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Abstract. 

Dynamic vegetation models simulate global vegetation in terms of fractional  coverages of a few plant functional  types 

(PFTs). Although these models often share the same concept, they differ with respect to the number and kind of PFTs, 

complicating the comparability of simulated vegetation distributions. Pollen-based reconstructions are initially only available 

in form of time-series of individual taxa that are not distinguished in the models. Thus, to evaluate simulated vegetation  

distributions, the modelling results and pollen-based reconstructions have to be converted into a comparable format. The 

classical  approach  is  the  method of  biomisation,  but  hitherto,  PFT-based  biomisation methods were  only available  for  

individual models. We introduce and evaluate a simple, universally applicable technique to harmonize PFT-distributions by 

assigning them into nine mega-biomes that follow the definitions commonly used for vegetation reconstructions. 

The method works well for all  state-of the art  dynamic vegetation models, independent of the spatial resolution or the 

complexity of the models. Large biome belts (such as tropical forest) are well represented, but regionally confined biomes  

(warm-mixed forest, Savanna) are only partly captured. Overall, the PFT-based biomisation is able to keep up with the  

conventional biomisation approach of forcing biome models (here: BIOME1) with the background climate states. The new 

method has, however, the advantage that it allows a more direct comparison and evaluation of the vegetation distributions 

simulated by Earth System Models. Thereby, the new method provides a powerful tool for the evaluation of Earth System 

Models in general.

1 Introduction 

Within dynamic global vegetation models (DGVM), the natural vegetation distribution is usually represented in the form of 

plant functional types (PFT), i.e. plants are grouped with regard to their physiology and physiognomy (Prentice et al. 2007).  

These PFTs differ with respect to phenology, albedo, morphological and photosynthetic parameters and are usually constraint 

by  an  individual  bioclimatic  range  of  tolerance  defined  by  temperature  thresholds.  These  thresholds  mimic  the  cold  

resistance, chilling and heat requirements of the plants and determine the area where the PFTs can establish. 
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In most DGVMs, a 'mosaic' approach is used, i.e. each grid-box of the land surface is split into separate parts for a non-

vegetated and a vegetated fraction that is further tiled in mosaics, taking sub-grid scale heterogeneity into account. Thus,  

several PFTs can cover the same grid-cell and compete for space via their net primary productivity (e.g. Sitch et al., 2003;  

Krinner et al., 2005; Reick et al., 2013). Non-vegetated area (seasonally bare soil or permanently bare ground) is produced  

where plant productivity is too low.

Although the main principles for the calculation of PFT-distributions are similar among most DGVMs, they vary regarding 

the number and kind of PFTs used to represent the global vegetation. Natural PFTs range from two in e.g. VECODE to ten in 

e.g. LPJ and ORCHIDEE (Tab.1). Even within the same model, PFT variety can differ between individual simulations. Some 

include land-use, some do not. In some models the natural PFTs can also deviate (e.g. LPJ). These differences among the  

simulations  and  models  prohibits  the  inter-model  comparability  of  simulated  global  vegetation  distributions  and  the  

comparability with pollen-based reconstructions. The latter originally display the vegetation in form of taxa compositions.  

Therefore, vegetation simulations and reconstructions need to be converted into a compatible format. 

In  the  last  two decades,  taxa  to  PFT assignment-  and  biomisation-methods for  pollen-based  reconstructions have been 

developed (e.g. Prentice al. 1996, Ni et al., 2010, Harrison et al. 2010) and pollen-based biome syntheses have been provided 

(Prentice  et  al.,  1998 and  2000,  Bigelow et  al.,  2003;  Ni  et  al.  2010,  Harrison  et  al.,  2017,  Tian  et  al.  2017).  These 

reconstructed biome maps have been used extensively to evaluate simulated biome distributions obtained from diagnostic  

biome models (e.g. Prentice et al., 1992, Haxeltine and Prentice, 1996, Kaplan et al., 2003) that have been forced with  

palaeoclimate fields simulated by General Circulation Models (e.g. Jolly et.al, 1998; Harrison et al., 2003; Wohlfahrt et al.,  

2008; Harrison et al.,  2016, Dallmeyer et  al.,  2017). Using this method, fundamental palaeo-vegetation analysis can be  

undertaken, but simulated vegetation distributions resulting from the dynamically coupled vegetation models as part of the 

General Circulation models are disregarded.

Several  model  studies  have  taken  up  this  problem by introducing  methods  for  biomising  simulated  PFT-distributions. 

Schurgers et al. (2006) derive biomes maps for the Eemian and mid-Holocene from the relative fractional coverage of the 

individual PFTs and the soil temperature, both simulated by LPJ. With this method, reconstructed major biome shifts could  

be reproduced. Roche et al. (2008) used the dominant PFT and the bioclimate limits defined in the biome model BIOME1 

(Prentice et al., 1992) to biomise PFT cover fractions for the Last Glacial Maximum (LGM) simulated by VECODE. As  

VECODE distinguish as main PFTs only trees and herbaceous plants, not all biome types defined in BIOME1 could be 

considered (e.g. no shrubs). The computed biome map shows reasonable agreement with LGM land cover reconstructions. A 

similar approach was chosen by Handiani et al. (2011 and 2012) for calculating biome distributions at Heinrich Event 1,  

based on PFT simulations of  TRIFFID and the CLM-DGVM. As these models strongly deviate in their PFT classification, 

they applied different methods for  biomisation. For TRIFFID, they first  calculated the dominant PFT in each grid cell 

following the method by Cruxifix et al. (2005) and afterwards used temperature limitation defined in BIOME4 (Kaplan et 

al.,  2003) to assign the dominant PFTs to mega-biomes. For CLM-DGVM, potential dominant PFTs were estimated by 

adopting the scheme of Schurgers et al. (2006) and biomes were differentiated with the help of temperature limitations that  
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follow the environmental constraints defined in CCSM3 (i.e. the fully coupled model used in their study, including the land 

and vegetation model CLM-DGVM). 

Recently, Prentice et al. (2011) introduced another approach of biomising plant functional type distributions simulated by 

dynamic vegetation models. In their method, simulated foliage projective cover (FPC) is used to distinguish between desert,  

grassland/dry shrubland and forest  biomes,  which are further  divided into forest  and  Savanna like  biomes through the 

vegetation height. The assignment to e.g. boreal, temperate or tropical forest/Savanna (or parkland) is controlled by the tree-

PFT composition. Climate limits are only used to distinguish the tundra biome. This method has successfully been used in  

several palaeo-vegetation studies (Kageyama et al., 2013; Calvo and Prentice, 2015) using different versions of the LPJ and 

ORCHIDEE models.

All of these methods have in common that they have been designed for individual models and hence need specific output not  

necessarily provided by all models. Therefore these methods can not directly be adopted for all existing dynamic vegetation  

models. 

To harmonize (palaeo)-vegetation distributions simulated by dynamic vegetation models and thereby facilitate the evaluation 

of Earth System models and the comparison of model results and reconstructions, we developed a biomisation technique that 

is based on few input variables and simple differentiation rules. These include bioclimatic constraints using near-surface air  

temperature and assumptions on maximum required PFT coverage. We test this method on pre-industrial, mid-Holocene and 

Last Glacial Maximum vegetation simulations performed in nearly all state-of-the-art dynamic vegetation models. The skill  

of this biomisation approach is quantified via (standard) metrics, by comparing the converted biome maps with estimates of 

modern potential biome distributions (Ramankutty and Foley, 1999) and pollen-based reconstructions (Biome6000 database, 

Harrison, 2017). 

2 Methods

2.1 Biomisation

The plant functional type (PFT) cover fractions simulated by the individual dynamic vegetation models are converted into  

nine different mega-biomes (Fig.1), using few bioclimatic limits and assumptions on the maximum required coverage of 

certain PFTs. The aggregation into the mega-biomes is in line with the definitions of the BIOME6000 project (cf. Harrison, 

2017) that are also commonly used for grouping pollen-based reconstructions. Bioclimatic limits and the differentiation rules 

basically follow the biome assignment of the BIOME4 model (Kaplan et al. 2003). As input data, only climatological mean 

growing  degree  days,  monthly  mean  2m-air  temperature,  and  multi-year  mean  PFT cover  fractions  are  required.  The 

limitation to few climatic rules and few variables needed enables the application of the method to all state-of-the art dynamic  

vegetation models.

In detail, the PFTs calculated by the respective dynamic vegetation model are assigned into the PFT groups 'desert', 'forest',  

'wood', 'grass' and 'total vegetation'. If the model include land-use types, the affected areas are redistributed to the other PFTs 
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by simply scaling up the other PFT fractions proportionally to their ratio of the total natural vegetation. Based on these PFT 

groups, regions dominated by forest or wood (with the additionally constraint of the total vegetation cover exceeding 50%) 

are identified, as this is a necessary condition for the assignment of the land cover to forest biomes. Afterwards, the forest  

PFTs are split into boreal, temperate and tropical forest via temperature limits (see. Tab.2). If any of theses forest PFTs are 

simulated directly in the vegetation model (e.g. in LPJ or ORCHIDEE), the original distributions are taken and the forest  

type is assigned to the dominant tree-type. The macro-PFTs are the first consistent vegetation classification shared by all  

input simulations, so that model-to-model comparison is also possible on this PFT level.  

For the biomisation, the forest PFTs are considered first, i.e. regions in which forests or woody PFTs (for temperate and  

boreal  forests)  are  dominant  are  assigned  to  tropical,  temperate  and  boreal  forests  according  to  the  macro-PFTs.  The 

temperate forest is further divided into warm-mixed forest and temperate forest with the help of the growing degree days  

distribution (Tab.3).  The remaining area is then tested for fulfilling the constraints for the non-forest  biomes. First, the  

Savanna and dry woodland region is identified by bioclimatic limitations  (GDD5 > 1200°C and Tmin > 17°C )  and  a 

woody coverage of at least 25%. The remaining vegetated area is assigned to the biome 'grassland and dry shrublands', if 

GDD0 exceeds 800°C or to the biome 'tundra', if GDD0 is below 800°C. The non-vegetated area, i.e. regions in which the  

total vegetation cover is less than 20%, is either assigned to warm or to cold desert, depending on whether the annual mean  

temperature is above or below 2°C. For the biome 'Tundra', only 10% vegetation cover is needed.

We are aware of the simplicity of this approach, calculating the tundra and the grassland and dry shrubland biomes as  

residuum of the non-forested area, not directly depending on the simulated grass PFT-fraction. We decided to attribute main 

priority on the forested biomes as this is also the strategy commonly used in DGVMs and Biome Models. 

To assess the performance of the biomisation based on simulated PFTs, we additionally biomise the underlying climate 

which is the conventionally used  procedure of biomising global climate model output. For this purpose, we use the biome 

model BIOME1 (Prentice et al., 1992) that calculates the biome distribution in equilibrium to the input climate. As forcing, 

BIOME1 needs the monthly mean climatological precipitation, near-surface temperature and cloudiness. The original biomes 

has been grouped into the same mega-biome classification that is used for the PFT-based approach.

2.2 Simulations

Simulations from nearly all state-of-the-art global dynamic vegetation models that are included in Earth System models have 

been selected for biomisation. Overall, eight simulations for the pre-industrial climate (PI) and vegetation, four for mid-

Holocene (6k) conditions and five for Last Glacial Maximum (LGM) conditions have been used (Tab.4). Most of these 

simulations were performed within CMIP5/PMIP3 under strict simulation and output protocols  enabling direct comparison 

between  the  models  (Braconnot  2011,  Taylor  et  al.,  2012).  These  include  the  models  MPI-ESM-P,  IPSL-CM5A-LR, 

MIROC-ESM and HadGem2-ESM. 

The MPI-ESM-P (Giorgetta et al., 2013) simulations have been performed at the Max-Planck-Institute for Meteorology and 

include the land model JSBACH with dynamic vegetation module (c.f Reick et  al.  2013).  In the pre-industrial  control  
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simulation,  vegetation  pattern  and  land  use  were  prescribed.  For  the  palaeo-simulations,  we  use  the  simulations  with 

interactive vegetation. The spatial resolution for the atmosphere and land is T63 (i.e. approx. 1.875° on a Gaussian grid).  

These simulations are referred to  as  MPI-ESM-T63 in the following.  In a  similar  model  setup,  additional  PMIP3-like  

experiments have been undertaken for PI and LGM by Klockmann et al. (2016) in a coarser spatial resolution (T31, i.e.  

approx. 3.75° on a Gaussian grid, MPI-ESM-T31). 

IPSL-CM5A-LR (Dufresne et al. 2013) is the low resolution CMIP5 model version of the Institute Pierre Simon Laplace and 

contains the terrestrial biosphere model ORCHIDEE (Krinner et al. 2005) that is run offline, forced with climate input. In the 

PMIP3-simulations, vegetation and land use were prescribed. For better comparison with the gridded reference dataset (see  

next section), the climate and PFT-fields have been interpolated bilinearly to a Gaussian T31 grid. Using the simulated LGM 

climate  of  the  PMIP3  simulation,  Zhu  (2016)  performed  additional  experiments  for  LGM  with  ORCHIDEE-MICT 

(Guimberteau et al. 2018), a model version with improved vegetation dynamic in the high northern latitudes (Zhu et al.  

2015).  The  corresponding  piControl  simulation  has  been  forced  by  CRUNCEP  v.5.3.2  data 

(http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/readme.htm).  These simulations have been interpolated to a 

Gaussian T63 grid.

HadGEM2-ESM (Collins  et  al.  2011)  is  the  Earth  System Model  of  the  Met  Office  Hadley  Centre  and  includes  the 

vegetation  model  TRIFFID (Cox,  2001).  In  all  simulations  used  here,  the  model  ran  with  interactive  vegetation.  The  

piControl simulations include land-use types. The simulations have been remapped to a Gaussian T63 grid.

The dynamic vegetation model LPJ (Lund-Potsdam-Jena model, Stich et al., 2003) is usually used for offline simulations,  

forced by climate simulations or observations. The simulations used here has been conducted in a similar model-setup as 

described in Kleinen et. al. (2010), but has been re-done on a new computer (T. Kleinen, personal communication). The pi-

Control simulation has been forced by observational datasets (CRU TS3.1, Harris et al., 2014), the 6k simulation by output 

from the CLIMBER-2 model. Both simulations have been interpolated to a Gaussian T63 grid and are referred to as CLIM-

LPJ in the following.. 

MIROC-ESM (Watanabe et al., 2011) is the Earth System Model  of the Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental  

Studies.  It  includes the  dynamic  vegetation model  SEIB (Sato et  al.,2007).  SEIB is  a  gap  model,  not  using the tiling 

approach.  The  PFT  distribution  has  been  calculated  in  the  post-processing  for  CMIP5  via  the  relative  net  primary 

productivity of the vegetation categories. The piControl simulation includes land use. These simulations have been remapped 

to a Gaussian T31 grid.

CLIMBER2 (Petoukhov et al.,  2000) is an Earth System Model of intermediate complexity and contains the vegetation 

module VECODE (Brovkin et al., 1997). The LGM and piControl simulations have been extra undertaken for this study (T. 

Kleinen, personal communication) and are referred to as CLIMBER in the following. The CLIMBER output has not been  

interpolated as the simulation  ran with a too coarse resolution of 10° latitude x 51° longitude. To compare with the data and 

the other models, the CLIMBER output was re-gridded to 10°x10° grid without interpolation.  
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The dynamic global vegetation model 'CLM-DGVM' as part of the Community Earth System model (Hurrell et al., 2013) is  

currently under re-development. No appropriate simulations could be provided. 

For the pre-industrial time-slice, two of out of eight simulations (MPI-ESM-T63 and IPSL-ESM-T31) were performed with 

fixed vegetation distribution, but this has essentially no effect on the biomisation procedure. Therefore, we include  these  

simulations in our analysis. Nevertheless, the PFT-based biome-distributions for these simulations are expected to fit better  

to the references than the other simulations.

We emphasize  that  this  study  is  an  introduction  of  a  new biomisation  method and  not  an  evaluation  of  the  different  

vegetation models with respect  to the skill  of simulating biome distributions.  For this purpose,  the different  vegetation  

models would have to be forced by the same climate state, which was not the case in this simulation ensemble. 

2.3 Preparing the reference datasets

As reference, we use the estimated global potential natural vegetation map by Ramankutty and Foley (1999, referred to as  

RF99 in the following), which is a combination of modern satellite-based vegetation observations (i.e. the DISCover land 

cover dataset) and the vegetation compilation prepared by Haxeltine and Prentice (1996) that has been taken for regions 

dominated by land use at present-day. The RF99 dataset is available at 5 minute resolution and  distinguishes 15 different  

biome types that are similar to the mega-biome classification used here. Thus, most biomes could directly be assigned to the 

mega-biomes types (Tab.5). RF99 additionally includes the biome 'Evergreen/Deciduous Mixed Forest/Woodland' which is 

classified into temperate forest in warm regions and into boreal forest in colder regions. As temperature threshold we choose 

the limit of growing degree days on a basis of 5°C being higher than 900°C derived from modern observations (University of 

East Anglia Climatic Research Unit Time Series 3.1, University of East Anglia, 2008, Harris et al., 2012). Likewise the 

Savanna biome had to be split up as RF99 includes temperate Savanna which is explicitly excluded in the definition of the  

Savanna mega-biome used in this study.  The threshold for warm Savanna is a  mean temperature of the coldest  month  

exceeding 10°C (Limit for existence of C4 grass). To compare RF99 with the different model simulations, RF99 had to be 

remapped to the model grids. We decided to use the spatial resolutions T31, T63 and also prepared a map for the downscaled 

CLIMBER output (10°x10°grid).  Within each of this model grid cells, the dominant mega-biome type in the 5-minute-

resolved RF99 data was taken for covering the RF99 grid-box in T31 or T63 or in the 10°grid. In more details, each grid-box  

on a T31 Gaussian grid contains 45*45 grid-cells of the 5-minute-resolved RF99 data. Within these 45*45 grid-boxes the 

fractional coverage of all mega-biomes is calculated and the biome with the highest fraction is chosen for covering the T31 

grid-box. For T63 arithmetically 22.5*22.5 grid-cells form one T63 grid-cell. Here, we take 23*23 RF99 grid-boxes with one 

grid-box overlap to equally distribute the 5 minute grid-cells to the T63 grid. We are aware of the fact that the latitudes in the  

Gaussian grids are actually not equidistant, so that the remapped RF99 biome distributions are slightly stretched towards the 

poles, but this effect is marginal and is not expected to shift the main biome belts. To compare equal number of grid-cells, the 

reference data is cut by the land-sea masks used in the individual simulations to only include grid-cells being on land in both 

data-sets.
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As further reference data, we use pollen-based reconstructions that are available for the pre-industrial, mid-Holocene and  

Last Glacial Maximum time-slice within the Biome6000 database (Harrison, 2017). The biome reconstructions have been 

grouped into  the mega-biomes according to the suggestions made by the Biome 6000 project.

As pre-industrial reference climate, climatological monthly mean data of the year 1901-1930 from the University of East  

Anglia Climate Research Unit Time Series 4.00 (CRU TS4, University of East Anglia, 2017) has been taken. This is the  

earliest period available. The CRU TS4 reference climate has additionally been used as forcing for the BIOME1 model to 

provide a 'best guess' for the pre-industrial biome map. We assume that neither the biomisation of simulated climate states  

(i.e.  the classical  method) nor the biomisation of  simulated  PFTs can  agree  better  with any reference  than this  biome 

distribution, derived with a highly tuned biome model and the best global climate observation  available. Therefore, we use 

the  level of agreement between the CRU TS4 biome map and the RF99 or the Biome6000 reconstructions as target value for 

our new biomisation method.  The  reference biome distributions and the CRU TS4-based biome map are displayed in Fig.2.

2.4 Metrics

2.4.1 Kappa Statistic

The Kappa statistic (Cohan, 1960) is a widely used quantitative map-comparison technique that has often been applied for 

assessing the performance of vegetation simulations (e.g.  Monserud and Leemans, 1992; Prentice et al., 1992; Diffenbaugh  

et al., 2003; Tang et al., 2009). The Kappa statistic not only includes the actual observed similarity (p0) of two categorical 

maps, but also considers the expected agreement (pe), i.e. the agreement by chance. For each pair of compared grid-cells (or 

a pair of grid-cell and site) taken from the reference and the simulated biome distribution, a confusion matrix is prepared 

containing  all  combinations  of  referenced  and  simulated  biomes.  Based  on  this  error  matrix,  the  agreement  for  each 

individual mega-biome is given by the following Eq. (1, taken from Tang et al., 2009): κi=
pii−pi . r pc .i

(( pi . r+ pc .i) /2−p i .r pc .i)

(1) 

where pii is the individual entry for biome i on the main diagonal of the confusion matrix and pi.r and pc.i are the row total and 

the column total of each biome i, respectively.  The overall agreement is derived by Eq. (2): κ=
p0−pe

1−pe

(2)

with  p0=∑
i=1

n

pii  and  pe=∑
i=1

n

pi .r pc .i .   ranges  from 0  (not  better  than  agreement  by  chance)  to  1  (perfect 

agreement). We additionally use the thresholds suggested by Landis and Koch (1977), classifying a  below 0.4 into poor 
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agreement, values between 0.4 and 0.75 in fair to good agreement and values exceeding 0.75 into very good to excellent  

agreement.

2.4.2 Fractional Skill Score (FSS)

The standard Kappa statistic underestimates the similarity of maps sharing a similar biome distribution but being slightly  

offset from each other (Foody, 2002; Tang et al., 2009). This problem is usually overcome by using the Fuzzy Kappa statistic  

allowing for fuzziness in category and fuzziness in location (Hagen, 2003 and 2009), but the Fuzzy Kappa statistic is only  

applicable to assess the similarity of categorical maps and can not be used for single point to gridded-data comparison. 

Reconstructions only exist for single sites and usually indicate not only the local nor the regional vegetation, but may contain  

a large extra-regional component, depending e.g. on the configuration (mainly the size) of the lake (Jacobsen and Bradshaw, 

1981).  A single  grid-cell  to  point  comparison  is,  thus,  only  partly  meaningful,  more  advisable  is  the  inclusion  of  the  

surrounding grid-cells of the sites. Therefore, we looked for a metric taking agreement in the neighbourhood into account 

(such as the Fuzzy Kappa statistic) that could easily be adapted to site to gridded-data comparison. We decided to use the  

fractional skill score (FSS, Roberts and Lean, 2008). While this method was initially developed and applied for expressing 

the performance of precipitation forecasts (e.g., Gilleland et al., 2009; Mittermaier et al., 2013; Wolff et al., 2014), it has  

recently been successfully used for different hydrological patterns (Koch et al. 2017). We further adapted the FSS method to 

biome distributions. For each mega-biome type, the reference (ref) and simulation (sim) is truncated into a binary map, i.e.  

we construct 18 maps (9 for the reference, 9 for the simulation), in which the grid cell being covered by the respective mega-

biomes are filled with the value '1' and all other grid-cells are assigned to the value '0'. Based on these maps, the mean  

fractional coverage of the respective mega-biome within the neighbourhood N ij (3 grid-cells in each direction for T31, 6 for 

T63, 1 for 10°grid) of each cell is calculated for the reference and the simulation. Afterwards, the mean-square error (MSE) 

between the simulation and the reference fractions for each individual mega-biome is calculated and normalized by the MSE 

representing  the  worst-case  agreement  (MSEw),  i.e.  the  MSE  reflecting  no  similarity  between  the  reference  and  the  

simulation. The fractional skill score is then given by Eq.(3) FSS=1−
MSE

MSEw
(3)

with  MSE=
1
N ∑

i=1

N i

∑
j=1

N j

[ref ij−simij ]  and: MSEw=
1
N

[∑
i=1

N i

∑
j=1

N j

ref ij
2
+∑

i=1

N i

∑
j=1

N j

si mij
2
] ;  N is the number of all 

neighbourhoods.

Following Robert and Lean (2008), we define the lowest skill by the FSSran of a random biome distribution with the same 

fractional coverage as the observed one over the domain (f0). Likewise, the target skill is given by the FSS that is reached for 

a uniform distribution of the observed biome fraction everywhere in the domain (FSSuni = 0.5 + f0/2). As FSSran and FSSuni 

deviate between the individual biomes, we compare the relative FSS (rFSS) given by FSS -FSSuni. 
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The total rFSS is calculated as mean of all individual mega-biome scores. The total and individual rFSS can ranges from ca.  

-0.5 (as good as a random distribution) to ca. 0.5 (perfect agreement), depending on the extent of the individual biomes. The 

skill to reach is zero for all biomes. For simplicity, we use as abbreviation for the relative FSS also just FSS.

2.4.3 Best Neighbour Score

Neither the FSS nor the Fuzzy Kappa statistic is in its original format applicable for the comparison of site-data vs. gridded  

data.  For  quantifying  the  similarity  of  simulated  biome  distributions  and  pollen-based  reconstructions,  we  therefore 

implement a new metric following both methods called the best neighbour score (BNS), accounting for agreement in the 

neighbourhood of the record site and therewith being more tolerant for the position of the site. Within this metric, not only  

the grid-box locating the record sites are used for comparison with the records, but also the surrounding grid-boxes (3 grid-

boxes in each direction for T31, 6 for  T63, 1 for 10°grid).  Similar to the Fuzzy Kappa statistic,  the similarity in the 

neighbouring grid-cells is expressed by a distance decay function. We here choose a Gaussian function (Eq.(4)), giving grid-

cells directly at the site proportional larger influence than grid-boxes far away.

w=e
−1
2

∗(
distance

3
)

2

 with distance=√dlon2
+dlat2

 (4)

The best neighbour is defined as the nearest grid-box within the neighbourhood agreeing with the reconstructed biome type.  

The agreement for each record is then given by the distance weight of the best neighbour in each neighbourhood. It is equal 

to 1 if the grid-box locating the site indicate the same biome as reconstructed and it is equal to 0 if all grid-cells in the 

neighbourhood disagree with the record. The BNS is the mean of all individual neighbourhood scores. In contrast to the 

Fuzzy Kappa statistic,  the BNS neither takes agreement by chance into account nor considers potential  spatio-temporal 

autocorrelation.

3 Results

3.1 Comparison of the PFT-based and climate-based biome-distributions for the pre-industrial time-slice 

For the pre-industrial time-slice, the PFT coverage of eight different Earth System Model simulations has been converted 

into mega-biome distributions (Fig.3). Additionally, the underlying pre-industrial climate states are used as forcing for the  

BIOME1 model (i.e. the classical way of biomisation) to calculate the mega-biome distributions in equilibrium with the 

simulated climate states (Fig. 4). Overall, the PFT-based biome maps look similar to the climate-based ones. All major biome 

belts can be reproduced using the new method, independent of the resolution or the complexity of the vegetation models. The 

biomisation based on the PFT coverage generally assigns more grid-cells to forest or woody biomes (e.g. Savanna instead of 

grassland or desert) than the classical method. This is most noticable in South America, where the area covered by tropical  

forests  is  strongly  increased  in  the  PFT-based  biome-distribution,  being  more  in  line  with  observations.  Likewise,  the  
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Savanna and/or forest biomes are more spread on the African continent for nearly all simulations with the exception of  

CLIMBER and IPSL-ESM-T63.  

The Asian forest regions are slightly larger in most PFT-based biome-distributions compared to the climate-based ones. This  

impression is reinforced by the fact that for CLIM-LPJ and IPSL-ESM-T63 the PFT-method suggests a pronounced boreal  

forest belt in Northern Asia, not only reducing the size of the grassland but also of the temperate forest area. 

For North America, the PFT-based approach yields less forest for MPI-ESM-T63 and IPSL-ESM-T31 than shown by the 

climate-based biomisation. As a consequence, the North American prairie is  better represented in the PFT-based biome  

distributions.  In Alaska, parts of the tundra regions suggested by BIOME1 tend to be replaced by boreal forest when using 

the new approach, which is generally more consistent to the observed vegetation.

The  differences  between  the  PFT-based  and  climate-based  biome  distributions  can  be  caused  by  deficiencies  in  the  

biomisation methods, biases related to the imperfect vegetation models, or biases in the simulated climate. While the effect  

of shortcomings in the vegetation models can not be disentangled, the caveats of the PFT-based method and the effect of 

climate biases on the PFT-to-biome conversion are further discussed in Section 4.

3.2 Quantitative comparison of  the PFT-based  biome-distributions with reference biome maps

To quantify the skill of the new method to represent the global biome distribution, we compare the resulting biome maps 

with the modern potential natural vegetation cover estimated by Ramankutty and Foley (1999, RF99 in the following) and 

the pre-industrial biome reconstructions provided by the Biome 6000 project (Harrison et al., 2017). As target  for the skill, 

the level of agreement between the BIOME1 derived biome-distribution of the observed climate (CRU-TS4, years 1901-

1930, cf. Fig.2) and the references data-sets are taken, i.e.  of  0.68 and  FSS of 0.13 (Fig.5) with respect to RF99 and a  of 

0.46 and BNS of 0.73 with respect to the reconstructions.

The PFT-based biome distributions agree well with the references, independent of the model. The Kappa statistic shows an 

overall  agreement  to  RF99  between  0.54  (MIROC-ESM)  and  0.79  (MPI-ESM-T63)  revealing  a  good-  to  very  good  

agreement (Tab.6 and Fig.5). Likewise, all models reach in total the level of good skill in the FSS metric (0.01-0.27). This  

agreement is in line with and, for the simulation performed with prescribed vegetation (MPI-ESM-T63 and IPSL-ESM-T31), 

even better than the match between RF99 and the CRU-TS4 map that is taken as target skill. In addition, the skill is in the 

range of the values reached for the climate-based biome-distributions (Fig.5), though the spread between the individual 

models is larger for the PFT-based method. For the MPI-ESM simulations, the IPSL-ESM-T31 and partly the CLIMBER 

simulations, the PFT-based biomisation agrees even better with RF99 than the climate-based ones. 

As expected, the Kappa statistic indicates that the PFT-based biome maps compare worse with the reconstructions than with  

RF99, underestimating the similarity of the biome maps and the point reconstructions.  ranges from 0.2 (poor) to 0.49 (fair), 

which is in line with the target skill and the metrics for the climate-based biome maps. The BNS additionally considering 
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accordance in the neighbouring grid-cells of the record sites  reveals a good to very good agreement of the PFT-based biome  

distributions and the records (between 0.40 and 0.74), not much lower than the target skill  and in accordance with the  

climate-based biomisations.  For the MPI-ESM, IPSL-ESM-T31,  HadGEM2-ESM and CLIMBER simulations,  the PFT-

based method even produces biome distributions that fit better to the reconstructions than the climate-based biome maps. 

Despite  the  overall  agreement  between  the  PFT-based  biome-distributions  and  the  references,  a  closer  look  at  the  

representation of individual mega-biomes in the converted maps indicate large differences among the models as well as  

among the individual mega-biomes (Fig.6). While tropical forests and deserts compares best with RF99,  the biome warm-

mixed forest is not reproduced, independent of the underlying model simulation. This is partly related to the relatively coarse  

resolution of the models in comparison with RF99 that had to be interpolated to the coarse grids. Warm-mixed forests are  

small and rather patchily distributed and are thus rarely dominant in the coarse grid-cells. The coarser the grid is the more 

warm-mixed forest regions get lost during the interpolation. Therefore, the warm-mixed-forest biome is generally better  

represented for models using a higher spatial resolution (i.e. MPI-ESM-T63, CLIM-LPJ and IPSL-ESM-T63). The skill for 

simulating the other biomes is very different for the diverse models.  spreads from poor for one model to very good for 

other models. Correcting the PFT distribution in land-use areas by redistributing the area fraction to the other tiles has no  

impact on the performance of the method. The biome maps based on simulations applying land-use do not compare worse  

with  RF99 than  the  maps  of  other  simulations.  Likewise,  the  complexity  of  the  vegetation  model  and  the  number  of 

distinguished PFTs has no significant effect on the representation of the biome distribution, indicating that the climate limits  

used  in  the  biomisation  procedure  are  appropriate  for  the  assignment  of  the  PFTs  to  the  distinct  macro-PFTs.  The  

differentiation of the PFT types (e.g. the different forest types) in vegetation models is often based on similar climate limits,  

regardless of whether the model is a complex dynamic vegetation model, or a simple biome model. With the exception of the 

PFT-based biomisation for CLIMBER, in which the coarse grid is clearly disadvantageous for capturing the reconstructed 

desert belts and the rather regionally confined biomes (Savanna, warm-mixed forest), the spatial resolution of the models is  

not the primary factor for the spread in the metrics. The PFT-based method performs equally well for simulations using T63  

as  for  simulations using T31 (in total),  only the regionally distributed warm-mixed forest  is  better represented in finer 

resolutions.

In general, the skill in representing the individual mega-biomes is similar for the PFT- and the climate-based method. Both 

approaches  have  the  same  strengths  and  weaknesses,  but  the  spread  between  the  models  is  larger  for  the  PFT-based 

biomisations. In comparison with the classical method, the tropical, the warm-mixed and the boreal forest biomes tend to be 

slightly better represented by the PFT-based method. In contrast, the temperate forest, Savanna and grassland distribution -  

averaged over all models – fit better to RF99 when using the climate-based approach, although for individual simulations, 

derived  for  the  PFT-biomisation  exceeds  the  climate-based  one.  The  Savanna  and  grassland  biomes  are  particularly 

misrepresented in the biome maps that are based on the PFT-distributions simulated by MIROC-ESM, CLIMBER, CLIM-

LPJ and HadGEM2-ESM. The temperate forest  is  poorly reproduced only in the PFT-based biomisation of CLIM-LPJ. 
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Overall, the metrics indicate that the PFT-based method works similarly well as the classical approach of biomising climate 

states. 

3.3 PFT-based biome-distributions for the mid-Holocene and Last Glacial Maximum time-slice

The  sensitivity  of  the  PFT-based  method  to  changes  in  the  vegetation  cover  is  assessed  by  evaluating  palaeo-biome 

distributions. For the mid-Holocene time-slice, four different simulations have been analysed. The main vegetation change 

described  by  reconstructions  are  the  northern  shift  of  the  northern  hemisphere  forest-belts,  in  particular  a  northward 

displacement  of  the  Taiga-Tundra  boundary,  and  the  decrease  of  the  desert  areas  compared  to  pre-industrial  (Fig.7).  

According to the records, grassy vegetation reached at least up to 26°N at 6k, far into the modern central Sahara. For none of  

the models, this biome shift is reproduced, neither in the PFT-based (Fig.7) nor in the climate-based biome distribution (not  

shown). The mean Sahara desert border shifts northward by one to two grid-cells in the biomisations (i.e. ca. 1.875° to 3.75°,  

Tab.7). This shift collocates with substantial reductions in the desert fractions simulated by the individual ESMs (Fig.8).  

Only in MPI-ESM-T63, vegetation is increased in the entire western and central Sahara, but this increase is lower than 20%, 

not leading to a change in the biome assignment from desert to grassland. As the climate-based biomisations performed with 

BIOME1 reveal a reduction of the Sahara desert area in the same magnitude as the PFT-based ones, we conclude that the 

new biomisation method shows a reasonable sensitivity to the simulated changes in the desert fractions. 

For all models with the exception of MIROC-ESM, the PFT-based biomisation reproduces an increased forest biome fraction 

in Eurasia north of 60°N during the mid-Holocene compared to pre-industrial,  in line with the reconstructions (Tab.8). 

Though the magnitude of the change differs between the models, ranging from 0% within MIROC-ESM to 12% within 

CLIM-LPJ. For nearly all models (except for MIROC-ESM), the expansion of the forested area in the high northern latitudes 

seen in the PFT biomisation is of similar magnitude as in the climate-based biomisation, confirming that the method covers  

past vegetation changes with reasonable sensitivity.

Overall, the biome distributions for the mid-Holocene compare equally well to the reconstruction as for the pre-industrial  

time-slice (Fig.9). Although,  is similarly low, ranging from 0.17 in CLIM-LPJ to 0.38 in MPI-ESM-T63 (poor agreement),  

the spread in the models and the differences in  between the PFT-based biomisation and the climate-based biomisation are 

nearly identical to the results for the pre-industrial biome distributions. In line with the results for PI, the BNS indicate a  

good to very good agreement to the reconstructions (ranging from 0.44 in MIROC-ESM to 0.72 in MPI-ESM-T63). The skill  

to capture the reconstructed individual mega-biomes strongly depends on the number of available pollen records,  thus,  

temperate and boreal forests are represented best (Fig.7), while the simulated Savanna regions are not supported by the  

reconstructions.

For the Last Glacial Maximum time-slice, five different simulations have been analysed. The main reconstructed vegetation 

differences at LGM compared to PI area strong equator-ward retreat of the forest biomes and an expansion of tundra and 

steppe regions, so that e.g. Europe was mostly covered by grassy biomes (Fig.10). The northernmost record indicating boreal  
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forest during LGM is located at approx. 51°N in Asia. The PFT-biomisations mostly reproduce this reduction and the shift in 

Northern Hemisphere forest biomes (Fig.10), though the extent of the shift is underestimated. Forest reaches up to 50°N-

(CLIMBER) to 65°N (MPI-ESM-T63). The boreal forest position for MIROC-ESM is not much changed compared to PI,  

but boreal forest nearly replace the temperate forest biome.

The overall agreement of the PFT-based biome distributions with the reconstructions is rather fair, but in line with the results  

for the climate-based distributions.   ranges from 0.07 in MPI-ESM-T31 to 0.23 in CLIMBER, only indicating a poor 

similarity of the biome maps and records (Fig.11). The BNS ranges from 0.24 (MIROC-ESM) to 0.57 (MPI-ESM-T63) 

revealing  a  fair  to  good  agreement.  The  values  for  both  metrics  are  in  the  same  magnitude  as  for  the  climate-based  

biomisation. Similar as for the PI time-slice, neither the complexity nor the spatial resolution are the main reason for the 

differences between the simulations. The spread in the skill of representing the individual biomes is large, and no systematic 

bias for one model can be found. With the exception of the biomisation for CLIMBER, the Savanna biome is misrepresented  

for  all  simulations,  independent of  whether  the  PFT-based   or  the  climate-based  method was  used.  Within  the  model  

ensemble, tropical and temperate forest can be reproduced best. 

4. Discussion

4.1 Caveats in the method

Even if the biomisation is restricted to mega-biome level, no clear definitions exist to distinguish biomes in terms of plant  

functional type compositions. While the bioclimatic limits used in the biome models are based on empirical analysis, no  

equivalent  classification  regulates  the  biomisation  of  PFTs.  We particularly  face  this  problem in  finding  a  meaningful 

threshold of maximum tree cover needed for defining forests. When is an accumulation of trees identified as forest? As  

models tend to underestimate the forest coverage and forest extent in the high northern latitudes (cf. Loranty et al., 2013)  we 

choose the assumption of tree cover being just dominant in forested grid-cells, although this limit is very low. We test other 

limits (e.g. absolute dominance, i.e. fractional coverage exceeding 50%), but these works worse, for most simulations used in 

this study as well as other simulations. 

The biome 'warm-mixed forest'  (subtropical  forest) is  only vaguely defined as it  shares most tree species with tropical 

evergreen broadleaf forests (cf. Ni  et al. 2010). These biomes tend to overlap so that their differentiation in reconstructions  

is very difficult (Chen et al. 2010). Therefore, warm-mixed forests might be misrepresented in the reference data leading to 

ambiguous evaluation of the biomisation method. This is further hampered by the rather regional distribution of the warm-

mixed forest covering only few grid-cells. Thus, the correct reproduction of the warm-mixed forest distributions is very  

challenging. As biome models such as BIOME1 generally manage to simulate warm-mixed forest at the correct locations, we 

adopt the bioclimatic limits from the biome models for defining warm-mixed forest. Though, in biome models and also in  

the dynamic vegetation models used in this study, warm-mixed forest is based on temperate broadleaved trees, inconsistent 
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with the definition used for reconstructions. This is related to the limited number of PFTs in the models grouping a large  

number of species into few PFTs.

Furthermore, not all biomes can be differentiated by the structural composition or climatic tolerance. The biome 'Savanna' is  

the second-largest ecosystem in the tropics, covering approx. one fifth of the global land surface (Scholes and Hall, 1996).  It  

occurs in climatic zones that are also suitable for forest and grasslands (Lehmann et al., 2011) and is, thus, very variable  

regarding the plant  composition. Tree fraction can vary from very dense (open forest Savanna) to nearly zero (Torello-

Raventos et al., 2013). While Savannas require the coexistence of trees and C4-grass, they can only be distinguished from  

forests by their unique functional ecology, fire tolerance and shade intolerance (Ratman et al., 2011). These features make 

Savannas unstable and vulnerable to changes in e.g. grazing, fire regime and climate, transforming Savannas into forest or  

grasslands (Franco et al., 2014). The functional diversity of Savannas is not adequately included in DGVMs nor considered 

in the biomisation method presented here. As even C4-grass is not simulated in all models, we had to define the Savanna 

biome very rudimentary by a mixture of wood and grass and by bioclimatic limits, i.e. a mean temperature of the coldest 

month exceeding 10° which is taken as limit for C4-grass in dynamic vegetation models (e.g. JSBACH; c.f. Reick et al., 

2013). The Savanna biome might therefore not be represented well. At least in the palaeo-simulations, most biomisations do 

not  capture the reconstructed Savanna area,  but  this may also be related partly to the fact  that  only few records exist  

indicating Savanna during LGM and 6k. 

Similar to dynamic vegetation models, the priority in the biomisation procedure is given to forest biomes. It is first tested,  

whether forest  biomes are suitable for  covering the grid-cell,  before Savanna is distributed. Grasslands and Tundra are 

assigned  to  the  residual  grid-cells,  independent  of  the  real  grassy  PFT cover  fractions.  The only  restriction  is  a  total  

vegetation coverage exceeding 10% for Tundra or  20% for grassland to be distinguishable from deserts. This method has the  

large disadvantage that biases in the forest distribution propagate throughout the assignment of all biomes with the exception  

of deserts. The forest biome distribution calculated for the different models is further tested in Section 4.3 for the pre-

industrial time-slice.

Another problem is the inclusion of anthropogenic plant functional types in some simulations, making the biome distribution 

less comparable to the reference data. Although land-use is often prescribed in the models, this process cannot be reversed in  

the final output data. The area chosen for land-use is historically determined and is based on human decisions and not 

primarily on climate conditions. These human pathways cannot be reproduced in simple biomisation methods nor in the  

current dynamic vegetation models. We artificially rescale the natural vegetation in human-affected regions by redistributing  

the fraction of anthropogenic PFT coverage proportionally to the natural PFTs. This is a very simple approach and only  

partly in line with the implementation of land-use in the dynamic vegetation models. For instance, within JSBACH pasture is  

preferentially assigned to natural  grasslands,  forests are only affected if  prescribed pasture fraction exceeds the natural  

grassland  area  (cf.  Reick  et  al.,  2013).  This  rule  is  plausible,  but  not  reversible  and therefore  not  appropriate  for  the  

biomisation method presented here. The results show that biome maps based on models including land-use do not agree  
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worse with the references than the other simulations, underlining that the redistribution method used here provides a good 

approximation of the natural vegetation cover.

The method of PFT-biomisation basically uses bioclimatic limits that have been inferred for the modern vegetation-climate 

relationships. These limits may not be valid for all time periods. During LGM, the atmospheric CO2-concentration was 

substantially lower than today, which may also affect the response of the plants to the background climate. Likewise, the  

procedure of reconstructing palaeo-vegetation often include modern analogue techniques. This may lead to biases in the 

modelling results and the reconstructions taken as reference. The  values for the LGM time-slice were quite low, indicating 

disagreement between the simulated and reconstructed biome distributions.

A rather technical problem is the  interpolation of the PFT-distributions to the T31 or T63 grid that partly leads to a decrease  

in the global area to be compared with the reference datasets due to a mismatch of the land-sea-masks. In regions with a  

strong change of the PFT fractional composition (e.g. desert border, coastal region), the interpolation may produce blurry 

transitions in the PFT distributions resulting in an erroneous conversion into the mega-biomes.

4.2 Biases in the pre-industrial biome distributions and the influence of the climate background

The classical method of biomising climate states and the new PFT-based method result in similar biome-distributions for  

most models and all time-slices. Generally, the PFT-based method produces more forest in comparison with the classical  

approach. This is mainly related to the rather low limit of forest fraction needed in the assignment of forest in the PFT-

biomisation procedure. In forest regions, where Earth System Models tend to produce large biases in the climate state, the 

PFT-based approach may be more suitable for the biomisation. Therefore, the tropical, warm-mixed and boreal forest are  

probably better represented by the PFT-method. However, the biomisation of the PFT-distributions itself strongly depends on 

the underlying climate, affecting both the differentiation into the biomes as well as the simulation of the PFT coverage in the 

different dynamic vegetation models. To accurately compare the performance and the skill of the different vegetation models  

to represent biome distributions, the models should be forced by the same climate state, but only few models can be run  

offline. Therefore, this study is not thought as model evaluation, but as introduction to the biomisation method and as test  

whether the procedure works for models of different complexity and simulations for different time-slices.

To assess  the contribution of  the effect  of  biases  in  the  underlying climate to  the differences  in  the  PFT-based  biome 

distributions among the models and between the models and the references, we compare the pre-industrial climate-based 

biomisations  with  the  CRU-TS4  dataset.  A sensitivity  study is  performed  following  Dallmeyer  et  al.  (2017)  to  relate 

differences in the biome distributions to precipitation or temperature deviations in the background climate (Fig.12). 

Generally, PI biome disagreement in the high northern latitudes is associated with biases in temperature while disagreement 

in low latitudes co-occurs with precipitation biases. 

The similarity of the converted PI biome distributions and RF99 is lowest for CLIMBER, MIROC-ESM and CLIM-LPJ. 

While for CLIMBER the coarse resolution (i.e. the very different land-sea masks) may be the main responsible factor for  
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disagreement, total  is reduced by an underestimation of grasslands and Savanna and an overestimation of the forests for  

MIROC-ESM when using the PFT-method. This is exactly opposite to the biases occurring in the climate-based biomisation, 

indicating that the climate is not the primary origin of the differences. For this specific model, the PFT-based biomisation  

strongly differs from the climate-based one. This may at least partly be related to the handling of vegetation in the model.  

The vegetation model 'SEIB' included in MIROC-ESM is a gap model, not using the tiling approach (Sato, 2007). PFT 

fractions have only been estimated during the CMIP5 post-processing, based on the NPP ratios of the different vegetation 

categories.  This  approach  might  lead  to  an  overestimation  of  forest.  On  the  other  hand,  according  to  BIOME1  the  

underestimation of the tropical forest domain in the climate-based biomisation for MIROC-ESM is caused by the way to dry  

climate in South America. 

For the PFT-biomisation of CLIM-LPJ, the low score is basically caused by an overestimation of boreal forest at the expense 

of  temperate forest  and an underestimation of  the Savanna regions.  Both errors  are mainly not climate driven.  Within  

dynamic vegetation models explicitly calculating boreal and temperate forest, these forest types can coexist. To give a clear  

assignment, we decided to differentiate both forest types by the dominant tree PFT, i.e. if the boreal tree fraction exceeds  

temperate tree fraction, forest fraction is assigned to boreal forest and vice versa. This partly disagrees with the handling in  

biome models,  as e.g.  in cool mixed forest,  boreal  trees could be the dominant PFT and temperate trees only the sub-

dominant PFT (c.f. Kaplan et al., 2003), but this biome would be assigned to the mega-biome 'temperate forest'. We assume  

that due to a slight overestimation of boreal forest coverage in Europe and at the modern boreal to temperate forest transition  

zone within CLIM-LPJ, the vegetation in these regions is grouped into the mega-biome 'boreal forest'. In South America,  

tropical forest fraction is overestimated by CLIM-LPJ with values exceeding 80% in most regions of Brazil, precluding the  

Savanna biome. Within North Africa, CLIM-LPJ simulates hardly any regions with coexisting substantial forest and grass 

fractions. Either tropical trees are clearly the dominant PFT (assigned to tropical forest) or forest fraction is too low (below 

10%) to be assigned to Savanna. The defined limits for Savanna are only fulfilled for very few grid-cells. 

For MPI-ESM-T31, the boreal forest biome is strongly underestimated in the PFT-based biomisation. The BIOME1 results  

clearly relate this bias to a too cold climate (GDD5 limit is not reached in BIOME1) which also affects the simulation of 

trees in JSBACH sharing the same bioclimate limit. Therefore, forest fraction in MPI-ESM-T31 is underestimated for the  

northern latitudes. IPSL-ESM-T31 shows a dry bias in South America resulting in a too low tropical forest biome cover, in  

both,  the climate-based and the PFT-based biomisation. BIOME1 reveals another  systematic  bias for  the MIROC-ESM 

simulation indicating too much temperate forest in North America at the expense of grassland and partly of boreal forests.  

This overestimation of temperate forest is induced by a too wet climate favouring growing of trees and a rather too warm 

climate in the high northern latitudes. 

4.3 Evaluating the distribution of forest biomes

Due to the forest  priority rule in the biomisation method, the skill  of  the models to represent the non-forested biomes  

depends on how well the forest distribution can be reproduced. To further assess the performance of the method with respect 
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to the forest biomisation, we analyse the pre-industrial zonal mean forest fraction in form of the zonal sum of forested area 

per latitude to be independent of the different grid sizes used for the individual simulations (Fig.13). For nearly all models,  

the zonal forest  fraction is underestimated in the high northern latitudes and the zonal maximum is shifted southward,  

although the defined limit of minimum required tree fraction is already quite low. This bias is most obvious for MPI-ESM-

T31 and IPSL-ESM-T63. While for MPI-ESM-T31, the coexistence of the bias in both, the climate-based and the PFT-based  

biomisation, underlines the effect of the too cold climate on the forest distribution, the strongly shifted high latitude forest  

maximum in IPSL-ESM-T63 is probably not climate driven. 

In the tropical regions, the models tend to underestimate the forest fraction when using the climate-based method whereas  

forest fraction is often too high in the PFT-based biomisations, probably related with the low tree fraction limit needed for  

forest  assignment.  The  tropical  forest  fraction  based  on  the  CLIMBER  climate  and  PFT-distribution  is  strongly 

overestimated. This is at least partly caused by the coarse grid and specific land-sea-mask used in the model.

To further quantify the biases in forest fraction, we compare the centred root mean square error (cRMSE), the Pearson 

correlation coefficient (r) and the zonal variability between the simulations and the RF99 reference, combined in a Taylor-

diagram (Fig.14). Overall, the simulated zonal forest fraction agrees well with the reference. All biomisations show a good  

to nearly perfect pattern correlation with values exceeding 0.77, independent of the chosen method. For most models, the 

Pearson correlation coefficient even exceeds 0.9.  ThePFT-based biomisation is worst  for CLIMBER and MIROC-ESM, 

revealing a too large standard deviation and a cRSME of 0.83 and 0.73, respectively. For MPI-ESM-T31, spatial variability  

is slightly too low and the cRSME is 0.61 using the PFT-based method and 0.63 in the climate-based biomisation, reflecting  

the common underestimation of the boreal forest. As expected, best performance can be observed for the simulations with  

prescribed PFT coverage undertaken within MPI-ESM-T63 and IPSL-ESM-T31, sharing a similar standard deviation with 

RF99, a pattern correlation coefficient of 0.98 and a cRMSE of 0.21, which is even better as the biomisation of the CRU TS4 

data (cRMSE of 0.28).

4.4 Comparison of the biomisation method with the approach of Prentice et al.

Prentice et al. (2011) introduced a biomisation method (further referred to as FPC method) that is fundamentally different to 

the method presented in this study. The assignment to the different biomes is controlled by the foliage projective coverage,  

the vegetation height and the PFT composition.  Climatic limitations in  form of growing degree days are only used to 

distinguish the tundra biomes. 

Unfortunately, the foliage projective cover and the vegetation height are not included in the standard output of the vegetation 

models and are therefore not available for the simulations used here.

To  compare  both  methods,  we  therefore  only  use  the  simulations  performed  within  IPSL-ESM-T63,  which  has  been 

biomised by Zhu (2016) following the approach of Prentice et. al. (2011). The biome output has been grouped into mega-

biomes and remapped to a T63grid in the same way as the RF99 reference were prepared. 
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Beside the Savanna regions,  the derived biome map resembles the map resulting from the PFT-based method (Fig.15).  

Prentice et al. distinguish temperate parkland, sclerophyll woodland and boreal parkland that all have been assigned in the  

mega-biome Savanna, but Savanna is only defined as tropical Savanna in our method. This complicates the comparison of 

the  biome  maps  and  leads  to  strong  differences  in  the  Savanna  distribution  between  both  methods  and  between  the  

biomisation using the FPC method and RF99, although we leave the temperate Savanna in RF99 for better comparison. 

Since boreal parkland is not included in RF99, the PFT-method introduced here yield better results for boreal forest and 

Savanna than the FPC method. Additionally, the warm forest is more appropriately reproduced. In contrast, temp. forest and  

grassland is better represented using the FPC method. All other biomes are equally well simulated for the PI time-slice. 

The FSS metric (Tab.9) indicate that the PFT-based method (0.13) agrees in total slightly better with the reference than the 

other approach (0.10).  Overall, the biomisation using the FPC method reaches a   of 0.59 (vs. 0.63 for the PFT-based 

method) compared to RF99 and 0.19 (vs. 0.24) compared to the Biome6000 pollen data. BNS is 0.53 for the FPC- method  

and 0.55 for the PFT-method.

The LGM biome distribution can be captured slightly better using the FPC method (k=0.17 vs 0.13, and BNS=0.54 vs. 0.41). 

Particularly the tropical  forest,  desert  and Savanna biome agree better  with the reconstructions than for  the PFT-based  

method, but at least for the latter biomes, the record density is very low which may distort the results.

5 Summary and Conclusion

Dynamic  global  vegetation  models  use  different  kinds  and  numbers  of  plant  functional  types  to  represent  the  global  

vegetation. These PFT distributions can neither be directly compared between different models nor between models and 

reconstructions,  which  were  hitherto  mostly  provided  in  form of  biomes.  We therefore  have  developed  a  method  for 

biomising simulated PFT distributions and have tested this method for nearly all state-of-the art dynamic global vegetation  

models based on simulations for the pre-industrial, mid-Holocene and Last Glacial Maximum time-slices.

Overall, the method works well for all models and can keep up with other biomisation techniques. The comparison with  

different references datasets (i.e. pollen-based reconstructions and estimates of the potential natural vegetation) reveals a  

similar agreement with the PFT-based biomisation than with biome distributions inferred from the biome model BIOME1 

(Prentice, 1992) that has been forced with the background climates. The comparable skill to the BIOME1 model, which is  

tuned to represent the global vegetation as well as possible, is partly achieved by the use of bioclimatic limits that are in line  

with the definitions in biome models. 

The skill  of capturing the global biome distributions is independent to the spatial  resolution and the complexity of the 

vegetation model or the integration of land use. For models just using two different PFTs (CLIMBER) the method performs  

equally well as for models using ten different PFTs (e.g. IPSL-ESM). Only the very coarse resolution in the CLIMBER 

model hampers the comparability with the single point reconstructions, in particular for biomes with a very limited number  
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of available records. In addition, the quantitative comparison of the biomised vegetation distributions among each other and  

with the gridded reference data is complicated by the very different model resolutions.

In general, large biome belts (such as tropical forest) can be simulated best, while rather regionally confined biomes such as  

Savanna and warm-mixed forest are not as well represented. This may at least partly be related to the fact that these biomes  

can not be defined clearly via PFT cover fractions. Savannas are characterized by a distinct functional ecology and can not 

be differentiated from other tropical biomes via plant composition or climatic tolerance. The warm-mixed forest  biome  

shares many tree species with tropical forest leading to an overlap of theses biomes and uncertainties in the reconstructions.  

For the palaeo-simulations, the agreement between the individual mega-biome distributions derived by the PFT-method and 

the reconstructions  strongly depends on the number of available records. The main vegetation differences between the pre-

industrial and mid-Holocene or Last Glacial Maximum time-slices are captured by most models and are also reflected in the  

PFT-  and  climate-based  biomisation,  indicating  a  reasonable  sensitivity  of  the  conversion method.  In total,  the  Kappa  

statistic reveals only poor agreement between the simulated biomisations and the reconstructions for LGM, which might be 

related to the use of bioclimatic limits inferred from modern observations that may not be valid for climate states being  

totally different from present day's. 

We have provided a simple but powerful method for the biomisation of simulated plant functional type distributions that  

requires only few input variables and can hence be applied to all kind of dynamic global vegetation models. The method can 

keep up with the classical biomisation approach of forcing biome models with climate states. As the biomisation of the  

simulated  PFT-fractions  indirectly  accounts  for  all  processes  included  in  the  dynamic  vegetation  models  (e.g. 

ecophysiological response of the plants to changes in the environment such as atmospheric CO2-level), the biomisation of 

PFTs directly represents the output of the vegetation modules of an Earth System Model. The biomisation of the simulated 

vegetation,  thus,  facilitates  the  direct  comparison  between  different  Earth  System  Models,  and  between  models  and 

reconstructions. It is therefore a powerful method for the evaluation of Earth System Models, particularly suitable for the  

assessment of recent palaeo-vegetation changes.

6 Code and data availability

The PMIP3 simulations of MPI-ESM-T63, ISPL-ESM-T31, MIROC-ESM, and HadGEM2-ESM can be downloaded from 

the Earth System Grid Federation. Simulation IDs are listed in Table 4.

The tool for the biomisation of PFT-distribution, input data,  other scripts  used  in  the  analysis  and  supplementary 

information  that  may  be  useful  in  reproducing  the  authors’  work will be archived by the Max Planck Institute for 

Meteorology and can be obtained by contacting  publications@mpimet.mpg.de
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JSBACH LPJ ORCHIDEE DGVM/CLM TRIFFID VECODE

Tropical trees

Tropical broadl.
evergreen

Tropical broadl. 
evergreen

Tropical broadl. 
evergreen

Tropical broadl. 

evergreen

Broad-leaved 
trees

 & 

Needle-leaved 
trees

trees

Tropical broadl. 
raingreen

Tropical broadl. 
raingreen

Tropical broadl. 
raingreen

Tropical broadl. 
raingreen

Extra-tropical 
trees

Extra-tropical 
evergreen

Temperate 
needlel. 

evergreen

Temperate needlel.
evergreen

Temperate 
needlel. 

evergreen
temperate 

broadl.
evergreen

Temperate broadl.
evergreen

Temperate 
broadl.

evergreen
Boreal needlel. 

evergreen
Boreal needlel. 

evergreen
Boreal needlel. 

evergreen

Extra-tropical 
deciduous

Temperate 
broadl. 

deciduous

Temperate broadl. 
deciduous

Temperate 
broadl. 

deciduous

Boreal needlel.
deciduous

Boreal
needlel.

deciduous

Boreal 
deciduous

Boreal broadl 
deciduous

Boreal broadl. 
deciduous

shrubs Raingreen shrubs shrubs
Cold deciduous 

shrubs

Grass
C3 grass C3 grass C3 grass

Artic grass
C3 grass

herbaceousC3 grass
C4 grass C4 grass C4 grass C4 grass C4 grass

Tab.1: The plant functional types (PFT) used in the different state-of-the-art dynamic global vegetation models
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PFT Bioclimatic limitation

Boreal forest GDD5 ≤ 900°C

Temperate forest 900°C < GDD5 ≤ 3000°C

Tropical forest Tcmin > 15.5°C

Tab.2 Bioclimatic limits used for splitting the forest PFTs simulated in the dynamic global vegetation models into the macro-PFT  
groups boreal, temperate and tropical forests. Taken are only temperature related variables, i.e. the growing degree days on a basis 
of 5°C (GDD5) and the monthly mean temperature of the coldest month (Tcmin). If the dynamic global vegetation model simulates 
any of these forest types directly, the simulated distribution is kept.

29

860

865

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-41
Manuscript under review for journal Clim. Past
Discussion started: 6 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Mega-biome minimum coverage needed Bioclimatic limit

Tropical forest Tropical forest dominant Tcmin > 15.5°C

Warm-mixed forest Temperate trees dominant GDD5 > 3000°C

Temperate forest temperate wood dominant GDD5 ≤ 3000°C

Boreal forest Boreal wood dominant GDD5  ≤ 900°C

(warm) Savanna and dry woodland Woody coverage > 0.25 GDD5 > 1200°C, Tcmin > 10°C

Grassland and dry shrubland Total vegetation cover > 0.2 GDD0 ≤ 800°C

Tundra Total vegetation cover > 0.1 GDD0  < 800°C

Warm desert Total Vegetation cover < 0.2 Tann > 2°C

Cold desert / ice Total Vegetation cover < 0.2 Tann < 2°C

Tab.3 Bioclimatic limits and assumptions on minimum PFT coverage needed for the assignment of the macro-PFT-groups into the 
9 Mega-Biomes. Similar as for the assignment into the macro-PFTs, only temperature-based limitations are used, i.e. the growing 
degree days on a basis of 5°C (GDD5) or on a basis of 0°C (GDD0), the monthly mean temperature of the coldest month (Tcmin),  
and the annual mean temperature (Tann). 
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Model acronym Model /DGVM Simulations resolution  PFT Reference

MPI-ESM-T63
MPI-ESM-P 

JSBACH

PiControl*

T63 8+4

cmip5.output1.MPI-M.MPI-ESM-P.

piControl.mon.land.Lmon.r1i1p1.v20120315

6k
cmip5.output1.MPI-M.MPI-ESM-P. 

midHolocene.mon.land.Lmon.r1i1p2.v20120713

LGM
cmip5.output1.MPI-M.MPI-ESM-P. 

lgm.mon.land.Lmon.r1i1p2.v20120713

MPI-ESM-T31
MPI-ESM-P 

JSBACH

piCTL, 

LGMref
T31 8 Klockmann et al., 2016

IPSL-ESM-T31
IPSL-CM5A-LR 

ORCHIDEE
PiControl*

1.875°

x 3.75°
10+2

pmip3.output.IPSL.IPSL-CM5ALR.piControl. 

monClim.land.Lclim.r1i1p1.v20140428|

IPSL-ESM-T63

CRUNCEP or

IPSL-CM5A-LR

ORCHIDEE-MICT

2°x2° 10 Zhu (2016)

HadGEM2-ESM
HadGEM2-ES

TRIFFID

PiControl*

1.875° 

x 1.25°
6+2

cmip5.output1.MOHC.HadGEM2-ES. 

piControl.mon.land.Lmon.r1i1p1.v20111007

6k
mip5.output1.MOHC.HadGEM2-ES.midHolo 

cene.mon.land.Lmon.r1i1p1.v20120222

CLIM-LPJ
CRU/Climber2

LPJ
0.5°x0.5 9 similar as in Kleinen et al. 2010

MIROC-ESM
MIROC-ESM

SEIB

PiControl*

T42 8+2

cmip5.output1.MIROC.MIROC-ESM.piControl. 

mon.land.Lmon.r1i1p1.v20120710

Watanabe et al., 2011

6k
cmip5.output1.MIROC.MIROC-ESM.midHolo 

cene.mon.land.Lmon.r1i1p1.v20120710

LGM
mip5.output1.MIROC.MIROC-ESM.lgm. 

mon.land.Lmon.r1i1p1.v20120710

CLIMBER
Climber2

VECODE
PI, LGM 10°x10° 2 Kleinen (personal communication)

Tab.4: Overview of the simulations used for testing the biomisation method. Listed are the model acronym, the model name, the 
name of the included dynamic global vegetation model (DGVM), the simulations used in this study, the spatial resolution  used in 
the simulations, the number PFTs (natural + anthropogenic) and the simulation reference. Simulations marked with (*) include 
land-use.
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Biomes in Ramankutty and Foley (1999) Mega-biomes

1 Tropical Evergreen Forest/Woodland
Tropical forest

2 Tropical Deciduous Forest/Woodland

3 Temperate Broadleaf Evergreen Forest/Woodland Warm-mixed forest

4 Temperate Needleleaf Evergreen Forest/Woodland
Temperate forest

5 Temperate Deciduous Forest/Woodland

6 Boreal Evergreen Forest/Woodland
Boreal forest

7 Boreal Deciduous Forest/Woodland

8 Evergreen/Deciduous Mixed Forest/Woodland Temperate (GDD5 < 900) or boreal forest 

9 Savanna Savanna and dry woodland, partly temperate forest

10 Grassland/Steppe Grassland and dry shrubland

11 Dense Shrubland Savanna and dry woodland

12 Open Shrubland Grassland and dry shrubland

13 Tundra Tundra

14 Desert (Warm) Desert

15 Polar Desert/Rock/Ice Polar desert / ice 

Tab.5 Biome assignment of biome classes used in Ramankutty and Foley (1999) to the mega-biomes used in this study.
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 vs.

RF99

 vs.

Records

FSS vs. 

RF99

BNS vs. 

Records
pure fit Fits in N (of 9117)

MPI-ESM-T63 0.65 0.42 0.15 0.67 43% 7933

MPI-ESM-T31 0.56 0.29 0.03 0.42 28% 7254

IPSL-ESM-T31 0.61 0.36 0.05 0.47 33% 7373

IPSL-ESM-T63 0.7 0.47 0.15 0.65 39% 7865

HadGEM2-ESM 0.66 0.38 0.15 0.64 39% 7755

CLIM-LPJ 0.7 0.40 0.21 0.66 39% 8054

MIROC-ESM 0.66 0.35 0.11 0.41 27% 6814

CLIMBER 0.62 0.23 0.00 0.26 26% 3955

CRU TS4_T63 0.68 0.46 0.13 0.73 50% 8537

CRU TS4 - 0.47 - 0.83 55% 8686

Tab.6: Metrics for the climate-based (BIOME1) biomisations (PI), i.e.   for the comparison with the RF99 reference,   for the 
comparison with the Biome6000 PI reconstructions,  the relative fractional skill  score (FSS),  the best neighbour score (BNS),  
percentage of sites showing the same biome as the  climate-based biomisation, and number of sites for which a grid-cell in the  
neighbourhood (N) could be found showing the same biome as the site. The total number of records is 9117.
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PFT-based Climate-based

PI 6k 6k-PI PI 6k 6k-PI

MPI-ESM-T63 17.72 21.45 3.73 15.85 19.59 3.74

CLIM-LPJ 15.85 17.72 1.87 17.72 21.45 3.73

HadGEM2-ESM 13.99 15.85 1.86 13.99 15.85 1.86

MIROC-ESM 16.7 20.41 3.71 16.7 20.41 3.71

Tab.7 Position of the desert margin [° latitude] in North Africa at PI and 6k and the differences in position of the desert margin 
between 6k and PI [° latitude], for the PFT-based biomisations and the climate-based biomisations. The desert margin is here  
defined as latitude at which the zonal mean desert biome fraction averaged over the region 15°W to 30°E exceeds 50%.
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PFT-based Climate-based

PI 6k 6k-PI PI 6k 6k-PI

MPI-ESM-T63 0.73 0.75 0.02 0.73 0.76 0.03

CLIM-LPJ 0.64 0.76 0.12 0.67 0.77 0.1

HadGEM2-ESM 0.83 0.89 0.06 0.89 0.93 0.04

MIROC-ESM 0.72 0.72 0.0 0.92 0.96 0.04

Tab.8: Mean forest biome fraction in Northern Eurasia (0-150°E, 60-80°N) in the PFT-based biomisiations and the climate-based 
biomisations for the mid-Holocene (6k) and pre-industrial (PI) time-slice, and the difference between both (6k-PI).
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PI LGM

FPC-method PFT-method FPC-method PFT-method

FSS (vs RF99) 0.1 0.13 - -

 (vs RF99) 0.59 0.63 - -

 (vs. records) 0.19 0.24 0.17 0.13

BNS (vs. records) 0.53 0.55 0.54 0.41

Tab.9: Metrics quantifying the agreement of the biomisations for IPSL-ESM-T63 based on the FPC-method (Prentice et al. 2011)  
or the PFT-based method introduced in this study with the modern potential biome distribution according to Ramakutty and 
Foley (1999, RF99)  or pollen-based biome reconstructions (BIOME6000 database) for the pre-industrial (PI) and the Last Glacial  
Maximum (LGM) time-slices. Listed are the relative fractional skill score (FSS), the kappa value (and the best neighbour score 
(BNS).
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Figure 1: Scheme of the biomisation method. The plant functional type (PFT) fractions simulated by the individual dynamic global 
vegetation models are assigned to Macro-PFT groups by climate limitation rules and are afterwards assigned to nine mega-biomes 
by assumptions on the minimum coverage of certain Macro-PFTs needed in a grid-cell and additional climate limits.
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Figure  2:  Reference  biome  distributions  for  the  pre-industrial  time-slice,  i.e.  left  panel:  the  biome  distribution  inferred  by  
BIOME1 that has been forced by the CRU TS 4.0 dataset (period 1901-1930), interpolated to a Gaussian T63 grid; central panel:  
the modern potential natural vegetation map derived by Ramankutty and Foley (1999, RF99) remapped on a T63 gaussian grid;  
right panel: pollen-based pre-industrial biome reconstructions provided by the Biome6000 database (Harrison, 2017). The biomes 
are tropical forest (trF), warm-mixed forest (waF), temperate forest (teF), boreal forest (boF), Savanna & dry woodland (SAV),  
grassland & dry shrubland (GRA), warm desert (DE), Tundra (TUN) and polar desert & Ice (ICE).
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Figure 3: Simulated pre-industrial mega-biome distributions according to the new biomisation method (PFT-based method). The 
plant functional type (PFT) fractions simulated by the individual models have been converted into mega-biomes through climate 
limitation rules and assumptions on the maximum coverage of certain PFTs needed in the grid-cells.  
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Figure 4: Simulated pre-industrial biome distributions according to the classical biomisation approach, i.e. biomising the climate 
states simulated by the individual models. The climate field were used to force the biome model BIOME1 (Prentice et al. 1992).  
Afterwards, the original BIOME1 biomes havebeen aggregated into the nine mega-biomes used in this study.
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Figure 5: Metrics quantifying the total agreement of the simulated pre-industrial biome maps based on the PFT cover fractions  
(PFT-method) or based on the climate state (classical approach using BIOME1) with the reference datasets (i.e. modern potential  
natural vegetation (RF) and pre-industrial pollen-based biome reconstructions (Rec.)). Shown are the Kappa values (left figure),  
the relative fractional skill score (FSS, middle figure) and the best neighbour score (BNS, right figure) for all models and also for 
the biomisation based on the CRU-TS4 observational climate data in original resolution (CRU-TS4) and interpolated to a T63 grid 
(CRU-TS4_T63).
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Figure  6: Kappa metric quantifying the agreement of the simulated pre-industrial individual mega-biomes with the reference 
dataset (i.e.  modern potential natural vegetation (RF)) for the PFT-based method (left panel) and the classical method using  
BIOME1 forced with the simulated background climate states (right panel).
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Figure 7: Simulated mid-Holocene biome distribution in the different models, based on the PFT-method (left panel), pollen-based 
reconstructions  of the mid-Holocene biome distribution (BIOME6000 database, upper figure) and the best neighbour score (BNS) 
for all individual sites showing the agreement of the reconstructed biomes and the biome distribution in the neighbourhood of the  
sites, ranging from 0 (no grid-cell in the surrounding shows the same biome as reconstructed) to 1 (the grid-cell locating the site  
and the record at the site indicate the same biome).
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Figure 8: Differences in the desert fractional coverage simulated by the individual models between the mid-Holocene (6k) and pre-
industrial time-slice (0k).
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Figure 9: Metrics quantifying the agreement of the simulated mid-Holocene biome maps based on the PFT-method or based on the  
climate states (i.e. according to the BIOME1 model)with the  pollen-based biome reconstructions (BIOME6000 database) for the  
mid-Holocene time-slice, i.e. the (total) Kappa value (left panel) and the the BNS values for the individual mega-biomes.
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Figure  10:  Pollen-based  biome  reconstructions  (BIOME6000  database)   for  the  Last  Glacial  Maximum  time-slice  and  the 
simulated biome distributions according to the new biomisation method (i.e. the PFT-based method)
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Figure 11: Metrics quantifying the agreement of the simulated Last Glacial Maximum biome maps based on the PFT-method or  
based  on  the  simulated  climate  states  (i.e.  according  to  BIOME1)  with  pollen-based  biome  reconstructions  (BIOME6000 
database), i.e. the (total) Kappa value and the BNS values for the individual mega-biomes. Please notice that the climatic variables  
needed to force BIOME1 could not be provided for IPSL-ESM-T63. Thus, no climate-based biomisation exists for IPSL-ESM-T63.
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Figure 12: Climate factors leading to the differences between the pre-industrial climate-based biome distributions and the biome 
distribution inferred from the CRU-TS4.0 observational climate data. The factors were calculated by performing a sensitivity test  
with the BIOME1 model following Dallmeyer et al. (2017)

48

995

95

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-41
Manuscript under review for journal Clim. Past
Discussion started: 6 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 13: Zonal sum of pre-industrial forest biome area per latitude [Mio km²/degree] in the reference (RF99), the climate-based 
biomisation (blue) and the PFT-based biomisation (red) for each of the individual models. Due to the special land-sea mask in  
CLIMBER, the values for this model have been scaled by a factor of 0.766, which is the quotient of the global land area in a  
Gaussian T31 grid and the global land area in the CLIMBER grid (10°x10°).
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Figure 14: Normalised Taylor-diagramm showing the agreement of the simulated pre-industrial zonal sum of forest biome area per  
latitude using BIOME1 (i.e. based on the simulated climate states, crosses) or the PFT-based method (dots) for the individual 
models with the modern potential biome distributions according to Ramakutty and Foley (1999, RF99). Additionally shown is the 
agreement of the CRU-TS4-based biomisation with this RF99 reference dataset. 
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Figure  15: Comparison between the biomisation method by Prentice et al. (2011, referred to as FPC-method) and the method 
introduced in this study (PFT-based) based on the model IPSL-ESM-T63. Shown are the biome distributions for the pre-industrial 
(PI) and Last Glacial Maximum (LGM) time-slice (upper panels) and the BNS for all available sites showing the agreement of the 
reconstructed biomes (according to the BIOME6000 database) and the simulated biome distributions in the neighbourhood of the  
sites (lower panels), ranging from 0 (no grid-cell in the surrounding shows the same biome as reconstructed) to 1 (the grid-cell  
locating the site and the record at the site indicate the same biome).

51

1010

1015

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-41
Manuscript under review for journal Clim. Past
Discussion started: 6 April 2018
c© Author(s) 2018. CC BY 4.0 License.


