1 Supplementary Material for:

2 Reduced Carbon Cycle Resilience across the

3 Palaeocene-Eocene Thermal Maximum

4 David I. Armstrong M^cKay^{*1,2} & Timothy M. Lenton³

⁵ ¹Ocean and Earth Science, University of Southampton, National Oceanography Centre

6 Southampton, Southampton, SO14 3ZY, UK

² Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE-10691 Stockholm, Sweden
(current address)

⁹ ³Earth System Science group, College of Life and Environmental Sciences, University of Exeter,

10 Exeter, EX4 4QE, UK

11 <u>*david.armstrongmckay@su.se</u>

Figure S1: Sensitivity analysis of EWS rolling window metrics of benthic δ^{18} O (left) and δ^{13} C (right) in the run-up to the PETM. 'Default' results (black) are compared with non-interpolated (blue), 25 % rolling window (red), and 75 % rolling window (green) results.

Figure S2: Sensitivity analysis of EWS rolling window metrics of benthic δ^{18} O (left) and δ^{13} C (right) across the PETM and ETM2. 'Default' results (black) are compared with non-interpolated (blue), 25 % rolling window (red), and 75 % rolling window (green) results.