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 13 

Abstract. Paleorecords and modeling studies suggest that instabilities in the Atlantic Meridional Overturning 14 

Circulation (AMOC) strongly affect the low-latitude climate, namely via feedbacks on the Atlantic Intertropical 15 

Convergence Zone (ITCZ). Despite pronounced millennial-scale overturning and climatic variability documented 16 

in the subpolar North Atlantic during the last interglacial period (MIS 5e), studies on the cross-latitudinal 17 

teleconnections remain to be very limited, precluding full understanding of the mechanisms controlling 18 

subtropical climate evolution across the last warm cycle. Here, we present new planktic foraminiferal assemblage 19 

data combined with δ18O values in surface and thermocline-dwelling foraminifera from the Bahama region, which 20 

is ideally suited to study past changes in subtropical ocean and atmosphere. Our data reveal that the peak sea 21 

surface warmth during early MIS 5e was intersected by an abrupt millennial-scale cooling/salinification event, 22 

which was possibly associated with a sudden southward displacement of the mean annual ITCZ position. This 23 

atmospheric shift is, in turn, ascribed to the transitional climatic regime of early MIS 5e, characterized by 24 

persistent ocean freshening in the high latitudes and, therefore, an unstable AMOC mode.  25 

 26 
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1 Introduction  33 

In the low-latitude North Atlantic, wind patterns, precipitation-evaporation balance as well as sea surface 34 

temperatures (SSTs) and salinities (SSSs) are strongly dependent on the position of the Atlantic Intertropical 35 

Convergence Zone (ITCZ) and its associated rainfall (Peterson and Haug, 2006). Based on paleorecords and 36 

modelling studies, past positions of the ITCZ are thought to be related to the interhemispheric thermal contrast 37 

(Schneider et al., 2014). In turn, changes in the thermal contrast could be principally driven by two mechanisms: 38 

(1) precessional cycle and, associated with it, cross-latitudinal distribution of solar insolation, or (2) millennial-39 

scale climatic variability brought about by Atlantic Meridional Overturning Circulation (AMOC) instabilities 40 

(Wang et al., 2004; Broccoli et al., 2006; Arbuszewski et al., 2013; Schneider et al., 2014). Specifically, 41 

millennial-scale cold events in the high northern latitudes were linked with reduced convection rates of the 42 

AMOC, accounting for both a decreased oceanic transport of the tropical heat towards the north and a southward 43 

shift of the mean annual position of the ITCZ (Vellinga and Wood, 2002; Chiang et al., 2003; Broccoli et al., 44 

2006). Reconstructions from the low-latitude North Atlantic confirm southward displacements of the ITCZ coeval 45 

with AMOC reductions and reveal a complex hydrographic response within the upper water column, generally 46 

suggesting an accumulation of heat and salt in the (sub)tropics (Schmidt et al., 2006a; Carlson et al., 2008; Bahr 47 

et al., 2011; 2013). There are, however, opposing views on the subtropical sea surface development at times of 48 

high-latitude cooling events. While some studies suggest stable or increasing SSTs (Schmidt et al., 2006a; Bahr 49 

et al., 2011; 2013), others imply an atmospheric-induced (evaporative) cooling (Chang et al., 2008; Chiang et al., 50 

2008).  51 

The last interglacial (MIS 5e), lasting from about ~130 to 115 thousand years before present (hereafter [ka]), is 52 

often referred to as a warmer-than-preindustrial interval, associated with significantly reduced ice sheets and a 53 

sea level rise up to 6-9 meters above the present levels (Dutton et al., 2015; Hoffman et al., 2017). This time 54 

period has attracted a lot of attention as a possible analog for future climatic development as well as a critical 55 

target for validation of climatic models (Masson-Delmotte et al., 2013). Proxy data from the North Atlantic 56 

demonstrate that the climate of the last interglacial was relatively unstable, involving one or several cooling events 57 

(Maslin et al., 1998; Fronval and Jansen, 1997; Bauch et al., 2012; Irvalı et al., 2012, 2016; Zhuravleva et al., 58 

2017a, b). This climatic variability is thought to be strongly related to changes in the AMOC strength (Adkins et 59 

al., 1997). Thus, recent studies reveal that the AMOC abruptly recovered after MIS 6 deglaciation (Termination 60 

2 or T2), i.e., at the onset of MIS 5e, at ~ 129 ka, but it was interrupted around 127-126 ka (Galaasen et al., 2014; 61 

Deaney et al., 2017). Despite the pronounced millennial-scale climatic variability documented in the high northern 62 
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latitudes, studies on the cross-latitudinal links are very limited (but see e.g., Cortijo et al., 1999; Schwab et al., 70 

2013; Kandiano et al., 2014; Govin et al., 2015; Jiménez-Amat and Zahn, 2015). This precludes the full 71 

understanding of the mechanisms (e.g., insolation, oceanic and/or atmospheric forcing versus high-to-low-72 

latitudes climate feedbacks), regulating subtropical climate across the last interglacial. 73 

Given its critical location near the origin of the Gulf Stream, sediments from the slopes of the shallow-water 74 

carbonate platforms of the Bahamian archipelago (Fig. 1) have been previously investigated in terms of oceanic 75 

and atmospheric variability (Slowey and Curry, 1995; Roth and Reijmer, 2004; 2005; Chabaud et al., 2016). 76 

However, a thorough study of the last interglacial climatic evolution underpinned by a critical stratigraphical 77 

insight is lacking so far. Here, a sediment record from the Little Bahama Bank (LBB) region is investigated for 78 

possible links between the AMOC variability and the ITCZ during the last interglacial cycle. Today the LBB 79 

region lies at the northern edge of the influence of the Atlantic Warm Pool, which expansion is strongly related 80 

to the ITCZ movements (Wang and Lee, 2007; Levitus et al., 2013), making our site particularly sensitive to 81 

monitor past shifts of the ITCZ. Given that geochemical properties of marine sediments around carbonate 82 

platforms vary in response to sea level fluctuations (e.g., Lantzsch et al., 2007), X-ray fluorescense (XRF) data 83 

are being used together with stable isotope and faunal records to strengthen the temporal framework. Planktic 84 

foraminiferal assemblage data complemented by δ18O values, measured on surface- and thermocline-dwelling 85 

foraminifera, are employed to reconstruct the upper ocean properties (stratification, trends in temperature and 86 

salinity), specifically looking at mechanisms controlling the foraminiferal assemblages. Assuming a coupling 87 

between foraminiferal assemblage data and past mean annual positions of the ITCZ (Poore et al., 2003; Vautravers 88 

et al., 2007), our faunal records are then looked at in terms of potential geographical shifts of the ITCZ. Finally, 89 

we compare our new proxy records with published evidence from the regions of deep water formation to draw 90 

further conclusions on the subpolar forcing on the low-latitude climate during MIS 5e. 91 

 92 

2 Regional Setting 93 

2.1 Hydrographic context 94 

Core MD99-2202 (27°34.5´ N, 78°57.9´ W, 460 m water depth) was taken from the upper northern slope of the 95 

LBB, which is the northernmost shallow-water carbonate platform of the Bahamian archipelago. The study area 96 

is at the western boundary of the wind-driven subtropical gyre (STG), in the vicinity to the Gulf Stream (Fig. 1a), 97 

which supplies both heat and salt to the high northern latitudes thereby constituting the upper cell of the AMOC. 98 
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In the western subtropical North Atlantic two distinctly different layers can be distinguished within the upper 500 104 

m of the water column (Fig. 1c). The uppermost mixed layer (upper 50-100 m) is occupied by warm and 105 

comparatively fresh waters (T>24° C, S<36.4 psu), predominantly coming from the equatorial Atlantic (Schmitz 106 

and McCartney, 1993; Johns et al., 2002). Properties of this water mass vary significantly on seasonal timescales 107 

and are closely related to the latitudinal migration of the ICTZ (Fig. 1b). During boreal winter (December-April), 108 

when the ITCZ is in its southernmost position, the Bahama region is dominated by relatively cool, stormy weather 109 

with prevailing northern and northeastern trade winds and is affected by cold western fronts, that increase 110 

evaporation and vertical convective mixing (e.g., Wilson and Roberts, 1995). During May to November, as the 111 

ITCZ moves northward, the LBB region is influenced by relatively weakened trade winds from the east and 112 

southeast, increased precipitation and very warm waters of the Atlantic Warm Pool (T >28.5° C), which expand 113 

into the Bahama region from the Caribbean Sea and the equatorial Atlantic (Stramma and Schott, 1999; Wang 114 

and Lee, 2007; Levitus et al., 2013).  115 

The mixed layer is underlain by the permanent thermocline, which is comprised of a homogeneous pool of 116 

comparatively cool and salty (T<24° C, S>36.4 psu) water (Schmitz and Richardson, 1991). These “mode” waters 117 

are formed in the North Atlantic STG through wintertime subduction of surface waters generated by wind-driven 118 

Ekman downwelling and buoyancy flux (Slowey and Curry, 1995).  119 

 120 

2.2 Sedimentological context 121 

Along the slopes of the LBB, sediments are composed of varying amounts of sedimentary input from the platform 122 

top and from the open ocean, depending on the global sea level state (Droxler and Schlager, 1985; Schlager et al., 123 

1994). During interglacial highstands, when the platform top is submerged, the major source of sediment input is 124 

the downslope transport of fine-grained aragonite needles, precipitated on the platform top. This material 125 

incorporates significantly higher abundances of strontium (Sr), than found in pelagic-derived aragonite (e.g., 126 

pteropods) and calcite material from planktic foraminifera and coccoliths (Morse and MacKenzie, 1990). Given 127 

that in the periplatform interglacial environment modifications of the aragonite content due to sea floor dissolution 128 

and/or winnowing of fine-grained material are minimal (Droxler and Schlager, 1985; Schlager et al., 1994; Slowey 129 

et al., 2002), thicker sediment packages accumulate on the slopes of the platform, yielding interglacial climate 130 

records of high resolution (Roth and Reijmer, 2004; 2005). During glacial lowstands, on the contrary, as the LBB 131 

bank top is exposed, aragonite production is limited, sedimentation rates are strongly reduced and coarser-grained 132 
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consolidated sediments are formed from the pelagic organisms (Droxler and Schlager, 1985; Slowey et al., 2002; 135 

Lantzsch et al., 2007).  136 

 137 

3 Methods 138 

3.1 Foraminiferal counts and stable isotopes analyses 139 

Planktic foraminiferal assemblages were counted on representative splits of the 150-250 µm fraction containing 140 

at least 300 individual specimens. Counts were also performed in the >250 µm fraction. The census data from the 141 

two size fractions were added up and recalculated into relative abundance of planktic foraminifera in the fraction 142 

>150 µm. Faunal data were obtained at each 2 cm for the core section between 508.5 and 244.5 cm and at each 143 

10 cm between 240.5 and 150.5 cm. According to a standard practice, Globorotalia menardii and Globorotalia 144 

tumida as well as Globigerinoides sacculifer and Globigerinoides trilobus were grouped together, and referred to 145 

as G. menardii and G. sacculifer, respectively (Poore et al., 2003; Kandiano et al., 2012; Jentzen et al., 2018).  146 

New oxygen isotope data were produced at 2 cm steps using ~10-30 tests of Globorotalia truncatulinoides (dex) 147 

and ~5-20 tests of Globorotalia inflata for depths 508.5-244.5 cm and 508.5-420.5 cm, respectively. Analyses 148 

were performed using a Finnigan MAT 253 mass spectrometer at the GEOMAR Stable Isotope Laboratory. 149 

Calibration to the Vienna Pee Dee Belemnite (VPDB) isotope scale was made via the NBS-19 and an internal 150 

laboratory standard. The analytical precision of in-house standards was better than 0.07 ‰ (1s) for δ18O. Isotopic 151 

data derived from the deep-dwelling foraminifera G. truncatulinoides (dex) and G. inflata could be largely 152 

associated with the permanent thermocline and linked to winter conditions (Groeneveld and Chiessi, 2011; 153 

Jonkers and Kučera, 2017; Jentzen et al., 2018). However, as calcification of their tests starts already in the mixed 154 

layer and continues in the main thermocline (Fig. 1c), the abovementioned species are thought to accumulate in 155 

their tests hydrographic signals from different water depths (Groeneveld and Chiessi, 2011; Mulitza et al., 1997).    156 

 157 

3.2 XRF scanning 158 

XRF analysis was performed in two different runs using the Aavatech XRF Core Scanner at Christian-Albrecht 159 

University of Kiel (for technical details see Richter et al., 2006). To obtain intensities of elements with lower 160 

atomic weight (e.g., calcium (Ca), chlorine (Cl)), XRF scanning measurements were carried out with the X-ray 161 

tube voltage of 10 kv, the tube current of 750 µA and the counting time of 10 seconds. To analyze heavy elements 162 

(e.g., iron (Fe), Sr), the X-ray generator setting of 30 kv and 2000 µA and the counting time of 20 seconds were 163 

used; a palladium thick filter was placed in the X-ray tube to reduce the high background radiation generated by 164 
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the higher source energies. XRF Core Scanner data were collected directly from the split core sediment surface, 166 

that had been flattened and covered with a 4 µm-thick ULTRALENE SPEXCerti Prep film to prevent 167 

contamination of the measurement unit and desiccation of the sediment (Richter et al., 2006; Tjallingii et al., 168 

2007). The core section between 150 and 465 cm was scanned at 3 mm step size, whereas the coarser-grained 169 

interval between 465 and 600 cm was analyzed at 10 mm resolution.  170 

To account for potential biases related to physical properties of the sediment core (see e.g., Chabaud, 2016), XRF 171 

intensities of Sr were normalized to Ca, the raw total counts of Fe and Sr were normalized to the total counts of 172 

the 30 kv run; counts of Ca and Cl were normalized to the total counts of the 10 kv run, excluding rhodium 173 

intensity, because this element intensities are biased by the signal generation (Bahr et al., 2014).  174 

 175 

4 Age model 176 

By using our foraminiferal assemblage data, we were able to refine the previously published age model of core 177 

MD99-2202 (Lantzsch et al., 2007). To correctly frame MIS 5e, stratigraphic subdivision of the unconsolidated 178 

aragonite (Sr)-rich sediment package between 190 and 464 m is essential (Fig. 2). In agreement with Lantzsch et 179 

al. (2007), we interpret this core section to comprise MIS 5, which is supported by key biostratigraphic markers 180 

used to identify the well-established faunal zones of late Quaternary (Ericson and Wollin, 1968). Thus, the last 181 

occurrence of G. menardii at the end of the aragonite-rich sediment package is in agreement with the estimated 182 

late MIS 5 age (ca. 80-90 ka; Boli and Saunders, 1985; Slowey et al., 2002; Bahr et al., 2011; Chabaud, 2016). 183 

The coherent variability in the ~200-300 cm core interval, observed between aragonite content and relative 184 

abundances of warm surface-dwelling foraminifera of Globigerinoides genus (G. ruber, white and pink varieties, 185 

G. conglobatus and G. sacculifer), points to simultaneous climate and sea level-related changes and likely reflects 186 

the warm/cold substages of MIS 5. The identified substages were then correlated with the global isotope benthic 187 

stack LS16 (Lisiecki and Stern, 2016) using AnalySeries 2.0.8 (Paillard et al., 1996). Further, boundaries between 188 

MIS 6/5e and 5e/5d as well as the penultimate glaciation (MIS 6) peak, defined from δ18O record of G. ruber 189 

(white), were aligned to the global benthic stack (Lisiecki and Stern, 2016).  190 

Given that sedimentation rates at the glacial/interglacial transition could have changed drastically due to increased 191 

production of Sr-rich aragonite material above the initially flooded carbonate platform top (Roth and Reijmer, 192 

2004), we applied an additional age marker to better frame the onset of the MIS 5e “plateau” (Masson-Delmotte 193 

et al., 2013) and to allow for a better core-to-core comparison. Thus, we tied the increased relative abundances of 194 

warm surface-dwelling foraminifera of Globigerinoides genus, which coincides with the rapid decrease in 195 
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foraminiferal δ18O record at 456 cm, with the onset of MIS 5e “plateau” at ~129 ka (Masson-Delmotte et al., 199 

2013). This age is in good agreement with many marine and speleothem records, dating a rapid post-stadial 200 

warming and monsoon intensification to 129-128.7 ka (Govin et al., 2015; Jiménez-Amat and Zahn, 2015; Deaney 201 

et al., 2017), coincident with the sharp methane increase in the EPICA Dome C ice core (Loulergue et al., 2008; 202 

Govin et al., 2012). Although we do not apply a specific age marker to frame the decline of the MIS 5e “plateau”, 203 

the resulting decrease in the percentage of warm surface-dwelling foraminifera of Globigerinoides genus as well 204 

as the initial increase in the planktic δ18O values dates back to ~117 ka (Figs. 3-5), which broadly coincides with 205 

the cooling onset over Greenland (NGRIP community members, 2004). A similar subtropical-polar climatic 206 

coupling was proposed in earlier studies from the western North Atlantic STG (e.g., Vautravers et al., 2004; 207 

Schmidt et al., 2006a; Bahr et al., 2013; Deaney et al., 2017). 208 

 209 

5 Results 210 

5.1 XRF data in the lithological context 211 

In Fig. 3, XRF-derived elemental data are plotted against lithological and sedimentological records. Beyond the 212 

intervals with low Ca counts and correspondingly high Cl intensities (at 300-325 cm and 395-440 cm), Ca 213 

intensities do not vary significantly, which is in line with a stable carbonate content of about 94 % wt, revealed 214 

by Lantzsch et al. (2007). Our Sr record closely follows the aragonite curve, demonstrating that the interglacial 215 

minerology is dominated by aragonite. Beyond the intervals containing reduced Ca intensities, a good coherence 216 

between Sr/Ca and aragonite content is observed. The rapid increase in Sr/Ca and aragonite is found at the end of 217 

the penultimate deglaciation (T2), coeval with the elevated absolute abundances of G. menardii per sample (Fig. 218 

3). The gradual step-like Sr/Ca and aragonite decrease characterizes both the glacial inception and the later MIS 219 

5 phase. Intensities of Fe abruptly decrease at the beginning of the last interglacial, but gradually increase during 220 

the glacial inception (Fig. 4). Note that between ~112 and 114.5 ka, the actual XRF measurements were affected 221 

by a low sediment level in the core tube. 222 

 223 

5.2 Climate-related proxies 224 

To calculate δ18O gradients across the upper water column, we also used the published δ18O data by Lantzsch et 225 

al. (2007), which were measured on the surface-dwelling foraminifera G. ruber (white). These isotopic data can 226 

be generally associated with mean annual conditions (Tedesco et al., 2007), however, during colder time intervals 227 

productivity peak of G. ruber (white) could shift towards warmer months, leading to underestimation of the actual 228 
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environmental change (Schmidt et al., 2006a, b; Jonkers and Kučera, 2015). During the penultimate glacial 238 

maximum (MIS 6), δ18O gradients between G. ruber (white) and G. truncatulinoides (dex) and G. inflata are very 239 

low (Fig. 4), succeeded by a gradually increasing difference across T2, ~135-129 ka. Changes in the isotopic 240 

gradient between surface- and thermocline-dwelling foraminifera closely follow variations in the relative 241 

abundances of G. truncatulinoides (dex) and G. inflata (Fig. 4). Across MIS 5e species of Globigerinoides genus 242 

dominate the total assemblage, however, significant changes in the proportions of three main Globigerinoides 243 

species are observed (Fig. 5): G. sacculifer and G. ruber (pink) essentially dominate the assemblage during early 244 

MIS 5e (129-124 ka), whereas G. ruber (white) proportions are at their maximum during late MIS 5e (124-117 245 

ka). At around 127 ka, all δ18O records abruptly increase together with a reappearance of G. inflata (Fig. 4) and a 246 

relative abundance decrease of G. ruber (pink) and G. sacculifer (Fig. 5). After 120 ka,  δ18O values in G. ruber 247 

(white) and G. truncatulinoides (dex) become variable (Fig. 4). That instability coincides with an abrupt drop in 248 

G. sacculifer relative abundances (Fig. 5).  249 

 250 

6 Discussion  251 

6.1 Platform sedimentology and relative sea level change 252 

The modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some 253 

possible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is 254 

generally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) 255 

rise above -6 m of its present position is required to completely flood the platform top and allow for a drastic 256 

increase in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and 257 

Schlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding -258 

6 m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016).  259 

While our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, 260 

some of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously 261 

measured elevated Cl intensities (Fig. 3). Because enhanced seawater content in the sediment appears to reduce 262 

only Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007; 263 

Hennekam and de Lange, 2012), normalization of Sr counts to Ca results in very high Sr/Ca intensity ratios across 264 

the Cl-rich intervals. Regardless of these problematic intervals described above, the XRF-derived Sr/Ca values 265 

agree well with the actually measured aragonite values that it seem permissible to interpret them in terms of RSL 266 

variability. Here, it should be noted that, although the Bahama region is located quite far from the former 267 
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Laurentide Ice Sheet, there still could have been some influence by glacio-isostatic adjustments, causing our RSL 273 

signals to deviate from the global sea level during MIS 5e (Stirling et al., 1998). 274 

Around 129 ka, Sr/Ca rapidly increased, indicating the onset of the LBB flooding interval with the inferred RSL 275 

above -6 m (Fig. 3). Absolute abundance of G. menardii per sample support the inferred onset of the flooding 276 

interval, since amounts of planktic foraminifera in the sample can be used to assess the relative accumulation of 277 

platform-derived versus pelagic sediment particles (Slowey et al., 2002). Thus, after G. menardii repopulated the 278 

(sub)tropical waters at the end of the penultimate glaciation (Bahr et al., 2011; Chabaud, 2016), its increased 279 

absolute abundances are found around Bahamas between ~130-129 ka. This feature could be attributed to a 280 

reduced input of fine-grained aragonite at times of partly flooded platform. Consequently, as the platform top 281 

became completely submerged, established aragonite shedding gained over pelagic input, thereby reducing the 282 

number of G. menardii per given sample. Our proxy records further suggest that the aragonite production on top 283 

of the platform was abundant until late MIS 5e (unequivocally delimited by foraminiferal δ18O and faunal data). 284 

The drop in RSL below -6 m only during the terminal phase of MIS 5e (~117-115 ka on our timescale) is 285 

corroborated by a coincident changeover in the aragonite content and an increase in absolute abundance of G. 286 

menardii, further supporting the hypothesis that aragonite shedding was suppressed at that time, causing relative 287 

enrichment in foraminiferal abundances. 288 

 289 

6.2 Deglacial changes in the vertical water mass structure   290 

Elevated proportions of thermocline-dwelling foraminifera G. inflata and G. truncatulinoides (dex) are found off 291 

LBB during late MIS 6 and T2 (Fig. 4). To define mechanisms controlling the faunal assemblage, we look at δ18O 292 

values in those foraminiferal species which document hydrographic changes across the upper water column, i.e., 293 

spanning from the uppermost mixed layer down to the permanent thermocline. The strongly reduced δ18O 294 

gradients between surface-dwelling species G. ruber (white) and two thermocline-dwelling foraminifera G. 295 

truncatulinoides (dex) and G. inflata during T2 and particularly during late MIS 6 could be interpreted in terms 296 

of decreased water column stratification, a condition which is favored by thermocline-dwelling foraminifera (e.g., 297 

Mulitza et al., 1997). Specifically, for G. truncatulinoides (dex) this hypothesis is supported by its increased 298 

abundance within the regions characterized by deep winter vertical mixing (Siccha and Kučera, 2017). Such 299 

environmental preference may be explained by species ontogeny, given that G. truncatulinoides (dex) requires 300 

reduced upper water column stratification to be able to complete its reproduction cycle with habitats ranging from 301 

c. 400-600 m to near-surface depths; in well-stratified waters, however, reproduction of G. truncatulinoides (dex) 302 
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would be inhibited by a strong thermocline (Lohmann and Schweizer, 1990; Hilbrecht, 1996; Mulitza et al., 1997; 324 

Schmuker and Schiebel, 2000).  325 

To explain the inferred reduced upper water mass stratification during late MIS 6 and T2, sea surface 326 

cooling/salinification and/or subsurface warming could be invoked (e.g., Zhang, 2007; Chiang et al., 2008). 327 

While Mg/Ca-based temperature estimations during late MIS 6 so far reveal cold subsurface conditions for the 328 

subtropical western North Atlantic (Bahr et al., 2011; 2013), it should be noted that species-specific signals (i.e., 329 

δ18O values, Mg/Ca-ratios) could be complicated due to adaptation strategies of foraminifera, such as seasonal 330 

shifts in the peak foraminiferal tests flux and/or habitat changes (Schmidt et al., 2006a, b; Cléroux et al., 2007; 331 

Bahr et al., 2013; Jonkers and Kučera, 2015). However, further insights into the past fluctuations in seawater 332 

temperature and salinity could be provided from the conspicuous millennial-scale oscillation found at 131 ka (Fig. 333 

4) and associated with a shift towards lower surface-thermocline isotopic gradients (i.e., reduced stratification). 334 

When compared to the abrupt increase in G. ruber (white) δ18O values at 131 ka, which indicates sea surface 335 

cooling or salinification, the isotopic response in thermocline-dwelling species remains rather muted. The latter 336 

could be explained either by foraminiferal adaptation strategies, stable subsurface conditions and/or incorporation 337 

of opposing signals during foraminiferal ontogenetic cycle that would mitigate the actual environmental change. 338 

Regardless of the exact mechanism, there is a good coherence between δ18O values in G. ruber (white) and relative 339 

abundances of G. inflata and G. truncatulinoides (dex), suggesting a possible link between thermocline species 340 

abundance and conditions occurring nearer to the sea surface (Mulitza et al., 1997; Jonkers and Kučera, 2017). 341 

Specifically, steadily increasing upper water column stratification across glacial-interglacial transition could have 342 

suppressed reproduction of G. truncatulinoides (dex) and G. inflata, while the short-term stratification reduction 343 

at 131 ka may have promoted favorable conditions for the thermocline-dwelling species through sea surface 344 

cooling and/or salinification.  345 

It should be noted, however, that stratification is not a sole mechanism for explaining variability in the 346 

thermocline-associated assemblage. Thus, while relative abundances of G. inflata become strongly reduced at the 347 

onset of MIS 5e, there is no such response in the G. truncatulinoides (dex) proportions (Fig. 4). Whereas G. inflata 348 

is generally regarded as subpolar to transitional species, preferring little seasonal variations in salinity (Hilbrecht, 349 

1996), G. truncatulinoides (dex) was shown to dwell in warmer temperatures (Siccha and Kučera, 2017) and 350 

occurs in small amounts also in the modern tropical Atlantic (Jentzen et al., 2018). However, an abrupt increase 351 

in the latter species proportions during the sea surface cooling/salinification event at ~127 ka (see further below), 352 
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coupled with reduced upper water column stratification, supports the underlying “sea surface” control on the 359 

general abundance of G. truncatulinoides (dex).  360 

A southern position of the mean annual ITCZ during the penultimate (de)glaciation could be inferred based on 361 

previous studies (Yarincik et al., 2000; Wang et al., 2004; Schmidt et al., 2006a; Carlson et al., 2008; Arbuszewski 362 

et al., 2013; Bahr et al., 2013). By analogy with the modern atmospheric forcing in the region, a southern location 363 

of the ITCZ could have caused enhanced upper water column mixing and evaporative cooling through intensified 364 

trade winds (e.g., Wilson and Roberts, 1995). Acknowledging the fact that our study region lies too far north to 365 

be influenced by changes in the winter position of the ITCZ (Ziegler et al., 2008) - this would be of primary 366 

importance for modern-like winter-spring reproduction timing of G. truncatulinoides (dex) and G. inflata (Jonkers 367 

and Kučera, 2015) - we suggest that a southern location of the mean annual position of the ITCZ during the 368 

penultimate (de)glaciation could have facilitated favorable conditions for the latter species through generally 369 

strong sea surface cooling/salinification in the subtropical North Atlantic.  370 

Previous studies attributed increased Fe content in the Bahamas sediments to enhanced trade winds strength, given 371 

that siliclastic inputs by other processes than wind transport are very limited (Roth and Reijmer, 2004). 372 

Accordingly, elevated XRF-derived Fe counts in our record during T2 (Fig. 4) may support intensification of the 373 

trade winds and possibly increased transport of Saharan dust at times of enhanced aridity over Northern Africa 374 

(Muhs et al., 2007; Helmke et al., 2008). We, however, refrain from further interpretations of our XRF record due 375 

to a variety of additional effects that may have influenced our Fe-record (e.g., diagenesis, change in sources and/or 376 

properties of eolian inputs, sensitivity of the study region to atmospheric shifts).     377 

 378 

6.3 MIS 5e climate in the subtropics: orbital versus subpolar forcing 379 

Various environmental changes within the mixed layer (SST, SSS, nutrients) can account for proportional change 380 

in different Globigerinoides species (Fig. 5). G. sacculifer - it makes up less than 10 % of the planktic 381 

foraminiferal assemblage around the LBB today (Siccha and Kučera, 2017) - is abundant in the Caribbean Sea 382 

and tropical Atlantic and commonly used as a tracer of tropical waters and geographical shifts of the ITCZ (Poore 383 

et al., 2003; Vautravers et al., 2007). Also, G. ruber (pink) shows rather coherent abundance maxima in the tropics, 384 

while no such affinity is observed for G. ruber (white) and G. conglobatus (Siccha and Kučera, 2017; Schiebel 385 

and Hemleben, 2017). Therefore, fluctuations in relative abundances of G. sacculifer and G. ruber (pink) are 386 

referred here as to represent a warm “tropical” end-member (Fig. 1b).  387 
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Relative abundances of the tropical foraminifera (here and further in the text G. ruber (pink) and G. sacculifer 394 

calculated together) in our core suggest an early thermal maximum (between ~129 and 124 ka), which agrees well 395 

with the recent compilation of global MIS 5e SST (Hoffman et al., 2017). The sea surface warming could be 396 

related to a northward expansion of the Atlantic Warm Pool (Ziegler et al., 2008), in response to a northern 397 

location of the mean annual position of the ITCZ. The latter shift in the atmospheric circulation is explained by 398 

the particularly strong northern hemisphere insolation during early MIS 5e (Fig. 6), resulting in a cross-latitudinal 399 

thermal gradient change, and in turn, forcing the ITCZ towards a warming (northern) hemisphere (Schneider et 400 

al., 2014). A northern location of the mean annual position of the ITCZ during the first phase of the last interglacial 401 

is supported by the XRF data from the Cariaco Basin, showing highest accumulation of the redox-sensitive 402 

element molybdenum (Mo) during early MIS 5e (Fig. 6). At that latter location, high Mo content is found in 403 

sediments deposited under anoxic conditions, occurring only during warm interstadial periods associated with a 404 

northerly shifted ITCZ (Gibson and Peterson, 2014).  405 

Further, our data reveal a millennial-scale cooling/salinification event at ~127 ka, characterized by decreased 406 

proportions of the tropical foraminifera and elevated planktic δ18O values (Fig. 6). That this abrupt cooling 407 

characterized the entire upper water column at the onset of the event is indicated by the re-occurrence of cold-408 

water species G. inflata coincident with the brief positive excursions in δ18O values in the shallow and 409 

thermocline-dwelling foraminifera (Fig. 4). Simultaneously, the XRF record from the Cariaco Basin reveals a 410 

stadial-like Mo-depleted (i.e., southward ITCZ shift) interval (Fig. 6). The close similarity between the tropical-411 

species record from the Bahamas and the XRF data from the Cariaco Basin supports the hypothesis that the annual 412 

displacements of the ITCZ are also documented in our faunal counts. Thus, a southward shift in the mean annual 413 

position of the ITCZ at ~127 ka could have restricted influence of the Atlantic Warm Pool in the Bahama region, 414 

reducing SST and possibly increasing SSS, and in turn, affecting the foraminiferal assemblage. Moreover, because 415 

the aforementioned abrupt climatic shift at ~127 ka cannot be reconciled with insolation changes, other forcing 416 

factors at play during early MIS 5e should be considered. Studies from the low-latitude Atlantic reveal strong 417 

coupling between the ITCZ position and the AMOC strength associated with millennial-scale climatic variability 418 

(Rühlemann et al., 1999; Schmidt et al., 2006a; Carlson et al., 2008). In particular, model simulations and proxy 419 

data suggest that freshwater inputs as well as sea-ice extent in the (sub)polar North Atlantic can affect the ITCZ 420 

position through feedbacks on the thermohaline circulation and associated change in the cross-latitudinal heat 421 

redistribution (e.g., Chiang et al., 2003; Broccoli et al., 2006; Gibson and Peterson, 2014).  422 
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It is well-established that the deepwater overflow from the Nordic Seas, which constitutes the deepest southward-425 

flowing branch of the AMOC today (e.g., Stahr and Sanford, 1999), strengthened (deepened) only during the 426 

second phase of MIS 5e (at ~124 ka), and after the deglacial meltwater input into the region ceased (Hodell et al., 427 

2009; Barker et al., 2015). Nevertheless, several studies show that the deep-water ventilation and presumably the 428 

AMOC abruptly recovered at the beginning of MIS 5e, at ~129 ka (Fig. 6), possibly linked to a deepened winter 429 

convection in the Northwestern Atlantic (Adkins et al., 1997; Galaasen et al., 2014; Deaney et al., 2017). 430 

Accordingly, the resumption of the AMOC could have added to a meridional redistribution of the incoming solar 431 

heat, changing cross-latitudinal thermal gradient and, thus, contributing to the inferred “orbitally-driven” 432 

northward ITCZ shift during early MIS 5e (see above). In turn, the millennial-scale climatic reversal between 127 433 

and 126 ka could have been related to the known reductions of deep water ventilation (Galaasen et al, 2014; 434 

Deaney et al., 2017), possibly attributed to a brief increase in the freshwater input into the subpolar North Atlantic 435 

and accompanied by a regional sea surface cooling (Irvalı et al., 2012; Zhuravleva et al., 2017b).  436 

A corresponding cooling and freshening event, referred here and elsewhere as to a Younger Dryas-like event, is 437 

captured in some high- and mid-latitude North Atlantic records (Sarnthein and Tiedemann, 1990; Bauch et al., 438 

2012; Irvalı et al., 2012; Schwab et al., 2013; Govin et al., 2014; Jiménez-Amat and Zahn, 2015). Coherently with 439 

the Younger Dryas-like cooling and the reduction (shallowing) in the North Atlantic Deep Water formation, an 440 

increase in the Antarctic Bottom Water influence is revealed in the Southern Ocean sediments, arguing for the 441 

existence of an “interglacial” bipolar seesaw (Hayes et al., 2014). The out-of-phase climatic relationship between 442 

high northern and high southern latitudes, typical for the last glacial termination (Barker et al., 2009), could be 443 

attributed to a strong sensitivity of the transitional climatic regime of early MIS 5e due to persistent high-latitude 444 

freshening (i.e., continuing deglaciation, Fig. 6) and suppressed overturning in the Nordic Seas (Hodell et al., 445 

2009). This assumption seems of crucial importance as it might help explain a relatively “late” occurrence of the 446 

Younger Dryas-like event during the last interglacial when compared to the actual Younger Dryas during the last 447 

deglaciation (Bauch et al., 2012). The recognition of the transitional phase during early MIS 5e is not new, but 448 

only few authors have pointed out its importance for understanding the last interglacial climatic evolution beyond 449 

the subpolar regions (e.g., Govin et al., 2012; Schwab et al., 2013; Kandiano et al., 2014).  450 

As insolation forcing decreased during late MIS 5e and the ITCZ gradually moved southward, the white variety 451 

of G. ruber started to dominate the assemblage (Fig. 5), arguing for generally colder sea surface conditions in the 452 

Bahama region. The inferred broad salinity tolerance of this species, also to neritic conditions (Bé and Tolderlund, 453 

1971; Schmuker and Schiebel, 2002), was used in some studies to link high proportions of G. ruber (pink and 454 
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white varieties) with low SSS (Vautravers et al., 2007; Kandiano et al., 2012). The plots of the global distribution 457 

pattern of G. ruber (white) and G. ruber (pink), however, suggest that when relative abundances of these two 458 

species are approaching maximum values (40% and 10%, respectively), the SSSs would be higher for specimens 459 

of the white variety of G. ruber (Hilbrecht, 1996). Therefore, the strongly dominating white versus pink G. ruber 460 

variety observed in our records during late MIS 5e could be linked not only to decreasing SSTs, but also to 461 

elevated SSSs. 462 

In their study from the western STG, Bahr et al. (2013) also reconstruct sea surface salinification during late MIS 463 

5e in response to enhanced wind stress at times of deteriorating high-latitude climate and increasing meridional 464 

gradients. Accordingly, our isotopic and faunal data (note the abrupt decrease in G. sacculifer proportion at 120 465 

ka; Fig. 5) suggest a pronounced climatic shift that could be attributed to the so-called “neoglaciation”, consistent 466 

with the sea surface cooling in the western Nordic Seas and the Labrador Sea (Van Nieuwenhove et al., 2013; 467 

Irvalı et al., 2016) as well as with a renewed growth of terrestrial ice (Fronval and Jansen, 1997; Zhuravleva et 468 

al., 2017a).  469 

 470 

7 Conclusions 471 

New faunal, isotopic and XRF evidence from the Bahama region were studied for past subtropical climatic 472 

evolution, with special attention given to (1) the mechanisms controlling the planktic foraminiferal assemblage 473 

and (2) the climatic feedbacks between low and high latitudes.  474 

During late MIS 6 and glacial termination, strongly reduced δ18O gradients between surface- and thermocline-475 

dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances 476 

of G. truncatulinoides (dex) and G. inflata. The lowered upper water column stratification, in turn, could be a 477 

result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted 478 

far to the south. 479 

Computed together, relative abundances of the tropical foraminifera G. sacculifer and G. ruber (pink) agree well 480 

with the published ITCZ-related Cariaco Basin record (Gibson and Peterson, 2014), suggesting a climatic 481 

coupling between the regions. Based on these data, a northward/southward displacement of the mean annual ITCZ 482 

position, in line with strong/weak northern hemisphere insolation, could be inferred for early/late MIS 5e. 483 

Crucially, an abrupt Younger Dryas-like sea surface cooling/salinification event at ~127 ka intersected the early 484 

MIS 5e warmth (between ~129 and 124 ka) and could be associated with a sudden southward displacement of the 485 

ITCZ. This atmospheric shift, could be, in turn, related to a millennial-scale instability in the ocean overturning, 486 
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supporting a cross-latitudinal teleconnection that influenced the subtropical climate via ocean-atmospheric 491 

forcing. These observations lead to an inference that the persistent ocean freshening in the high northern latitudes 492 

(i.e., continuing deglaciation) and, therefore, unstable deep water overturning during early MIS 5e accounted for 493 

a particularly sensitive climatic regime, associated with the abrupt warm-cold switches that could be traced across 494 

various oceanic basins. 495 

 496 

Data availability 497 

All data will be made available in the online database PANGAEA (www.pangaea.de).  498 
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Figure captions 783 

Figure 1: Maps showing positions of investigated sediment records and oceanic/atmospheric circulation. 784 

(a) Simplified surface water circulation in the (sub)tropical North Atlantic and positions of investigated core 785 

records: MD99-2202 (27°34.5´ N, 78°57.9´ W, 460 m water depth; this study), Ocean Drilling Program (ODP) 786 

Site 1002 (10°42.7´ N, 65°10.2´ W, 893 m water depth; Gibson and Peterson, 2014), MD03-2664 (57°26.3´ N, 787 

48°36.4´ W, 3442 m water depth, Galaasen et al., 2014) and PS1243 (69°22.3´ N, 06°33.2´ W, 2710 m water 788 

depth, Bauch et al., 2012). (b) Relative abundances of the tropical foraminifera G. sacculifer and G. ruber (pink) 789 

(Siccha and Kučera, 2017) and positions of the Intertropical Convergence Zone (ITCZ) during boreal winter and 790 

summer. (c) Summer and winter hydrographic sections (as defined by the black line in b), showing temperature 791 

and salinity obtained from the World Ocean Atlas (Levitus et al., 2013). Vertical bars denote calcification depths 792 

of G. ruber (white) and G. truncatulinoides (dex). Note, that G. truncatulinoides (dex) reproduce in winter time 793 

and due to its life cycle with changing habitats (as shown with arrows) accumulate signals from different water 794 

depths. Maps are created using Ocean Data View (Schlitzer, 2016).  795 

 796 

Figure 2: The age model for MIS 5 in core MD99-2202. The temporal framework is based on alignment of (b) 797 

planktic δ18O values (Lantzsch et al., 2007) and (d) relative abundance record of Globigerinoides species with (a) 798 

global benthic isotope stack LS16 (Lisiecki and Stern, 2016). (c) Aragonite content in black (Lantzsch et al., 2007) 799 

and normalized elemental intensities of Sr in magenta as well as (e) relative abundances of G. menardii are shown 800 

to support the stratigraphic subdivision of MIS 5.  801 

 802 

Figure 3: XRF-scan results, sedimentological and foraminiferal data from core MD99-2202 for the period 803 

140-100 ka. (a) δ18O values in G. ruber (white); (b) aragonite content; (a-b) is from Lantzsch et al. (2007). 804 

Normalized elemental intensities of (c) Sr, (e) Ca and (f) Cl, (d) Sr/Ca intensity ratio (truncated at 0.6) and (g) 805 

absolute abundances of G. menardii per sample. Green bars denote core intervals with biased elemental intensities 806 

due to high seawater content. The inferred platform flooding interval (see text) is consistent with the enhanced 807 

production of Sr-rich aragonite needles and a RSL above -6 m (d). T2 refers to the position of the penultimate 808 

deglaciation (Termination 2). Dashed vertical lines frame MIS 5e.   809 

 810 

Figure 4: Proxy records from core MD99-2202 over the last interglacial cycle. (a) δ18O values in G. ruber 811 

(white) (Lantzsch et al., 2007), (b) δ18O values in G. truncatulinoides (dex) (in black) and G. inflata (in magenta), 812 
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(c-d) isotopic gradients between δ18O values in G. ruber (white) and G. truncatulinoides (dex) and G. ruber 820 

(white) and G. inflata, respectively, (e-f) relative abundances of G. inflata and G. truncatulinoides (dex), 821 

respectively, (g) normalized Fe intensities. Also shown in (e) and (f) are modern relative foraminiferal abundances 822 

(average value ±1s) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) 823 

database. Vertical blue bars represent periods of decreased water column stratification, discussed in the text. 824 

Dashed vertical lines frame MIS 5e. T2 - Termination 2.  825 

 826 

Figure 5: Relative abundances of main Globigerinoides species in core MD99-2202 over the last interglacial 827 

cycle. (a) δ18O values in G. ruber (white) (Lantzsch et al., 2007), relative abundances of (b) G. sacculifer, (c) G. 828 

ruber (pink), (d) G. conglobatus and (e) G. ruber (white). Also shown in (b-e) are modern relative foraminiferal 829 

abundances (average value ±1s) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera 830 

(2017) database. Dashed vertical lines frame MIS 5e. T2 - Termination 2.   831 

 832 

Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North Atlantic over the 833 

last interglacial cycle. (b)  δ18O values in G. ruber (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative 834 

abundances of the tropical species G. sacculifer and G. ruber (pink) in core MD99-2202, (d) molybdenum record 835 

from ODP Site 1002 (Gibson and Peterson, 2014), (e) δ13C values measured in benthic foraminifera from core 836 

MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core 837 

PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b). Also shown is (a) boreal summer 838 

insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004) 839 

data. Shown in (c) are modern relative abundances of G. sacculifer and G. ruber (pink) (average value ±1s) 840 

around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. The blue band 841 

suggests correlation of events (Younger Dryas-like cooling) across tropical, subtropical and subpolar North 842 

Atlantic (see text). Dashed vertical lines frame MIS 5e. T2 - Termination 2.  843 
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