconstructions is a challenging task itself. An additional problem is10

that the penalty parameter ρ in the glasso algorithm is applied locally, such that
::::::::
stationary

:::::::::
shrinkage

:::::
target

::::::
matrix

:::::
would

:::
no

:::::
longer

:::
be

:
a
:::::
good

::::::::::::
approximation

::
as

:
different regions require different values of ρ to result in a numerically stable covariance

matrix and to optimize the criteria described in Sect. ??. While glasso allows spatially varying penalty parameters, optimizing

the values in an objective way is a complicated issue. An alternative would be the reformulation of the penalty term in Eq.

(??), such that not only local properties are optimized but also the structure between subregions. One possibility to achieve15

this could be the use of an additional L2-penalization as in Zou et al. (2006)
::::
target

::::::::
matrices.

::::
This

::::::
means

:::
that

:::::::::::::::
non-stationarities

::::
have

::
to

::
be

:::::::::
integrated

::
in

:::
the

::::::::
shrinkage

:::::
target.

::
A

:::::::::::::
straightforward

::
to

::::::::::
accomplish

:::
this

::::
way

::
is

::
to

::::::::
introduce

::::::::::
non-constant

::::::::::
parameters

::
in

:::
the

:::::::::
stochastic

:::::
partial

::::::::::
differential

:::::::
equation

::::::
behind

:::
the

::::::
Matérn

::::::
model

::::::::::::::::::
(Lindgren et al., 2011).

Computing spatio-temporal reconstructions with our approach currently faces two challenges: The increasing dimensionality

due to the additional temporal component, and the small number of available transient paleosimulations with comprehensive20

ESMs
:::
The

:::::::::::::
implementation

::
of

::::
these

::::::::
different

::::
types

::
of

:::::::
process

:::::
stages

:::::
would

::::::::
facilitate

::::
more

::::::::::
quantitative

::::::::::
comparisons

::
of
:::::::::::::
reconstructions

:::
and

:::::
allow

::
a

:::
fair

::::::
testing

:::
of

:::::::::
modelling

::::::::::
assumptions

:::
by

:::::
using

:::::
ITEs

:::
and

::::::
CVEs. In particular, for time scales beyond the last

millennium, there is currently no multi-model ensemble available which is comparable to the PMIP3 simulations for the MH.

To deal with the higher dimension a method to reduce the complexity is necessary. One way could be a separation of time and

space but this might lead to a breakup of the temporal structure in the climate simulations resulting in inconsistencies in the25

reconstructions. More generally, any method to reduce the degrees of freedom in the reconstruction can lead to a significant

underestimation of uncertainty if either the dimensionality is reduced too much or if the retained spatio-temporal patterns

are too far from reality. A possibility to deal with both problems would be a Bayesian framework that combines a flexible

parametric interpolation method featuring a large number of degrees of freedom with additional constraints from transient as

well as time slice simulations to increase the physical consistency
:::
the

:::::::::::
reformulation

:::
of

:::::::
existing

::::::
climate

:::::
field

::::::::::::
reconstruction30

:::::::::
techniques

::
as

:::::
BHM

::::::::::::::::::
(Tingley et al., 2012)

:::::
offers

:::::
many

::::::
model

::::::::::
comparison

:::::::::
techniques

::::
that

:::
are

::::::::
currently

:::
not

::::::::
available

:::
as

:::
the

::::::
borders

:::::::
between

::::
very

::::::::
different

::::::::
statistical

:::::::::
techniques

::::::::
especially

::
to

:::::::
estimate

::::::::::::
reconstruction

:::::::::::
uncertainties

::::
have

::
to

:::
be

::::::
crossed.
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6 Conclusions

We presented a new method for probabilistic spatial reconstructions of paleoclimate. The approach combines the strengths of

pollen records, which provide information about the climate state in a small scale domain, and of climate simulations, which

downscale forcing conditions to physically consistent regional climate patterns. Thus, we reconstruct physically reasonable

spatial fields, which are consistent with a given proxy synthesis. Bayesian modelling combined with MCMC methods is well5

suited for paleoclimate reconstructions as it can include multiple sources of information together with the corresponding

uncertainties, and facilitates the separate modelling of proxy-climate transferfunctions and stochastic interpolation between

proxy samples. Our framework can deal with probabilistic transferfunctions
::::::
transfer

::::::::
functions, which are non-linear and non-

Gaussian, such that an extension to a wide range of proxies and associated transferfunctions
::::::
transfer

::::::::
functions

:
is possible.

:::::
Using

::::
ITEs

::::
and

::::::
CVEs,

:::
we

:::::::
showed

:::
that

::::::
robust

::::::
spatial

:::::::::::::
reconstructions

::::
with

::::::::
Bayesian

:::::::
filtering

::::::::
methods

:::
that

:::::::
exhibit

:::::
small10

:::::
biases

:::
and

:::
are

:::
not

:::::::::::::
under-dispersed

:::
are

:::::::
possible

::
as

::::
long

::
as

:::
the

::::::::
statistical

:::::::::
framework

::
is

::::::
flexible

:::::::
enough

:
to
:::::::
account

:::
for

::::::::::
deficiencies

::
of

::::::
climate

::::::::::
simulations

::::
and

::
to

:::::
avoid

::::
filter

:::::::::::
degeneracy,

:::::
which

::::
can

::::::
emerge

::::
due

::
to

:::::
small

::::::::
ensemble

:::::
sizes

:::
and

::::::
biases

::
in

:::::::
climate

::::::::::
simulations.

::::::::
However,

::
all

:::::
these

:::::::::
properties

:::
can

:::
be

:::
lost

:::::
when

:::
the

::::::
model

::::
does

:::
not

:::::::::
adequately

:::::::
account

:::
for

:::::
those

:::
two

::::::
issues.

::::
The

:::::::
resulting

::::::
model,

::::::
which

::
is

::::
used

:::
for

::::::
spatial

::::::::::::
reconstructions

:::
of

::::::::
European

::::
MH

:::::::
climate,

::::
uses

:
a
::::::::
weighted

:::::::
average

::
of

:::
the

::::::::
involved

::::::::
ensemble

:::::::
member

:::::::::::
climatologies

::::
and

:
a
::::::::
shrinkage

::::::
matrix

::::::::
approach

:::
for

::::::
spatial

:::::::::::
interpolation

:::
and

::::::::
structural

:::::::::::
extrapolation

:::
of

:::
the15

:::::
proxy

::::
data.

::
A

:::::
strong

:::::::::::::
over-dispersion

::
is

:::::
found

::
in

::::
ITEs

:::::
which

::
is
::::
less

::::::
harmful

::::
than

::::::::::::::
under-dispersion

:::::::
because

:
it
::::::
avoids

:::
the

:::::::
drawing

::
of

:::::::::::
overconfident

:::::::::::
conclusions.

We apply our framework to
::::::::
reconstruct

:
MTWA and MTCO in Europe during the MH using the proxy synthesis of Simonis

et al. (2012) and the PMIP3 MH ensemble. Brier scores from cross-validations reveal that the spatial reconstruction predomi-

nantly adds value to the unconstrained PMIP3 ensemble, and analyses of the spatial homogeneity of the posterior distribution20

indicate a reasonable degree of smoothing through the induced correlation structure. The large scale spatial patterns of our

reconstruction are in agreement with previous work (Mauri et al., 2015; Bartlein et al., 2011). As the posterior mean is more

similar to the local proxy reconstructions than to the prior mean for most terrestrial areas, we see that the main role of the

simulation ensemble is to provide a spatial correlation
:::::::::
covariance structure and that a reconstruction, which is in line with

reconstructions that do not include simulation output, is possible despite well-known model-data mismatches (Mauri et al.,25

2014). Our framework provides a way to quantitatively test hypotheses in paleoclimatology and to assess the consistency of

a given proxy synthesis. This includes the fit with large scale structures, the spatial homogeneity, and the quantitative quality

control of the proxy data by identification of potential outliers.

In future work, we plan to apply our framework to new multi-proxy syntheses like the one currently compiled in the German

PalMod project (www. palmod. de). This includes the incorporation of new proxies and transferfunctions as well as the use of30

larger spatial domains. In particular, the lower degree of uncertainty reduction for the marine parts of the domain suggests an

inclusion of supplementary marine proxies. Moreover, the addition of new high resolution paleosimulations for example from

the ongoing PalMod and Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4) projects (Kageyama et al., 2018)
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will lead to a better quantification of uncertainties in the prior mixture distribution and, subsequently, to more robust reconstructions.

The hierarchical structure of the framework permits the replacement of the spatial interpolation module by other types of

stochastic interpolation, e. g. geostatistical models (Tingley et al., 2012) or simple physical models (Gebhardt et al., 2008). The

comparison of our current framework with these different modelling assumptions will lead to an improved understanding of5

the spatial patterns of past climate .

Code and data availability. R code for computing reconstructions with the presented Bayesian framework is provided in a Bitbucket repos-

itory available under https://bitbucket.org/nils_weitzel/spatial_reconstr_repo. The pollen and macrofossil synthesis is published in Simonis

(2009). It is available as an R list object in the Bitbucket repository. The PMIP3 MH simulations are available in the CMIP5 archives.

In this study, they were downloaded from the DKRZ long term archive CERA (https://cera-www.dkrz.de). The modern climate data was10

downloaded from the University of East Anglia Climate Research Unit, available at http://www.cru.uea.ac.uk/data/. The vegetation data for

transfer function calibration was provided by Thomas Litt and Norbert Kühl.

Appendix A:
::::::::::::
Determination

:::
of

:::::
glasso

:::::::
penalty

:::::::::
parameter

::
To

:::::::::
determine

:::
the

::::::
glasso

::::::
penalty

:::::::::
parameter

::
ρ,

:::
we

::::
first

::::::::
recognize

::::
that

:::
for

::::::
values

:::::::
smaller

::::
than

::::::
ρ= 0.3

::::
the

:::::::
resulting

::::::::
matrices

::::::
become

::::::::::
numerically

::::::::
unstable

::
in

:::
our

::::::::::
application

:::
due

::
to
::::

the
:::::
small

::::::::
ensemble

::::
size.

::::
Five

::::::
values

:::
for

:
ρ
:::::

were
::::::
tested:

:::
0.3,

::::
0.5,

::::
0.7,15

:::
1.0,

:::
and

::::
2.0.

::::::
Larger

:::::
values

::::
lead

::
to
:::::::

sparser
::::::::
precision

:::::::
matrices

:::
and

::::::::
therefore

::
to

:::::::
smaller

::::::
spatial

::::::::::
correlations.

::::
This

::
in

::::
turn

::::::
means

:::
that

:::
the

:::::
local

::::::::::
information

::::
from

:::
the

::::::
proxy

::::
data

::
is

::::::
spread

:::
less

::::
into

::::::
space.

:::
For

::::
each

:::
of

:::
the

:::
five

::::::::::
parameters,

:::
we

:::::::
perform

::::::
CVEs

::::
with

:::
the

:::
RM

::::
and

:::::::
compare

:::
the

::::::::
resulting

:::
BS

::::
(see

:::::
Sect.

:::::
4.1.2).

::::::
While

:::
the

:::::::
smallest

:::::::
penalty

:::::::::
parameters

::::
have

:::
the

::::
best

:::::
mean

::::
BS,

::
the

::::::::::
differences

:::
are

::::::::
generally

:::::
small

::::
(see

:::::::::::
Supplement).

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::::
influence

::
of

:::
the

::::::
penalty

:::::
term

::
in

:::
Eq.

::::
(14)

:::
on

:::
the

:::::
overall

:::::::::
regression

::::::::
increases

:::::
from

:::::
79.5%

:::
for

:::::::
ρ= 0.3

::
to

::::::
98.5%

::
for

::::::::
ρ= 2.0.

:::::
Based

:::
on

::::
these

::::::::::
diagnostics,

:::
we

::::::
choose

:::::::
ρ= 0.3

:::
for20

::
the

:::::::::::::
reconstructions

::
in
:::::
Sect.

::
4

::
to

:::
get

:
a
::::::::::
numerically

::::::
stable

:::::::::
covariance

:::::
which

::::::::
performs

::
at

::::
least

:::
as

::::
good

::
as

:::::
other

:::::::
choices

::
of

::
ρ

::
in

:::::
CVEs,

::::
and

:
is
::::::::::
comparably

:::::
little

::::::::
influenced

:::
by

:::
the

::::::
penalty

:::::
term.

:::
The

:::::::::
sensitivity

::
of

:::
the

::::::::::::
reconstruction

::::
with

::::::
respect

::
to
::
ρ
::
is

::::::
further

::::::
studied

::
in

:::
the

::::::::::
Supplement.

:

Appendix B:
:::::::::
Shrinkage

:::::
target

::::::
matrix

:::
The

:::::::::
shrinkage

:::::
target

::
Φ
::

is
:::::::

defined
:::

on
::
a
::::::
regular

::::::
lat-lon

::::
grid

:::::::::
following

:::
the

::::::
SPDE

::::::::
approach

::
of
:::::::::::::::::::

Lindgren et al. (2011).
:::::

This25

:::::::
approach

::::::
allows

:
a
::::::::::::::
computationally

::::::
efficient

:::::::::::::
approximation

::
of

::::::
Matérn

:::::::::
covariances

::::
with

::::::::::
parameters

:::
that

:::
are

::::::::
physically

:::::::::
motivated

::
in

:::
the

::::::
context

::
of

:::::::::
stochastic

:::::::
Laplace

:::::::::
equations,

:::::
which

::::::
model

:::::::
diffusive

::::::::
transport

::
of

::
a
::::::::
stochastic

:::::::
forcing.

:::::::
Setting

::::::::
ζ2 := 8

ρ2 ,
:::
the

::::
range

:::::::::
parameter

::
ρ

::
is

:::::::
rewritten

:::
as

:
a
:::::
scale

::::::::
parameter

:::
ζ2.

:::::::::
Moreover,

:::
we

:::
let

:::
the

:::::::::
anisotropy

::::::::
parameter

::
ν

:::::::::::
parameterize

:
a
::::::::
diagonal

:::::::
diffusion

::::::
matrix

::::::::::::::::::::::::::::
υ := Diag(sin(νπ/2),cos(νπ/2)).

:::::
Then,

:::
the

:::::::::
stochastic

:::::
partial

::::::::::
differential

:::::::
equation

::::
from

::::::
which

::
Φ

::
is

:::::::
deduced
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:
is
:::::
given

:::
by

(
ζ2−∇ · (υ∇)

)
X(x) =W(x).

:::::::::::::::::::::::::
(B1)

::
W

:::::::
denotes

:::::
white

:::::
noise,

::::
and

::
X

::
is
:::
the

:::::::::
stationary

::::::::
Gaussian

:::::::
random

::::
field

:::
that

::::::
solves

:::
Eq.

:::::
(B1).

::::::::::
Discretizing

::::
this

::::::::
equation

::::
with

:::::
linear

::::
finite

:::::::::
elements,

:::
and

:::::
using

::
a
::::::::
diagonal

::::::::::::
approximation

::
of

::::
the

:::::::
involved

:::::
mass

::::::
matrix

:::::
leads

::
to

::
a

::::::
GMRF

::::
with

::::::::::
correlation

:::::
matrix

::
Φ̂

:::::::::::::::::::
(Lindgren et al., 2011).

:::
We

::::
use

:::::
degree

:::
as

:::::::
distance

:::
unit

:::
on

:::
the

::::::
regular

::::::
lat-lon

::::
grid

::::::
instead

::
of m

:::::
which

:::::
means

::::
that

:::
the5

:::::::::::
decorrelation

:::::
length

:::::::
depends

:::
on

:::
the

:::::::
latitude.

:::::
While

::::
this

::
is

:::::::::::::
counterintuitive

::
on

::::
first

::::::
glance,

::
it
:::::
better

:::::::
reflects

:::
the

::::::
mostly

::::::
shorter

:::::::::::
decorrelation

::::::
lengths

::
in

:::::
higher

:::::::
latitudes

::::
and

::::
leads

::
to

:
a
:::::
better

::::::
model

::
fit.

::
Φ

::
is

::::::::::
constructed

::::
from

::
Φ̂

::
by

:::::::::
combining

::::::
spatial

:::::::::
correlation

:::::::
matrices

::
of

::::
type

::
Φ̂

::
for

:::::
each

::::::
climate

:::::::
variable,

::::
that

:
is
::::::
jointly

::::::::::::
reconstructed,

:::
but

::::
with

:::::::
different

:::::::::
parameters

::
ρ

:::
and

::
ν

::
for

::::
each

:::::::
climate

:::::::
variable,

::
in

:
a
:::::
block

::::::::
diagonal

::::::::
structure.

Appendix C: Full conditional distributions10

The Metropolis-within-Gibbs approach samples (asymptotically) from the full conditional distributions of each variable, i.e.

the distribution of the variable given all other variables. Some variables are treated block-wise to account for correlations

between them, while others are updated sequentially if they are independent from each other or the joint distribution is too

complicated for efficient sampling. In this appendix, we detail the conditional distributions that are used for sampling.

To sample the transferfunction
::::::
transfer

:::::::
function

:
parameters, we introduce PG distributed augmented variables γTl , where15

T ∈ T (P ) and l = 1, ...,L(T ) are the number of observations for taxa T (Polson et al., 2013). γTl is PG distributed given

βT = (βT1 , ...,β
T
6 ) and climate data C(l) = (C1(l),C2(l)), where C1 and C2 denote MTWA and MTCO. More precisely, the

full conditional distribution is given by

γTl | βT , C(l) ∼ PG(n= 1,XC(l) ·βT ), (C1)

where XC(l) :=
(
1,C1(l),C2(l),C1(l)C2(l),C1(l)2,C2(l)2

)
. (C2)20

Including the Gaussian prior defined in Sect. ??
:::
3.2, the full conditional of βT is multivariate normal

:::::::
Gaussian

:
distributed:

βT | PTm, PTp , γT1 , ...,γTL(T ) ∼ N
(
VγX

tκT ,Vγ
)
, (C3)

where Vγ :=
(
XtΓX +B−1

)−1
. (C4)

Here, X is a matrix with rows XC(l) for l = 1, ...,L(T ), Γ is a diagonal matrix with entries γTl , B is the 6×6 prior covariance

matrix of βT , and κT is a vector with entries
(
PT (l)− 1

2

)
, where PT (l) is the presence or absence of taxa T in observation25

l. In our case, B is a diagonal matrix with all values equal to 10. Details on the definition of PG variables and the augmented

Gibbs sampler can be found in Polson et al. (2013).
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The
:::::::
Sampling

:::::
from

::
ϑ

:::::::
depends

:::
on

:::
the

:::::::
specific

::::::
version

::
of

:::
the

:::::::
process

:::::
stage

:::::
which

::
is
:::::

used.
:::
In

:::
the

::::
RM,

::::::::::::::
λ= (λ1, ...,λK)

::
is

::::::::
influenced

:::
by

::
its

:::::
prior

:::
and

::
by

:::
the

::::::::
Gaussian

::::::::::
distribution

::
of

:::
Cp:::::

given
::
λ:

:

λ| Cp ∼ Dirichlet
(

1
2 , ...,

1
2

)
N
(
Cp

∣∣∣∣
∑

k=1

λkµk,Σprior

)
.

::::::::::::::::::::::::::::::::::::::::::::::::

(C5)

::::
This

:::
full

:::::::::
conditional

:::::
does

:::
not

:::::
follow

::
a
:::::::::
probability

::::::::::
distribution

::::
from

::::::
which

:::
we

:::
can

::::::
sample

:::::::
directly.

:::::::::
Therefore,

::
a

::::::
random

:::::
walk

:::
type

:::::::::::::::::
Metropolis-Hastings

::::::
update

::
is

::::
used

:::
for

::::::::
updating

::
λ.5

::
In

:::
the

::::
KM,

:::
the full conditional of ω = (ω1, ...,ωK) is Dirichlet distributed given z = (z1, ...zK) and its Dirichlet prior:

ω | z ∼ Dirichlet
(

1
2 + z1, ...,

1
2 + zK

)
. (C6)

Given ω and Cp, z is multinomially distributed:
::::::::::
categorically

:::::::::
distributed:

:

z | ω, Cp ∼ MultinomialCat
::

(
n= 1,α1, ...,αK

)
, (C7)

where αk :=
ωk ·exp

(
− 1

2 (Cp−µk)t Σ−1
prior (Cp−µk)

)
∑K

i=1

(
ωi ·exp

(
− 1

2 (Cp−µi)t Σ−1
prior (Cp−µi)

)) (C8)10

:
If
:::::::::
shrinkage

:::::::::
covariance

:::::::
matrices

:::
are

:::::
used,

:::
the

::::::::::
parameters

::::::
(α,ρ,ν)

::::
have

:::
to

::
be

::::::
chosen

::
in
:::::

each
:::::::
MCMC

:::
step

:::::
from

:::
one

:::
of

:::
the

:::::
K = 7

:::::::::
predefined

:::::::::
parameter

::::
sets.

:::
We

:::
use

::
a
:::::::
uniform

:::::
prior,

:::
i.e.

::
all

:::::
seven

:::::::::
parameter

:::
sets

:::::
have

:::
the

::::
same

:::::
prior

::::::::::
probability.

:::::
Then,

::
the

::::
full

:::::::::
conditional

::
of

::
τ
:::::
which

:::::::
indexes

:::
the

::::::::
parameter

::::
set,

:
is
:::::
given

:::
by

τ | Cp, µ̂ ∼ N
(
Cp

∣∣∣∣
∑

k=1

µ̂,Σprior(ατ ,ρτ ,ντ )

)
,

:::::::::::::::::::::::::::::::::::::::::

(C9)

:::::
where

::̂
µ

::
is

:::::
given

::::::::
according

::
to
:::::::::::

conditioning
:::
on

:::
the

::::::
process

:::::
stage

::::::::::
parameters

::
of

:::
the

::::
GM,

:::::
RM,

::
or

::::
KM.

::::
We

:::::
update

::
τ
:::::
using

:::
an15

::::::::::::::::
Metropolis-Hastings

::::
step

::::
with

::::::::::
independent

:::::::::
proposals,

::::::
which

::::::
choose

:::::
τ = k

::::
with

:::::::::
probability

:::

1
K .

:

We update Cp(x) for x ∈ xP sequentially using random walk Metropolis-Hastings sampling. The set of all grid boxes but

::::::
besides x is denoted by Yx, and let Σ−1

prior(a,b) be the block of the inverse covariance matrix containing the rows a and columns

b. Then, the full conditional distribution of Cp(x) depends on the pollen samples Pp(s) with location xs = x, the climate

Cp(Yx) at the other locations, and the chosen model z with zk = 1
::::::
process

:::::
stage

:::::::::
parameters

::
ϑ. It does not follow a standard20

distribution:

Cp(x) | Pp, Cp(Yx), zϑ
:
∼ N

(
µ̃k(x),

(
Σ−1

prior(x,x)
)−1

) ∏

s
with
xs=x

∏

T∈T (s)

logit
(
XCp(x) ·βT

)
, (C10)

where µ̃k(x) := µµ̂k(x)−
(

Σ−1
prior(x,x)

)−1

Σ−1
prior(x,Yx)

(
Cp(Yx)−µµ̂k(Yx)

)
. (C11)

The step size of the random walk proposals is controlled by the conditional covariance
(

Σ−1
prior(x,x)

)−1

.
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Conditioned on Cp(xP ) and z with zk = 1
:
ϑ, Cp(xQ) follows a Gaussian distribution:

Cp(xQ) | Cp(xP ), zϑ
:
∼ N

(
µ̃k(xQ),

(
Σ−1

prior(xQ,xQ)
)−1

)
, (C12)

where µ̃k(xQ) := µµ̂k(xQ)−
(

Σ−1
prior(xQ,xQ)

)−1

Σ−1
prior(xQ,xP )

(
Cp(xP )−µµ̂k(xP )

)
. (C13)

Appendix D: Pseudo-code for MC3
:::::::::
Metropolis

:::::::
coupled

::::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

:
algorithm

For our reconstructions, we use J = 2500 iterations of M = 30 steps to draw altogether 75, 000 samples from A= 8 MCMC5

chains (see Sect. ??). The
::
As

::::::::
described

::
in
:::::
Sect.

:::
3.4,

:::
the

:::::::::::::
multi-modality

::
of

::
the

::::
KM

::
in

:::::::::::
combination

::::
with

::
the

::::
high

:::::::::::::
dimensionality

::
of

:::
the

:::::::
posterior

::::::
makes

::
the

::::::::
standard

::::::
MCMC

:::::::::
algorithm

:::
very

:::::::::
inefficient.

:::
In

:::
our

::::::
specific

::::::::::
formulation

:::
the

::::::::::
inefficiency

::
is

:::::::::
manifested

::
in

:
a
::::
very

::::
slow

::::::
mixing

::
of

::
z,

:::::::
because

::::::::::
conditioned

::
on

:::
Cp:::

the
:::::::::
likelihood

::
of

:::::::
choosing

::
a
:::
new

::::::
model

:::
zk,

::::
from

:::
one

:::::::
MCMC

::::
step

::
to

:::
the

:::
next

::::
one

::
is

::::
very

:::::
small.

::::
This

:::::::
problem

:::::
could

:::
be

:::::
shifted

:::
to

::::
other

::::::::
variables

::
by

:::::::::
integrating

:::
out

::
z,
::::
but

:::
than

:::
the

::::::::::
conditional

::::::::
Gaussian

:::::::
structure

::
of

::::
Cp :::::

would
:::

be
::::
lost

:::::
which

::::::
would

::::
lead

:::
to

::::
new

:::::::::
challenges

:::
for

:::::::::
generating

::::::::
efficient

:::::::
MCMC

:::::::::
strategies.

:::::::::
Therefore,10

::
we

:::::
apply

::
a MC3 algorithm follows the pseudo-code in Algorithm ??

::
or

::::::
parallel

:::::::::
tempering

:::::::
strategy.

::::
The

::::::
original

:::::::
strategy

:::::
from

:::::::::::
Geyer (1991)

:::
was

:::::::
adapted

::
to

::::::
parallel

::::::::
computer

:::::::::::
architectures

::
by

:::::::::::::::::
Altekar et al. (2004)

:::
and

::::::
applied

::
in

::
a

::::::::::
paleoclimate

::::::::::::
reconstruction

:::::::
problem

::
by

::::::::::::::::::::::
Werner and Tingley (2015).

If the modularized version is used, 75, 000 samples of the transferfunction parameters θ are drawn first. These are used for

subsequent reconstructions which follow the pseudo-code without sampling the transferfunction parameters
:::
We

:::
run

::
A

:::::::
MCMC15

:::::
chains

::
in

:::::::
parallel,

::::
and

::::
after

:::::
every

:::
M

:::::
steps,

:::
we

:::
use

:::
an

:::::::::
additional

:::::::::::::::::
Metropolis-Hastings

:::
step

:::
to

::::
swap

:::
the

:::::
states

:::
of

:::
the

:::::::
Markov

:::::
chains

:::
a1 :::

and
:::
a2 ::::

with
:::::::::
probability

::::::::::::::
0 < pa1,a2 < 1,

::::::
where

:::::
pa1,a2::

is
:::::::::
calculated

:::::
from

:::
the

:::::::::::::::::
Metropolis-Hastings

::::
odds

:::::
ratio.

::::
The

::::::
Markov

::::::
chains

:::
are

::::::
created

::
by

::::::::::::
exponentiating

:::
the

:::::::
process

::::
stage

::::
and

::
the

::::
data

:::::
stage

::
by

::::::::
constants

::::::::::::::::::::
ν1 = 1 > ... > νA > 0.

:::
The

::::
first

::::::
Markov

:::::
chain

:::::::
(ν1 = 1)

::::::::::::
asymptotically

::::::
retains

:::
the

:::::::
original

:::::::
posterior

::::::::::
distribution

:::
for

::
all

::::::::
variables,

:::::::
whereas

:::
the

:::::::::
subsequent

::::::
chains

::::::
sample

::::
from

::
a

:::::
flatter

::::::::
posterior

::::::::::
distribution,

::
in

::::::
which

:
it
::
is
::::::
easier

::
to

::::
jump

:::::
from

:::
one

:::::::
mixture

::::::::::
component

::
to

:::::::
another.

:::::::::
Following20

::::::::
empirical

::::::
testing,

:::
we

:::
run

:::
the

::::::::
European

::::::::::::
reconstructions

::::
with

::::::
A= 8

::::::
parallel

::::::
chains,

:::::
levels

:::::::::::::::::::::::::::::::
ν1 = 1,ν2 = 1.25−1, ...,ν8 = 1.25−7,

:::
and

:::::
swaps

::::
after

:::::
every

:::::::
M = 30

:::::
steps.

:::::::::::
Pseudo-code

:::
for

:::
the

::::
MC3

:::::::::
algorithm

::
is

::::
given

::
in
:::
the

::::::::
appendix.
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(d) Ensemble standard deviation, MTCO

Figure 1. PMIP3 MH ensemble mean anomaly from CRU reference climatology, (a) MTWA, (b) MTCO, and ensemble spread as size of

point-wise 90% CIs
:::::::
empirical

:::::::
standard

:::::::
deviation of the prior mixture distribution

:::::::
ensemble

:::::::
members, (c) MTWA, (d) MTCO. Black dots

depict proxy samples from Simonis et al. (2012).In the top row, point-wise significant anomalies (5% level) are marked by black crosses.
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Spatial structure

from PMIP3 ensemble

µ1, ..., µk,Σemp

Past climate

P(Cp|ϑ) ∼ Gaussian

Model parameters

P(ϑ)

Fossil pollen

P(Pp|Cp, θ) =
∏

s

∏
T (s) P(P T

p (s)|Cp(xs), β
T )

Transferfunction

parameters

θ =
(
βT
i , i = 1, ..., 6, T ∈ T (P )

)

P(βT
i ) ∼ N (0, 10),

Modern pollen

P(Pm|Cm, θ) =
∏

T

∏
s P(P T

m(s)|Cm(xs), β
T )

Modern climate

Cm

Figure 2. Directed acyclic graph corresponding to the Bayesian framework Eq. (??
:
2). Involved quantities are given by nodes and arrows

indicate dependences of variables. Details of the formulas are explained in Sect. ??
::
3.2

:
and ??

::
3.3. White: inferred quantities; gray: input

data.
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Figure 3. Response functions for Betula nana (a) and Hedera helix (b). The probability of presence
::::::
relative

:::::::
frequency

:
of the taxa

::::::::
occurrence

:
in
::

1K
:::
bins

:
is shown in colours, black dots denote presence of the taxa, and gray dots denote absence of the taxa in

::::::
contours

:::::
depict

:::
the

::::::::
probability

::
of

:::::::
presence

::
as

:::::::
estimated

::
by

:
the

:::::
logistic

:::::::
response

:::::::
function.

::::
Gray

:::::
boxes

:::::
denote

:::
bins

::::::
without

:
calibration dataset

:::
data. In the climate

space, combinations of MTWA and MTCO above the gray line at
:::
with MTWA =

:
< MTCO cannot occur by definition. Gray dots above this

line are
::::
White

::::
bins

:
in
:::

the
:::::
upper

:::
left

::::
depict

:
artificial absence information added to account for this constraint.
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(d) Size of 90% CI of local reconstructions, MTCO

Figure 4. Summary statistics of local reconstructions using the PITM forward model. Top row: mean anomaly from CRU reference clima-

tology (left: MTWA, right: MTCO), bottom row: uncertainty measured by the size of marginal 90% CIs (left: MTWA, right: MTCO). In the

top row, significant anomalies (5% level) are marked by black crosses.
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Figure 5. Spatial reconstruction for MH
::::::
Results

::::
from

::::
ITEs. Top row: Posterior mean anomaly

::
The

:::::::
boxplots

::::::
depict

::
the

:::::::::
distribution

:::
of

:::::::::
experiments

:::
with

:::
the

::::
same

::::::
process

::::
stage

::::::
model.

::
(a)

:::::
Mean

:::::::
deviation from CRU reference climatology

::::::
climate, (left: MTWA

:
b)

::::
mean

:::::
CRPS,

right: MTCO
:

(c)
::::::
coverage

::::::::
frequency

::
of

::::
50%

:::
CIs, middle row: reconstruction uncertainty plotted as size

::
(d)

:::::::
coverage

::::::::
frequency of point-wise

90% CIs(left
:
.
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Figure 6.
:::::
Mean

::::
CRPS

::
in
::::
ITEs

:::
for

::::
GM,

::::
RM,

:::
and

::::
KM.

:::
Top

:::
row:

:::::
Models

::::
with

:::::
glasso

::::::::
covariance

::::::
matrix,

:
MTWA

:
.
:::::
Second

::::
row:

::::::
Models

::::
with

:::::::
shrinkage

::::::::
covariance

::::::
matrix, right

::::::
MTWA.

:::::
Third

:::
row:

::::::
Models

:::
with

::::::
glasso

::::::::
covariance

::::::
matrix, MTCO), bottom

:::::
Bottom

:
row: reduction of

uncertainty from posterior to prior measured by ratio of posterior to prior point-wise 90% CI sizes (left: MTWA
:::::
Models

::::
with

::::::::
shrinkage

::::::::
covariance

:::::
matrix, right: MTCO). Black dots depict

:::
Grid

:::::
boxes

:::
with

::::::::
simulated proxy samples

:::
data

::
are

:::::::
depicted

::
by

::::
black

::::
dots.In
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Figure 7.
:::::
Spatial

:::::::::::
reconstruction

:::
for

::::
MH.

:::
Top

::::
row:

:::::::
Posterior

::::
mean

:::::::
anomaly

::::
from

::::
CRU

:::::::
reference

:::::::::
climatology

::::
(left:

:::::::
MTWA,

::::
right:

:::::::
MTCO),

:::::
middle

::::
row:

:::::::::::
reconstruction

:::::::::
uncertainty

::::::
plotted

::
as

:::
size

:::
of

::::::::
point-wise

::::
90%

:::
CIs

:::::
(left:

::::::
MTWA,

:::::
right:

:::::::
MTCO),

::::::
bottom

::::
row:

:::::::
reduction

:::
of

::::::::
uncertainty

::::
from

:::::::
posterior

::
to
:::::

prior
:::::::
measured

:::
by

:::
ratio

:::
of

:::::::
posterior

::
to

::::
prior

::::::::
point-wise

::::
90%

:::
CI

::::
sizes

::::
(left:

::::::
MTWA,

:::::
right:

:::::::
MTCO).

:::::
Black

:::
dots

:::::
depict

::::
proxy

:::::::
samples.

::
In

:::
the

:::
top

:::
row,

::::::::
point-wise

::::::::
significant

::::::::
anomalies

:::
(5%

:::::
level)

::
are

::::::
marked

::
by

:::::
black

::::::
crosses.
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Figure 8.
::::::
Posterior

::::::::
ensemble

:::::::
member

::::::
weights

:::
(λ)

::
of

:
the top row, point-wise significant anomalies

::::::::::
reconstruction.

:::::
Prior

::::::
weights

:
(5%

level
::::
mean

::
of

::
λ) are marked

::::::
denoted by black crosses

::
the

::::::
dashed

:::
line.
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(a) Cross−validation: Histogram of BSS
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(b) Cross−validation: BSS

and < −1

Figure 9. BSS from leave-one-out cross-validation. For positive values the posterior is superior to the prior distribution from the uncon-

strained PMIP3 ensemble, while for negative values the posterior is inferior to the prior. (a) histogram, (b) spatial distribution
:
.
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Posterior ensemble member weights of the reconstructions. The posterior of ω in the joint reconstruction is shown as boxplot.

The diamonds represent the mean of z in the joint, the MTWA only, and the MTCO only reconstruction. Prior weights (mean

of z) are denoted by the dashed line.

Sensitivity of reconstructions to changes in the glasso penalty parameter ρ. Portion of the penalty term on the total cost in Eq.

(??), mean BS of cross-validations, spatially averaged posterior mean anomaly from CRU reference climatology, and spatially5

averaged size of point-wise 90% CIs. All quantities are plotted as percentage of the respective values for ρ= 0.3. Note the

non-linear scaling of the x-axis.
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Figure 10. Differences of joint and separate reconstructions of MTWA and MTCO. Top row: posterior mean difference (left: MTWA, right:

MTCO); middle row: difference of size of point-wise 90% CIs (left: MTWA, right: MTCO); bottom row: BSS of the separate reconstructions

(left: MTWA, right: MTCO). Black dots depict proxy samples. In the top row, point-wise significant differences (5% level) between the

separate and the joint reconstructions are marked by black crosses.

55



Table 1. Basic information on the PMIP3 climate simulations used to construct the prior
:::::
process

:::::
stage in the Bayesian framework (from

https://pmip3.lsce.ipsl.fr)

Model
Model

Institute
Institute

Atmospheric grid
Atmospheric grid

Ocean grid
:::::::
Simulated

Model yearsMH
::::
years

CCSM4 NCAR 288x192xL26 320x384xL60 301

CNRM-CM5 CNRM-CERFACS 256x128xL31 362x292xL42 200

CSIRO-Mk3-6-0 CSIRO-QCCCE 192x96xL18 192x195xL31 100

EC-Earth-2-2 ICHEC 320x160xL62 362x292xL42 40

HadGEM2-CC MOHC 192x144xL60 360x216xL40 35

MPI-ESM-P MPI-M 196x98xL47 256x220xL40 100

MRI-CGCM3 MRI 320x160xL48 364x368xL51 100
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Table 2.
:::::::
Summary

:::::::
measures

:::
for

::::
ITEs

:::
and

::::
CVEs

::::
with

:::
the

::
six

::::::
models

:::::::
described

::
in

::::
Sect.

:::
3.3:

:::::::
Spatially

::::::
averaged

:::::
mean

:::::::
deviation

::::
from

:::::::
reference

:::::::::
climatology,

:::::::
spatially

::::::
averaged

::::
size

::
of

::::::::
point-wise

::::
50%

:::
CIs,

:::::::
spatially

::::::
averaged

::::
size

::
of

::::::::
point-wise

::::
90%

:::
CIs,

:::::::
coverage

::::::::
frequency

::
of

:::
50%

::::
CIs,

::::::
coverage

::::::::
frequency

::
of

::::
90%

:::
CIs,

:::::::
spatially

:::::::
averaged

:::::
CRPS,

::::
mean

:::
BS.

:::
GM

:::
RM

:::
KM

:::
GM

:::
RM

:::
KM

:::::
glasso

:::::
glasso

:::::
glasso

:::::
shrink

:::::
shrink

:::::
shrink

::::
Mean

:::::::
deviation [

:
K]

::::
0.004

: ::::
0.000

: :::::
-0.032

::::
0.026

: ::::
0.028

: :::::
-0.140

:::
50%

::
CI

::::
size [

:
K]

::::
1.189

: ::::
1.194

: :::::
1.238

::::
1.583

: ::::
1.592

: :::::
1.755

:::
90%

::
CI

::::
size [

:
K]

::::
2.906

: ::::
2.916

: :::::
3.032

::::
3.880

: ::::
3.901

: :::::
4.356

:::
50%

:::::::
coverage

::::::::
frequency [

::
%]

:::
29.2

:::
29.6

:::
30.5

: :::
79.9

:::
78.8

:::
76.5

:

:::
90%

:::::::
coverage

::::::::
frequency [

::
%]

:::
64.1

:::
64.4

:::
66.1

: :::
99.6

:::
99.3

:::
99.5

:

::::
CRPS

:
[
::
K]

:::
1.03

::::
1.032

: :::::
1.010

::::
0.399

: ::::
0.408

: :::::
0.468

::
BS

:
[
::
p2]

::::
0.186

: ::::
0.186

: :::::
0.187

::::
0.165

: ::::
0.163

: :::::
0.161
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Table 3. Summary measures for the joint MTWA and MTCO reconstructions (rows 1 and 2) and the separated reconstructions of MTWA

(row 3) and MTCO (row 4). Numbers in brackets are minima and maxima of the corresponding 90% CIs. Additional explanations for all the

columns can be found in Sect. ??
::::
4.1.1 to ??

::::
4.1.1.

Reconstruction Spatial Spatially Point-wise Spatial Median PMIP
:::::
PMIP3 model

name mean averaged uncertainty homogeneity BSS with highest

anomaly 90% CI size reduction weight

Joint (0.33 K
:::
0.03

:
K) (1.40 K

:::
1.31 K)

reconstruction 0.01 K
:::
0.51

:
K 2.90 K

:::
4.15 K 64.5

::::
38.1% 1.48 K

:::
1.41

:
K

0.28 MPI-ESM-P
(MTWA) (-0.32 K

:::
0.99

:
K) (1.57 K

:::
1.53 K)

Joint (1.50 K
:::
0.10

:
K) (2.09 K

:::
2.33 K)

reconstruction 1.11 K
:::
0.69

:
K 3.18 K

:::
5.84 K 58.6

::::
19.6% 2.18 K

:::
2.54

:
K

(MTCO) (0.74 K
:::
1.32

:
K) (2.27 K

:::
2.76 K)

Separate (0.96 K
:::
0.55

:
K) (1.38 K

:::
1.29 K)

MTWA 0.64 K
:::
1.04

:
K 3.10 K

:::
4.14 K 62.2

::::
38.1% 1.47 K

:::
1.41

:
K 0.16

:::
0.27 MPI-ESM-P

reconstruction (0.30 K
:::
1.51

:
K) (1.55 K

:::
1.51 K)

Separate (0.92 K
:::
-0.82

:
K) (2.45 KK)

MTCO 0.06 K
::::
-0.14 K 4.14 K

:::
5.72 K 49.4

::::
20.6% 2.66 K

:::
2.69

:
K 0.04

:::
0.05 HadGem2-CC

reconstruction (-0.79 K
:::
0.60

:
K) (2.86 K

:::
2.92 K)

Pseudo-code for MC3 algorithm Initialize A MCMC chains j = 1, ...,Jm= 1, ...,MT ∈ T (P )l = 1, ...,L(T )Sample from

full conditional of γTl Sample from full condition of βT Sample from full conditional of ω Sample from full conditional of

z x ∈ xPSample random walk proposal for Cp(x) Calculate Metropolis-Hastings ratio r Accept proposal for Cp(x) with

probability p= max(1, r) a= 1, ...,(A− 1)Calculate Metropolis-Hastings ratio r of chains a and a+ 1 Swap chains a and

a+ 1 with probability p= max(1, r) i= 1, ...,JMSample from full conditional of Cp(xQ)5
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