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Authors’ response to reviewers’ comments on: “Reduced Carbon Cycle Resilience across the 

Palaeocene-Eocene Thermal Maximum” (Ms. Ref. No.: cp-2018-57) 

 

Dear Yannick Donnadieu and Reviewers, 

Thank you for the timely reviews of our manuscript “Reduced Carbon Cycle Resilience across the Palaeocene-5 

Eocene Thermal Maximum”. Please find below our detailed responses to the reviews. We include the original 

comments and our response under each point in bold text and with line numbers referencing the revised 

manuscript with changes marked. 

We hope we have sufficiently answered your queries in our response. 

Yours sincerely, 10 

 

David I. Armstrong McKay & Tim M. Lenton 

  



2 

 

Response to Reviewer 1 (R1) Valerie Livina: 

The paper by McKay and Lenton "Reduced carbon cycle resilience across the Paleoscene-Eocene thermal 

maximum" investigates paleo data for early warning signals prior to known paleo events and discusses the 

system resilience in geochemical context. The paper is well-written, applies previously developed and tested 

techniques, and can he published after a revision.  5 

I suggest the following modifications.  

The authors could add definitions and references to the ideas of tipping points and resilience.  

The definitions and descriptions of tipping points and resilience have been clarified and additional references 

added (page 9 line 25 & page 10 line 1). 

In Figure 1, in the upper panel the time series have local minima at 55Ma, whereas in the enlarged bottom 10 

panel these minima are located at 56Ma. Why?  

The data in the top panel is from the Zachos compilation (2008), which uses an older age model for the data 

in this section, whereas the bottom panel uses higher-resolution data with an updated age model 

(Westerhold et al 2015) across just the study period. To maintain consistency with published records we have 

left them as-is, but we have clarified the difference in age models and PETM date in the caption. 15 

The paper does not include the reference [Held and Kleinen, GRL 2004], which was the first to apply the lag-1 

autocorrelation as an early warning indicator of a climatic bifurcation. The authors should cite it in page 2, line 

25; in page 4, line 6, and discuss the H&K contribution as pioneers of this technique in climatology.  

We indeed should have cited Held & Kleinen (2004), and have now included and discussed this reference 

where required (page 9 line 26, page 11 line 24) 20 

Variance does not necessarily increase prior to a bifurcation, see the counter-example in [Livina et al, Physica A 

2012]. Changes in skewness and curtosis are often consequences of the asymmetric effects due to the 

appearing or disappearing potential wells. This can be discussed in more detail in page 2.  

We have added discussion of counter-examples to increasing variance, skewness, and kurtosis (page 9 line 

31; page 10 line 6). 25 

It is not clear to me why the authors separate the cases of rolling windows for indicators and binned indicators. 

As I understand it, the binned indicator is a particular case of a rolling window, when the shift of the window is 

equal to the size of the window. Why do authors stress that, for instance, DFA is a binned indicator? It can be 

estimated in rolling windows just the same. Accordingly, I do not understand the comment in brackets in page 5 

, line 21, which separates rolling window and "metric-based".  30 

The binned metrics are indeed a special case of the rolling window, although with differing sized bins for pre-

PETM, PETM-ETM2, and post-ETM2. The key aspect is that in contrast to the rolling window run over the 

whole dataset for the binned analysis the data from the events themselves are removed and so not included 
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in these bins, avoiding the indicators being biased by the events themselves. However, we agree that the way 

this section is currently phased is a bit confusing, so we have rephrased this section to make it clearer (page 

13 lines 3-6). The comment on page 5 line 21 has also been clarified (page 13 line 17). 

You are also right to say that DFA can also be done on a rolling window along with the other EWS indicators. 

This analysis was originally excluded due to time constraints in the initial project (with AR1 used as the main 5 

‘memory’ indicator and DFA added later to just the binned section), but we have now run and included this 

additional analysis in the revised manuscript. These analyses strongly support our original AR1 results and 

interpretation, and discussion of these results have been included where necessary. 

When using several sizes of windows for an indicator (the figures in the supplement), the authors could do this 

not just for three sizes but for a range of windows, with estimation of uncertainty in the indicator curve - see 10 

the example of such indicator curves in [Livina et al, JCSHM 2013].  

A continuous range of rolling window length rather than just a comparison of 25 / 50 / 75% windows is also 

advantageous, and so we have also included a more robust sensitivity analysis of rolling window size 

(presented as plots and histograms of kendall tau values for each 1% increase in rolling window sizes 

between 25% and 75%) in the Supplementary Material (Supp. Figures S3 & S4) and mentioned in the text 15 

(page 12 line 16). 

In page 4, line 6, "the methodology was first outlined in [Held and Kleinen, GRL 2004], then used in [Livina and 

Lenton, GRL 2007]", etc.  

Clarification incorporated (page 11 line 24) 

In page 4, lines 17-18: while trends may be not the focus of the analysis, their removal reduces the value of the 20 

lag-1 autocorrelation, and this should be kept in mind in analysing the indicators.  

We have added a mention of this to the methods discussion (page 12 line 6) 

For the DFA reference in page 5, line 14, please use instead of [Lenton et al 2012b] the original DFA reference 

[Peng et al, PRE 1994].  

Citation incorporated (page 12 line 23) 25 

In page 1, line 17, what do the authors mean by "differing"?  

By “differing carbon cycle dynamics preceding the PETM and ETM2” we refer to the drivers of variance being 

different for each event, with an increase in jump intensity (and overall conditional variance) in the d13C 

prior to the PETM versus an increase in diffusion (and a decrease in jump intensity) prior to ETM2. This 

difference suggests potentially differing carbon cycle dynamics prior to each event, which we discuss in 30 

Section 3.3. However, this could be phrased more clearly in the abstract and so will clarify this line (page 8 

line 19) along with Section3.3 (page 16 line 18) in the revised manuscript. 

In page 8, lines 2-3, to avoid line break between 2 and My, use LaTeX command∼  
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This manuscript was composed in Microsoft Word, but we have adjusted this line to avoid the line break 

(page 16 line 7). 

 

Response to Reviewer 2 (R2) Pierre Maffre: 

First, I have to admit that this study uses statistical methods for time-series analysis which I am not very familiar 5 

with. So my remarks may be naive. Nevertheless, care has been taken to explain how to interpret the results 

given by these methods, as well as the limitations in the eponymous section. This is appreciable for a unfamiliar 

reader.  

As far as I know, this methodology of early warning signals for detecting tipping points is relatively new in 

paleoclimate studies. It makes this study all the more interesting and the results worth to be broadly 10 

communicated. The use of different indicators (distribution moments, autoregressive model, detrended 

fluctuation analysis, drif-diffusion-jump model) and the sensitivity analysis contribute to strengthen this study. 

Moreover, this methodology has not been applied to paleorecords earlier than Quaternary according to the 

cited literature (Dakos et al., 2008, Lenton, 2011, Lenton et al., 2012a, 2012b). Despite the difficulties of using 

data as far in the past of the Earth â˘ AˇTthat are clearly mentioned in the manuscriptâ˘ AˇT this study 15 

constitutes therefore a significant advance. I would suggest that this pioneering application should be 

highlighted in the main text.  

Here follows my comments.  

General remarks:  

This study deals with the reduction of climate and carbon cycle resilience with very little mention of the 20 

processes responsible for this (lack of) resilience. It is acknowledge Page 6 lines 4-6 that "most indicators do not 

reveal exact information about the nature of the transition itself" and I understand it is not the aim of the study. 

Nonetheless, for periods of time as extended as the one covered by this study (5 and 8 million years, which is 

substantially more than the previous EWS studies mentioned), it is commonly hypothesized than silicate 

weathering is the feedback that stabilize Earth climate (Walker, Hays and Kasting (1981) J Geophys Res 86, 25 

9776; Berner and Caldeira (1997), Geol, 25, 955; François and Goddéris (1998), Chem Geol, 145, 177-212). The 

authors should explicitly say if they aim at tracking carbon-climate resilience due to silicate weathering 

feedback (or more generally feedbacks in geological carbon cycle), or only "shorter-term" climate resilience (for 

instance, the processes mentioned Page 3, lines 21–23), or both.  

You are right to say that it is important to be clearer about which long-term carbon cycle or climate processes 30 

may be implicated in our analysis, and the silicate weathering feedback is indeed the most important of these 

for the geological carbon cycle (along with long-term changes in the burial rates of organic carbon and ocean 

carbonate). As mentioned in page 11 line 6, due to the temporal resolution of our data we cannot resolve 

short-term processes (i.e. that take place over less then ~10 kyr), but in our revised manuscript we have 

made this section clearer and be more explicit about which processes of the geological carbon cycle and long-35 
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term climate system we expect to play a role (page 10 line 29) and include our interpretation that warming-

driven changes in organic carbon burial are a likely pre-PETM mechanism in the Conclusions (page 17 line 14). 

It is of particular importance because of the timescale of considered perturbations of d13C and d18O: It is 

specified Page 4, lines 16-19 that the data are detrended in order to remove any long-term trends. This is 

indeed essential to get stationary time-series. But though it is explicitly said that bandwidth "is an important 5 

consideration", the only given information is that it is "adjusted heuristically for each dataset". More precision 

should be given on bandwidth value (is it constant along one given time-serie?) and above all because if it is less 

than the response time of carbon cycle (∼100–200ky, François and Goddéris, 1998), then the indicators are not 

(or only partially) measuring the resilience due to its feedbacks. From the timescale of variations of smoothed 

records shown in Fig. 3, 4 S1 and S2 (red lines), I guess the bandwidth is actually in the order of 100ky. The 10 

choice of the timescale of the fluctuations to study and the feedbacks to investigate is up to the authors, but it 

should be specified, and conclusions can be drawn only for the focused feedbacks.  

You are also right that bandwidth choice is important in the context of process timescales as well, and that 

the original manuscript failed to mention the bandwidth choices for the main rolling window metrics – we 

found that the optimal Gaussian kernel bandwidth was 0.1 and have made this clear in the revised 15 

manuscript (page 12 line 8). This does not directly translate to a frequency limit, but as shown by the red line 

in Figures 2 and 3 this removes all of the secular trends and the long-term orbital-scale (~100+ kyr) variability. 

While this at first inspection would seem like we’re filtering out what we’re interested in (the long-term 

carbon cycle / climate system), with this methodology it is in fact the short-term noise that we are interested 

in as this short-term noise reveals the resilience of the longer-term processes. But as mentioned above, the 20 

data’s temporal resolution places a lower limit on what timescale processes this method can reveal (in this 

case anything shorter than 10s of kyr). As a result, although we filter out the direct signal of longer-term 

processes, with this method this does not exclude these processes from affecting the results and 

interpretation. We have now added discussion of this to the background (page 10 line 29 onwards) and 

methodology (page 12 line 8). 25 

The section 3.2 (Binned Metrics) and Table 1 show that most of the indicators exhibit significant variations 

before/after the PETM and the ETM2. This suggest (as mentioned Page 7, lines 26–28) that the hyperthermal 

events are partly responsible for the loss of resilience of the carbon-climate system, or at least that these events 

are not simple perturbations followed by a relaxation towards the same "initial state": they induce some 

permanent or irreversible changes. Even if evidences of tipping points are lacking (as said Page 7, lines 27–28), I 30 

think it is an interesting results and should be highlighted in the conclusion, where there is no mention of this 

fact. I also wonder which component of carbon-climate system can be expected to undergo irreversible 

changes. If there is any "good candidate", it may be interesting to precise it.  

Our results do indeed clearly show increased and persistent long-term destabilisation following both 

hyperthermal events in our record, and this has implications for the early Eocene (as a destabilised carbon-35 

climate system may have played a role in the subsequent repeated hyperthermals). In our original 

manuscript we mostly focused on the implications of destabilisation for the presence of tipping points 

preceding the two hyperthermal events in our record, but you are right to point out that the subsequent 
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persistence of the loss of resilience is important as well and we have made this clearer in the discussion (page 

15 line 13 & line 30) and conclusions (page 16 line 28 & page 17 line 18) (as well as the processes likely to be 

implicated in this persistent loss of resilience, such as a dampened silicate weathering feedback in the Eocene 

relative to the Palaeocene). 

Minor specific remarks:  5 

Page 4, line 15 and line 22: With the definition of autoregressive model as ‘x(t+dt) = a*x(t) + e(t)’, a constant 

timestep ‘dt’ is inherently necessary for the autoregressive coefficient ‘a’ is directly link to ‘dt’. I wonder then 

how to fit an autoregressive model to the non-interpolated data? Just dividing ‘a’ by the local timestep is 

enough? It is not precised in the description of the ‘generic_ews’ function in R. Perhaps it is a "routine analysis" 

and is not worth to be precised, I can’t really judge it.  10 

For the AR model time-step the R function simply assumes a constant time-step throughout the time-series 

(i.e. it takes the time-series length and divides by N to get the constant dt). Of course without interpolation 

the actual data points will slightly differ from this dt which will introduce some error (and is why the 

interpolated run is considered the default, despite the alternative problem discussed in the text that this 

introduces instead), but there is no systematic bias in the distribution real data time-steps which limits any 15 

systematic error as a result. The assumption of a constant time-step has been clarified (page 11 line 30 & 

page 12 line 14) and a plot of data time-steps provided in the Supplementary Material. 

Page 6, line 21: The word "divergence" (of standard deviation) may be misleading because the reader would 

firstly expect to find an "increase", which is in contradiction with the rest of the sentence (and the Figure). 

Perhaps it is preferable to substitute it for "decrease of standard deviation" or "reducing standard deviation". In 20 

addition, this decrease of SD is likely to be due to earlier "extreme" events (between 59.5 and 58.5Ma) that slip 

out of the rolling window when it reaches 57-56Ma. Indeed, with a 75% rolling window (Fig. S1), SD does not 

exhibit such a decrease. It does with a 25% rolling window probably because there are "extreme" events up to 

57.5Ma. Therefore, this decrease of SD could be not linked to what happen immediately before the PETM, and 

not contradicting with the increase of AR1.  25 

We have clarified that d18O SD declines just before the PETM and discuss the likely reason why (page 14 line 

19). 

Page 6, line 29: How to interpret a decrease in kurtosis? Shouldn’t we except while approaching a tipping point 

more frequent extreme deviations, and then a higher kurtosis?  

We agree that one would expect kurtosis to increase prior to a tipping point as extreme data values become 30 

more common, but this is not considered to be as strong an indicator of resilience as other measures like 

variance or AR1. In this case it seems that the section in the d13C record between ~58-59.5 Ma has an 

especially high kurtosis (as shown in supplementary fig 1 especially by the 25% window) which then gradually 

falls as this period leaves the rolling window, which is likely masking any pre-PETM signal. Discussion of this 

feature has been added to the caption of Supp. Fig. 1. 35 
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Page7, lines10–11: "but that the increase of AR(1) for both d18O and d13Carehighly significant (p=0)". Please 

add "for non-interpolated data" to be explicit.  

Clarified (page 15 line 11) 

Page 7, lines 13-15: There is another evidence that the values of d13C during the events (at least for the PETM) 

are partly responsible for the upward steps in the indicators: with a 25% rolling window (Fig. S2), both AR1 and 5 

SD show a downward step at 54Ma, exactly when the PETM leaves the rolling window (and after the ETM2 has 

come into the rolling window). However, it is true that the binned metrics clearly show steps that are not due to 

what happen during the events.  

The within-event data in the whole-dataset rolling window analysis does affect the results, but the binned 

data metrics that exclude the events confirm the shifts are present anyway – further detail on this contrast 10 

has been added (page 15 line 27). 

Page 8, lines 2-3: Same remark as for the decrease of SD before PETM: the decrease of jump intensity can be 

due to the "extreme" events between 59.5Ma and 57.5Ma.  

Unlike with the previous comment, the within-event data doesn’t affect the DDJ model results as this method 

does not use a rolling window and all data are used and relevant. 15 

Supplementary Figures 1 and 2: How come than skewness is systematically positive? At least during PETM and 

ETM2, it seems there are more points beneath the red line than above. Moreover, in the binned metrics 

analysis (Table 1), skewness in systematically negative.  

There is indeed a mismatch between the d13C skewness as calculated on a rolling window (>~0 at all times 

and gradually increasing) and in the bins (<0 and decreasing for every bin). This is because the generic_ews 20 

function of the earlywarnings R package actually calculates and plots the absolute of the skewness – this is 

because skewness can increase or decrease when approaching a critical transition, and so the package plots 

the absolute in order to maintain consistency with the other indicators that should always increase. This 

means that the plotted skewness is in fact axis inverted, and matches the negative and declining values in 

Table 1. The events themselves skew positive (shown as a decrease in the plot) due to a detrending artefact 25 

that results in a temporary increase. We have updated the text, supplementary figures, and captions to make 

it clear the skewness plot is of the absolute values. 

 

Additional Changes 

In addition to the changes described above, we have also updated the p-values on the AR(1) rolling window 30 

and binned DFA-h in order to use arima model-generated surrogate records rather than bootstrapped 

datasets as a more appropriate null model choice (this led to only very minor changes in p-values though, 

with no impact on our results or discussion). 
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Correspondence to: David I. Armstrong McKay (david.armstrongmckay@su.se) 

Abstract. Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system 

reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum 

(PETM) ~56 Ma, and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon 

from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be 15 

preceded by critical slowing down of their dynamics, including increasing temporal autocorrelation and variability. However, 

reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter 

selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is 

consistent evidence of destabilisation of the carbon cycle in the ~1.5 Myr prior to the PETM, elevated carbon cycle and climate 

instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and differing different drivers of carbon cycle 20 

dynamics preceding the PETM and ETM2 events. Our results indicate a loss of ‘resilience’ (weakened stabilising negative 

feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM, and in the carbon-climate system 

following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic 

Volcanic Province eruptions, with volcanism-driven warming potentially weakening the organic carbon burial feedback. Our 

results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate 25 

or terrestrial organic carbon reservoirs, whereas we find no support for a tipping point in deep ocean temperature. 

1. Background 

The Palaeocene-Eocene Thermal Maximum (PETM) at ~56 Ma is considered a potential example of passing a tipping point 

in the carbon-climate system where a smooth change in forcing triggered a large response (Lenton, 2013). Palaeorecords across 

the PETM indicate that an abrupt release of isotopically-light carbon (between 2000 and 13000 Pg C, best estimate ~3000 Pg 30 

C) into the ocean-atmosphere system occurred in under ~5 kyr, accompanied by global warming of ~5 oC, a 2.5 to 3.0 ‰ 

benthic δ13C excursion, and significant ocean acidification (Dickens, 2011; Dickens et al., 1995; Dunkley Jones et al., 2013; 

mailto:david.armstrongmckay@su.se
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Frieling et al., 2017; Kirtland Turner et al., 2017; Littler et al., 2014; McInerney and Wing, 2011; Sluijs et al., 2007b; Zachos 

et al., 2005, 2008, Zeebe et al., 2009, 2016). It has been hypothesised that gradual warming during the late Palaeocene (Figure 

1Figure 1) eventually crossed a tipping point, either through an internal process or an external perturbation such as volcanism 

(Svensen et al., 2004), which triggered the extensive dissociation of a carbon cycle ‘capacitor’ such as methane hydrates in 

ocean sediments (Dickens, 2011; Dickens et al., 1995; Minshull et al., 2016), permafrost soil carbon (DeConto et al., 2012) or 5 

organic carbon from a source such as peat (Cui et al., 2011; Kurtz et al., 2003) that benthic δ13C records and modelling indicate 

accumulated earlier in the Palaeocene (Dickens, 2011; Komar et al., 2013; Kurtz et al., 2003). This in turn led to a rapid 

increase in atmospheric CO2 (pCO2) and the subsequent amplification of global warming and carbon release in a positive 

feedback loop that shifted the Earth System to a warmer state for ~100 kyr. An alternative hypothesis is that a very large 

external perturbation of volcanic carbon caused the PETM (Gutjahr et al., 2017) with little a smaller role for amplifying 10 

feedbacks within the carbon cycle and therefore no significant role for a tipping point. 

 

The PETM was followed by the Early Eocene Climatic Optimum (EECO; Figure 1Figure 1) containing subsequent 

hyperthermal events such as Eocene Thermal Maximum 2 (ETM2) at ~54 Ma and ETM3 at ~53 Ma, which are potentially 

paced by orbital eccentricity forcing interacting with long-term warming and discharging methane hydrate deposits to produce 15 

threshold responses past repeated tipping points (Archer et al., 2009; Kirtland Turner et al., 2014; Komar et al., 2013; Littler 

et al., 2014; Lourens et al., 2005; Lunt et al., 2011; Stap et al., 2010; Westerhold et al., 2007; Westerhold and Rohl, 2009). 

However, the PETM occurred in a different orbital setting to the later events, suggesting that the PETM required an additional 

external “push” while the latter hyperthermals were eccentricity-paced tipping points (Littler et al., 2014). This push could 

have come from the emissions of the contemporaneous North Atlantic Volcanic Province (NAVP) eruptions both before and 20 

during the PETM (Frieling et al., 2016; Gutjahr et al., 2017; Storey et al., 2007; Svensen et al., 2004). Methane release from 

hydrate dissociation may also have been significantly limited or delayed by sediment transport processes, potentially limiting 

its role as a positive feedback (Minshull et al., 2016). 

 

Many complex systems have been found to include tipping points, thresholds beyond which even small changes in condition 25 

theycan trigger the system to abruptly transition into a new equilibrium state (Dakos et al., 2015; Held and Kleinen, 2004; 

Lenton, 2013; Lenton et al., 2008; van Nes et al., 2016; Scheffer et al., 2001, 2009). Theory suggests that, prior to reaching 

such a tipping point, a system will exhibit ‘critical slowing down’ of its dynamics – meaning a slowing recovery rate in 

response to perturbations – which can be detected as increasing trends in autocorrelation and variability in time-series data 

(Carpenter and Brock, 2006; Dakos et al., 2008, 2012a; Kéfi et al., 2013; Lenton, 2011; Lenton et al., 2012a; Scheffer et al., 30 

2009). Changes in skewness and kurtosis may also occur (although skewness can both increase or decrease depending on the 

nature of the alternative stable state and potential wells), and if internal variability is high, a system can ‘flicker’ between 

different states before undergoing a more permanent shift between them (Dakos et al., 2012a, 2013; Scheffer et al., 2009; 

Wang et al., 2012). Previous work has suggested that these indicators, which can be used as ‘early warning signals’ (EWS) or 
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more generally as metrics of resilience metrics(the capacity of a system to recover from disturbance and return to its reference 

state (Grimm and Wissel, 1997; Holling, 1973; Scheffer et al., 2001)), may be detectable prior to some abrupt climate 

transitions in the palaeorecord (Dakos et al., 2008; Lenton, 2011), including the Eocene-Oligocene Transition and during 

several Pleistocene climate shifts (Dakos et al., 2008; Lenton, 2011; Lenton et al., 2012b, 2012a). However, autocorrelation 

and variance can also increase prior to non-catastrophic transitions, with or without bifurcations in phase space (Kéfi et al., 5 

2013), or under some specific circumstances even decrease (Boettiger and Hastings, 2012b; Dakos et al., 2012b; Livina et al., 

2012). Hence here increasing autocorrelation and variance is viewed more broadly as indicating declining resilience of a system 

(i.e. weakening negative feedbacks and greater sensitivity to small shocks), whether or not a critical transition is imminent. 

Other potential issues with detecting changing system resilience in palaeorecords include infrequent sampling rate, dating 

uncertainties, the possibility of producing false positives or negatives, and the extent to which these methods are dependent on 10 

subjective parameter choices (Boettiger et al., 2013; Boettiger and Hastings, 2012a; Lenton, 2011) (see Methods for further 

discussion). 

 

Here we test the hypothesis that the PETM and ETM2 are examples of tipping points being reached in the carbon-climate 

system following long-term destabilisation (e.g. of a sensitive carbon cycle capacitor rich in isotopically-light carbon), by 15 

looking for declining resilience preceding them using published methodologies (Dakos et al., 2008, 2012a, Lenton et al., 2012a, 

2012b). Whilst a signal of declining resilience cannot prove the existence of a tipping point, its absence would tend to falsify 

the tipping point hypothesis. Palaeorecords suffer from greater dating uncertainties and a less frequent sampling rate than is 

possible with modern climate data, making robust time-series analysis more challenging. Hence sufficiently long and high-

resolution palaeorecords available across the late Palaeocene and early Eocene were required in order to enable significant 20 

results to be obtained. To this end we use the ~7.7 Myr-long benthic δ18O and δ13C palaeorecords from ODP Site 1262 in the 

South Atlantic (Littler et al., 2014), and sub-divide the datasets into pre-PETM and post-PETM bins, as well as sub-dividing 

the post-PETM bin into pre-ETM2 and post-ETM2 bins, for separate analyses. These isotope records track the long-term global 

state of high latitude climate and the carbon cycle respectively (Zachos et al., 2001, 2008) and are therefore appropriate data 

choices for detecting the resilience of the global carbon-climate system, which in turn determines the long-term resilience of 25 

the whole Earth System as its key slow-timescale components.  

 

A major limitation of the available palaeorecords is that their resolution is of the order of ~3 kyr, which only allows us to 

monitor changes in the dynamics of the slowest parts of the carbon cycle and climate system (i.e. >10 kyr). For the carbon 

cycle these could include the silicate weathering feedback, which is hypothesised to act as the main long-term negative 30 

feedback on atmospheric CO2 and therefore climate change (Berner, 1991; Berner et al., 1983; Kump and Arthur, 1997; Urey, 

1952; Walker et al., 1981; Walker and Kasting, 1992), the strength of the biological pump and carbon burial rates in the ocean 

(Boscolo-Galazzo et al., 2018; Chamberlin, 1898; Derry and France-Lanord, 1996; France-Lanord and Derry, 1997; Hay, 

1985; John et al., 2014), and medium-term fluctuations in the storage capacity of carbon reservoirs such as the deep ocean, 
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methane hydrates, permafrost, or soil carbon (Batjes, 1996; Buffett and Archer, 2004; Cui et al., 2011; DeConto et al., 2012; 

Dickens et al., 1995; Klinger et al., 1996; Tarnocai et al., 2009). For the climate system, slow processes could include 

substantial reorganisations of ocean circulation (Hofmann and Rahmstorf, 2009; Rahmstorf, 2002; Stocker and Wright, 1991; 

Stommel, 1961) and the growth or collapse of large ice sheets (although no substantial ice sheets existed at this time) (DeConto 

et al., 2008; DeConto and Pollard, 2003; Pagani et al., 2011; Pollard and DeConto, 2009)potentially including large carbon 5 

reservoirs in the ocean, methane hydrates, permafrost, or soil carbon, and the ocean thermohaline circulation). Any shorter-

term drivers of instability closer to the event, for example changes in ocean and atmospheric dynamics or precursor warming 

on millennial timescales (Secord et al., 2010; Sluijs et al., 2007a), will be missed and thus could constitute ‘missed alarms’. 

As a result, in this study we focus only on the long-term trends processes in the global carbon-climate system prior to and 

across the PETM and ETM2. 10 

 

We use multiple indicators – including autoregressive coefficient at lag 1 (AR(1)) and detrended fluctuation analysis h-value 

(DFA-h; binned metrics only) (Lenton et al., 2012b; Livina and Lenton, 2007) to reveal slowing down, and standard deviation 

(SD) and non-parametric drift-diffusion-jump (DDJ) model function metrics (Dakos et al., 2012a) to reveal increasing 

variability. An overall increasing trend in AR(1) or DFA-h would show the slow parts of the climate or carbon systems were 15 

recovering more slowly from regular perturbations, while increasing SD or variance as measured by the DDJ model would 

show each system was being perturbed further from their current state. Together they indicate a system being destabilised and 

becoming less resilient to being knocked into a new state. Skewness and kurtosis are also measured to provide further context 

(see Supplementary Material) as both may change in the presence of more extreme values. Sensitivity analyses are conducted 

in order to ensure detected signals are robust across different methodologies and parameter choices (see Methods and 20 

Supplementary Material). 

2. Methods 

2.1. Rolling Window Metrics 

For the rolling window metrics we follow the methodology first outlined in a climate context by (Held and Kleinen, 2004), 

and subsequently used by other studies including (Dakos et al., 2008, 2012a, Lenton et al., 2012a, 2012b; Livina and Lenton, 25 

2007), and the ‘Early Warning Signals Toolbox’ developed based on this work (documented at www.early-warning-signals.org 

and available in as the ‘earlywarnings’ package in R (R Foundation for Statistical Computing, 2016)). After selecting the 

dataset and for the pre-PETM analysis terminating it just prior to the hypothesised transition to avoid biasing the analysis, the 

data are first interpolated (using linear interpolation by default with the ‘interp1’ function in Matlab (The MathWorks Inc., 

2016)) to provide the equidistant data-points required for rigorous statistical analysis and assumed by the AR(1) model. 30 

However, interpolation itself can introduce statistical artefacts into the analysis as, by definition, the addition of interpolated 

data-points increases self-similarity and thus autocorrelation in the dataset. In palaeorecords this tends to result in an artificial 

http://www.early-warning-signals.org/
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increase in autocorrelation in parts of the dataset with either sparser data-points or complete gaps in the data, but in this record 

there is no marked systematic shift in data time-steps (Supplementary Figure S5). As a result we also analyse non-interpolated 

data in order to assess the sensitivity of our results to interpolation. Following this, the data are then detrended by subtracting 

the smoothed dataset, estimated with a Gaussian kernel smoothing function (using the ‘ksmooth’ function in R), in order to 

remove any long-term trends because as these are not the focus of the analysis. This makes the dataset stationary – a necessary 5 

prerequisite for time-series analysis – but this also somewhat reduces the value of lag 1 autocorrelation in the results. 

Bandwidth is an important consideration in this process and is adjusted heuristically for each the datasets in order to best 

remove long-term trends but leaving short-term fluctuations, in this case giving a Gaussian kernel bandwidth of 0.1. This 

removes long-term secular trends and orbital cyclicity (>100 kyr) (Figure 2 & Figure 3, top panels), leaving only the short-

term noise that reveals the resilience of the underlying longer-term (>10 kyr) processes. 10 

 

An autoregressive model of order 1 (AR(1)) is fitted to the data within a rolling window (using the ‘generic_ews’ function of 

the ‘earlywarnings’ package in R). The AR(1) model is of the form: 𝑥𝑡+1 = 𝛼1𝑥𝑡 + 𝜀𝑡, fitted by an ordinary least-squares 

method and with a Gaussian random error and a constant time-step. Following previous studies the default window size is set 

at half the length of the dataset, but as part of our sensitivity testing we also repeat our analyses for window sizes of between 15 

25% and 75% (Supplementary Figures S1-S4). The choice of window length is a trade-off between dataset resolution and the 

reliability of the estimate of the indicator, with a short window allowing shorter-term changes in indicators to be tracked at the 

cost of lower estimate reliability and vice versa. On the same rolling window the absolute skewness, kurtosis, and standard 

deviation of the dataset are also calculated (also using the ‘generic_ews’ function of the ‘earlywarnings’ toolbox in R). 

Detrended fluctuation analysis h-value (DFA-h) was also used as an alternative measure to AR(1) for short-term memory and 20 

critical slowing down in the dataset bins (performed using the ‘DFA’ function of the ‘fractal’ package in R). DFA extracts the 

fluctuation function over a window 𝑠, and if the data is long-term power-law correlated, the fluctuation function 𝐹(𝑠) increases 

as a power law: 𝐹(𝑠) ∝ 𝑠ℎ, where ℎ is the DFA fluctuation exponent (Peng et al., 1994) and reaches value 1.5 at a critical 

transition (Lenton et al., 2012b; Livina and Lenton, 2007). 

 25 

Finally, the likelihood of there being a real trend in the results is calculated by estimating the nonparametric Kendall rank-

correlation statistic (τ), which measures the strength of an indicator’s tendency to increase (>>0) or decrease (<<0) against the 

null hypothesis of randomness (~0) (also using the ‘generic_ews’ function of the ‘earlywarnings’ toolbox in R). However, this 

statistic is most robust when the trend is consistent over a long period, while increasing but oscillating trends or trends only at 

the very end of the record can produce weak or even negative values despite a clearly visible trend (Dakos et al., 2012a). We 30 

also calculate a p-value for each metric by bootstrapping our detrended datasets to generate 1000 surrogate records (or arima 

model-generated for AR(1) and DFA-h) with equivalent mean and variance, re-calculating the metric and Kendall τ value for 

each, and finding the proportion of Kendall τ values equal or greater than that of the original palaeorecord (Dakos et al., 2008). 
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2.2. Binned metrics 

As well as performing rolling window time-series analysis, we also measure AR(1), SD, skewness, and kurtosis on binned 

data (detrended but not interpolated) binned into pre- and post-event bins and excluding the events themselves to provide 

simple before/after comparisons of changes across the events. To this end the datasets (n=2302) were binned into pre-PETM 

(n=1331), post-PETM (n=921), PETM to ETM2 (n=593), and post-ETM2 (n=240) bins, excluding data-points from during 5 

each event so as to avoid biasing by extreme or missing data. Detrended fluctuation analysis (DFA) was also used as an 

alternative measure to AR(1) for short-term memory and critical slowing down in the dataset bins (performed using the ‘DFA’ 

function of the ‘fractal’ package in R). DFA extracts the fluctuation function over a window 𝑠, and if the data is long-term 

power-law correlated, the fluctuation function 𝐹(𝑠) increases as a power law: 𝐹(𝑠) ∝ 𝑠ℎ , where ℎ is the DFA fluctuation 

exponent  and reaches value 1.5 at a critical transition . A p-value is calculated for each metric using a permutation test (i.e. 10 

by reshuffling and repartitioning the before/after event data into the same sized bins 1000 times and comparing the metrics’ 

resultant before/after differences with the observed metric before/after difference), except for AR(1) and DFA-h for which we 

instead use AR(1) model-derived surrogate data to compare against (i.e. by generating 1000 surrogate datasets with the same 

AR(1) value, mean, and variance as the before-event bin over the length of the after-event bin and compare this distribution to 

the observed after-event AR(1) value). 15 

2.3. Nonparametric Drift-Diffusion-Jump Model 

A model-based alternative to the time-series analysis methods (whether rolling window or metricbin-based) above is to fit a 

general nonparametric drift-diffusion-jump model to the dataset with as a surrogate for an unknown data-generating process 

(Carpenter and Brock, 2011; Cox and Ross, 1976; Dakos et al., 2012a; Johannes, 2004). In this model functions are estimated 

for drift, diffusion, and jump processes using nonparametric regression, where drift measures the local rate of change, diffusion 20 

measures the standard deviation of the relatively small shocks that occur at each time step, and jumps are large intermittent 

shocks. The conditional variance of the data is also estimated from the nonparametric regression, and represents the variance 

of the data from its conditional expectation estimated using kernel regression. We use the ‘ddjnonparam_ews’ function in the 

‘earlywarnings’ package on R, using the default options of a bandwidth of 0.6 and 500 points for computing the kernel. We 

use raw data for this analysis, with no detrending or interpolation and without log transforming the data first. In interpreting 25 

the results we focus on the general long-term trends in the estimated terms as many of the shorter-term fluctuations potentially 

represent model over-fitting. 

2.4. Limitations 

Despite positive results in some palaeoclimate EWS studies (Lenton, 2011), there are several potential issues with searching 

for resilience indicators in palaeorecords. Palaeorecords suffer from greater dating uncertainties and a less frequent sampling 30 

rate than is possible with modern climate data, making robust time-series analysis more challenging. Most indicators also do 
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not reveal exact information about the nature of the transition itself, with increasing slowing down and variability detected 

prior to both catastrophic and non-catastrophic transitions featuring a bifurcation in phase space and even before non-

catastrophic transitions without a bifurcation (Kéfi et al., 2013). Concerns have also been raised over the likelihood of 

producing false positives (where EWS appear to indicate an impending transition which never occurs) or false negatives (i.e. 

a “missed alarm”, when EWS may be entirely absent prior to a known critical transition), and the extent to which these methods 5 

are dependent on subjective parameter choices (Boettiger et al., 2013; Lenton, 2011). There is a risk that selecting and analysing 

known or suspected critical transitions in the palaeoclimate record is particularly liable to false positives, as positive indicators 

at the transitions could potentially have occurred purely by chance rather than due to systemic instability (Boettiger and 

Hastings, 2012a). However, it has been argued that EWS can be reliably detected if both increasing autocorrelation and 

variance are seen prior to the transition rather than one of these indicators alone (Ditlevsen and Johnsen, 2010). Detecting 10 

multiple, consistent, and robust signals from the indicators can be indicative of decreasing system resilience even if a 

catastrophic transition is not reached or is instead triggered by an external perturbation rather than internal processes (Dakos 

et al., 2015). 

3. Results and Discussion 

3.1. Rolling Window Metrics 15 

Rolling window metrics prior to the PETM reveal a sudden increase in AR(1) and SD after ~58.27.7 Ma in the interpolated 

benthic δ18O record associated with an step excursion in the data (and the benthic δ13C record peaking), which despite a 

temporary drop in DFA-h suggests some degree of destabilisation of the slow climate system prior to the PETM (Figure 

2Figure 2 & Supporting Figure S1). However, the subsequent divergence decline of standard deviation after ~576.5 Ma (likely 

to partially be the result of earlier extreme data-points from ~58.5-59.5 Ma leaving the rolling window) does not support a 20 

tipping point involving deep ocean temperature at the PETM, which is also indicated by the non-significant bootstrapped p-

values for the metrics of both interpolated and non-interpolated data. The non-interpolated DFA-h metric does show a 

significant increase (p=0.015), which would suggest systemic slowing down, but this does not match the non-interpolated 

AR(1) metric. Alternatively, these resultsis could represent a ‘missed alarm’ as the shorter-term climate dynamics that might 

be critical to the dynamics of the tipping point are not sufficiently resolved by the available data.  25 

 

The benthic δ13C record shows clearer evidence of declining resilience in the slow components of the carbon cycle, with long-

term increases in AR(1), DFA-h, and SD in the run-up to the PETM with steps at ~58.27.7 Ma and ~57.36.8 Ma which are 

consistent across the sensitivity analyses (absolute skewness also increases, while kurtosis declines up to the PETM; 

Supporting Figure S1). Bootstrapped p-values indicate that the δ13C SD trend is significant (p=0.002) for the interpolated data 30 

while the δ13C AR(1) and DFA-h trends are is significant (p=0.0242 & p=0.021 respectively) for the non-interpolated data. 
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This supports a long-term slowing down in benthic δ13C in the late Palaeocene, which may reflect a gradually-forced 

destabilisation of the global carbon cycle prior to the PETM. 

 

Rolling window analysis across the whole of the late Palaeocene / early Eocene (LPEE) interval suggest but cannot prove 

systemic changes in carbon cycle and climate (in)stability across both the PETM and ETM2 (Figure 3Figure 3 & Supporting 5 

Figure S2). Between the PETM and ETM2 δ18O AR(1) and DFA-h increases up until ~200 kyr before ETM2 and SD 

experiences a small temporary increase followed by a larger decrease. In contrast, all metrics for δ13C experience a rapid jump 

during the PETM and then remain relatively stable until ETM2. Following ETM2, δ18O AR(1) and DFA-h increases 

significantly while SD increases slightly, whereas for δ13C both all metrics (as well as absolute skewness and kurtosis; 

Supporting Figure S2) consistently increase. However, the bootstrapped p-values indicate that none of these trends are 10 

significant for the interpolated data, but that for the non-interpolated data the increase in AR(1) and DFA-h for both δ18O and 

δ13C are highly significant (p=0 to 0.001). This indicates that there is some evidence for slowing down – but not for increased 

variability – in both the δ18O and δ13C data and therefore the long-term climate system and carbon cycle across the LPEE 

interval into the Eocene, but this is dependent on not interpolating the data prior to the analysis. It should also be recognised 

that the abrupt shifts in δ13C at the PETM and ETM2 are not fully removed by detrending prior to the analysis, hence they are 15 

at least partly responsible for the upward steps in the indicators at the events. 

3.2. Binned Metrics 

To address the issue of large excursions failing to be removed by detrending for the rolling window metrics, as well as the 

issue of data gaps caused by dissolution at the peak of each event (Littler et al., 2014), we calculate aggregate metrics (i.e. no 

rolling windows) on the binned data (excluding data from within the events) (Table 1Table 1). The binned metrics show 20 

significant increases in AR(1) across both the PETM and ETM2 for δ18O and δ13C, with DFA-h also significantly increasing 

across the PETM and ETM2 for δ18O and across ETM2 for δ13C. SD significantly falls in the interval between the PETM and 

ETM2 and then significantly increases across ETM2 for both datasets, but the significant increase for δ13C for the all data after 

the PETM the overall increase is only significant for δ13Cis likely to be biased by the inclusion of extreme data-points within 

ETM2. These results are consistent with the rolling window metrics, except for δ13C SD which in the rolling window metrics 25 

is higher between PETM and ETM2 than before the PETM, and is likely to be the result of excluding the extreme data values 

during the PETM itself in the binned analysis (with SD beginning to drop just before the ETM2 in the rolling window analysis 

once the PETM leaves the window). These results indicate both the long-term climate system and carbon cycle slowed down 

to some extent after both the PETM and ETM2 (but became less variable following the PETM itself until ETM2), providing 

support for the slow parts of global carbon-climate system being progressively destabilised through the LPEE interval and into 30 

the Eocene by both of the hyperthermal events but not for any tipping points. 
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3.3. Nonparametric Drift-Diffusion Jump Model 

Fitting a non-parametric drift-diffusion-jump model to the datasets provides independent model-based metrics to compare to 

the rolling window metrics, with terms for the conditional variance measuring variance from dataset’s conditional mean 

(estimated by kernel regression), diffusion measuring the standard deviation of regular small shocks at every time-step, and 

jump intensity measuring either irregular large shocks or flickering (Carpenter and Brock, 2011; Dakos et al., 2012a) (Figure 5 

4Figure 4). For benthic δ18O this model reveals an overall increase in conditional variance and diffusion and a reduction in 

jump intensity ~2 Myr before the PETM, followed by a slight decrease in conditional variance after the PETM and intermittent 

spikes in jump intensity and conditional variance during and following ETM2. This suggests the climate shifted to a state with 

higher variability featuring regular small shocks ~2 Myr prior to the PETM, became slightly less variable following the PETM, 

but featured larger irregular shocks during and after ETM2. While this suggests some degree of climate instability in the ~2 10 

Myr before the PETM and following ETM2, there is no evidence of a critical transition in the climate system at the PETM or 

ETM2 themselves. In contrast, the benthic δ13C model reveals decreasing diffusion and increasing conditional variance and 

jump intensity in the 1.5 Myr run-up to the PETM, indicating increasing total variability driven by large irregular shocks and 

consistent with a critical transition being approached in the carbon cycle at the PETM (Dakos et al., 2012a). Conditional 

variance and jump intensity remain high and diffusion remains low for ~1 Myr after the PETM, before reversing ~300 kyr 15 

before ETM2 except for brief spikes in both diffusion and jump intensity during and after ETM2. This indicates that variability 

in the carbon cycle remained high and driven by large shocks for ~1 Myr after the PETM, but that variability mostly shifted 

towards smaller regular shocks prior to and after ETM2. This difference in the sources of variance prior to each event (the 

PETM is preceded by elevated jump intensity and overall conditional variance, whereas ETM2 is preceded by increased 

diffusion and decreased jump intensity) suggests potentially differing carbon cycle dynamics and drivers prior to each event. 20 

The shift in variability before ETM2 also slightly precedes the biotic turnover detected in both marine and terrestrial records 

in the ~200 kyr prior to ETM2, despite there being no obvious shift in the palaeorecords that may have driven this turnover 

(Westerhold et al., 2018). Overall these δ13C DDJ results are consistent with elevated carbon cycle instability following the 

PETM, but suggests that ETM2 was not preceded by the same dynamics as the PETM. 

4. Conclusion 25 

In summary, both rolling-window metrics before and across the PETM, binned metrics, and nonparametric drift-diffusion-

jump models suggest indicate that there was a decline in variability – suggesting a loss of resilience – in the slow components 

of the carbon cycle before and following the PETM and ETM2. Following both the PETM and ETM2 there is also evidence 

of slowing down in both the long-term carbon cycle and climate system, indicating that both events led to a longstanding 

destabilisation of the carbon-climate system. In contrast, while there is some evidence for destabilisation in the δ18O data prior 30 

to and after the PETM, there is no clear evidence of a critical transition in the climate system at this time. Minimal lag between 

δ18O and δ13C in the late Palaeocene indicates close coupling between climate and the carbon cycle prior to the PETM (Littler 
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et al., 2014), and so the observed instability in the climate system is likely to have been induced by the contemporaneous 

destabilisation of the carbon cycle. Furthermore, ETM2 appears to be preceded by different carbon cycle dynamics to the 

PETM, which fits with the suggestion that the PETM required an extra “push” unlike the later eccentricity-paced hyperthermals 

which might represent more classical tipping points (Littler et al., 2014). These results are consistent with the hypothesis of a 

gradual destabilisation of the long-term carbon cycle by increasing pCO2 concentrations in the ~1.5 Myr preceding the PETM 5 

(starting at ~57.5 Ma, intensifying after ~56.5 Ma) associated with increasing pCO2 concentrations and the warming seen in 

the benthic δ18O record from ~58.2 Ma., which This coincides with the intensification of North Atlantic Volcanic Province 

(NAVP) eruptions between 61 and 57 Ma and its associated volcanic and thermogenic CO2 and methane emissions, with 

subsequent large-scale emissions eruptions during the PETMfrom ~56.1 Ma (likely preceded by some degree of cryptic 

degassing (e.g. Armstrong McKay et al., 2014)) potentially triggering or helping to prolonging its the PETM’s duration 10 

(Frieling et al., 2016; Storey et al., 2007; Svensen et al., 2004). This time also coincides with a dramatic long-term decrease in 

organic carbon storage following a large build-up as indicated by the sharp downturn in benthic δ13C from ~587 Ma (Figure 

1Figure 1), either as a result of large-scale methane hydrate or peat dissociation and oxidation in response to warming (Dickens, 

2011; Komar et al., 2013; Kurtz et al., 2003) or a reduction in marine biological pump strength as higher temperatures lead to 

increased respiration rates of particulate organic carbon (Boscolo-Galazzo et al., 2018; John et al., 2014). This weakening of 15 

the organic carbon burial feedback in response to volcanism-driven warming could be the primary driver of the observed 

geological carbon cycle destabilisation in the ~1.5 Myr prior to the PETM, and may have in turn prolonged the duration of the 

PETM itself. Reconstructed silicate weathering feedback strength fell by ~40% in the ~3 Myr after the PETM (due to reduced 

continental weatherability) (Caves et al., 2016; van der Ploeg et al., 2018), potentially allowing the carbon-climate system to 

remain destabilised and susceptible to further shocks long after the PETM and ETM2 as observed. The hypothesis of a carbon 20 

cycle tipping point at the PETM survives our tests (although they cannot directly confirm it or rule out an external trigger). In 

contrast the hypothesis of a tipping point in deep ocean temperature (as recorded by the δ18O record considered) is not 

supported. A large external perturbation, e.g. a massive, abrupt injection of volcanic carbon from the NAVP during the PETM 

(Gutjahr et al., 2017; Storey et al., 2007) or the recent suggestion of a meteorite strike (Schaller et al., 2016), could have played 

a role in triggering the PETM, but we find clear evidence that the carbon cycle had already been getting progressively more 25 

unstable and thus more vulnerable to being pushed beyond a tipping point, and remained so in its aftermath. 
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Figure 1: Palaeorecords of benthic δ18O (blue) and δ13C (green) across a) the Palaeocene and Eocene (data from global stack (Zachos 

et al., 2001, 2008)) and b) the Late Palaeocene-early Eocene (LPEE) study interval (data from ODP Site 1262 (Littler et al., 2014) 

with ages adjusted as per (Westerhold et al., 2015)). Significant climate and carbon cycle events are labelled, including the 

Cretaceous/Palaeogene boundary (K/Pg), Palaeocene-Eocene Thermal Maximum (PETM), Eocene Thermal Maximum 2 (ETM2), Early 

Eocene Climatic Optimum (EECO), the Mid-Eocene Climatic Optimum (MECO), and the Eocene-Oligocene Transition (EOT), while the 5 
black box marks the LPEE interval. The mismatch in PETM date between the two datasets is a result of the updated age model of (Westerhold 

et al., 2015) applied to the record of (Littler et al., 2014), which we have left as-is to maintain consistency with published records.  
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Figure 2: Rolling window resilience analysis of benthic δ18O (left) and δ13C (right) in the run-up to the PETM. The top panels illustrate 

the palaeorecord (black crosses) and the detrending applied to the data (red line), with the panels below illustrating the results of the analysis 

for AR(1) coefficient, detrended fluctuation analysis h-value, and standard deviation calculated in a 50% rolling window across each time-

series for both interpolated (black line) and non-interpolated (blue line) data with the Kendall τ rank-correlation and boostrapped p-value for 5 
each. Results for skewness, kurtosis, and sensitivity analyses for all metrics can be found in the Supplementary Material.  
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Figure 3: Rolling window resilience analysis of benthic δ18O (left) and δ13C (right) across the PETM and ETM2. The top panels 

illustrate the palaeorecords (black crosses) and the smoothed record used to detrending the data (red line), with the panels below illustrating 

the results of the analysis for AR(1) coefficient, detrended fluctuation analysis h-value, and standard deviation calculated in a 50% rolling 

window across each time-series for both interpolated (black line) and non-interpolated (blue line) data with the Kendall τ rank-correlation 5 
and boostrapped p-value for each. The PETM and ETM2 are marked by the grey bars. Results for skewness, kurtosis, and sensitivity analyses 

for all metrics can be found in the Supplementary Material.  
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Figure 4: Non-parametric drift-diffusion-jump model functions of benthic δ18O (left) and δ13C (right) across the PETM and ETM2. 
The top panels illustrate the palaeorecords (black crosses), with the panels below illustrating the model functions for conditional variance 

(blue line), diffusion (green line), and jump intensity (red line) for each palaeorecord (drift is not plotted). The PETM and ETM2 are marked 

by the grey bars (left-most and right-most respectively).  5 
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Tables 

Table 1: Values of binned metrics for both benthic δ18O (top) and δ13C (bottom). Bins are of all data (detrended but not interpolated) 

before the PETM, all data after the PETM (including data from within ETM2), all data between the PETM and ETM2, and all data after 

ETM2. The indicators are AR(1) coefficient, detrended fluctuation analysis h-value (DFA-h), standard deviation (SD), skewness (SKEW), 

and kurtosis (KURT). Green shading indicates the indicator has increased relative to before the event (either the PETM or ETM2), red 5 
shading indicates a decrease in value. Each value is followed by a p-value (in italics within parentheses preceded by a * if significant) 

computed using a permutation test, except for AR(1) for which we instead use AR(1) model-derived surrogate data to compare against (see 

Methods for details). 

 

Metric Before PETM After PETM (all) After PETM (to ETM2) After ETM2 

δ18O 

AR(1) 0.0611 0.659 *(0) 0.509 *(0) 0.657 *(0) 

DFA-h 0.035 0.140 *(0) 0.098 *(0) 0.187 *(0) 

SD 0.146 0.152 (0.279) 0.119 *(0.991) 0.145 *(0.002) 

SKEW -1.447 -0.635 *(0.098) -0.927 (0.281) -0.713 (0.211) 

KURT 14.621 4.905 *(1) 4.490 *(0.999) 3.884 (0.741) 

δ13C 

AR(1) 0.402 0.784 *(0) 0.500 *(0.001) 0.743 *(0) 

DFA-h 0.071 0.189 *(0) 0.088* (0.504) 0.203 *(0) 

SD 0.122 0.189 *(0) 0.105 *(0.999) 0.187 *(0) 

SKEW -0.541 -1.165 *(0.98) -0.700 (0.845) -1.056 (0.828) 

KURT 4.046 7.634 *(0.005) 4.073 (0.415) 4.728 (0.307) 
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