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Abstract: The Tibetan Plateau uplift and its linkages with the evolution of the Asian climate 13 

during the Cenozoic are a research focus for numerous geologists. Here, a comprehensive review 14 

of tectonic activities across the Tibet shows that the development of the Tibetan Plateau has 15 

undergone mainly three stages of the uplift: the near-modern elevation of the central Tibet and 16 

significant uplift of the northern margins (~55-35 Ma), the further uplift of the plateau margins 17 

(30-20 Ma), and a rapid uplift of the plateau margins again (15-8 Ma). The first uplift of the 18 

plateau during ~55-35 Ma forced the long-term westward retreat of the Paratethys Sea. The high 19 

elevation of the central Tibet and/or the Himalayan would enhance rock weathering and erosion 20 

contributing to lowering of atmospheric CO2 content, resulting in global cooling. The global 21 

cooling, sea retreat coupled with the topographic barrier effect of the Tibetan Plateau could have 22 

caused the initial aridification in central Asia during the Eocene time. The second uplift of the 23 

northern Tibet could have resulted in the onset of the East Asian winter monsoon as well as 24 

intensive desertification of inland Asia, whereas the central-eastern in China became wet. The 25 

further strengthening of the East Asian winter monsoon and the inland Asian aridification during 26 

15-8 Ma was probably associated with the Tibetan Plateau uplift and global cooling. Therefore, 27 

the uplift of the Tibetan Plateau plays a very important role in the Asian aridification. 28 
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1. Introduction 38 

The collision between India and Asia during the Cenozoic period created the high Himalaya 39 

Mountains and the Tibetan Plateau, which profoundly affected the global Cenozoic climate (e.g., 40 

Garzione, 2008; Molnar et al., 2010; Raymo and Ruddiman, 1992) and the geochemical 41 

composition of the ocean as a result of input fluxes of dissolved salts from the Tibetan Plateau to 42 

the sea (e.g., Chatterjee et al., 2013; Misra and Froelich, 2012). Reconstructing the uplifting 43 

processes of the Tibetan Plateau and its relationship with crustal deformation is of wide-ranging 44 

importance to understand the lithospheric evolution, surface uplift and global climate changes.  45 

The Tibetan Plateau covers an area of more than 2.5 million km2 with an average elevation of 46 

about 5000 m. In general, the Tibetan Plateau consists of six nearly west-east stretching tectonic 47 

blocks including the Himalayan, Lhasa, Qiangtang, Songpan-Ganzi-Hoh-Xil, Kunlun-Qaidam and  48 

Qilian blocks from south to north, separated by Indus-Yarlung suture (IYS), Bangong-Nujiang 49 

suture (BNS), Jinshajiang suture (JS), Anyimaqen-Kunlun-Mutztagh suture (AKMS) and South 50 

Qilian suture (SQS), respectively (Li et al., 2015; Yin and Harrison, 2000) (Fig. 1). The Lhasa and 51 

Qiangtang blocks are characterized by the main flat plateau with an average elevation of about 52 

5000 m including several sedimentary basins. The plateau margins are a series of orogenic belts, 53 

with an average elevation ranging from 5500 to 6500 m, and sedimentary basins, such as the 54 

Qilian Mountains and Qaidam basin to the north, the Longmen Shan and Sichuan basin to the east 55 

(Fig.1). Based on seismic velocity models and wide-angle seismic profiles, the average crust 56 

thickness was interpreted as about 70-75 km under the southern Tibet, ~60-65 km under the 57 

plateau margins, and approximately 36 to 40 km beneath the Sichuan basin to the east and Tarim 58 

basin to the north (Jiang et al., 2006; Owens and Zandt, 1997; Tseng et al., 2009; Wang et al., 59 

2007). 60 

The timing of the initial contact and main India-Asia collision is still ambiguous with 61 

suggestions ranging from 70 to 34 Ma (Aitchison et al., 2007; DeCelles et al., 2014; Ding et al., 62 

2005; Hu et al., 2015; Leech et al., 2005; Meng et al., 2012; Najman et al., 2010; Van Hinsbergen 63 

et al., 2012; Zhu et al., 2013), and it is probable that the main collision was not simultaneous along 64 

the entire convergent belt. Van Hinsbergen et al. (2012) proposed a two-stage India-Asia collision 65 

with phases at ~52 and 25-20 Ma based on the compilation of palaeomagnetic data from Lhasa 66 

and Tethyan Himalaya terranes. Based on the radiolarian and nannofossil biostratigraphy coupled 67 

with detrital zircon U-Pb geochronology from the Sangdanlin region in south Tibet, Hu et al. 68 

(2015) suggested that the onset of the India-Asia collision was at 59±1 Ma. Provenance analysis 69 

from upper Cretaceous-Paleocene strata in the Tethys Himalaya was proposed for the closure time 70 

of the Neo-Tethys Ocean and the India-Asia collision between 70 and 58±0.6 Ma (Cai et al., 2011; 71 

DeCelles et al., 2014). However, most of evidence based on geological, geophysical and 72 

geochemical data indicates that the main Indian subcontinent-Asia collision occurred between 55 73 

and 50 Ma inferred by the following reasons: 1) the initiation of substantial faunal exchange of 74 

medium-to large-sized mammals during 53.3-50 Ma or a little earlier between India and Asia 75 
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block (e.g., Clementz et al., 2010; Clyde et al., 2003); 2) the plate motion of India decreased 76 

dramatically during 55-50 Ma (e.g., Guillot et al., 2003; Shellnutt et al., 2014; van Hinsbergen et 77 

al., 2011b), indicating the initial India-Asia collision (Li et al., 2015) or the slab breakoff of the 78 

subducting Neo-Tethyan oceanic lithosphere (Ji et al., 2016; Zhu et al., 2015); 3) a pronounced 79 

flare up in magmatic activities and the ultrahigh-pressure metamorphism around 55-50 Ma (Ding 80 

et al., 2016; Donaldson et al., 2013; Guan et al., 2012; Zhu et al., 2015); 4) the provenance change 81 

of the Himalayan foreland basin resulted from the first arrival of the Lhasa detritus (Green et al., 82 

2008; Najman et al., 2010; Wang et al., 2011; Zhu et al., 2005); 5) Paleomagnetic studies show 83 

that the initial contact of the India-Asia collision occurred around 55-50 Ma or a little earlier (e.g., 84 

Chen et al., 2010; Huang et al., 2015; Meng et al., 2012; Najman et al., 2010; Sun et al., 2010a). 85 

Tan et al. (2010) proposed a younger collision age of 43 Ma based on the paleomagnetic results 86 

from the late Cretaceous red beds, lava flows and Eocene tuffs in the Lhasa block, but Najman et 87 

al. (2010) suggested that the sampled volcanic tuffs were a short-term large eruption that only 88 

recorded a snapshot record of the Earth magnetic field at high inclination, therefore its 89 

paleomagnetic inclination should be taken caution. Therefore, we preferred an age of ~55-50 Ma 90 

of initial India-Asia collision in this study. 91 

After the initiation of the India-Asia collision, the Tibetan Plateau has experienced two 92 

basically deformational styles. One is N-S crustal shortening and the tectonic uplift of the 93 

adjoining mountains. The E-W extension and related N-S trending rifts are another deformation 94 

pattern of the plateau. These two deformational styles accommodated most of India-Asia 95 

convergence. However, it is still uncertain how much of the total convergence between India and 96 

stable Asia after their initial collision was absorbed by the crustal shortening and E-W extension 97 

since the India-Asia collision (Dupont-Nivet et al., 2010; Guillot et al., 2003; Li et al., 2015; Tan 98 

et al., 2010; van Hinsbergen et al., 2011a, 2011b; Yin and Harrison, 2000). Based on the available 99 

paleomagnetic data, Guillot et al. (2003) estimated a total India-Asia convergence of 3215±496 100 

km and ~1100 km shortening of Himalayan since 55 Ma. Dupont-Nivet et al. (2010) estimated 101 

2900±600 km subsequent latitudinal convergence between India and Asia, divided into 1100±500 102 

km within Asia and 1800±700 km within India inferred from the apparent polar wander paths of 103 

India and Asia. Some paleomagnetic results indicate that the Himalayan region experienced at 104 

least 1500±480 km of post-collisional crustal shortening and 2000±550 km within Asia since the 105 

collision (Sun et al., 2010a). According to the marine magnetic anomalies and the Eurasia-India 106 

plate circuit, van Hinsbergen et al. (2011a) argued that the convergence was up to 3200-4000 km 107 

for the India-Asia collision since 55 Ma. Recently, Li et al. (2015) concluded that ~1630 km of 108 

shortening occurred across the Tibetan Plateau with more than ~1400 km accommodated by large-109 

scale thrust belts since 55 Ma based on a comprehensive review of published geological and 110 

simulated data. Although the amount of India-Asia convergence accommodated by the large-scale 111 

thrust belts is still uncertain, the large-scale thrust belts not only contribute to the crustal 112 

shortening in central Tibet but also cause the uplift of the plateau margins (e.g., DeCelles et al., 113 
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2002; Li et al., 2015; Tapponnier et al., 2001; Yin and Harrison, 2000).  114 

The continued uplift of the Tibetan Plateau profoundly influenced Cenozoic global and Asian 115 

climate. Uplift of the Tibetan Plateau could have resulted in high rainfall on the front slopes of 116 

Himalayas as a result of the more intense monsoonal circulation and the orographic barrier (e.g., 117 

Thiede et al., 2004). The high Tibetan-Himalaya orogen would lead to greater rates of silicate 118 

weathering and erosion contributing to lowering of atmospheric CO2 concentrations to force 119 

global cooling (e.g., Dupont-Nivet et al., 2008a; Garzione, 2008; Raymo and Ruddiman, 1992). 120 

Additionally, the high Tibetan Plateau and/or only the Himalayan mountains provided the 121 

dominant heat source for the South Asian summer monsoon or orographic insulation, driving the 122 

large-scale monsoon flow and simultaneously acting as an obstacle to southward flow of cool, dry 123 

air (Boos and Kuang, 2010; Molnar et al., 2010; Wu et al., 2012). The rising Tibetan Plateau 124 

disrupted global circulation of the westerly winds, shifting the smooth flow to the diverted flow 125 

around the high plateau (e.g., Chatterjee et al., 2013). Numerous studies show that the uplift of the 126 

Himalayan-Tibetan orogen is closely related to the onset of Asian monsoon system and Asian 127 

desertification (e.g., Chatterjee et al., 2013; Guo et al., 2002; Miao et al., 2012; Zhang et al., 2007).  128 

In this paper, we synthesize the available data to propose that there are three significant stages in 129 

the uplift of the plateau and its possible effects on climatic changes in Asia.  130 

2. Three main phases of growth of the Tibetan Plateau and Asian 131 

drying changes during the Cenozoic 132 

Available deformational and paleoaltimetry data indicate that there were three main phases of 133 

growth of the Tibetan Plateau since the India-Asia collision. These episodes caused regionally 134 

climatic changes as well as contributing to trends in Cenozoic global cooling. The spatial and 135 

temporal evolution of the plateau growth and effects on Asian climate are divided into three 136 

episodes: the Eocene (~55-35 Ma), the middle Oligocene-early Miocene (30-20 Ma) and the 137 

middle to late Miocene (15-8 Ma). 138 

2.1. The significant uplift of the northern margins accompanied by Asian 139 

aridification between ~55 Ma and 35 Ma 140 

2.1.1. Asian initial aridification during ~55-35 Ma 141 

Recent simulations show that although the high elevation of the central Tibet has already 142 

been removed, the large-scale South Asian summer monsoon circulation was unaffected by 143 

providing the high but narrow orography of the Himalaya and adjacent mountains (Boos and 144 

Kuang, 2010). These mountains produced a strong monsoon by insulating warm, moist air over 145 

continental India from the cold and dry extratropics (Boos and Kuang, 2010). Using an 146 

atmospheric general circulation model with 1.9º longitude resolution with prescribed sea surface 147 

temperature and sea ice cover to examine the effects of the plateau uplift on climate, the results 148 

were in general agreement with Boos and Kuang (2010), suggesting that the uplift of the Himalaya 149 
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would strengthen summer precipitation in southwestern margin of the Himalaya as well as central-150 

southern India (Zhang et al., 2012). The low oxygen isotope values with strong seasonality in 151 

gastropod shells and mammal teeth from Myanmar at 40-34 Ma, and aeolian dust deposition in 152 

northwest China during the Eocene time in response to the onset of desertification and winter 153 

monsoon circulation in inner Asia show marked monsoon-like patterns in rainfall and wind south 154 

and north of Tibetan-Himalayan orogen during the late Eocene time (Licht et al., 2014) and that 155 

support the view that the Asian monsoon was probably active during the Eocene (Quan et al., 156 

2012). The similar fossil leaf trait spectra between Eocene basins in southern China and modern 157 

Indonesia-Australia Monsoon suggest that the characteristics of the modern topographically 158 

enhanced South Asia Monsoon had to develop in Eocene time (Spicer et al., 2016). 159 

Sedimentological and numerical data shows that monsoons were not dampened by the Proto-160 

Paratethys Sea (Bougeois et al., 2018). The strong Eocene monsoons later weakened after 34 Ma 161 

ago related to the global shift to icehouse climate (Licht et al., 2014). 162 

The near-modern elevation of the central Tibet and further extension to the north probably 163 

forced the long-term westward sea retreat from the Tarim Basin (e.g., Bosboom et al., 2014a; 164 

Carrapa et al., 2015; Sun et al., 2016). The lithostratigraphic, biostratigraphic and 165 

magnetostratigraphic results from the southwest Tarim Basin along the Pamir and West Kunlun 166 

range show that the final sea retreat was between 47 and 40 Ma accompanied by significant 167 

aridification of the Asian interior as a result of the decrease of moisture supplied from the 168 

Paratethys Sea (Bosboom et al., 2014a, 2014b; Sun et al., 2016). Sedimentology, paleontology, 169 

sandstone petrography and zircon U-Pb ages from the Tajik depression, 400 km to the west of the 170 

Tarim basin, show that the local retreat of this part of the Paratethys Sea was at ~39 Ma, a little 171 

later than the Tarim Basin (Carrapa et al., 2015). A strong anticyclonic zone at Central Asian 172 

latitudes and an orographic effect from emerging Tibetan Plateau occurred during this period 173 

(Bougeois et al., 2018). These results are in agreement with the northward growth of the Pamir 174 

Mountains.  175 

In the Xining basin at the northeastern of Tibetan Plateau, the palynological records show a 176 

sudden appearance of the Pinaceae family at 38 Ma in response to the cooler and drier climate, 177 

and suggest that the initiation of the continental aridification in central Asia started as early as 178 

Eocene time (Dupont-Nivet et al., 2008a). Subsequent studies of the same sedimentary sequence 179 

in Xining basin reveal second additional phases of aridification before the Eocene-Oligocene 180 

Transition (34 Ma). The first phase at~36.6 Ma was accompanied by a distinct decrease in gypsum 181 

content relative to red mudstone and the second phase was characterized by a substantial increase 182 

in clastic sedimentation rate at 34.7 Ma (Abels et al., 2011). At the Eocene-Oligocene Transition, 183 

playa lake deposits in Xining basin vanished, subsequent dominated by homogenous red 184 

mudstones with minor interstitial gypsum content, in response to a pronounced aridification of the 185 

Xining basin (Dupont-Nivet et al., 2007).  186 

 187 
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2.1.2. Tectonic uplift of the Tibetan Plateau linked to this aridification 188 

Previous studies indicate that the Lhasa and Qiangtang terranes underwent significant crustal 189 

thickening and surface uplift prior to the India-Asia collision (DeCelles et al., 2002; Li et al., 190 

2015). Shortening reconstructions estimate that a ~60% crustal shortening of the Lhasa block 191 

occurred during the Cretaceous and gained 3-4 km of elevation prior to the India-Asia collision 192 

(Murphy et al., 1997). Balanced cross section restoration across the Qiangtang block suggests that 193 

~400 km of crustal shortening occurred prior to the India-Asia collision (Li et al., 2015; van 194 

Hinsbergen et al., 2011b). The majority of intensive shortening across Central Tibet occurred 195 

before the collision based on the structural restorations, and this region has been affected by only 196 

minimal thrusting reactivation since the late Paleocene (Kapp et al., 2003, 2005). Therefore, 197 

Central Tibet (Lhasa and Qiangtang terranes) attained at least 3 km elevation prior to India-Asia 198 

collision. Since the India-Asia collision, the significant crustal thickening (~160 km) of the central 199 

Tibet only occurred within about 10 Myr. The northward subduction of Greater India slab played a 200 

major role in crustal thickening and uplifting (Li et al., 2015). The southward subduction of the 201 

Songpan-Ganzi terrane beneath the Qiangtang block also contributed to the crustal thickening of 202 

the central Tibet, as inferred from the widespread potassium-rich lavas in the northern Qiangtang 203 

(Ding et al., 2007; Li et al., 2015).  204 

In the Qiangtang block, stable isotope results from fluvial/lacustrine carbonate cement, 205 

pedogenic carbonate and marl from the Kangtuo and Suonahu formations indicate that high 206 

elevation (> 5000 m) had been established by at least the middle Oligocene (28 Ma) (Fig 2; Xu et 207 

al., 2013). Stable isotopes revealed a paleoelevation of ~4.1-6.5 for the southern Tibet and 3.3 km 208 

for the southeast Tibet in the Eocene, respectively (Hoke et al., 2014; Ingalls et al., 2017). The 209 

low-temperature thermochronlogic results from the Qiangtang and Lhasa terranes showed a rapid 210 

to moderate exhumation between 85 and 45 Ma followed by low exhumation rates of <0.05 mm/yr, 211 

which explained the plateau formation in central Tibet by 45 Ma (Rohrmann et al., 2011). In 212 

addition, the distributions of high-K calc-alkaline andesites, dacites and rhyolites in central-213 

western Qiangtang from 46 to 38 Ma, together with the north-south trending dikes in response to 214 

the onset of east-west extension in central Tibet between 47 and 38 Ma, suggested that the central 215 

Tibet had already attained near-modern elevation by at least 38 Ma (Wang et al., 2008, 2010). 216 

Thus, the Lhasa and Qiangtang terranes have reached near-modern elevation by at least 35 Ma. 217 

The northern Tibetan Plateau had experienced significant uplift and exhumation between 55 218 

and 35 Ma (Fig. 2). Low-temperature thermochronologic data shows that rocks along the major 219 

thrusts-the West Qinling thrust (Clark et al., 2010; Duvall et al., 2011), Qilian Shan (He et al., 220 

2017), Tanggula thrust (Li et al., 2012), Fenghuoshan fold-thrust belt (Staisch et al., 2016), 221 

Kunlun fault (Jolivet et al., 2001), Altyn Tagh thrust (Jolivet et al., 2001; Yin et al., 2002) and 222 

Kashgar-Yecheng thrust (Cao et al., 2013) had undergone rapid cooling and exhumation between 223 

55 and 40 Ma as a response to the initiation of India-Asia collision (Fig. 2; Locations have shown 224 

on the circles and detail information can be seen at table 1). Seismic reflection profiles and 225 
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balanced cross section restoration show that the compression of the northern Qaidam basin began 226 

at 65-50 Ma, which was consistent with high accumulation rates of the foreland basin (Ji et al., 227 

2017; Wei et al., 2013; Yin et al., 2008a) (Fig. 2).  228 

The strong uplift of the mountains in the plateau margins during this interval would offer a 229 

large amount for clastic sediments to the adjacent basins, with peaks of influxes into the Lanzhou 230 

basin at ~58 Ma (Wang et al., 2016b), Xining basin at ~52 Ma (Dai et al., 2006), and Hoh Xil 231 

basin at ~52 Ma (Zhang et al., 2010). In the Tethyan Himalaya, emplacement of a series of 232 

undeformed granitoid bodies before 44.1±1.2 Ma indicates that significant crustal thickening had 233 

occurred within 10 to 20 Myr of the initial India-Asia collision (Aikman et al., 2008). The low-234 

temperature thermochronologic data from the Deosai plateau in the northwest Himalaya coupled 235 

with the thermal history modeling shows that the Deosai plateau underwent continuous slow 236 

exhumation rates for the past 35 Ma, thus suggesting that the high elevation had been achieved by 237 

at least 35 Ma (Fig 2; van der Beek et al., 2009). Therefore, the plateau margins have undergone 238 

significant growth shortly after the initiation of India-Asia collision, but the altitude is still 239 

disputed. 240 

Although the Eocene global cooling that would reduce the amount of water vapor held in the 241 

atmosphere was revealed by deep-sea stable oxygen isotope (Zachos et al., 2001), we consider that 242 

the Tibetan Plateau uplift at this period played an important role in Asian aridification. First, 243 

climate models suggest that surface uplifts of the northern Tibetan Plateau had a greater 244 

contribution to the decreased annual precipitation over inland Asia mainly due to the enhanced 245 

rain shadow effect of the mountains and changes in the regional circulations (Liu et al., 2015a; 246 

Zhang et al., 2017). Second, the outward-growth of the Tibetan Plateau would force westward sea 247 

retreat of Paratethys Sea, resulting in decrease of moisture supplied into inland Asia.  248 

 249 

2.2 The further uplift of the plateau margins and strengthened aridification in Asia 250 

between 30 and 20 Ma 251 

2.2.1. East Asian monsoon and strengthened aridification during 30-20 Ma 252 

         The Oligocene-Miocene transition is a significant Cenozoic cooling event referred to Mi-1 253 

with a series of paleoenvironmental changes. Benthic foraminiferal oxygen isotope from the ODP 254 

site 1218 in Pacific shows a transient ~1‰ positive excursion as a response to the expansion of 255 

Antarctic ice sheets (Zachos et al., 2001; Pälike et al., 2006), and an apparent positive excursion of 256 

benthic foraminiferal carbon isotope (Pälike et al., 2006) (Fig 3C and 3D). Sea level estimates 257 

from coastal plain coreholes in New Jersey and Delaware show an about 50 m fall of sea level 258 

between 22.3 and 23.3 Ma (Kominz et al., 2008) (Fig 3E). The CaCO3 contents and the proportion 259 

of > 150 μm (wt%) from ODP site 1264 and 1265 in the subtropical southeastern Atlantic Ocean 260 

show significant increases between 22.2 and 23.2 Ma as a feedback to the transient Oligocene-261 

Miocene transition glaciations (Liebrand et al., 2016) (Fig 3F and 3G). The benthic foraminiferal 262 

accumulation rates (BFAR) at the southern Atlantic site 1090 significantly increased during 263 
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Oligocene-Miocene transition period, imply an enhanced paleoproductivity (Diester-Haass et al., 264 

2011) (Fig 3H). Benthic foraminiferal Mg/Ca, Li/Ca and U/Ca records from ODP 926 and 929 in 265 

the equatorial Atlantic across the Oligocene-Miocene boundary reveal an enhanced organic carbon 266 

burial (Mawbey and Lear, 2013). However, the driving mechanism of this fundamental transition 267 

is still ambiguous. The relatively stable atmospheric CO2 content may not be the reason for this 268 

climatic change (Fig 3B), and a minimum in eccentricity that results in low seasonality orbits 269 

favorable to ice-sheet expansion on Antarctica may be a dominant factor (Zachos et al., 2001) (Fig 270 

3A). 271 

Significantly, there were also obvious changes in Asian paleoenvironments during this 272 

interval. Based on a compilation of paleobotanical and lithological data from 125 cites over China, 273 

Sun and Wang (2005) argued that a reorganization of climate system, from latitudinal zonal 274 

pattern during the Paleogene to a Neogene pattern with arid zones restricted to northwest China, 275 

occurred around the Oligocene-Miocene boundary. This implies that the onset of the East Asia 276 

summer monsoon began around ~23 Ma. The continuous aeolian deposits during 22 to 6.2 Ma in 277 

Qin’an county (Gansu province) support the conclusion that modern East Asian monsoon already 278 

existed in the early Miocene (Fig 4; Guo et al., 2002). Subsequent studies from the Zhuanglang 279 

site at the western Chinese Loess Plateau confirmed that the loess deposits in the Loess Plateau 280 

began as early as 25 Ma and inland Asian desertification initiated or enhanced at least by the late 281 

Oligocene (Fig 4; Qiang et al., 2011). A 30 Ma stable isotope record of marine-deposited black 282 

carbon from the northern South China Sea reveals that C4 plants gradually appeared since the 283 

early Miocene as a component of land vegetation in East Asia; and this shift in vegetation types 284 

might be related to the evolution of East Asian monsoon (Jia et al., 2003). The sporomorphs 285 

results from the Lanzhou basin during the latest Early Oligocene indicate a dominance of arboreal 286 

plants that represent a wetter environment characterized by relatively high precipitation and a 287 

warm climate, which suggests that East Asia summer monsoon has already supplied abundant 288 

rainfall to Lanzhou basin (Miao et al., 2013). Monsoonal circulation existed by the early Miocene 289 

was also supported by the presence of persistently lower pedogenic carbonate δ13C and higher soil 290 

respiration fluxes on the Loess Plateau and in the Himalayan foreland (Caves et al., 2016). 291 

Weathering records from the ODP 1148 in South China Sea and ODP 718 in Bay of Bengal reveal 292 

an increased intensity of chemical weathering related to onset of East Asian summer monsoon 293 

(Clift et al., 2008, 2014). The intensification of the South Asian monsoon at ~24 Ma was probably 294 

a major trigger of the stronger erosion on Greater Himalayan with removal of ~1.5 km rocks 295 

leading to a major unconformity in the Himalayan foreland basin (Clift and VanLaningham, 2010).   296 

The aridification of Asian interior further intensified during the late Oligocene-early Miocene. 297 

In Jungger basin, the earliest eolian deposition started at 24 Ma and lasted until 8 Ma, indicating 298 

that extensive arid to semiarid regions existed in the Asian interior by 24 Ma (Sun et al., 2010b). 299 

According to the radioisotopic methods (40Ar-39Ar and U-Pb ages) to precisely date a volcanic tuff 300 

preserved in the stratigraphy from the Aertashi and Kekeya sections in the Tarim basin, in 301 
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combination with the magnetostratigraphy and lithostratigraphy, Zheng et al. (2015) concluded 302 

that the initial desertification of the Taklimakan desert was between ~26.7 Ma and 22.6 Ma as a 303 

response to a combination of widespread regional aridification and increased erosion in the 304 

surrounding mountain fronts, both of which were closely linked to the tectonic uplift of the 305 

Tibetan-Pamir Plateau and Tian Shan. A palynological record from the fluviolacustrine Jingou 306 

River section collected from the northern Tian Shan indicates a shift from a late Oligocene wet 307 

condition in central Asia to dry conditions at 23.8-23.3 Ma (Tang et al., 2011). A significant 308 

increase in aeolian sediments in Lanzhou basin occurred at ~26 Ma, which reveals that a large 309 

scale arid environment formed in the Asian interior since the late Oligocene (Zhang et al., 2014). 310 

In central Tibet, stable isotope analyses of modern and accurately dated ancient paleosol carbonate 311 

in the Nima basin reveal an arid climate and high paleoelevation (4.5-5 km) by 26 Ma (DeCelles 312 

et al., 2007). Major and trace element concentrations from the central Pacific show that the 313 

delivery of Asian dust materials significantly increased since 20 Ma in the ODP Site 1215 (Ziegler 314 

et al., 2007), which was compatible with the remarkable aridification of inland Asia.  315 

 316 

2.2.2. Tectonic uplifts of the Tibet and surrounding mountains linked to this drying 317 

This stage is characterized by relatively little tectonic active in the central Tibet and by 318 

further uplift of the plateau margins (Fig. 4; Locations that mentioned the uplift and deformation 319 

at this part have been shown on the circles and detail information can be seen table 2).  320 

In northeastern Tibet, low-temperature thermochronologic results show that the Laji Shan 321 

(Lease et al., 2011), Ela Shan (Lu et al., 2012) and northeastern Qilian (Pan et al., 2013) 322 

underwent significant rapid cooling and exhumation between 25 and 20 Ma (Fig. 4). The unstable 323 

accumulations in the Xining basin during 25-20 Ma (Xiao et al., 2012), high accumulation rates in 324 

the Xunhua basin around 24-21 Ma (Lease et al., 2012) and sedimentary discontinuity in the 325 

Guide basin at~21 Ma (Liu et al., 2013) have been interpreted to reflect the uplift of adjacent 326 

mountains during this period. Changes in paleocurrent and detrital zircon provenance at ~30 Ma in 327 

the Lanzhou basin at the northeast margin of the Tibetan Plateau reflect the pulsed growth of the 328 

West Qinling (Wang et al., 2016b). In the northwest Tibet, the initiation of thrusting in the West 329 

Kunlun Range began in the early Miocene (~23 Ma) (Jiang et al., 2013). The apatite fission track 330 

results indicate that the Altyn Tagh fault (Jolivet et al., 2001), the Main Pamir thrust (Sobel and 331 

Dumitru, 1997), the Southwest Tian Shan (Sobel et al., 2006), and the Northern Tian Shan 332 

(Hendrix et al., 1994) underwent rapid cooling and exhumation between 30 and 20 Ma. All of 333 

these indicate the initial activity of the thrust faults and a significant tectonic deformation of the 334 

Tibet margins during the middle Oligocene-early Miocene time (Fig. 4). 335 

In the Himalayas, low-temperature thermochronologic results in combination with the 336 

leucogranite U-Pb and K-Ar muscovite ages show the formation of the Silving Rift as early as 23-337 

21 Ma (Searle et al., 1999). The initial thrusting of the Main Central Thrusts occurred at 338 

approximately 23-21 Ma based on the geochronology from the dating of 40Ar/39Ar from the 339 
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Greater Himalayan paragneiss in hanging wall of the Main Central thrust (Robinson et al., 2006) 340 

and was synchronous with the South Tibetan detachment system motion (Li et al., 2015; Robinson 341 

et al., 2006). In eastern Tibet, low-temperature thermochronologic data reveals that the Longmen 342 

Shan underwent significantly cooling during 30-25 Ma (Wang et al., 2012b). Therefore, we can 343 

conclude that the plateau margins experienced intense growth between 30 and 20 Ma (Fig. 4). 344 

The Paratethys Sea has retreated since late Eocene (Bosboom et al., 2014a), which is not the 345 

main cause of this Asian aridification. Global cooling trends and changes in CO2 level are unlikely 346 

to account for this strengthened aridification because late Oligocene warming, as documented by 347 

the marine δ18O records (Zachos et al., 2001), are not correlative with this drying changes in Asia. 348 

Therefore, we consider that the surface uplifts of the plateau margins are the dominant factor.  The 349 

continuing uplift and expansion of the plateau margins would alter significantly the thermally 350 

forced circulation and enhance continental-scale winter monsoon and central Asian aridity (An et 351 

al., 2001). Climate models reveal that uplift of the northern Tibet margins have significant effects 352 

on the intensified drought in inland Asia (Liu et al., 2015a; Zhang et al., 2012). Another important 353 

factor is the Tian Shan Mountains and surrounding mountains uplift, which would reduce westerly 354 

moisture transport (Bougeois et al., 2018) and thus strengthen drying in central Asia. 355 

 356 

2.3 The rapid uplift and erosion of the plateau margins again and Asian 357 

aridification between 15 and 8 Ma 358 

2.3.1. Strengthened Asian winter monsoon and extensive aridification during 15-8 Ma 359 

  The middle-late Miocene time was a fundamental change in earth’s climate system. A 360 

significant ~1‰ positive excursion of benthic foraminiferal δ18O reflected a major expansion and 361 

permanent establishment of the East Antarctic ice sheets, and an apparent positive excursion of 362 

benthic foraminiferal δ13C (Westerhold et al., 2005) (Fig 5C and 5D). Bottom waters have cooled 363 

by ~2°C and sea surface waters cooled by 6-7°C in the Southern Ocean (Holbourn et al., 2007; 364 

Shevenell et al., 2004), and cooled ~ 2°C of sea surface waters in the Eastern Equatorial Pacific 365 

(Rousselle et al., 2013) (Fig 5F). A 59 ±6 m of sea level fall in northeastern Australia at ~13.9 Ma 366 

occurred due to ice growth on Antarctica (John et al., 2011). Sea level estimates from coastal plain 367 

coreholes in New Jersey and Delaware show an about 40 m fall of sea level between 14 and 11 Ma 368 

(Kominz et al., 2008) (Fig 5E). Increases in opal accumulation from 14 to 13.8 Ma from ODP 369 

U1338 in eastern equatorial Pacific indicated an enhanced siliceous productivity (Holbourn et al., 370 

2014). During this period, the onset of a perennial sea ice cover in the Arctic Ocean probably 371 

occurred at ~13 Ma (Krylov et al., 2008), and the extinction of tundra in continental Antarctica has 372 

taken place at ~14 Ma (Lewis et al., 2008), and decrease of mass accumulation rates of silicate 373 

sediments occurred at ~15.5 Ma in South China Sea (Wan et al., 2009) (Fig 5G). Some hypotheses 374 

were tried to interpret these paleoclimatic changes, including atmospheric CO2 drawdown 375 

(Holbourn et al., 2005; Shevenell et al., 2008) and orbitally-paced climate changes (Holbourn et 376 

al., 2007). But, the atmospheric CO2 reconstructions still remain unclear (Fig 5B). The eccentricity 377 
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may be a pacemaker of middle Miocene climate evolution through the modulation of long-term 378 

carbon budgets (Holbourn et al., 2007) (Fig 5A). 379 

Asian paleoclimate underwent major changes during the middle to late Miocene from 380 

relatively wet interval during ca. 17 to 15 Ma to a more arid one that continued to the present (Hui 381 

et al., 2011; Song et al., 2014). A notable high magnetic susceptibility value interval between 16 382 

and 14 Ma from Zhuanglang site at western Chinese Loess Plateau was interpreted to reflect the 383 

Miocene climatic optimum (Qiang et al., 2011). Sporopollen data from the Tianshui basin at the 384 

NE Tibetan Plateau indicates a dominated temperate, warm-temperate broad-leaved forest 385 

between 17.1 and 14.7 Ma in response to the wet conditions (Hui et al., 2011).  386 

But After ca.15 Ma, dry conditions have prevailed in the inland Asia. Palynological records 387 

from the Tianshui basin (Hui et al., 2011; Liu et al., 2016), Wushan Basin in the Northeastern 388 

Tibetan Plateau (Hui et al., 2017), Guyuan at the Ningxia province (Jiang and Ding, 2008), 389 

western Qaidam basin (Miao et al., 2011), and northern Tian Shan (Tang et al., 2011) show that 390 

the Artemisia, Chenopodiaceae (Fig 6A), Ephedra and Poaceae significantly increased and 391 

remained the dominant taxa in the pollen assemblages, indicating a persistent drier condition in 392 

central Asia after the middle Miocene climatic optimum. A rapid decrease of magnetic 393 

susceptibility within the Neogene eolian sequences from the eastern Xorhol basin at the 394 

northeastern Tibetan Plateau indicate that the aridity of Asian interior intensified after 11.5- 395 

10.3 Ma period (Li et al., 2014). Carbonate content from the western Qaidam basin reveal a sharp 396 

decrease since 11 Ma in response to the increase of regional aridity (Song et al., 2014) (Fig 6D). 397 

Isotopic data from pedogenic and lacustrine carbonates in the northeastern Qaidam basin and 398 

Xunhua basin in the northeastern Tibetan Plateau displays a positive shift of ~2.5‰ and ~1.5‰ in 399 

δ18O values during this period, respectively (Fig 6B), indicating that intensified aridity in central 400 

Asia occurred at~12 Ma (Zhuang et al., 2011; Hough et al., 2014). A similar study from the 401 

southwestern Qaidam basin has shown that a~1.5‰ positive shift in the most negative δ18O values 402 

of carbonate cements and pedogenic carbonates occurred at 13-12 Ma (Li et al., 2016). Another 403 

similar study from the Qaidam basin show that suddenly decrease of the ostracod species diversity, 404 

abrupt positive shifts of about 3.75‰ in δ18O values and 5.28‰ in δ13 C values for ostracod 405 

valves, and markedly decrease of the chemical index of weathering (CIW) occurred since 13.3 Ma 406 

ago (Song et al., 2017).  Multiproxies of the Sikouzi section in the Ningxia province in China 407 

changed substantially after 12-11 Ma, with an increase of magnetic susceptibility, lightness and 408 

total inorganic carbon and a decrease of the pollen humidity index, total organic carbon and 409 

redness; these imply that the paleoclimate in central Asia became cooler and drier since 12 Ma 410 

(Jiang et al., 2008). The expansion of the dry areas in western China after ca 15 Ma would supply 411 

a larger amount of the dust to the Lanzhou basin (Zhang et al., 2014) and Chinese Loess Plateau 412 

forming the Red Clay sediments (Xu et al., 2009). The long-term drying of inland Asia after ca 15 413 

Ma led to the disappearance of late Miocene episodic lakes in the Tarim basin and shifted to the 414 

currently prevailing desert environments (Liu et al., 2014). In addition, increased frequencies of 415 
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fire in the dry Inner Asia may be related to a continuous aridification in Asia (Miao et al., 2016). 416 

The Asian monsoon apparently changed during 14-8 Ma. Gradually increase percentages of 417 

xerophytic taxa in the Qaidam basin suggest gradual strengthening of East Asian winter monsoon 418 

and weakening of East Asian summer monsoon (Miao et al., 2011). Pollen and grain-size studies 419 

from the Sikouzi area on the east side of the Liupan Mountains also reveal a weak intensity of East 420 

Asian summer monsoon since 12 Ma ago (Jiang and Ding, 2008, 2009). Late Miocene winter 421 

monsoon intensification is evidenced in the decreased magnetic susceptibility variability of 422 

Zhuanglang Red Clay deposits (Qiang et al., 2011) (Fig 6F); which was consistent with the 423 

relatively low calcite/quartz ratios during 9.5-7.5 Ma in response to the strong East Asian winter 424 

monsoon intensity (Sun et al., 2015). Lacustrine micrite and pedogenic carbonate from the 425 

Xunhua basins at the northeastern Tibetan Plateau (Hough et al., 2011, 2014), and from the 426 

northeastern Qaidam basin (Zhuang et al., 2011) show a positive shift of ~1.5‰ and ~2.5‰ in 427 

δ18O values during this period, respectively, imply an increased regional aridification and related 428 

to enhanced East Asian winter monsoon. Increased mineralogical ratios (chlorite/quartz, 429 

illite/quartz, calcite/quartz and protodolomite/quartz) from the Zhuanglang section in the western 430 

Chinese Loess Plateau indicated weak East Asian summer monsoon intensity during 18.5-9.5 Ma 431 

(Sun et al., 2015). The ratios of (illite+chlorite)/smectite and (quartz+feldspar)% from ODP site 432 

1146 in South China Sea reveal a significant increase at~15 Ma as a result of enhanced winter 433 

monsoon (Wan et al., 2007). The CIA (100× Al2O3/(Al2O3+CaO+Na2O+K2O)) from the same site 434 

1146 show a significant decrease at about 15 Ma related to decreased summer monsoon intensity 435 

(Wan et al., 2009) (Fig 6E). The illite/smectite ratios from IODP U1430 in Japan Sea show a rapid 436 

increase at~11.8 Ma as suggestive of increased eolian input related to enhanced winter monsoon 437 

(Shen et al., 2017) (Fig 6C). A comprehensive review of numerous proxies from the South China 438 

Sea sediments reveals a strong summer monsoon during ~21-18.5 Ma, followed by an extended 439 

period of summer monsoon maximum from 18.5 to 10 Ma, then weakening (Clift et al., 2014). 440 

The South Asian summer monsoon may begin and/or strengthen during this period. The D/H 441 

ratios of pedogenic clay and the 18O/16O ratio of carbonate nodules from Siwalik sediments in 442 

India reveal a substantially strengthened Indian monsoon at ~11 Ma (Sanyal et al., 2010). But, the 443 

geophysical and geochemical data from the IODP Expediton 359 in Indian Ocean reveal an abrupt 444 

modern South Asian Monsoon onset at ~12.9 Ma (Betzler et al., 2016), with an apparent decrease 445 

content of Mn/Ca ratios (Fig 6G). This age was also reported by Gupta et al.(2015) based on the 446 

stable isotope analysis of planktonic foraminifera in the Arabian Sea and significant increase of 447 

TOC contents (Fig 6H). Recent research from ODP site 722B and 730A in the western Arabian 448 

Sea revealed a major drop in sea-surface temperature in the period of 11-10 Ma related to the 449 

establishment of monsoonal upwelling (Zhuang et al., 2017). 450 

 451 

2.3.2. Uplifts of the plateau margins linked to this Asian drying 452 

During this period, the plateau margins underwent rapid uplift again and there was the onset 453 
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of S-N rifting in central Tibet (Fig. 7; Locations that mentioned the uplift and deformation at this 454 

part have been shown on the circles and detail information can be seen table 3). 455 

 In northeastern Tibet, low-temperature thermochronological and detrital zircon analyses 456 

indicate that the North Qilian Shan (Zheng et al., 2010; Pan et al., 2013; Wang et al., 2016a), Jishi 457 

Shan (Lease et al., 2011), Liupan Shan (Wang et al., 2017), and Haiyuan fault (Duvall et al., 2013) 458 

had undergone accelerated exhumation between 14 and 10 Ma. The rapid deformation and 459 

exhumation of these mountains would lead to hydrologic separation in the adjacent basins, such as 460 

Xunhua and Linxia basins (Hough et al., 2011), and to a high sedimentation rate for foreland 461 

basins and new detrital zircon components (Lease et al., 2012; Liu et al., 2013; Saylor et al., 2017). 462 

A combination of magnetostratigraphy and cosmogenic burial ages from the fluvial deposits in 463 

Gonghe basin, together with lithostratigraphic patterns and paleocurrent records, indicates that the 464 

rise of the Gonghe Nan Shan became significant at ~10 Ma (Craddock et al., 2011). A clockwise 465 

rotation of 25.1±4.6º of the Guide basin took place between 17 and 11 Ma (Yan et al., 2006). A 466 

magnetostratigraphic study of the Dahonggou section in the northern Qaidam basin coupled with 467 

the variations in lithofacies, sedimentation rate and magnetic susceptibility reveal that the Qilian 468 

Shan and the Altyn Tagh fault were synchronously tectonically active at ~12 Ma (Lu and Xiong, 469 

2009). This time was consistent with the onset of molasse deposits along the Altyn Tagh fault at 470 

about 13 Ma (Sun et al., 2005). In the northwestern Tibet, apatite fission track results reveal that 471 

the West Kunlun range experienced rapid cooling and exhumation during 12-8 Ma, which was 472 

consistent with sharply increased sedimentation rates at the southern margin of the Tarim basin 473 

(Wang et al., 2003). The uplift and erosion of the Tian Shan accelerated at ~11 Ma, as constrained 474 

by a two-fold increase in sedimentation rate as well as marked changes in rock magnetic 475 

characteristics at this time in the Yaha section on the southern flank of the central Tian Shan 476 

(Charreau et al., 2006).  477 

In Himalayas, the extrusion rate of the Higher Himalayan Crystalline thrust sheet onto the 478 

Lesser Himalaya sequence slowed in the middle Miocene and ceased by ca. 12 Ma (Godin et al., 479 

2006). The activity of the Main Central thrust and the South Tibetan Detachment System had 480 

ceased by 13-12 Ma based on U-Pb ages of deformed pegmatites, 40Ar/39Ar hornblende ages and 481 

Rb-Sr cooling ages of muscovite and biotite (Catlos et al., 2002; Daniel et al., 2003; Tobgay et al., 482 

2012). The Main Boundary thrust began active during 12-9.5 Ma inferred from the regional 483 

increasing erosion in the Lesser Himalaya and rates of the foreland-basin fill (Huyghe et al., 2001; 484 

Meigs et al., 1995). Thiede et al. (2009) integrated 255 apatite and zircon fission track and white 485 

mica 40Ar/39Ar ages from the northwest Himalaya, and suggested that a high exhumation rate of 1-486 

2 mm/a existed since 11 Ma along the southern High Himalayan slopes. In the Tethyan Himalaya, 487 

the rapid exhumation range was from 17 to 5.7 Ma in the central Himalaya and from 15 to 3 Ma in 488 

the southwestern Himalaya (Liu et al., 2005; Thiede et al., 2005). A series of N-S striking rifts and 489 

high-angle normal faults were documented in the Himalaya, such as the Kung Co, Thakkola, 490 

Yadong-Gulu. Based on magnetostratigraphy of the Tetang Formation, the initiation of Thakkola 491 
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rift extension was constrained between 11 and 10 Ma (Garzione et al., 2000, 2003). The zircon and 492 

apatite (U-Th)/He ages from the footwall of the early Miocene Kung Co granite in southern Tibet 493 

suggest that initiation of normal fault slip was at ~13-12 Ma and that rapid exhumation of the 494 

footwall was between ~13 Ma and 10 Ma (Lee et al., 2011). In eastern Tibet, low-temperature 495 

thermochronological results show that southwestern Longmen Shan experienced rapid cooling at 496 

15 Ma (Cook et al., 2013), the central Longmen Shan was initially active at ~11 Ma (Kirby et al., 497 

2002), and the northeastern part of Min Shan was at 7-4 Ma (Kirby et al., 2002). Moreover, the 498 

thermochronlogic analyses from the central and southern Longmen Shan Thrust-Nappe belt reveal 499 

differential cooling across the Erwangmiao and Yingxiu-Beichuan faults during Miocene (Arne et 500 

al., 1997).  501 

        We cannot rule out the effects of global cooling during this period, which would reduce the 502 

amount of water vapor held in the atmosphere and thereby can cause terrestrial drying. But, the 503 

further outward-growth of the plateau margins played an important role for Asian drying. First, 504 

Miao et al.(2012) examined the evolution of Miocene climate for five separate regions in Eurasia, 505 

including Europe, High-latitude Asia, the East Asian Monsoon region, the South Asian Monsoon 506 

region, and Central Asia. The results show that the moisture evolution in Central Asia shows less 507 

similarity with other four regions, and thereby the uplift of the plateau margins could provide a 508 

possible explanation for these differences. Second, climatic proxies from the Central Asia, Japan 509 

Sea and South China Sea (Fig.6) do not show synchronously changes in response to global cooling.  510 

If we do not consider the age reliable, this may imply that regional factors, especially differential 511 

uplift of the marginal mountains on the edge of the Tibetan Plateau, played an important role for 512 

proxy changes in the context of Middle-Late Miocene global cooling. 513 

 514 

3. Discussion  515 

At least four hypotheses are proposed to interpret the Asian aridification changes: (1) the 516 

uplift of the Tibetan Plateau (e.g., Miao et al., 2012; Zheng et al., 2015); (2) the retreat of the 517 

Tethys Sea in Asia (e.g., Bosboom et al., 2014a; Ramstein et al., 1997); (3) the global cooling 518 

during the Cenozoic (e.g., Dupont-Nivet et al., 2007; Lu and Guo, 2013); and (4) the decreasing 519 

concentration of atmospheric CO2 (e.g., Lu and Guo, 2013). Previous studies show that the retreat 520 

of the Tethys Sea occurred around 47-40 Ma. This regression was coeval with the initial 521 

aridification of the central Asia, the regional disappearance of a relatively wet perennial saline 522 

lake system, and a prominent shift to relatively more arid flora around ~41 Ma recorded in the 523 

Xining basin (Bosboom et al., 2014a; Sun et al., 2016). Therefore, some scholars suggested that 524 

the sea retreat in central Asia played an important role in the deterioration of the Asian 525 

paleoenvironment (Bosboom et al., 2014b; Ramstein et al., 1997). The global cooling is another 526 

factor for Asian desertification. The cooling would not only cause ice-sheet expansion and an 527 

increase in meridional temperature gradients leading to the southward retreat of summer monsoon, 528 
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but also would reduce the amount of water vapor held in the atmosphere leading to both additional 529 

cooling and further weakening of the East-Asian summer monsoon (e.g., Dupont-Nivet et al., 530 

2007; Jiang and Ding, 2008; Lu and Guo, 2013). The decrease in average atmospheric CO2 531 

concentration would not only cause global cooling but also would shift the inter-tropical 532 

convergence zone southward, thereby reducing the monsoon precipitation accompanied by the 533 

intensification of Asian desertification (e.g., Anagnostou et al., 2016; Lu and Guo, 2013).  534 

Although numerous elements influence evolution of East Asian climate, we consider that the 535 

three main phases of uplift of the Tibetan Plateau region played an important role in drying in Asia. 536 

During the first pulse, the central Tibet reached the near-modern elevation and probably the 537 

Himalayas had already obtained the present-day elevation by at least 35 Ma. The high elevation in 538 

central Tibet would increase silicate weathering and erosion contributing to lowering of 539 

atmospheric CO2, which was a major cause of global cooling (e.g., Dupont-Nivet et al., 2008a; 540 

Garzione, 2008). Global deep-sea oxygen records show a significantly positive shift in response to 541 

rapid global cooling during 50-35 Ma (Fig. 8). Reconstructions of atmospheric CO2 concentrations 542 

based on the boron isotope composition of well preserved planktonic foraminifera show a relative 543 

decline in CO2 concentrations through the Eocene of about 50 ppm that would be sufficient to 544 

drive the high-and low-latitude cooling during late Eocene (e.g., Anagnostou et al., 2016). The 545 

continuing uplift of the plateau, combined with a decrease of seafloor spreading rates, would result 546 

in declining atmospheric CO2 concentrations below ~760 ppm allowed for a critical expansion of 547 

ice sheets on Antarctica (Dupont-Nivet et al., 2008a; Pearson et al., 2009). In addition, the 548 

continuing northward injection of the Pamir related to the Tibet uplift forced the long-term 549 

westward sea retreat from the Tarim basin (Carrapa et al., 2015; Sun et al., 2016). This resulted in 550 

the regional initiation of the Asian aridification induced by the decrease of moisture supplied from 551 

the Paratethys Sea (Bosboom et al., 2014b). More notably, the high Himalayas and south Tibet 552 

would lead to the formation of the south Asian monsoon by orographic insulation (Boos and 553 

Kuang, 2010) or thermal forcing (e.g., Wu et al., 2012). However, the warm and moist air from the 554 

Indian Ocean could not easily flow toward the central and northern Tibet due to the topographic 555 

barrier of the high Himalayas. Additionally, the significant uplift of the northern Tibet during this 556 

interval probably caused a relatively weak monsoon-like climate during the Eocene time, which 557 

was consistent with recent climate model simulations that the uplift of northern Tibet was critical 558 

for intensification of East Asian monsoon (Liu and Dong, 2013; Liu et al., 2015a; Tang et al., 559 

2013). 560 

The second pulse between 30 and 20 Ma is characterized by a further uplift of the plateau 561 

margins. However, the intense uplift of the plateau margins during this period cannot interpret the 562 

rapid warming of global climate during the Late Oligocene, which suggests that the process of 563 

silicate weathering of these elevated mountain belts and the subsequent sequestration of carbon 564 

was not sufficient in itself to counter the recorded relative rise in atmospheric CO2 concentration 565 

(Fig. 8). Instead, this late-Oligocene climatic warming may have been partly a side-effect of a 566 
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decrease of organic carbon burial and a net addition of CO2 to the atmosphere (e.g., Raymo and 567 

Ruddiman, 1992). Nevertheless, the uplift of the plateau margins during this interval had major 568 

regional impacts on the climate of central Asia. Climatic simulations reveal that the uplift of the 569 

northern Tibet would cause an initial formation of the East Asian monsoon as well as the 570 

desertification in central Asia (e.g., Liu and Dong, 2013; Liu et al., 2015a, 2017; Zhang et al., 571 

2012, 2017). Moreover, the intense uplift of the northern margins would strongly strengthen the 572 

land-sea thermal contrast, thereby leading to intensification of the East Asian winter monsoon and 573 

reducing precipitation in inland Asia (Wu et al., 2012). The synchronous occurrence of the plateau 574 

uplift and intensification of the East Asian monsoon suggests that the uplift of the plateau margins 575 

was the primary mechanism for the climatic variations in central Asia during this period. 576 

The third uplift of the plateau from 15 to 8 Ma was dominated by the uplift of the plateau 577 

margins. Although Willenbring and von Blanckenburg (2010) suggested that pulses in mountain 578 

uplift over the past 10 Ma might have been neither a direct cause nor an inevitable consequence of 579 

climate change, we consider that the Asian drying changes during this interval are primarily 580 

attributed to the rapid uplift of the Tibetan Plateau coupled with the global cooling (Fig. 8). 581 

Temperature and moisture proxy data from the five regions (Europe, high-latitude Asia, East Asian 582 

monsoon region, South Asian monsoon region, and Central Asia) suggests that the moisture 583 

evolution of central Asia was largely decoupled from adjacent regional trends during the mid-late 584 

Miocene, implying that the uplift of the Tibetan Plateau played an important role in the 585 

strengthening of aridification in central Asia (Miao et al., 2012). Climatic simulations show that 586 

the uplift of the northern Tibet would enhance the desertification of inland Asia and 587 

simultaneously strengthen the East Asian winter monsoon (Liu et al., 2015a; Tang et al., 2013). 588 

There is some evidence of a significant weaken of the East Asian summer monsoon from 14 to 11 589 

Ma. But Chemical weathering data from ODP site 1146 and 1148 in South China Sea suggests that 590 

the summer monsoon was relatively constant and wet during 14-10 Ma (Clift et al., 2008, 2014). 591 

After 11 Ma, the further strengthening of East Asian winter monsoon was attributed to the 592 

Himalaya-Tibetan Plateau uplift and global cooling (e.g., An et al., 2001). 593 

Although we try to establish the linkages between the uplift of the Tibetan Plateau and Asian 594 

climatic evolution, the effects between global cooling and the Tibetan Plateau uplift can still not 595 

be differentiated. Climate models did not take into account the detailed topography and other 596 

boundary conditions at each stage of the uplift (Tada et al., 2016). Additionally, there are still 597 

widely debates on paleoaltimetry of the Tibetan Plateau (Deng and Ding, 2015). Thus, more 598 

accurate evolution of the Tibetan Plateau uplift and the paleoclimatic variations in Asia should be 599 

reestablished in future. 600 

4. Conclusion 601 

The growth stages of the Tibetan Plateau and its margins during the Cenozoic had a series of 602 

potential effects on Asian climate. During the first stage (~55-35 Ma; Eocene), the central Tibet 603 
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has obtained near-modern elevation accompanied by the significant uplift of the northern margins. 604 

The high elevation of south Tibet would increase rates of silicate weathering, thereby leading to 605 

the drawdown of atmospheric CO2 and contributing to global cooling. Meanwhile, the progressive 606 

northward trend in uplift of the plateau probably forced the long-term westward withdrawal of the 607 

Paratethys Sea, which contributed to the onset of regional Asian desertification by decreasing 608 

moisture supply. The global cooling and sea retreat, coupled with the topographic barrier effect of 609 

the Tibetan Plateau, were major factors in the initial aridification of central Asia.  610 

The second uplift stage during late Oligocene and early Miocene is characterized by 611 

relatively little tectonic activity in central Tibet, but by a further uplift of the plateau margins. The 612 

uplift of northern margin of Tibet during this interval led to the onset of East Asian winter 613 

monsoon as well as the intensive desertification of inland Asia. During the third stage, from 15 to 614 

8 Ma, the plateau margins again underwent major uplift, thereby further strengthening the Asian 615 

winter monsoon and the desertification of the inland Asia.  616 

 617 
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  1200 

Figure captions 1201 

Fig 1. Major tectonic units of the Himalayan-Tibetan orogen and its movements constrained by global positioning 1202 

system measurements. The global positioning system velocities in and around the Tibetan Plateau with respect to 1203 

stable Eurasia are from Zhang et al. (2004). Abbreviations: IYS-Indus-Yarlung suture; JF: Jiali fault; BNS: 1204 

Bangong-Nujiang suture; JS: Jinsha suture; XF:Xianshuihe fault; KLF: Karakomrum fault; KS: Karakash fault; KF: 1205 

Kunlun fault; ALT: Altyn Tagh fault. 1206 

 1207 

Fig 2. Topographic map of the Tibetan Plateau showing evidence of rejuvenation or initiation of tectonic activities 1208 

at~65-35 Ma. The black circles represent some geographic locations mentioned in the article. The detailed 1209 

Page 32

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-64
Manuscript under review for journal Clim. Past
Discussion started: 18 June 2018
c© Author(s) 2018. CC BY 4.0 License.



information of tectonic activities at ~65-35 Ma is shown in table 1.  1210 

 1211 

Fig 3. Temporal evolution of paleoclimatic proxies over the time period 26-20 Ma. (A) long-term variations of 1212 

eccentricity (Laskar et al., 2004); (B) the reconstruction atmospheric CO2 based on di-unsaturated alkenones 1213 

(Pagani et al., 1999a, 1999b, 2005); (C) Benthic foraminiferal carbon isotope from ODP site 1218 in Pacific 1214 

(Pälike et al., 2006); (D) Benthic foraminiferal oxygen isotope from ODP site 1218; (E) Sea-level estimates from 1215 

the New Jersey and Delaware coastal plain coreholes (Kominz et al., 2008), with best estimates (black circles) and 1216 

best with imaginary lowstands (green circles); (F) Carbonate content estimated by In (Ca/Fe) from ODP 1264 1217 

(black line) and 1265 (red line) in the subtropical southeastern Atlantic Ocean (Liebrand et al., 2016); (G) Weight 1218 

percent (wt%) records of >150 μm size fractions from ODP 1264 in the subtropical southeastern Atlantic Ocean 1219 

(Liebrand et al., 2016); (H) Benthic foraminiferal accumulation rates (blue curve) and benthic foraminiferal tests 1220 

per gram sediment (pink curve) from ODP site 1090 in the southern Atlantic Ocean (Diester-Haass et al., 2011). 1221 

 1222 

Fig  4. Topographic map of the Tibetan Plateau showing evidence of rejuvenation or initiation of tectonic activities 1223 

at 30-20 Ma. The black circles represent some geographic locations mentioned in the article The detailed 1224 

information of tectonic activities at 30-20 Ma is shown in table.2.  1225 

 1226 

Fig 5. Temporal evolution of paleoclimatic proxies over the time period 16-8 Ma. (A) long-term variations of 1227 

eccentricity (Laskar et al., 2004); (B) reconstruction of atmospheric CO2 from di-unsaturated alkenones with 1228 

uncertainty band (Pagani et al., 1999a, 1999b, 2005) (yellow circles) and boron isotope data with uncertainty band 1229 

(Foster et al.,2012) (blue circles), and from B/Ca (Tripati et al., 2009); (C) and (D) Benthic foraminiferal oxygen 1230 

and carbon isotope from ODP Site 1146 in South China Sea (Holbourn et al., 2007, 2013); (E) Sea-level estimates 1231 

from the New Jersey and Delaware coastal plain coreholes (Kominz et al., 2008), with best estimates (red circles) 1232 

and best with imaginary lowstands (blue circles); (F) Sea Surface Temperature (SST) estimated by Rousselle et 1233 

al.(2013) from IODP site U1338 in the Eastern Equatorial Pacific; (G) Mass accumulation rates (MAR) of silicate 1234 

sediments at ODP site 1146 (red boxes ) (Wan et al., 2009) and ODP site 1148 (black circles) (Clift, 2006). 1235 

 1236 

Fig 6. Temporal evolution of paleoclimatic proxies over the time period 16-8 Ma in Asia. (A) pollen grains of 1237 

Chenopodiaceae from Sikouzi section in the east side of the Liupan Mountains (green) (Jiang and Ding, 2008) and 1238 

from western Qaidam basin (pink) (Miao et al., 2013); (B) Pedogenic and lacustrine carbonates δ18O from 1239 

northeastern Qaidam basin (black circles) (Zhuang et al., 2011) and Xunhua basin in the northeastern Tibetan 1240 

Plateau (red circles) (Hough et al., 2011); (C) illite/smectite ratios from IODP U1430 in Japan Sea (Shen et al., 1241 

2017); (D) carbonate contents from  Qaidam basin (Song et al., 2014); (E) the CIA (100×Al2O3/(Al2O3+CaO+ 1242 

Na2O+K2O)) from ODP 1146 in the South China Sea (Wan et al., 2009); (F) Magnetic susceptibility from the 1243 

Zhuanglang section in the western Loess Plateau (Qiang et al., 2011); (G) Mn/Ca ratios of a 3 point running 1244 

average from IODP site U1466, U1468 and U1471 in Indian Ocean (Betzler et al., 2016); (F) total organic carbon 1245 

(TOC wt%) values from ODP site 731A and 722B in the western Arabian Sea (Gupta et al., 2015). 1246 

 1247 
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Fig. 7. Topographic map of the Tibetan Plateau showing evidence of rejuvenation or initiation of tectonic activities 1248 

during 15-8 Ma. The black circles represent some geographic locations mentioned in the article.The detailed 1249 

information of tectonic activities during 15-8 Ma is shown in table.3.  1250 

 1251 

Fig 8. Evolution of Asian climate and the Tibetan Plateau, and their relation with global changes during the 1252 

Cenozoic. The data of benthic foraminiferal δ18O and atmospheric CO2 content is modified from Zachos et al. 1253 

(2001) and Zachos et al. (2008), respectively. 1254 
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Figure 2 1273 
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Figure 3 1299 
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Figure 7 1359 
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Figure 8 1363 
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Table captions 1367 

Table 1. Detailed information of rejuvenation or initiation of tectonic activities at ~65-1368 

35 Ma in the Tibetan Plateau. 1369 

Page 40

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-64
Manuscript under review for journal Clim. Past
Discussion started: 18 June 2018
c© Author(s) 2018. CC BY 4.0 License.



 1370 

Table 2. Detailed information of rejuvenation or initiation of tectonic activities at 30-1371 

20 Ma in the Tibetan Plateau. 1372 

 1373 

Table 3. Detailed information of rejuvenation or initiation of tectonic activities at 15-8 1374 

Ma in the Tibetan Plateau. 1375 

 1376 

Table 1 1377 

 Region/thrusts                   Events and Ages                          Methods                                  References                    Marks 

Altyn Tagh 
fault                      Initial active (~49 Ma)                   

Apatite fission track 
(AFT)    

Jolivet et al. 
(2001),Yin et al. 

(2002)  [1,2] 

Altyn Tagh                              Rapid uplift (65-50 Ma)                 
Zircon fission track and 
sedimentary                Wang et al. (2015)       [3]  

Northern 
Qaidam basin           

Initial contraction (65-50 
Ma)       

Seismic reflection and 
balanced cross section   Yin et al. (2008a)         [4] 

Northern 
Qaidam basin          

High accumulation rate 
(~49.5 Ma)                Sediments                                           Wei et al. (2013)         [5] 

West Qinling 
thrust                Rapid cooling (50-45 Ma)                       Apatite (U-Th)/He                                     Clark et al. (2010)        [6]  
West Qinling 
thrust                Initial active (~50 Ma)                                   40Ar-39Ar                                             Duvall et al. (2011)      [7]   

Xining basin 25ºof clockwise rotation (41 
Ma)             Paleomagnetic data                       

Dupont-Nivet et al. 
(2008b)    [8] 

Eastern Kunlun                      Rapid cooling (~35 Ma)                            Apatite (U-Th)/He                                    Clark et al. (2010)        [9]  

Tanggula thrust                      Initial active (~52 Ma)                    
Sediments and angular 
unconformities                 Li et al. (2012)         [10] 

Tethyan 
Himalaya thrust        Initial active (56-49 Ma)                                 40Ar-39Ar                      

Wiesmayr and 
Grasemann (2002)   [11] 

Tethyan 
Himalayan               

Significant crustal 
thickening(~55-44 Ma)      U-Pb, K-Ar and 40Ar-39Ar               Aikman et al. (2008)    [12] 

Mabja Dome                         
Onset of mid-crustal 
extension (35±0.8 Ma)  U-Pb                                 

Lee and Whitehouse 
(2007)    [13] 

Northwestern 
Himalaya        

Large-scale granite 
intrusion (~50 Ma)                U-Pb                                             Wang et al. (2012a)     [14] 

Deosai plateau                      Rapid cooling (55-40 Ma)                
AFT, apatite and zircon 
(U-Th)/He         

van der Beek et al. 
(2009)    [15] 

Kashgar-
Yecheng thrust       Initial motion (~50 Ma)                    

zircon and apatite fission 
track                           Cao et al. (2013)     [16] 

Kunlun fault                         Rapid cooling (55±4 Ma)                                     AFT Jolivet et al. (2001)     [17] 
Qimen Tagh 
mountains        Initial uplift (~40-30 Ma)                                       AFT        Liu et al. (2015b)       [18] 
Fenghuoshan 
fold-thrust belt   

Initial deformation (51-44 
Ma)         

AFT, apatite (U-Th)/He, 
40Ar-39Ar              Staisch et al. (2016)     [19] 
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Table 2 1379 

 
Region/thrust Events and Ages  Method   Reference  Marks 
Longmen 
Shan   Initial uplift (30-25 Ma)  AFT, apatite and zircon 

(U-Th)/He  Wang et al. (2012b) [1] 

Xunhua basin   High accumulation 
rates (24-21 Ma) Magnetostratigraphy   Lease et al. (2012)   [2] 

Linxia Basin  Rapid subsidence (29 
Ma)      Magnetostratigraphy   Fang et al. (2003)  [3] 

Guide Basin    Sedimentary 
discontinuity (21 Ma) 

Structural geology and 
sedimentary    Liu et al. (2013) [4] 

Laji Shan   Rapid uplift (25-20 Ma)     Magnetostratigraphy 
and U-Pb   Lease et al. (2012) [5] 

Xining basin    Unstable accumulations 
(25-20 Ma)  Magnetostratigraphy    Xiao et al. (2012)    [6] 

Northeast 
Qilian Rapid cooling (24 Ma)  AFT  Pan et al. (2013) [7] 

Elashan    Rapid uplift (25 Ma)   Magnetostratigraphy 
and AFT     Lu et al. (2012)  [8] 

North Qaidam 
basin 

 Fault reactivation(~22 
Ma) 

 Constrained by the 
sedimentary Lu and Xiong (2009) [9] 

North Qilian    Rapid exhumation (20 
Ma)  

AFT, vitrinite-
reflectance analysis  George et al. (2001) [10] 

Altyn Tagh 
fault 

Rapid exhumation (30-
25 Ma)  AFT and sediments  Jolivet et al. (2001) [11] 

West Kunlun 
Shan  Rapid uplift (23 Ma)     Seismic reflection and 

drill-well data    Jiang et al. (2013)  [12] 

Main Pamir 
thrust  Rapid cooling (20 Ma)  AFT    Sobel and Dumitru 

(1997)  [13] 

Southwest 
Tian Shan 

Rapid exhumation (24 
Ma)  AFT  Sobel et al. (2006)      [14] 

Southern Tian 
Shan  Initial uplift (24-21 Ma)  Sedimentary record and 

Magnetostratigraphy Yin et al. (1998)  [15] 

Northern Tian 
Shan 

Initial unroofing (~24 
Ma)  AFT     Hendrix et al. (1994)   [16] 

Zanskar Shear 
Zone  

 Cooling ages of 
muscovites (23-20 Ma)     40Ar-39Ar         Walker et al. (1999)  [17] 

Sutlej Rift    
Exhumation of deep 
crustal rocks (23-17 
Ma)   

  40Ar-39Ar          Vannay et al. (2004) [18] 

Kailas basin   Initial deposition (26-
24 Ma)  

 Igneous zircon U-Pb 
age  DeCelles et al. (2011)  [19] 

Hoh Xil basin   Sedimentary 
discontinuity (23 Ma) 

Constrained by 
sedimentation  Wang et al. (2002) [20] 

Eastern 
Kunlun    Initial uplift (29-24 Ma)  

  Constrained by 
sedimentary of foreland 
basin 

Yin et al. (2008b) [21] 

Ama Drime 
range  

Partial melting (30-25 
Ma)   

(U-Th)/He, 40Ar-39Ar 
and U-Th/Pb  Kali et al. (2010) [22] 

Silving 
leucogranite 

Rapid cooling (23-21 
Ma) 

U-Pb, AFT and 40Ar-
39Ar    Searle et al. (1999)  [23] 

Everest    Initial movement of 
MCT (~21 Ma)   U-Pb and 40Ar-39Ar  Viskupic et al. (2005) [24] 

Gangdese 
thrust   

Initial motion (27-23 
Ma)  

40Ar-39Ar   Yin et al. (1994) [25] 
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Table 3 1385 

 

Region/thrust  Events and Ages     Method      Method    Marks 
Southeastern 
Tibet  

Rapid cooling (13-9 
Ma)  AFT and apatite (U-Th)/He    Clark et al. (2005b)    [1] 

Southwestern 
Longmen 

Rapid exhumation (15 
Ma)  

AFT, apatite and zircon (U-
Th)/He Cook et al. (2013) [2] 

Central 
Longmen Shan 

Rapid exhumation ( ~11 
Ma) 

40Ar-39Ar, apatite and zircon 
(U-Th)/He Kirby et al. (2002) [3] 

Guide basin Clockwise rotation (17-
11 Ma)  Paleomagnetic data Yan et al. (2006)   [4] 

Liupan Shan                                                                                                     Rapid exhumation (~8 
Ma)   AFT     Zheng et al. (2006)  [5] 

Jishi Shan Rapid uplift (14-11 Ma)  AFT, apatite (U-Th)/He and 
U-Pb 

 Lease et al. 
(2011,2012) [6,7] 

Central Haiyuan 
fault  Initial motion (~15 Ma)     AFT, apatite and zircon (U-

Th)/He   Duvall et al. (2013) [8] 

Eastern Haiyuan 
fault  

 Initial motion (10-8 
Ma)  

   AFT, apatite and zircon (U-
Th)/He   Duvall et al. (2013)   [9] 

Xining basin   Significant uplift (14 
Ma)  

Paleomagnetic age of river 
terraces   Lu et al. (2004) [10] 

Gonghe Nan 
Shan  Initial active (10-7 Ma)  Constrained by sediments of 

foreland basin 
 Craddock et al. 

(2011)  [11] 

North Qilian 
Shan  Rapid cooling (~10 Ma)    Apatite (U-Th)/He  Zheng et al. (2010) [12] 

Eastern Qaidam 
basin  

High accumulation rates 
(15-8 Ma)  

 Inferred from 
magnetostratigaphy   Fang et al. (2007)   [13] 

Altyn Tagh  Rapid uplift (13.7-9 
Ma) 

 Paleomagnetic age of 
molasse deposits  Sun et al. (2005)  [14] 

Southern Qilian 
Shan  Rapid uplift (12 Ma)    Magnetostratigraphy    Lu and Xiong 

(2009) [15] 

Altyn Tagh fault   Rapid cooling (10±1 
Ma) AFT Jolivet et al. (2001) [16] 

West Kunlun     Rapid uplift (12-8 Ma)    AFT Wang et al. (2003) [17] 

Sutlej Valley   Peak metamorphism 
(~11 Ma) U-Pb ages  Caddick et al. 

(2007) [18] 

Main Boundary 
thrust  

 Initial motion (11-9 
Ma)  

 Inferred from sediments in 
Siwalik Group  Meigs et al. (1995)  [19] 

Thakkola rift   Initial extension (11-10 
Ma) Magnetostratigraphy     Garzione et al. 

(2000) [20] 

Tangra Yumco 
rift  

 Initial extension (13-12 
Ma)  Zircon and apatite (U-Th)/He   Dewane et al. 

(2006) [21] 

Shuanghu rift    Initial extension (13 
Ma)   40Ar-39Ar      Blisniuk et al. 

(2001) [22] 

Xainza rift       Initial extension (~14 
Ma)  U-Pb and apatite (U-Th)/He  Hager et al. (2009) [23] 

Kung Co rift    Initial extension (13-12 
Ma)  Zircon and apatite (U-Th)/He   Lee et al. (2011)  [24] 

Yadong-Gulu rift    Initial extension (10-8 
Ma)  

Constrained by monazite Th-
Pb ages   

 Edwards and 
Harrison (1997)  [25] 

Nyainqentanglha 
rift 

 Initial extension (~8 
Ma)    40Ar-39Ar  Harrison et al. 

(1995) [26] 
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