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Abstract. The 4.2 ka BP event is defined as a phase of environmental stress characterized by 17 

severe and prolonged drought of global extent. The event is recorded from the North Atlantic 18 

through Europe to Asia, leading scientists to evoke a 300-yr global mega-drought. Focusing on 19 

the Mediterranean and the Near East, this abrupt climate episode radically altered precipitation, 20 

with an estimated 30-50% drop in precipitation in the eastern basin. While many studies reveal 21 

similar trends in the northern Mediterranean (from Spain to Turkey and the northern Levant), 22 

data from northern Africa and central/southern Levant are more nuanced, suggesting a weaker 23 

imprint of this climate shift on the environment and/or different climate patterns. Here, we 24 

provide a synthesis of environmental reconstructions for the Levant and show that, while the 25 

4.2 ka BP event also corresponds to a drier period, a different climate pattern emerges in the 26 

central/southern Levant, with two dry phases framing a wetter period, suggesting a W-shaped 27 

event, particularly well defined by records from the Dead Sea area. 28 

 29 

1 Introduction 30 

While severe climate changes have been recorded during the Holocene (e.g. Mayewski et al., 31 

2004; Wanner et al., 2008; Magny et al., 2013; Solomina et al., 2015; Guiot and Kaniewski, 32 

2015) with uncertain overall effects, one period of increasing aridity, termed the 4.2 ka BP 33 

event (e.g. Weiss, 2016, 2017), has fueled debates on the causal link between climate shifts and 34 

societal upheavals during the Bronze Age (e.g. Finné et al., 2011; Butzer, 2012; Clarke et al., 35 

2016). The 4.2 ka BP event, that lasted ~300 years (from 4200 to 3900 cal yr BP), is probably 36 

one of the Holocene’s best studied climatic events (e.g. Weiss et al., 1993; Cullen et al., 2000; 37 
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deMenocal, 2001; Weiss and Bradley, 2001; Staubwasser and Weiss, 2006; Weiss, 2017; 38 

Manning, 2018; and references therein), although its chronology may be much broader than 39 

traditionally reported, extending from 4500 to 3500 BP (Gasse, 2000; Booth et al., 2005). This 40 

phase of aridity, considered as a global event (Booth et al., 2005, 2006; Fisher et al., 2008; 41 

Baker et al., 2009; Wanner et al., 2011, 2015), is now used as a formal boundary between the 42 

Middle and Late Holocene (Walker et al., 2012; Zanchetta et al., 2016; and Letter from the 43 

International Union of Geological Sciences) while, according to Arz et al. (2006), most records 44 

show a gradual climate shift rather than a specific abrupt event. Drought concurs widespread 45 

cooling in the North Atlantic from 4300 to 4000 BP, as attested in Iceland (lake Hvítárvatn and 46 

lake Haukadalsvatn; Geirsdóttir et al., 2013; Blair et al., 2015). The event is also characterised 47 

by two short spikes of negative-type North Atlantic Oscillations (NAO) at 4300 and 3950 BP 48 

(Olsen et al., 2012). During this interval, the Atlantic subpolar and subtropical surface waters 49 

cooled by 1° to 2°C (Bond et al., 1997, 2001; Bianchi and McCave, 1999; deMenocal, 2001). 50 

Focusing on the 4.2 ka BP event in the Mediterranean, a detailed vegetation model-based 51 

approach shows that a significant drop in precipitation began ~4300 BP in the eastern basin. 52 

These drier conditions lasted until 4000 BP with peaks in drought during the period 4300-4200 53 

BP (Guiot and Kaniewski, 2015). Based on these model data, the Western Mediterranean was 54 

not significantly affected by the precipitation anomaly. A climate model-based approach (step 55 

of 2000 years) previously developed by Brayshaw et al. (2011) also indicates that the Eastern 56 

Mediterranean was drier while the whole Mediterranean exhibited an increase in precipitation 57 

for the period 6000-4000 BP. A bipolar east-west "climate see-saw" was proposed to explain 58 

these contrasting spatio-temporal trends during the last millennia, with the hydro-climatic 59 

schemes across the basin determined by a combination of different climate modes (Roberts et 60 

al., 2012). It has been argued that the 4.2 ka BP event resulted from changes in the direction 61 

and intensity of the cyclonic North Atlantic westerlies, controlled by the NAO (e.g. Cullen et 62 

al., 2002; Kushnir and Stein, 2010; Lionello et al., 2013). These westerlies mediate moisture 63 

transport across the Mediterranean and West Asia (see full map in Weiss et al., 2017), and, in 64 

the Mediterranean, interact with the tropical (monsoonal) climatic system (e.g. Rohling et al., 65 

2002; Lamy et al., 2006; Lionello et al., 2006; Magny et al., 2009). The “climate see-saw” 66 

model further suggests that precipitation regimes could not have solely been modulated by 67 

NAO forcing, but also by other patterns (e.g. Polar/Eurasia and East Atlantic/Western Russia) 68 

that acted in synergy (see full details in Roberts et al., 2012). For instance, other climate 69 

regimes, such as shifts in the Intertropical Convergence Zone (ITCZ), may also have played 70 

roles in mediating climate in the southern Mediterranean. In the Mediterranean basin, the 4.2 71 
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ka BP could thus be a combination of different forcing factors (depending on the location) 72 

probably acting in synergy (e.g. Di Rita et al., 2018). 73 

Here, we probe several records from the Levant to review the climate context of the 4.2 ka BP 74 

event in the Eastern Mediterranean (Fig. 1). Our review is based on the core area of the 75 

Central/Southern Levant, composed of Israel, the West Bank and Jordan, and on the Northern 76 

Levant with Syria and Lebanon. Other regions have also been integrated into our analysis, 77 

including Egypt (Nile Delta) and the Red Sea. All data (biotic and abiotic) were z-score 78 

transformed to facilitate inter-site comparisons (the original curves can be found in the cited 79 

references). This comprehensive west-east/north-south review of the Mediterranean data places 80 

emphasis on different climate patterns/climatic modes. 81 

 82 

2 A west-east gradient - northern Mediterranean 83 

While climate models based on the Mediterranean tend to suggest that the 4.2 ka BP event 84 

occurred mainly in the Eastern Mediterranean and West Asia, drought nonetheless seems to be 85 

recorded from the western to the eastern areas. A short review of the palaeoclimate data from 86 

Spain to Turkey puts these drier conditions in wider perspective. 87 

In Spain, drier environmental conditions were recorded at several locations such as the Doñana 88 

National Park (Jiménez-Moreno et al., 2015), Sierra de Gádor (Carrión et al., 2003), Borreguiles 89 

de la Virgen (Jiménez-Moreno and Anderson, 2012) and Lake Montcortès (Scussolini et al., 90 

2011). Further east, in Italy, several sites such as Renella Cave (Fig. 2; Drysdale et al., 2006; 91 

Zanchetta et al., 2016), Corchia Cave (Fig. 2; Regattieri et al., 2014) or Lake Accesa (Fig. 2; 92 

Magny et al., 2009) clearly point to a drought event, with drier conditions (~4100-3950 BP) 93 

bracketed by two wetter phases at Lake Accesa (Magny et al., 2009). In Croatia, a drier climate 94 

is attested at Lake Vrana (Island of Cres; Schmidt et al., 2000), Bokanjačko blato karst polje 95 

(Dalmatia; Ilijanić et al., 2018) and at Mala Špilja cave (Island of Mljet; Lončar et al., 2017). 96 

In the Balkan Peninsula, Lake Shkodra (Fig. 2; Albania/Montenegro; Zanchetta et al., 2012), 97 

Lake Prespa (Republics of Macedonia/Albania/Greece; Wagner et al., 2010), Lake Ohrid 98 

(Republics of Macedonia/Albania; Wagner et al., 2010) and Lake Dojran (Fig. 2; 99 

Macedonia/Greece; Francke et al., 2013; Thienemann et al., 2018) were also hit by drought of 100 

various intensities. In Albania, a pollen-based model underscores a moderate decline in 101 

precipitation at Lake Maliq (Korçë; Bordon et al., 2009). In Greece, the Mavri Trypa Cave 102 

(Peloponnese; Finné et al., 2017) and the Omalos Polje karstic depression (Crete; Styllas et al., 103 

2018) displayed a period of drier conditions centred on the 4.2 ka BP event. In Turkey, the last 104 

“northern geographic step” before the Levant, drought is attested at several locations. At Nar 105 
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Gölü (Dean et al., 2015), Lake Van (Lemcke and Sturm, 1996; Wick et al., 2003), Gölhisar 106 

Gölü (Eastwood et al., 1999) and Eski Acıgöl (Roberts et al., 2008), drier conditions prevailed. 107 

These data from the northern Mediterranean point to a more or less severe drought episode, 108 

broadly correlated with the chronological window of the 4.2 ka BP event. The west-east 109 

“climate see-saw” (Xoplaki et al., 2004; Roberts et al., 2012), not perceptible in this brief 110 

synthesis because of assumed bias (only sites where drought is recorded are mentioned), is 111 

however attested in Mediterranean climate reconstructions (Guiot and Kaniewski, 2015). 112 

Knowledge gaps remain regarding the connection/synergy between different climate patterns, 113 

and their relative weight, according to the geographical location of the sites considered. The 114 

potential climate changes that may have impacted the northern Mediterranean during the 4.2 ka 115 

BP have been extensively reviewed in the literature (e.g. Drysdale et al., 2006; Magny et al., 116 

2009; Dean et al., 2015; Zanchetta et al., 2016; Di Rita et al., 2018) and will be discussed 117 

elsewhere in this special issue. 118 

 119 

3 A west-east gradient - southern Mediterranean 120 

Even if the 4.2 ka BP event is clearly delineated in the northern basin, the southern 121 

Mediterranean shows different trends due to the influence of Saharan climate. While similar 122 

dry conditions occurred concurrently in Morocco (Tigalmamine, Middle Atlas; Lambs et al., 123 

1995; Cheddadi et al., 1998) and Algeria (Gueldaman GLD1 Cave; Ruan et al., 2016), the same 124 

arid conditions led to enhanced flash-flood activity (mainly due to poor vegetation cover) 125 

during the 4.2 ka BP event, with a peak discharge in river flow regimes. Such extreme 126 

hydrological events are documented in fluvial stratigraphy from northern Africa (both in 127 

Morocco and Tunisia), especially during the period 4100-3700 BP (Faust et al., 2004; Benito 128 

et al., 2015). These hydrological events have also been identified in Central Tunisia, a desert 129 

margin zone characterized by a transition from the sub-humid Mediterranean to arid Saharan 130 

climate. Increased flood activity in river systems also occurred locally during the period 4100-131 

3700 BP (Zielhofer and Faust, 2008). In the central Medjerda basin (northern Tunisia), 132 

enhanced fluvial dynamics started earlier, ~4700 BP, and lasted until ~3700 BP (Faust et al., 133 

2004). 134 

Further east, in Libya, the most dramatic environmental change in the area, related to the onset 135 

of dry conditions, took place earlier, at ~5000 years BP in Tadrart Acacus (Lybian Sahara; 136 

Cremaschi and Di Lernia, 1999). In the Jefara Plain, northwestern Libya, the “late Holocene 137 

arid climate period” started after 4860-4620 BP (Giraudi et al., 2013). These two distant Libyan 138 

areas both show the main influence of the Saharan Africa, even though the Mediterranean is 139 
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only 100 km from the Jefara Plain. This is consistent with data from Giraudi et al. (2013), 140 

indicating that the Saharan climate extends to the coast of the Mediterranean Sea in Libya. 141 

Focusing on the Saharan climate/African monsoon, a general deterioration of the terrestrial 142 

ecosystem is indicated at Lake Yoa, northern Chad, during the period ~4800-4300 BP. Since 143 

4300 BP, widespread dust mobilization and a rapid transition (4200-3900 BP) from a freshwater 144 

habitat to a true salt lake are both recorded (Kröpelin et al., 2008). 145 

In Egypt, the last “southern step” before the Levant, no major changes have been recorded at 146 

Lake Qarun (the deepest part of the Faiyum Depression; Baioumy et al., 2010) or the contrary 147 

(desiccation of Nile-fed Lake Faiyum at ~4200 BP according to Hassan, 1997). The level of 148 

Lake Moeris (Faiyum depression) dropped at ~4400 BP and rose again at ~4000 BP (Hassan, 149 

1986). During the 4.2 ka BP event, Nile base-flow conditions changed considerably with 150 

reduced inputs from the White Nile, a dominant contribution from the Blue Nile, and 151 

diminished precipitation (Stanley et al., 2003). The source of the Blue Nile, Lake Tana, also 152 

manifests a drier phase, leading to a reduction of the Nile flow during the same period (Marshall 153 

et al., 2011), in phase with other regional palaeoclimate archives (Chalié and Gasse, 2002; 154 

Thompson et al., 2002). This drop in and/or failure of Nile floods was recorded by a decreased 155 

Nile delta sediment supply (Fig. 3; Marriner et al., 2012) while in the Burullus Lagoon (Nile 156 

Delta), reduced flow directly impacted marshland vegetation (Bernhardt et al., 2012). The Nile 157 

delta region is not directly affected by monsoonal rainfall (this was also the case during the 158 

Holocene, and at longer Pleistocene timescales; Rossignol-Strick, 1983; Arz et al., 2003; Felis 159 

et al., 2004; Grant et al., 2016). However, the Nile’s hydrological regime is essentially mediated 160 

by river discharge upstream, i.e. by the East African monsoon regime, and only secondarily by 161 

in situ Mediterranean climatic conditions (Flaux et al., 2013; Macklin et al., 2015). In the 162 

northern Red Sea, located between the Mediterranean and Afro-SW-Asian monsoonal rainfall 163 

regimes, the 4.2 ka BP event has been identified by enhanced evaporation/increased salinity in 164 

the Shaban Deep basin (Fig. 3; Arz et al., 2006). 165 

All of this evidence from the southern Mediterranean/northern Africa points to hydrological 166 

instability, both during and around the 4.2 ka BP event, due to multiple climate influences, 167 

mainly the Saharan Africa. In many North African cases, records show that climate changes at 168 

~4200 BP are not characterized by abrupt events, but are rather part of either a long-term trend 169 

or multicentennial-scale variations, as suggested by Arz et al. (2006) for the Red Sea. Focusing 170 

on Nile flow, variations seem mainly to result from a shift in the dynamics of the ITCZ, which 171 

migrates latitudinally in response to both orbitally-controlled climatic patterns (see Gasse, 172 

2000; Ducassou et al., 2008; Kröpelin et al., 2008; Verschuren et al., 2009; Revel et al., 2010; 173 
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Flaux et al., 2013; Marriner et al., 2013), and from changes in the El Niño Southern Oscillation 174 

(ENSO; see Moy et al., 2002; Leduc et al., 2009; Wolff et al., 2009), an important driver in 175 

decadal variations in precipitation over large parts of Africa (Indeje et al., 2000; Nicholson and 176 

Selato, 2000). The period encompassing the 4.2 ka BP event is consistent with a decrease in 177 

ENSO-like frequency, and a southern shift in the mean summer position of the ITCZ 178 

(Mayewski et al., 2004; Marshall et al., 2011) that may have reduced the interactions between 179 

the ENSO-like frequency and the Ethiopian Monsoon (Moy et al., 2002; Marriner et al., 2012). 180 

 181 

4 The 4.2 ka BP event in Northern Levant 182 

Environmental data from the Northern Levant originate from several locations in Syria and 183 

Lebanon, spatially distributed from the coastal strip to the dry continental areas. 184 

 185 

4.1 Syria 186 

The northern coastal lowlands of Syria, where Tell Tweini (Fig. 3) and Tell Sukas are located, 187 

are separated from the Ghab depression to the east by the Jabal an Nuşayriyah, a 140-km long 188 

north-south mountain range 40- to 50-km wide with peaks culminating at ~1,200 m above sea 189 

level. At Tell Tweini (Jableh), the pollen-based environmental reconstruction (TW-1 core) 190 

shows that drier conditions prevailed during the 4.2 ka BP event with weaker annual inputs of 191 

freshwater and ecological shifts induced by lower winter precipitation. The drier conditions 192 

ended at ~3950 BP (Fig. 3; Kaniewski et al., 2008). At Tell Sukas, ~10 km south of Tell Tweini, 193 

an increase in dryness during the 4.2 ka BP event only coincides with a decline in olive 194 

exploitation, implying milder conditions (Sorrel et al., 2016). Olive abundances also maintain 195 

fairly high levels at Tell Tweini during the event, but Olea pollen-type originated from the wild 196 

variety (oleasters; Kaniewski et al., 2009), a tree species extremely resistant to drought that can 197 

survive in arid habitats (Lo Gullo and Salleo, 1988), and cannot definitively be used as a proxy 198 

for “olive exploitation” (Kaniewski et al., 2009). In the Ghab Valley (e.g. van Zeist and 199 

Woldring, 1980; Yasuda et al., 2000), no reliable information on climate shifts can be displayed 200 

due to a floating chronology (e.g. Meadows, 2005). In continental Syria, at Qameshli (near the 201 

Turkish-Iraqi borderline; Fig. 3), modelled precipitation estimates evoke a major regional crisis 202 

in the rainfall regime starting at 4200 BP (Bryson and Bryson, 1997; Fiorentino et al., 2008), 203 

echoing Lake Neor (flank of the Talesh-Alborz Mountains, Iran), where a major dust event, 204 

resulting from drier conditions, is clearly depicted (Fig. 3; Sharifi et al., 2015). The Qameshli 205 

climate model was used to calculate a potential decline in precipitation at Tell Breda (near Ebla) 206 

and Ras El-Ain (near Tell Leilan). The two sites show similar trends to Qameshli, with a major 207 
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dry event at 4200 BP (Fiorentino et al., 2008). Data from Syria suggest that while the coastal 208 

area (Tell Sukas and Tell Tweini) was less impacted, drought was widespread inland during the 209 

4.2 ka BP event, from the south of Alep to the eastern Turkish-Iraqi borderline. 210 

 211 

4.2 Lebanon 212 

In Lebanon, the main climatic arguments supporting the 4.2 ka BP event derive from Jeita Cave 213 

(Fig. 4) and Al Jourd marsh (Fig. 4). Jeita Cave is located on the western flank of central Mount 214 

Lebanon. While the JeG-stm-1 stalagmite record (δ18O and δ13C) does not show compelling 215 

evidence for a rapid climate shift around 4200 BP (Verheyden et al., 2008), new records (termed 216 

J1-J3; also based on δ18O and δ13C) reveal that the 4.2 ka BP event is well-defined, with a 217 

pronounced phase of climate change from 4300 to 3950 BP (Fig. 4; Cheng et al., 2016). 218 

According to Verheyden et al. (2008), due to the low time resolution of this part of the JeG-219 

stm-1 stalagmite (one sample every 180 years), the short-term 4.2 ka BP event may not have 220 

been observed. Further north, at Sofular Cave (Turkey; Fig. 3), while the Stalagmite So-1 is not 221 

affected by this low temporal resolution, no consistent and convincing signature for the 4.2 ka 222 

BP event was recorded (Göktürk et al., 2011), echoing the JeG-stm-1 stalagmite record. 223 

The climate reconstruction from Al Jourd marsh, based on environmental data from the Al 224 

Jourd reserve (~70 km northeast of Jeita Cave), shows the same trends as the J1-J3 cores 225 

(Cheddadi and Khater, 2016). The reconstructed precipitation results display a drier phase, 226 

starting at ~4220 BP and lasting until ~3900 BP. At Ammiq (the Beqaa valley), a strong decline 227 

in precipitation is recorded from ~4700 to ~3850 BP while at Chamsine/Anjar (Bekaa Valley), 228 

the dry phase is centered on 4400 BP before a gradual return to wet conditions that peak at 229 

~3930 BP (Cheddadi and Khater, 2016). 230 

Data from Lebanon suggest that a drier period, centered on the 4.2 ka BP event, was recorded. 231 

Sites in the Beeka Valley (Ammiq, Chamsine) clearly delineate that the drier phase started 232 

earlier, between 4700 and 4400 BP. 233 

 234 

5 The 4.2 ka BP event in Central/Southern Levant 235 

The 4.2 ka BP event is here presented from northern to southern Israel. 236 

Located in the foothills of Mount Hermon, in the Galilee Panhandle, at the sources of the Jordan 237 

River, the site of Tel Dan (Israel) shows clear imprints of a drier event. A pollen-based 238 

environmental reconstruction depicts drier conditions characterized by a sharp drop in surface 239 

water between ~4100 and ~3900 BP, with two main peaks at ~4050 and ~3950 BP (Fig. 4; 240 

Kaniewski et al., 2017). Approximately 10-km from Tel Dan, cores from the Birkat Ram crater 241 
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lake (Northern Golan heights; Schwab et al., 2004), also located in the foothills of Mount 242 

Hermon, were used to reconstruct climate trends during the last 6000 years (Neuman et al., 243 

2007a). The authors demonstrate that annual precipitation is comparatively uniform with no 244 

distinctive fluctuations during the studied period (Neuman et al., 2007a). The pollen diagram 245 

from the Hula Nature Reserve (northwestern part of former Lake Hula, Israel) shows an 246 

expansion in Olea before ~4110 BP (Baruch and Bottema, 1999; Van Zeist et al., 2009) but, 247 

because no distinction can be made between the wild or cultivated variety, this would suggest 248 

either i) the extension of olive orchards or ii) drier conditions that favoured drought-resistant 249 

trees, especially during a period of decreasing cereals (see diagram in Van Zeist et al., 2009). 250 

A pollen-based environmental reconstruction from the Sea of Galilee (Lake Kinneret, Israel; 251 

e.g. Baruch 1986; Miebach et al., 2017) shows two decreases in the oak-pollen curve, 252 

interpreted as drier climate conditions at 4300 and 3950 BP (Langgut et al., 2013), which may 253 

fit within the broader framework of the 4.2 ka BP event. In the same core, a decrease in tree-254 

pollen scores was recorded around 4000 BP. According to the authors, it is uncertain whether 255 

or not this environmental signal is related to the 4.2 ka BP event (Schiebel and Litt, 2018). 256 

In the coastal area, at Tel Akko (Acre, Israel), a pollen-based climate reconstruction shows 257 

negative precipitation anomalies centered on the period ~4200-4000 BP, corresponding to a 258 

~12% decrease in annual precipitation (Fig. 4; Kaniewski et al., 2013, 2014). At Soreq Cave 259 

(Judean Mountains, Israel), decreases in rainfall have been interpreted to have been ~30% lower 260 

for the period 4200-4050 BP (Fig. 4; Bar-Matthews et al., 1997, 1999, 2003; Bar-Matthews and 261 

Ayalon, 2011). While it has been noted that oxygen isotope ratios in speleothems cannot be 262 

used as a simple rainfall indicator (Frumkin et al., 1999; Kolodny et al., 2005; Litt et al., 2012), 263 

a similar value was suggested for the Eastern Mediterranean with a decrease in annual 264 

precipitation of ~30% (Fig. 3; Kaniewski et al., 2013). 265 

Focusing on the Dead Sea (Israel, Jordan and the West Bank), a lake-level reconstruction points 266 

to two drops at ~4400 BP and ~4100 BP, separated by a short rise at ~4200/4150 BP (Fig. 4; 267 

e.g. Bookman (Ken-Tor) et al., 2004; Migowski et al., 2006; Kagan et al., 2015). A similar short 268 

wet phase is recorded at Tel Akko at ~4100 BP (Kaniewski et al., 2013) and ~4000 BP at Tel 269 

Dan (Kaniewski et al., 2017), suggesting that minor chronological discrepancies can result from 270 

radiocarbon dating. The pollen-based environmental reconstruction from Ze’elim Gully (Dead 271 

Sea) echoes the Dead Sea level scores and suggests that drier climate conditions prevailed at 272 

~4300 BP and ~3950 BP, engendering an expansion of olive horticulture during the period 273 

~4150-3950 BP, which implies milder conditions (Neuman et al., 2007a; Langgut et al., 2014, 274 

2016). Pollen data recovered from a core drilled on the Ein Gedi shore (Dead Sea) were also 275 
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used to reconstruct the temporal variations in rainfall (Litt et al., 2012). While the 4.2 ka BP 276 

event corresponds to a relatively wet and cool period, two slightly drier phases were also 277 

recorded at ~4400-4300 BP and ~3900 BP (Litt et al., 2012). This pattern, two drier periods 278 

framing a wetter phase (~4150-3950 BP), suggest an inverted parallel with the Central 279 

Mediterranean where two wet periods are juxtaposed against a drier phase bracketed between 280 

~4100 and 3950 BP (Magny et al., 2009). 281 

The core DS 7-1 SC (Dead Sea; Heim et al., 1997), the core from Ein Feshkha (Dead Sea; 282 

Neuman et al., 2007b), and the marine cores off the Israeli coast (Schilman et al., 2001) were 283 

not included in our analysis because they do not cover the period under consideration. 284 

 285 

Data from the southern Levant are complex compared to those from the northern 286 

Mediterranean. While the sites suggest that drier conditions were recorded during the 4.2 ka BP 287 

event from the Mediterranean coast to the Dead Sea, they nonetheless show that drought must 288 

be integrated into a broader chronological framework, disrupted by a short humid period. The 289 

latter is clearly highlighted in the Dead Sea records (Litt et al., 2012; Langgut et al., 2014, 2016; 290 

Kagan et al., 2015; see Fig. 4) as well as at Soreq Cave (δ18O, Fig. 4; Bar-Matthews et al., 2003; 291 

Bar-Matthews and Ayalon, 2011) and is more or less attested in the Sea of Galilee (Langgut et 292 

al., 2013; Schiebel and Litt, 2018), at Tel Dan, and Tel Akko (Kaniewski et al., 2013, 2017). 293 

This W-shaped event may be a local expression of the North-Atlantic Bond event 3 (Bond et 294 

al., 1997) as it has already been demonstrated that drier/wetter phases in the eastern 295 

Mediterranean were associated with cooling/warming periods in the North Atlantic during the 296 

past 55 kyr (Bartov et al., 2003). 297 

 298 

6 Climatic hypotheses behind the 4.2 ka BP event in the Levant 299 

6.1 North Atlantic 300 

Kushnir and Stein (2010) have clearly noted that southern Levant precipitation variability is 301 

closely linked with a seesaw pressure gradient between the eastern North Atlantic and Eurasia, 302 

and they also evoked the apparent link between Atlantic Multidecadal Variability [Atlantic 303 

Multidecadal Sea Surface Temperature (SST) variability] and atmospheric circulation (see 304 

Kushnir, 1994; Ziv et al. 2006; Kushnir and Stein, 2010). Slowly paced Holocene variability is 305 

generally modulated by: a colder than normal North Atlantic resulting in higher than normal 306 

precipitation in the central Levant while a warmer than normal North Atlantic leads to lower 307 

precipitation. This suggests that i) the North Atlantic is a key pacemaker with regards to the 308 

long-term hydroclimatic variability of the Levant during the Holocene, and ii) there is a non-309 
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linear response to global climatic events, such as the 4.2 ka BP event, consistent with 310 

pronounced cooling in Eastern Mediterranean winter SSTs and cold events in northern latitudes 311 

(Kushnir and Stein, 2010). It appears that sudden Northern Hemisphere cold episodes contrast 312 

with milder and more slowly paced Holocene variability. 313 

 314 

6.2 A climate see-saw model 315 

A bipolar southeast-southwest "climate see-saw" in the Mediterranean is one of the climatic 316 

modes that explains the spatio-temporal variability of precipitation over the basin during winter-317 

time (Kutiel et al., 1996; Xoplaki et al., 2004), in connection with a positive or negative NAO. 318 

The dipole precipitation pattern results both from local cyclogenesis and southward shifts of 319 

storm tracks from Western Europe towards the Mediterranean (and vice-versa). Drier 320 

conditions in the Eastern Mediterranean mainly derive from high pressure systems over 321 

Greenland/Iceland and relatively low pressure over southwestern Europe (Roberts et al., 2012), 322 

pointing to a weakening of the zonal atmospheric circulation over Europe (Guiot and 323 

Kaniewski, 2015). According to Xoplaki et al. (2004), the outcomes of such a pattern over most 324 

of the Mediterranean region result in above normal precipitation, with peak values on the 325 

western seaboard and lower values in the southeastern part of the basin. This scheme fits with 326 

the model of Brayshaw et al. (2011) that displays wetter conditions over large part of the 327 

Mediterranean basin while the Eastern Mediterranean was drier, and also mirrors the model 328 

developed by Guiot and Kaniewski (2015). According to Roberts et al. (2012), this mode also 329 

prevailed during the Little Ice Age, with drier conditions over the Eastern Mediterranean and 330 

wetter patterns over the Western Mediterranean (with an opposite scheme during the Medieval 331 

Climate Anomaly). 332 

 333 

6.3 Cyprus lows 334 

While a dominant NAO forcing may explain Western Mediterranean aridity, the Eastern 335 

Mediterranean appears to be mostly mediated by other climatic modes, and precipitation 336 

variability has also not been uniform according to cyclone-migration tracks (northern/southern). 337 

Rainfall in the Levant mostly originates from mid-latitude cyclones (Cyprus lows) during their 338 

eastward passage over the eastern Mediterranean (Enzel et al., 2003; Zangvil et al., 2003; 339 

Saaroni et al., 2010). During wet years, more intense cyclones frequently migrate over the 340 

Eastern Mediterranean (and vice-versa), reflecting variants of the long-term mean low pressure, 341 

with positive pressure anomalies consistent with reduced cyclonic activity near the surface. 342 

Under this scenario, the most probable cause for drought events in the Levant is that the 500-343 
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hPa (upper level anomalies) and sea-level pressure patterns were not conducive to cyclone 344 

migration over the Eastern Mediterranean. Instead, their tracks were probably farther to the 345 

north, potentially impacting western Turkey and Greece (Enzel et al., 2003). 346 

 347 

7 Conclusions 348 

The comparison of multiple records of the 4.2 ka BP event involves assumptions regarding the 349 

relative weight of such variables in shaping the final outcomes, and also requires strong 350 

evidence about the sensitivity of each proxy to fully record the environmental parameters. Our 351 

study also underscores the importance of robust chronologies in looking to probe the spatial 352 

dimensions of the 4.2 event and its driving mechanisms. Concerning the Levant, the various 353 

palaeoclimate proxies sometimes show contrasting outcomes, suggesting variable sensitivity or 354 

the absence of forcing agents. At the scale of the Levant, the 4.2 ka BP event is clearly recorded 355 

but several locations show that other regional/local patterns may be involved, yielding different 356 

outcomes that must be more closely addressed in the future. Concerning the climate shift 357 

driving the 4.2 ka BP event, we can assume that, despite the clear geographical articulation of 358 

the 4.2 ka event (Zanchetta et al., 2016; Di Rita et al., 2018), the patterns responsible for the 359 

event are not yet fully understood. This also raises a key question, how did societies adapt to 360 

this ~300 year (or longer) drought? This knowledge gap is still widely debated and must be 361 

addressed locally to fully understand the resilience and adaptive strategies of the Levant’s 362 

diverse peoples and polities. 363 
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Figure 2. Paleoclimate series (z-score transformed), with the type of climate proxy noted. 
The orange vertical band represents the 4.2 ka BP event. From top to bottom, Renella Cave 
(Italy, Drysdale et al., 2006; Zanchetta et al., 2016), Corchia Cave (Italy, Regattieri et al., 2014), 
Lake Accesa (Italy, Magny et al., 2009), Lake Shkodra (Albania / Montenegro, Zanchetta et al., 
2012), and Lake Dojran (Macedonia / Greece, Francke et al., 2013; Thienemann et al., 2018). 
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Figure 3. Paleoclimate series (z-score transformed), with the type of climate proxy noted. 
The orange vertical band represents the 4.2 ka BP event. From top to bottom, Eastern 
Mediterranean (Kaniewski et al., 2013), Sofular cave (Turkey, Göktürk et al., 2011), Neor Lake 
(Iran, Sharifi et al., 2015), Qameshli (Syria, Bryson and Bryson, 1997; Fiorentino et al., 2008), 
Tell Tweini (Syria, Kaniewski et al., 2008), Nile (Egypt, Marriner et al., 2012), and Shaban 
deep (Red Sea, Arz et al., 2006). 
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Figure 4. Paleoclimate series (z-score transformed), with the type of climate proxy noted. 
The orange vertical band represents the 4.2 ka BP event. From top to bottom, Al Jourd 
(Lebanon, Cheddadi and Khater, 2016), Jeita Cave (Lebanon, Cheng et al., 2016), Tel Dan 
(Israel, Kaniewski et al., 2017), Tel Akko (Israel, Kaniewski et al., 2013), Soreq Cave (Israel, 
Bar-Matthews et al., 2003; Bar-Matthews and Ayalon, 2011), and Dead Sea (Israel, Bookman 
(Ken-Tor) et al., 2004; Migowski et al., 2006; Kagan et al., 2015). 
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