1 Author's response to the comments of A. Bahr (Referee)

- 2 Interactive comment on "The last interglacial (MIS 5e) cycle at Little
- **3 Bahama Bank: A history of climate and sea-level changes**" by
- 4 Anastasia Zhuravleva and Henning A. Bauch

5 A. Bahr (Referee)

6 andre.bahr@geow.uni-heidelberg.de Received and published: 30 April 2018

Reviewer's comment: GENERAL REMARKS: The authors present a 7 comprehensive collection of faunal, stable isotope and sediment-geochemical 8 data from Little Bahama Bank (LBB) core MD99-2202 encompassing MIS 5e in 9 high temporal resolution. Such high-resolution low-latitude (27°N) records of the 10 penultimate Interglacial are rare, but important to constrain the climatic 11 variability of previous interglacials when compared to the Holocene. The authors 12 argue that the surface ocean variability at LBB reflects changes in the position of 13 the subtropical gyre and tropical warm pool, responding to latitudinal shifts of the 14 ITCZ that are driven by insolation and AMOC changes. In addition, the sea level 15 history at LBB is discussed, mainly based on the sedimentary composition 16 (aragonite content) of the sediment. In general, the author's interpretations are 17 well-founded by proxy evidence and supported by previous studies. Some 18 problematic aspects of the interpretation are discussed below, but do not interfere 19 with the general messages of the paper. 20

The manuscript is generally well-written and the study undoubtedly has its merits 21 as a valuable contribution for the understanding of low-latitude climate variability 22 during MIS 5e as well as the low-high-latitude feedbacks. However, the 23 manuscript lacks a clear focus. This regards in particular the introduction - it 24 should include more concise statements regarding the aims of the study, e.g. 25 hypotheses to be tested and specific questions that should be solved. At the 26 moment the introductory paragraphs (as well as the abstract ad conclusions) are 27 very general, partly with a focus that hinges strongly on local aspects of 28 sedimentary dynamics at LBB. Hence, I would strongly advocate to sharpen the 29 focus of the manuscript, as the reader is left with the impression that the study 30 confirms previous conceptual models (e.g. regarding the displacement of the 31 ITCZ during MIS 5e) but wonders about the specific take-home-messages and 32 new insights retrieved from this study. I therefore recommend the authors to re-33

- write the respective parts of their manuscript (in particular the introduction; see 34
- also specific comments below) to avoid underselling of their data. 35
- Author's response: 36

Please note that all changes in the manuscript are provided in a marked-up version 37

(track changes in Word, converted into a *.pdf file). The line numbers used in the 38

39 current Author's response refer to the marked-up version, which is attached below.

- 40
- 41

The introduction has been rewritten, in attempt to provide a clearer focus of the 42

- study. Aims, methods and problematics are now also discussed. 43
- 44 **Reviewer's comment: SPECIFIC COMMENTS:**

Abstract: As discussed above, the abstract should be more specific about what 45 exactly the authors want to study. At present, the first three sentences concentrate 46 on the local/regional aspects concerning LBB, but in fact the data can be used to 47 infer much more general insights into low-high-latitude feedbacks and 48 subtropical gyre dynamics and Gulf Stream variability. Hence, I suggest to reduce 49 the reference to LBB but focus on the broader context. 50

Author's response: The rewritten abstract focuses on millennial-scale 51 teleconnections between high and low latitudes during the last interglacial. In 52 53 addition, the strong freshening in the high latitudes during early MIS 5e is described as the main reason for the warm-cold switches, observed across various 54 oceanic basins. 55

Reviewer's comment: Introduction: line 40 and elsewhere: I would avoid 56 abbreviating North Atlantic as "N. Atlantic" 57

Author's response: Done. 58

Reviewer's comment: 1. 50: ". . . . we attempt to close this gap. . ." reflects the 59 problem of the introduction - this is far too general. Data generation per se is 60 important, but should be done with some hypothesis/question to be tackled in 61 mind. At the moment I also miss a more specific lay out of the controversies that 62 are mentioned. This would help to formulate specific questions and hypotheses at 63 the end of the introduction. 64

- 65 Author's response: The introduction has been rewritten (see the comment above).
- 66 Reviewer's comment: Regional setting: 1. 64: capitalize "intertropical 67 convergence zone"
- 68 Author's response: Done (ls. 15-16, 69-70, 1651).
- Reviewer's comment: 1. 71: replace "tropical pool waters" with "tropical warmpool"
- Author's response: Replaced with "the Atlantic Pool Water" (ls. 117, 234).
- 72 Reviewer's comment: 1. 73: "thermocline layer" is too unspecific. Does this
- refer to the permanent thermocline?
- Author's response: Changed to the permanent thermocline (1. 237).
- Reviewer's comment: Methods: There should be a short statement in the introduction about the type of proxies used. In the present state, the purpose of the different proxies is unclear until the discussion. However, I would expect to read one or two sentences about the rational for XRF scanning, why δ 18O of deep and shallow dwellers were used, and about the purpose of the faunal studies. Again, the mentioning of the proxies can be done in conjunction with the layout of the specific goals in the introduction (see comments above).
- Author's response: The used proxies are mentioned in the rewritten introduction
 together with their specific goals (ls. 119-128).
- Reviewer's comment: Results: 1. 163: "physical sediment properties" should be replaced by "sedimentological properties", this seems more appropriate as it refers to the grain size curve shown.
- Author's response: The text has been rephrased. Now "sedimentological records"
 are used (1. 389).
- 89 Reviewer's comment: 1. 174: I agree that the "significant sedimentological shift"
- 90 mentioned here is no artifact as it displays in different, independent proxies.
 91 However, given its minute amplitude relative to the general fluctuations in the
- core it is an overstatement to call it "significant". Considering the rather diffuse
- 93 discussion in Section 6.4 I would skip the reference and discussion of this feature
- 94 (see also respective comment below).

- Author's response: This section has been deleted from the results as well as from 95 the discussion. 96
- Reviewer's comment: 1. 178: "during the major deglacial transition . . . low 97 98 isotopic gradients. . ." this statement does not fully reflect the data, as there is a
- steady trend to more stratification from 135-129 ka, reaching the MIS 5e level of 99 well-stratified waters. As written in the text it sounds like the entire transition is
- 100
 - characterized by a persistent low isotopic gradients. 101
 - Author's response: We fully agree with the Reviewer's comment. The statement 102
- has been changed to "During the penultimate glacial maximum <...> gradients 103
- <...> are very low, succeeded by a gradually increasing difference across the T2, 104

~135-129 ka" (ls. 425-427). 105

- Reviewer's comment: 1. 181: please call out Fig. 6 after "species are observed" 106
- Author's response: Done (1.431). 107
- Reviewer's comment: 1. 185: please call out Fig. 5 after "abruptly increase". Also 108
- note that the variations of G. trunca (sin) in Fig. 5e are within the 1-sigma error 109
- of their present-day abundances. Is it necessary to plot these G. trunca (sin) 110
- abundances? 111
- Author's response: Fig. 5 (now Fig. 4) is called out after "together with a 112 reappearance of G. inflata" (ls. 433). For simplification and clarity, relative 113
- abundances of G. truncatulinoides (sin) as well as G. falconensis are not shown 114
- in figures any more. 115
- Reviewer's comment: Discussion: 1. 192-211: I wonder about the necessity to 116
- discuss the Sr/Ca record. In principle this is a good proxy for aragonite, however, 117
- the authors make the convincing case that this record is biased by changes in 118
- porosity and water content. Considering that the authors present the XRD-based 119
- record of aragonite form Lantzsch et al. (2007), the discussion of Sr/Ca can be 120
- omitted without losing information. 121
- Author's response: The discussion of our Sr/Ca record, in particular, of the 122
- "problematic intervals" is retained, however, has been substantially shortened (ls. 123
- 440-544). 124

- Reviewer's comment: 1. 222: Please add a reference for the subsidence rate of theLBB
- 127 Author's response: Done (study by Carew and Mylroie (1995) is cited, 1. 441)

128 Reviewer's comment: 1. 228: if I am correct, the sea level rise should be between

- 129 12-15 m (15 = 9 + 6 m) not 12-16 m. Please check.
- 130 Author's response: Correct. This paragraph has been, however, deleted.
- Reviewer's comment: 1. 256: "warm/cold conditions" please specify what is
 meant here.
- Author's response: Has been changed to "temperature estimations during late
 MIS 6 so far reveal cold subsurface conditions" (1. 670).
- 135 Reviewer's comment: 1. 270-272: In principle I agree with the interpretation that

136 G. truncatulinoides abundances strongly depend on the upper ocean stratification.

137 However, in this respect, it is interesting that G. trunca. (dex) is still high during

- 138 late MIS 5e, when δ 18O is already low. Hence, vertical water column
- 139 stratification is not the sole factor influencing the G. trunc. abundances.
- 140 Author's response: We agree with the Reviewer's comment. A paragraph, dealing
- 141 with additional forcing factors controlling occurrences of G. truncatulinoides
- 142 (dex) and *G. inflata* has been included (ls. 688-803).
- 143 Reviewer's comment: 1. 283-287: Fe appears to lag δ 18O, hence, question is if 144 dust is really the dominant factor that governs the Fe abundances if δ 18O is 145 supposed to be the prime proxy recording for wind-driven water column 146 homogenization. Fe might also be influenced by diagenetic processes, hence, it
- 147 would be worthwhile looking at Ti/Al as Ti is not influenced by diagenesis.
- Author's response: We have reconsidered our Fe data and has significantly restricted the interpretation, given the "variety of additional effects that may have influenced our Fe-record" (ls. 816-820). Ti content in the investigated sediment
- 151 core appears to be very low, in addition, possibly strongly affected by seawater
- 152 content (Fig. 1).
- 153 Reviewer's comment: 1. 287-291: to check if winnowing plays a role during the
- 154 deglaciation elemental ratios such as Zr/Rb or Zr/Al might be used to check for
- 155 high bottom current velocities (Bahr et al., 2014).

- 156 Author's response: Increased winnowing at the northern slope of Little Bahama
- 157 Bank during glacial times (a result of an intensified wind-driven Antilles Current)
- 158 was previously suggested by Chabaud et al. (2016). As we could not prove the
- 159 statement by using Zr/Rb or Zr/Al data (Fig. 1), as suggested above, this part has
- 160 been removed.
- 161 Reviewer's comment: 1. 332: please add a reference after "only by ~124 ka"
- 162 Author's response: Done (l. 1081-1082).
- 163 Reviewer's comment: 1. 355: correct for "Hofman et al." (not Hofmann)
- 164 Author's response: Done. Changed for Hoffman et al.

165 Reviewer's comment: 1. 364: Notably, the *ruber* (w) abundances are strikingly

166 similar to the δ 180ivf-sw record of *G*. *ruber* (w) from ODP Site 1058 (Bahr et

- 167 al, 2013). This supports the view that salinity is the main driver of G. *ruber* (w) abundances.
- 169 Author's response: We agree with the comment above, however, a common
- 170 temporal framework is needed for better core-to-core correlation and further
- 171 climatic implications (Fig. 2).
- 172 Reviewer's comment: 1. 372-381: as mentioned above, the discussed changes in 173 Sr and aragonite content are really minute compared to the other variations 174 observed in the proxy records. Given that the authors make only very general 175 inferences about the paleoclimatic implications I suggest to remove this 176 paragraph.
- 177 Author's response: Done. The paragraph has been removed.
- 178 Reviewer's comment: Conclusions 1. 387: "in the investigated core section": this
- 179 is much too local, especially for the conclusions (see also my general comments).
- 180 The broader implications of this study should become clear here.
- 181 Author's response: Conclusions have been rewritten to emphasize the broader
- 182 implications of the study (particularly, the third paragraph).
- 183 Reviewer's comment: 1. 389-392: these statements regarding the local
- 184 sedimentological processes on LBB are quite general and not novel considering
- 185 the amount of publications dealing with this topic.

- 186 Author's response: The statements have been removed from the conclusions.
- 187 Reviewer's comment: 1. 398: replace "depressed" by "shifted"
- 188 Author's response: Done (1. 1191).
- 189 Reviewer's comment: Figures: Fig. 4A-C is repetitive of Fig. 3 Fig. 4E: if Sr/Ca
- remains in the figure (see comments above): this record has been truncated at 0.3,
- 191 please state this in the captions.
- 192 Author's response: Fig. 4 has been deleted (XRF data and also #G. menardii are
- shown now in Fig. 3, plotted against age). We also note now that the Sr/Ca record
- 194 has been truncated (1. 1666).
- 195 Reviewer's comment: Fig. 7E-F: Is it necessary to show G. *ruber* and G. 196 *sacculifer* abundances from ODP Site 1063 here?
- Author's response: Abundances of *G. ruber* and *G. sacculifer* from ODP Site
 1063 have been removed.
- 199 Reviewer's comment: Reference: Bahr, A., Jiménez-Espejo, F.J., Kolasinac, N.,
- 200 Grunert, P., Hernández- Molina, F.J., Röhl, U., Voelker, A.H., Escutia, C., Stow,
- 201 D.A. and Hodell, D. (2014) Deciphering bottom current velocity and paleoclimate
- signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: An
- 203 inorganic geochemical approach. Geochemistry, Geophysics, Geosystems, 15,
- 204 3145-3160.
- 205 Author's response: References:

Bahr, A., Nürnberg, D., Karas, C. and Grützner, J.: Millennial-scale versus longterm dynamics in the surface and subsurface of the western North Atlantic
Subtropical Gyre during Marine Isotope Stage 5, Glob. Planet. Change, 111, 77–
87, doi:10.1016/j.gloplacha.2013.08.013, 2013.

- 210 Carew, J. L. and Mylroie, J. E.: Quaternary tectonic stability of the Bahamian
- archipelago: evidence from fossil coral reefs and flank margin caves, Quat. Sci.
 Rev., 14, 145–153, doi:10.1016/0277-3791(94)00108-N, 1995.
- 213 Chabaud, L., Ducassou, E., Tournadour, E., Mulder, T., Reijmer, J. J. G., Conesa,
- 214 G., Giraudeau, J., Hanquiez, V., Borgomano, J. and Ross, L.: Sedimentary

- 215 processes determining the modern carbonate periplatform drift of Little Bahama
- 216 Bank, Mar. Geol., 378, 213–229, doi:10.1016/j.margeo.2015.11.006, 2016.

217

218 Author's response to the comments of the Anonymous Referee #2

- 219 Interactive comment on "The last interglacial (MIS 5e) cycle at Little
- 220 Bahama Bank: A history of climate and sea-level changes" by
- 221 Anastasia Zhuravleva and Henning A. Bauch
- 222 Anonymous Referee #2
- 223 Received and published: 17 May 2018
- 224 Reviewer's comment: SUMMARY: Zhuravleva and Bauch present a detailed
- 225 consideration of the climate evolution of the Last Interglacial (LIg) for a core site
- on the Little Bahama Bank (LBB) using faunal assemblage and scanning XRF
- 227 techniques. The high resolution faunal assemblages nicely resolve hydrographic
- oscillations at the site for the LIg reflecting both the insolation driven and AMOC
- 229 modulated migration of the ITCZ for this region.
- 230 I would recommend the following amendments/clarifications: (a) change of title
- 231 to better reflect the content of the paper; (b) removal or at the very least
- restructuring of the discussion of sea level. This section could be significantly
- trimmed and simplified (no new insights offered but a nice corroboration).
- Alternatively, if the authors wish to retain the sea-level discussion, then discussion of other sea level evidence from the region, glacio-isostatic adjustment
- 236 (GIA) processes etc. are needed. (c) clearer discussion of the teleconnections
- between N Atlantic oceanic changes (i.e., variation in AMOC), the migration of
- the ITCZ and surface hydrographic change at MD99-2202.
- 239 Author's response:
- Please note that all changes in the manuscript are provided in a marked-up version
 (track changes in Word, converted into a *.pdf file). The line numbers used in the
 current Author's response refer to the marked-up version, which is attached
 below.
- 244
- a) The title has been changed to better reflect the main finding of the paper,
 i.e., subpolar forcing on the subtropical climate during the last interglacial;
- b) The discussion about sea level is significantly reduced and focuses now exclusively on relative sea level changes in the Bahama region and its implications for regional sedimentary processes (ls. 440-544);

- c) Links between AMOC strength and ITCZ shifts are discussed now in the
 introduction (ls. 68-78) as well as briefly mentioned in the discussion (ls.
 986-1078).
- Reviewer's comment: GENERAL COMMENTS: The manuscript, in general,
 reads well. However, the structure and focus of the paper requires further thought.

255 A clear statement of the research questions was missing and is reflected in the

- 256 general tone of the introduction (and the manuscript generally).
- Author's response: The introduction has been rewritten, in attempt to outline the aims of the manuscript (ls. 95-110), used proxies (ls. 119-128) and testing hypothesis.
- 260 Reviewer's comment: 1. Title

I found this to be somewhat misleading. The data in Zhuravleva and Bauch is not 261 a sea-level record per se, rather a record of increased aragonite supply to the core 262 site during interglacials, with these intervals of increased aragonite 263 production/supply likely corresponding to < -6 m relative sea level (RSL) due to 264 the generally shallow nature of Little Bahama Bank (i.e., you can infer periods of 265 <-6 m relative sea level). This work nicely corroborates the Lantzsch et al., 2007 266 and Chabaud et al., 2016 studies but isn't a sea-level story. What is new and 267 interesting the palaeoceanographic evolution of the Last Interglacial (LIg) at the 268 site, and the interplay of interglacial climate (movement of the ITCZ etc.). I would 269 suggest changing the title to better reflect this. 270

- 271 Author's response: The title has been changed.
- 272 Reviewer's comment: 2. Sea level

273 This section requires some restructuring to help the reader. The definition of the "flooding interval" (and corresponding relative sea level, <-6 m) is key to this 274 section of the manuscript but I struggled to clearly follow the logic of how you 275 defined the flooding interval using your records and why a -6 m RSL for this 276 interval was appropriate. The connection between the flooding interval and 277 inferred RSL of < -6 m was found al- most at the end of the section (line 222 to 278 226) when it should be at the start. All the information is there but the reader has 279 to work hard to follow the argument. 280

281 Perhaps something along the lines of;

modern LBB lagoon is shallow, with an average water depth < 6 m (Williams,
1985); tectonic stability of the region (refs needed);

during the LIg, increasing RSL at the site floods the generally shallow bank and
increases the area for aragonite production (i.e., the carbonate shedding model,
Droxler and Schlager, 1985; Schlager et al., 1994);

- 287 Conversely, during glacial intervals, the top is exposed which limits the 288 production and export of aragonite;
- As such, we define the flooding interval (and inferred <-6 m RSL) is defined by
- 290 an increase in the sedimentation rate, increase in wt % aragonite, increased Sr/Ca
- ratio, increase % *Globigerinoides*/decrease in numbers of *G. menardii*.

This could then usefully be followed with your discussion of very high values of Sr/Ca due to increased saltwater (lines 192 to 211). Perhaps shade these 'problematic' Sr/Ca intervals in subsequent figures? You should also note the truncation of the Sr/Ca record in caption of Figure 4.

296 I would suggest confining discussion of sea level in this section to that suggested above. If you wish to make more of the sea level story, then greater consideration 297 of other Bahamas sea-level records, as well as those from the wider area is 298 needed. For example, the +6m notch on Little Sale Cay (LLB) (Neumann and 299 Hearty, 1996), other geomorphological records (e.g., Hearty and Kindler, 1995; 300 Neumann and Hearty, 1996), the elevated Last Interglacial (LIg) coral records of 301 Chen et al 1991, Hearty et al., 2007, Thompson et al., 2011 and the regionally 302 extensive erosional surface that is suggestive of a sea-level oscillation within the 303 LIg (Bahamas, Florida and Yucatan; Chen et al 1991, Hearty et al., 2007, 304 Blanchon et al., 2009; Thompson et al., 2011). 305

How does the timing of the highstand from the coral/other records from the Bahamas compare to the timing of the interval of enhanced aragonite production (and inferred sea levels < -6 m)? How do changes in hydrography (variations in faunal assemblages) at the site compare to the timing of the Bahamas LIg highstand? The broad correspondence between climate (δ 18OG.ruber) and relative sea level (RSL) (weight % aragonite) is hinted at in lines 138 to 141 but could be developed further if you wish to keep the sea-level discussion.

Any discussion of the LIg highstand in a general sense (i.e., the eustatic record) (lines 227 to 231) and Bahamas RSL will need to consider glacio-isostatic (GIA)

- 315 processes, given the intermediate location of the site on the peripheral bulge of
- the former Lauren- tide Ice Sheets. There will be a regional expression of the LIg
- 317 highstand; the Bahamas would "see" a "late" LIg highstand compared to eustatic

318 sea level (e.g., Figure 6 in Stirling et al., 1998). There seems to be good

319 correspondence between the age of your "flooding interval" at the site (i.e., sea

- level < -6 m) and the predictions of RSL (Stirling et al., 1998, their Figure 6).
- 321 Given that the records presented are not strictly a sea level record, rather
- 322 incidence of increased aragonite production/export, and seems to corroborate
- 323 previous studies rather than adding anything new, I would confine this section to
- 324 just a brief consideration of the timing of your "flooding interval".
- 325 Author's response: We agree on the importance of consideration of glacio-326 isostatic adjustment processes for interpretation of our aragonite-related records
- 327 in terms of eustatic sea level change and also for comparison with other sea level
- 328 reconstructions and curves (ls. 746-749). Therefore, we have restructured the sea-
- 329 level discussion, in accordance with the Reviewer's comment and significantly
- 330 reduced this part, restricting the discussion to the relative sea level change,
- 331 defining the "flooding interval" and associated changes in geochemical and
- 332 sedimentary data around Bahama Banks (ls. 440-544).
- The study by Carew and Mylroie (1995) was cited with regard to the tectonic stability of the Bahama region (1. 441). Truncation of the Sr/Ca record is now mentioned in the figure caption (Fig. 3, 1. 1666).
- 336 Reviewer's comment: 3. Palaeoceanographic reconstruction
- This section is much more coherent and well written. I would recommend this as the focus of the manuscript.

The discussion, while nicely documenting the site/regional changes during the 339 LIG, was lacking in consideration of the mechanisms. This section would be 340 strengthened by a clearer exposition of the mechanisms linking ITCZ position, 341 insolation (precession and the migration of the ITCZ to the warming hemisphere) 342 and AMOC (i.e., modification of the thermal condition at the surface, due to 343 interactions with the ocean, that in turn act to drive atmospheric circulation). This 344 is well documented for the last deglaciation and glacial period (and in modelling 345 studies), where N. hemisphere extra-tropical cooling (brought about by variations 346 in the AMOC, forced by freshwater inputs) lead to an interhemispheric thermal 347

348 gradient and a southward shift in the ITCZ (e.g., review of Chiang and Friedman,

349 2012 or Schneider et al., 2014). This would help the reader to place the different

350 records (Cariaco, MD99-2202 and Site 1063) within a broader climatological

- 351 context. Again, all the 'threads' of the story are there, it just needs a stranger
- 352 framework.

For example, I found the correspondence between the % *G. ruber* and *G. sacculifer* and the XRF Mo count of the Caricao Basin striking (demonstrating the clear record of ITCZ shifts at the LBB) but the link to N. Atlantic surface density changes (AMOC slowdown with surface freshening e.g., Galaasen et al., 2014 etc.) and positive the $\delta 180 G$. *ruber* excursion and faunal changes at MD99-2202 and southward migration of the ITCZ (Cariaco Mo, MD99-2202 decrease

- in % *Globigerinoides*) weak. A short introductory paragraph should fix this.
- 360 Author's response: We have included information on coupling between high-

361 latitude forcing (AMOC strength) on the ITCZ position with its further influence

362 on upper ocean properties in the introduction (ls. 68-78) and as well as briefly in

363 the discussion (ls. 986-1078).

Reviewer's comment: A southward shift of the ITCZ, strengthens of the trade winds increases the eolian input from the Sahara, resulting in reduced Al/Ti in Cariaco. These episodes of decreased Al/Ti ratios in Cariaco correspond to elevated salinities in the Caribbean (e.g., Yarincik et al 2000). I assume there is clear correspondence between the Cariaco Al/Ti and Mo records and hence to your % of tropical species?

- Author's response: Despite similar approach for age model construction (alignment of stable isotope data to SPECMAP/benthic stack), there is no correspondence between the Al/Ti record from Yarincik et al. (2000) and the Modata from Gibson and Peterson (2014) and, therefore, our relative abundance of the tropical species. This is likely due to low-resolution of the first record, providing general information about atmospheric circulation changes mainly on
- 376 glacial-interglacial timescales (Fig. 1).
- 377 Reviewer's comment: Do you see an increase in iron (with increased dust
- transport) in your record during the positive the δ 180G.ruber excursion ~ 127
- ka? (plotting this on a log scale for the LIg might help).

Author's response: We don't find any response in iron accumulation during the127-ka event.

382 Reviewer's comment: Dust inputs are probably better reflected in the XRF core

scanning Ti record, given that your Fe inputs could change with a number of factors

384 factors.

Author's response: We agree with this statement, but our XRF Ti measures appear to be very low and could be strongly influenced by Cl content (Fig. 2), therefore they were not considered in the study. We agree on the comment and restrict the

- interpretation of our Fe content, due to the "variety of additional effects that may
- have influenced our Fe-record" (ls. 816-820).
- 390 Reviewer's comment: It would be interesting to compare to your faunal 391 assemblages and a calculated δ 18Oseawater for MD99-2202.
- 392 Author's response: Please, see further below.
- Reviewer's comment: Additionally, is there any correspondence to the dated palaeosols on the Bahamas (Muhs et al., 2007)?

Author's response: Study of Muhs et al. (2007) reveals two major sources for the dated palaeosols (~125 ka) on the Bahamas: African dust and Mississippi River valley loess. Today particularly strong input of African aerosols occurs during summer time, when the ITCZ position is to the north. The study, thus, suggests variable parent materials for eolian inputs, possibly with a greater role of Mississippi River valley loess at times of southward ITCZ shifts (glaciations).

401 The text has been improved accordingly (ls. 816-820).

402 Reviewer's comment: Given you have faunal assemblage data, could you 403 calculate a transfer function/MAT sea surface temperature? From this you could 404 then calculate δ 18Oseawater at the site to think about density changes during the 405 LIg.

Author's response: While we agree with the suggestion to look at density changes and inferred calculated salinities, we assume that the use of Mg/Ca-based temperatures, derived from similar species used to obtain d18O values, would be more plausible. As we don't have Mg/Ca-ratios for the investigated samples, we rather suggest considering proportions of selected species for relative temperature/salinity change reconstructions.

- 412
- 413 Reviewer's comment: lines 372 to 381 I found this paragraph to be highly
- 414 speculative and not well supported by your data (I struggled to see the change in
- the sedimentological properties in your figures, even with the help of the white
- 416 arrows). I would suggest removing this section.
- 417 Author's response: The section has been removed.
- 418 Reviewer's comment: TECHNICAL CORRECTIONS
- 419 Referencing: greater care needed with referencing. Please check manuscript. For
- 420 example, the depth of submersion of the LBB (and origin of the -6 m quoted
- 421 often in the paper) is Neumann and Land, 1975. Similarly the carbonate

422 shedding model (upon which the inferred sea-level story is based) comes from

- 423 Droxler and Schlager, 1985; Schlager et al., 1994
- 424 Author's response: We tried to improve the referencing. Neumann and Land,
- 425 1975 and Droxler and Schlager, 1985 are cited (l. 444 and ls. 244, 250, 283,
- 426 444, respectively).
- 427 Reviewer's comment: line 124 what potential biases are you refereeing to?
 428 Please give appropriate references for these.
- 429 Author's response: PhD thesis of Chabaud, 2016 has been cited (1. 336). This
- 430 study extensively discusses the potential biases for XRF measurements in
- 431 periplatform sediments, related e.g., to coarse-grained intervals, increased
- 432 sediment porosity and/or seawater content.
- 433 Reviewer's comment: line 242 what is the derivation of "minimal ice volume
- 434 interval" and it's reference?
- 435 Author's response: This part has been removed.
- 436 Reviewer's comment: line 332 reference required for the "full resumption of the
- 437 AMOC. . . only by ~124 ka"
- 438 Author's response: Studies of Hodell et al. (2009) and Barker et al. (2015) are 439 cited (1. 1081-1082).
- 440 Reviewer's comment: 2. Other: line 64 capitalisation of "intertropical
- 441 convergence zone"

- 442 Author's response: Done (ls. 15-16, 69-70, 1651).
- 443 Reviewer's comment: line 133 unit of measurement missing, add "m".
- 444 Author's response: Done (1. 344).

445 Reviewer's comment: line 330 - please clarify or add examples of the "additional446 forcing" or add "as discussed below".

Author's response: The term "additional forcing" (now changed to "other forcing
factors at play", 1. 986) is clarified (i.e., AMOC control on the ITCZ position, ls.
986-1078).

450 Reviewer's comment: line 324-325 - Clarification of the age of the 451 cooling/increase salinity event ~ 127 ka is needed. The ~127 ka age for this event 452 is derived from your age model, whereas the U-series ages for the correlative 453 event in core 152JPC (Bahamas, Slowey et al., 1996), dated (in duplicate) above 454 and below the event to ~121 ± 3 ka and 125.6 ka (mean of 127 ± 4.8 and $124.1 \pm$ 455 5.1) respectively. (Note, the relatively large age uncertainties associated with 456 these U-series ages)

457 Author's response: We agree with the Reviewer's comment both with regard to 458 only subtle agreement between our age estimates and direct U-Th dating of the 459 cooling/salinification event, as well as large age uncertainties associated with U-460 series ages. Therefore, this section has been removed.

461 Reviewer's comment: 3. Figures: typo - Axis label in Figure 4D should read "#

462 G. menardii" rather than "# G. menradii" I would remove the sea level records

(H), or if you choose to retain these and your discussion of sea level, then you
should remove the dashed blue line "RSL above -6 m" from the lowermost panel
(H).

- 466 Author's response: Fig. 4 has been removed, instead XRF data and # G. menardii467 are shown together in Fig. 3, plotted against age.
- 468
- 469 Reviewer's comment: REFERENCES CITED: Blanchon, P., Eisenhauer, A.,
- 470 Fietzke, J. and Liebetrau, V., 2009. Rapid sea-level rise and reef back-stepping at
- the close of the last interglacial highstand. Nature, 458, 881.

- 472 Chabaud, L., Ducassou, E., Tournadour, E., Mulder, T., Reijmer, J. J. G., Conesa,
- 473 G., Giraudeau, J., Hanquiez, V., Borgomano, J. and Ross, L.: Sedimentary
- 474 processes determining the modern carbonate periplatform drift of Little Bahama
- 475 Bank, Mar. Geol., 378, 213–229.
- 476 Chen, J.H., Curran, H.A., White, B., Wasserburg, G.J. 1991. Precise chronology
- 477 of the last interglacial period: 234U-230Th data from fossil coral reefs in the
- 478 Bahamas. Geological Society of America Bulletin 103, 82-97.
- Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric
 thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci. 40,
 383–412 (2012)
- 482 Diz et al 2018. Ocean and atmosphere teleconnections modulate east tropical
- 483 Pacific productivity at late to middle Pleistocene terminations. Erath and
- 484 Planetary Science Letters 49, 82-91.
- 485 Droxler, A.W., Schlager, W., 1985. Glacial versus interglacial sedimentation
 486 rates and tur- bidite frequency in the Bahamas. Geology 13, 799–802.
- 487 Galaasen, E. V., Ninnemann, U. S., IrvalÄs´, N., Kleiven, H. (Kikki) F.,
 488 Rosenthal, Y., Kissel, C. and Hodell, D. A.: Rapid Reductions in North Atlantic
 489 Deep Water During the Peak of the Last Interglacial Period, Science, 343, 1129.
- Hearty PJ, Kindler P. Sea-level highstand chronology from stable carbonate
 platforms (Bermuda and the Bahamas). Journal of Coastal Research. 1995 Jul
- 492 1:675-89.
- 493 Hearty, P.J., Hollin, J.T., Neumann, A.C., O'Leary, M.J. and McCulloch, M.,
- 494 2007. Global sea-level fluctuations during the Last Interglaciation (MIS 5e).
- 495 Quaternary Science Reviews, 26, 2090-2112.
- 496 Lantzsch,H.,Roth,S.,Reijmer,J.J.G.andKinkel,H.:SeaâA R levelrelatedresedi-
- 497 mentation processes on the northern slope of Little Bahama Bank (Middle498 Pleistocene to Holocene), Sedimentology, 54, 1307–1322.
- 499 Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender,
- 500 and C. Luo (2006), Change in atmospheric mineral aerosols in response to
- 501 climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide
- 502 climates, J. Geophys. Res., 111, D10202, doi:10.1029/2005JD006653.

- Muhs, D.R., Budahn, J.R., Prospero, J.M., Carey, S.N. 2007. Geochemical
 evidence for African dust inputs to soils of western Atlantic islands: Barbados,
 the Bahamas, and Florida. Journal of Geophysical Research 112, F02009
 doi:10.1029/2005JF000445.
- Neumann, C.A. & Hearty PJ. 1996. Rapid sea-level changes at the close of the
 last interglacial (substage 5e) recorded in Bahamian island geology. Geology,
 24(9):775-8.
- 510 Neumann, A.C., Land, L., 1975. Lime mud deposition and calcareous algae in the
- 511 bight of Abaco, Bahamas: a budget. J. Sediment. Petrol. 45, 763–786.
- 512 Schlager, W., Reijmer, J.J.G., Droxler, A.W., 1994. Highstand shedding of 513 carbonate plat- forms. J. Sediment. Res. B64, 270–281.
- 514 Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the 515 intertropical convergence zone. Nature 513, 45–53 (2014).
- Slowey, N.C., Henderson, G.M., Curry, W.B. 1996. Direct U–Th dating of
 marine sediments from the two most recent interglacial periods. Nature 382, 242244.
- 519 Stirling, C.H., Esat, T.M., Lambeck, K., McCulloch, M.T. 1998. Timing and
- 520 duration of the Last Interglacial: evidence for a restricted interval of widespread
- 521 coral reef growth. Earth and Planetary Science Letters 160, 745–762.
- 522 Thompson, W.G., Curran, H.A., Wilson, M.A. and White, B., 2011. Sea-level
- 523 oscilla- tions during the last interglacial highstand recorded by Bahamas corals.
- 524 Nature Geo- science, 4, 684-687.
- 525 Williams, S.C., 1985. Stratigraphy, Facies Evolution and Diagenesis of Late
- 526 Cenozoic Lime- stones and Dolomites, Little Bahama Bank, Bahamas. Univ.
- 527 Miami, Coral Gables FL (217 pp.).
- 528 Yarincik, K.M., Murray, R.W. and Peterson, L.C., 2000. Climatically sensitive
- 529 eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past
- 530 578,000 years: Results from Al/Ti and K/Al. Paleoceanography, 15(2), 210-228.
- 531
- 532

- 533 Author's response: References cited:
- Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G. and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events. *Nature*, *520*(7547), 333, 2015.
- 536 Carew, J. L. and Mylroie, J. E.: Quaternary tectonic stability of the Bahamian 537 archipelago: evidence from fossil coral reefs and flank margin caves, *Quat. Sci.*
- 538 *Rev.*, 14, 145–153, doi:10.1016/0277-3791(94)00108-N, 1995.
- 539 Droxler, A.W. and Schlager, W.: Glacial versus interglacial sedimentation rates 540 and tur- bidite frequency in the Bahamas. *Geology* 13, 799–802, 1985.
- Gibson, K. A. and Peterson, L. C.: A 0.6 million year record of millennial-scale
 climate variability in the tropics, *Geophys. Res. Lett.*, 41, 969–975,
 doi:10.1002/2013GL058846, 2014.
- Hodell, D. A., Minth, E. K., Curtis, J. H., McCave, I. N., Hall, I. R., Channell, J.
- 545 E. and Xuan, C.: Surface and deep-water hydrography on Gardar Drift (Iceland
- Basin) during the last interglacial period. *Earth Planet. Sci. Let.*, 288(1-2), 10-19,
 2009.
- Muhs, D.R., Budahn, J.R., Prospero, J.M. and Carey, S.N.: Geochemical evidence
 for African dust inputs to soils of western Atlantic islands: Barbados, the
 Bahamas, and Florida. J. Geophys. Res. 112, F02009 doi:10.1029/2005JF000445,
- 551 2007.
- Neumann, A.C. and Land, L., 1975. Lime mud deposition and calcareous algae in the bight of Abaco, Bahamas: a budget. *J. Sediment. Petrol.* 45, 763–786.
- Yarincik, K. M., Murray, R. W. and Peterson, L. C.: Climatically sensitive eolian
 and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past
 578,000 years: Results from Al/Ti and K/Al. *Paleoceanogr. Paleoclim.*, *15*(2),
 210-228, 2000.

Last interglacial ocean changes in the Bahamas: climate		Deleted
teleconnections between low and high latitudes		Deleted
		Deleted
Υ		Deleted
Anastasia Zhuravleva ¹ and Henning A. Bauch ²		Deleted
¹ Academy of Sciences, Humanities and Literature, Mainz, c/o GEOMAR Helmholtz Centre for Ocean Research,		
Wischhofstrasse 1-3, Kiel, 24148, Germany		
² Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research c/o GEOMAR Helmholtz Centre for		
Ocean Research, Wischhofstrasse 1-3, Kiel, 24148, Germany		
Correspondence to: Anastasia Zhuravleva (azhuravleva@geomar.de)		
		Deleted
Abstract. Paleorecords and modeling studies suggest that instabilities in the Atlantic Meridional Overturning		investiga level cha
Circulation (AMOC) strongly affect the low-latitude climate, namely via feedbacks on the Atlantic Intertropical		Deleted
Convergence Zone (ITCZ). Despite pronounced millennial-scale climatic variability documented in the subpolar		Deleter
North Atlantic during the last interglacial (MIS 5e), studies on the cross-latitudinal teleconnections remain to be		northern that the b
very limited, precluding full understanding of the mechanisms controlling subtropical climate evolution across	$\ $	"plateau" -6 m for
the last warm cycle. Here, we present new planktic foraminiferal assemblage data combined with δ^{18} O values in		which to intertrop
surface and thermocline-dwelling foraminifera from the Bahama region, which is ideally suited to study past	$\ $	During e
changes in subtropical ocean and atmosphere. Our data reveal that the peak sea surface warmth during early MIS		Atlantic early MI
5e was intersected by an abrupt millennial-scale cooling/salinification event, which was possibly associated with		millennia Deleted
a sudden southward displacement of the mean annual ITCZ position. This atmospheric shift, which could have		Deleted
left its imprint on the low-latitude upper ocean properties, is ascribed to the transitional climatic regime of early		Deleted
MIS 5e characterized, by persistent ocean freshening in the high latitudes and, therefore, an unstable AMOC	Ľ	Deleted
mode		Deleted
v		Delete persuas
		volume c

1

С

(Deleted: The last interglacial (MIS 5e)
(Deleted: and itsimpact on
~(Deleted: cycle at Little Bahama Bank:
X	Deleted: the
. 1	

A history of climate and sea-level changes

Shallow-water sediments of the Bahama region the last interglacial (MIS 5e) are ideal to the region's sensitivity to past climatic and sea ges.

new faunal

shifts in the ITCZ

isotopic and XRF-sediment core data from the , isotopic and XRF-sediment core data from the lope of the Little Bahama Bank. The results suggest nk top remained flooded across the last interglacial ~129-117 ka, arguing for a relative sea level above is time period. In addition, climatic variability, ay is closely coupled with movements of the al convergence zone (ITCZ), is interpreted based sotopes and foraminiferal assemblage records. ¹y MIS 5e, the mean annual ITCZ position moved in line with increased solar forcing and a recovered leridional Overturning Circulation (AMOC). The 5e warmth peak was intersected. however, by a 5e warmth peak was intersected, however, by a -scale cooling ev

1	Deleted: tropical
Â	Deleted: ,
$/\lambda$	Deleted: high-latitude
2	Deleted: thereby
1	Deleted: ,
-(Deleted:
	7

Our shallow-water records from the Bahamas ly demonstrate that not only was there a tight tween last interglacial sea level history and ice anges, via the atmospheric forcing we could further ra-interglacial connectivity between the polar and latitudes that left its imprint also on the ocean circulation

67	1 Introduction		Deleted: ¶
68	In the low-latitude North Atlantic, wind patterns, precipitation-evaporation balance as well as sea surface		
69	temperatures (SSTs) and salinities (SSSs) are strongly dependent on the position of the Atlantic Intertropical		
70	Convergence Zone (ITCZ) and its associated rainfall (Peterson and Haug, 2006). Based on paleorecords and		
71	modelling studies, past positions of the ITCZ are thought to be related to the interhemispheric thermal contrast,	~~~~	Deleted: is
72	changes of which could be driven by two principal mechanisms: the precessional cycle and, associated with it, a		Deleted: strongly
73	cross-latitudinal distribution of solar insolation and millennial-scale climatic variability brought about by Atlantic		
74	Meridional Overturning Circulation (AMOC) instabilities (Wang et al., 2004; Broccoli et al., 2006; Arbuszewski		
75	et al., 2013; Schneider et al., 2014). Specifically, millennial-scale cold events in the high northern latitudes were		Deleted: are associated
76	linked with reduced convection rates of the AMOC, accounting for both a decreased oceanic transport of the		
77	tropical heat towards the north and a southward shift of the mean annual position of the ITCZ (Vellinga and Wood,		Deleted: ,
78	2002; Chiang et al., 2003; Broccoli et al., 2006). Reconstructions from the low-latitude North Atlantic confirm		Deleted: are consistent with
79	southward displacements of the ITCZ coeval with AMOC reductions and reveal a complex hydrographic response	ſ	Deleted: s
80	within the upper water column, generally suggesting an accumulation of heat and salt in the (sub)tropics (Schmidt		
81	et al., 2006a; Carlson et al., 2008; Bahr et al., 2011; 2013). There are, however, opposing views on the subtropical		
82	sea surface development at times of high-latitude cooling events, While some studies suggest stable or increasing		Deleted: coolings
83	SSTs (Schmidt et al., 2006a; Bahr et al., 2011; 2013), others imply an atmospheric-induced (evaporative) cooling		Deleted: :
84	(Chang et al., 2008; Chiang et al., 2008).	J	Deleted: w
85	The last interglacial (MIS 5e), lasting from about ~130 to 115 thousand years before present (hereafter [ka]), is		
86	often referred to as a warmer-than-preindustrial interval, associated with significantly reduced ice sheets and a		
87	sea level rise up to 6-9 meters above the present levels (Dutton et al., 2015; Hoffman et al., 2017). This time		
88	period has attracted a lot of attention as a possible analog for future climatic development as well as a critical		
89	target for validation of climatic models (Masson-Delmotte et al., 2013). Proxy data from the North Atlantic		
90	demonstrate that the climate of the last interglacial was relatively unstable, involving one or several cooling events		
91	(Maslin et al., 1998; Fronval and Jansen, 1997; Bauch et al., 2012; Irvali et al., 2012, 2016; Zhuravleva et al.,		
92	2017a, b). This climatic variability is thought to be strongly related to changes in the AMOC strength (Adkins et		
93	al., 1997). Thus, recent studies reveal that the AMOC abruptly recovered after MIS 6 deglaciation (Termination		Deleted: during MIS6 deglaciation (Termination 2)
94	2 or T2), i.e., at the onset of MIS 5e, at ~ 129 ka, but it was interrupted around 127-126 ka (Galaasen et al., 2014;		
95	Deaney et al., 2017). Despite the pronounced millennial-scale climatic variability documented in the high northern		
96	latitudes, studies on the cross-latitudinal links are very limited (but see e.g., Cortijo et al., 1999; Schwab et al.,		

108	2013; Kandiano et al., 2014; Govin et al., 2015; Jiménez-Amat and Zahn, 2015). This precludes the full	
109	understanding of the mechanisms, regulating subtropical climate across the last interglacial, i.e., insolation,	
110	oceanic and/or atmospheric forcing versus high-low-latitudes feedbacks,	
111	Given its critical location near the origin of the Gulf Stream, sediments from downslope the shallow-water	
112	carbonate platforms of the Bahamian archipelago (Fig. 1) have been previously investigated in terms of oceanic	And and a state of the state of
113	and atmospheric variability (Slowey and Curry, 1995, Roth and Reijmer, 2004; 2005; Chabaud et al., 2016).	and a second second
114	However, a thorough study of the last interglacial climatic, evolution underpinned by a critical stratigraphical	Althouse and a second
115	insight is lacking so far. Here, a sediment record from the Little Bahama Bank (LBB) region is investigated for	
116	possible links between the AMOC variability and the ITCZ during the last interglacial cycle. Today the LBB	
117	region lies at the northern edge of the influence of the Atlantic Warm Pool, which expansion is strongly related	
118	to the ITCZ movements (Wang and Lee, 2007; Levitus et al., 2013), making our site particularly sensitive to	
119	monitor past shifts of the ITCZ. Given that geochemical properties of marine sediments around carbonate	
120	platforms vary in response to sea level fluctuations (e.g., Lantzsch et al., 2007), X-ray fluorescense, (XRF) data	
121	are being used together with stable isotope and faunal records to strengthen the temporal framework. Planktic	
122	for a miniferal assemblage data complemented by $\delta^{18}O$ values, measured on surface- and thermocline-dwelling	
123	foraminifera, are employed to reconstruct the upper ocean properties (stratification, trends in temperature and	
124	salinity), specifically looking at mechanisms controlling the foraminiferal assemblages. Assuming a coupling	X
125	between foraminiferal assemblage data and past-mean annual positions of the ITCZ (Poore et al., 2003; Vautravers	N
126	et al., 2007), our faunal records are then looked at in terms of potential geographical shifts of the ITCZ. Finally,	
127	we compare our new proxy records with published evidence from the regions of deep water formation, to draw	
128	further conclusions on the subpolar forcing on the low-latitude climate during MIS 5e.	$\langle \rangle \rangle$
129		
130	2 Regional Setting	
131	2.1 Hydrographic context	
132	Core MD99-2202 (27°34.5′ N, 78°57.9′ W, 460 m water depth) was taken from the upper northern slope of the	\in
133	LBB, which is the northernmost shallow-water carbonate platform of the Bahamian archipelago. The study area	
134	is at the western boundary of the wind-driven subtropical gyre (STG), in the vicinity to the Gulf Stream (Fig. 1a).	\leq
135	The Gulf Stream supplies both heat and salt to the high northern latitudes thereby constituting the upper cell of	
136	the AMOC,	(
I		1

Deleted: This globally warmer-than-preindustrial interval is associated with significantly reduced ice sheets and a sea level rise up to 6-9 meters above the present levels (Dutton et al., 2015; Hoffman et al., 2017). However, controversy still exists

Deleted: regarding the initiation and duration of the sea level highstand as well as about any sea level variability within that time period (Hearty et al., 2007; Kopp et al., 2009; Grant et al., 2012; Masson-Delmotte et al., 2013). Also, the spatial coverage of the existing sea surface temperature (SST) reconstructions is insufficient to allow for a robust understanding of the climatic forcing at play during the last interglacial **(**

intergraciai.	1]
Deleted: records	
Deleted: from	
Deleted: e Bahama Bank region	
Deleted: climatic	
Deleted: , ocean circulation	
Deleted: , sea level change and sediment diagenesis	
Deleted: Henderson et al., 2000;	
Deleted: Slowey et al., 2002;	
Deleted: Chabaud, 2016	
Deleted: . ¶ [[2]
Deleted: e	
Deleted: deduced from periplatform oozes	
Deleted: t	
Deleted: were	
Deleted: were	
Deleted: Considering	
Deleted: the inferred	
Deleted: the	
Deleted: in the past	
(Deleted: were	
Deleted: interpreted	
Deleted: ,	_
Deleted: , as previous authors mainly worked on timescal	[3]
/ Deleted:	_
· (Deleted:	
Deleted: from	
Deleted: e	
Deleted: the northern slope of the LBB	
Deleted: western boundary current of the N. Atlantic STG	[4]
Deleted: 1A	
Deleted: and	
Deleted: Atlantic Meridional Overturning Circulation (
(Deleted:)	
Deleted: It originates from the Florida Current after it [[5]

225	In the western subtropical North, Atlantic two distinctly different layers can be distinguished within the upper 500		Deleted:
226	m of the water column (Fig. 1c). The uppermost mixed layer (upper 50-100 m) is occupied by warm and		
227	comparatively fresh waters (T>24°_C, S<36.4 psu), predominantly coming from the equatorial Atlantic (Schmitz		
228	and McCartney, 1993; Johns et al., 2002). Properties of this water mass vary significantly on seasonal timescales		
229	and are closely related to the latitudinal migration of the JCTZ (Fig. 1b), During boreal winter (December-April),	<	Deleted:
230	when the ITCZ is in its southernmost position, the Bahama region is dominated by relatively cool, stormy weather		Deleted:
231	with prevailing northern and northeastern trade winds and is affected by cold western fronts, that increase		
232	evaporation and vertical convective mixing (e.g., Wilson and Roberts, 1995). During May to November, as the		
233	ITCZ moves northward, the LBB region is influenced by relatively weakened trade winds from the east and		
234	southeast, increased precipitation and very warm waters of the Atlantic Warm Pool (T >28.5° C), which expand		Deleted:
235	into the Bahama region from the Caribbean Sea and the equatorial Atlantic (Stramma and Schott, 1999; Wang		
236	and Lee, 2007; Levitus et al., 2013).		Deleted:
237	The mixed layer is underlain by the permanent thermocline, which is comprised of a homogeneous pool of		Bahama re Atlantic (S
238	comparatively cool and salty (T_<24°_C, S_>36.4 psu) water (Schmitz and Richardson, 1991). These "mode"		northern ec
239	waters are formed in the North Atlantic STG through wintertime subduction of surface waters generated by wind-		ITCZ.
240	driven Ekman downwelling and buoyancy flux (Slowey and Curry, 1995).		Deleted: Deleted:
241			Deleted:
242	2.2 Sedimentological context		Deleted: Deleted:
243	Along the slopes of the LBB, sediments are composed of varying amounts of sedimentary input from the platform		Deleted:
244	top and from the open ocean, depending on the global sea level state (Droxler and Schlager, 1985; Schlager et al.,		Deleted:
245	1994). During interglacial highstands, when the platform top is submerged, the major source of sediment input is		
246	the downslope transport of fine-grained aragonite needles, precipitated on the platform top. This material		
247	incorporates significantly higher abundances of strontium (Sr), than found in pelagic-derived aragonite (e.g.,		
248	pteropods) and calcite material from planktic foraminifera and coccoliths (Morse and MacKenzie, 1990). Given		Deleted:
249	that in the periplat form interglacial environment modifications of the aragonite content due to sea floor dissolution		Deleted:
250	and/or winnowing of fine-grained material are minimal (Droxler and Schlager, 1985; Schlager et al., 1994; Slowey		Deleted:
251	et al., 2002), thicker sediment packages accumulate on the slopes of the platform, vielding interglacial climate		Deleted:
252	records of high resolution (Roth and Reijmer, 2004; 2005). During glacial lowstands on the contrary, as the LBB	$\langle \cdot \rangle$	Deleted:
253	bank top is exposed, aragonite production is limited, sedimentation rates are strongly reduced and coarser-grained	$\langle \rangle \rangle$	Deleted:

eted: intertropical convergence zone (ITCZ

eted:) (Fig. 1B-C)

eted: a

leted: pool of waters ($T > 28^{\circ}$ C) which expands into the nama region from the Caribbean Sea and the equatorial antic (Stramma and Schott, 1999; Wang and Lee, 2007; ritus et al., 2013). Today, the LBB region lies at the thern edge of the influence of tropical pool waters, making site particularly sensitive to monitor past shifts of the CZ.

Deleted: a	
Deleted: layer	
Deleted: 12<	
Deleted:	
Deleted: driven	
Deleted: from	
Deleted: s	

-(Deleted:	Typical
-(Deleted:	As in a
(Deleted:	for
-(Deleted:	as well as by
-(Deleted:	; Chabaud et al., 2016
(Deleted:	whereas
(Deleted:	are
X	Deleted:	d
C	Deleted:	producing
X	Deleted:	high resolution
Y	Deleted:	interglacial climate

283	consolidated sediments are formed from the pelagic organisms (Droxler and Schlager, 1985; Slowey et al., 2002;		
284 bes	Lantzsch et al., 2007).		
285			
286	3 Methods		Deleted: 1
287	3.1 Foraminiferal counts and stable isotopes analyses		
288	Planktic foraminiferal assemblages were counted on representative splits of the 150-250 µm fraction containing		Deleted: i
289	at least 300 individual specimens. Counts were also performed in the ${>}250\mu\text{m}$ fraction. The census data from the		
290	two size fractions were added up and recalculated into relative abundance of planktic foraminifera in the fraction		
291	${>}150~\mu\text{m}.$ Faunal data were obtained at each 2 cm for the core section between 508.5 and 244.5 cm and at each		
292	10 cm between 240.5 and 150.5 cm. According to a standard practice, Globorotalia menardii and Globorotalia		
293	tumida as well as Globigerinoides sacculifer and Globigerinoides trilobus were grouped together, and referred to		Deleted: (Poore et al., 2003; Kandiano et al., 2012;
294	as G. menardii and G. sacculifer, respectively (Poore et al., 2003; Kandiano et al., 2012; Jentzen et al., 2018).		Chabaud, 2016)
295	New oxygen isotope data were produced at 2 cm steps using ~10-30 tests of Globorotalia truncatulinoides (dex)		
296	and ~5-20 tests of Globorotalia inflata for depths 508.5-244.5 cm and 508.5-420.5 cm, respectively. Analyses		
297	were performed using a Finnigan MAT 253 mass spectrometer at the GEOMAR Stable Isotope Laboratory.		
298	Calibration to the Vienna Pee Dee Belemnite (VPDB) isotope scale was made via the NBS-19 and an internal		
299	laboratory standard. The analytical precision of in-house standards was better than 0.07‰ (1 σ) for δ^{18} O. <u>Isotopic</u>		
300	data derived from the deep-dwelling foraminifera G. truncatulinoides (dex) and G. inflata could be largely		
301	associated with the permanent thermocline and linked to winter conditions (Groeneveld and Chiessi, 2011;		
302	Jonkers and Kučera, 2017; Jentzen et al., 2018). However, as calcification of their tests starts already in the mixed		Deleted: Deep-dwelling foraminifera G. truncatulinoides
303	layer and continues in the main thermocline (Fig. 1c), the abovementioned species are thought to accumulate in		and <i>G. inflata</i> are found in greatest abundances at the base of the seasonal thermocline (100-200 m), under environmental
304	their tests hydrographic signals from different water depths (Groeneveld and Chiessi, 2011; Mulitza et al., 1997).		species can migrate to greater depths (Cléroux et al., 2007). A
305			Deleted: ing
306	3.2 XRF scanning		Deleted: Also, isotopic data derived from <i>G</i> .
307	XRF analysis was performed in two different runs using the Aavatech XRF Core Scanner at Christian-Albrecht		<i>truncatulinoides</i> and <i>G. inflata</i> bear a cold-season weighted signal, as these species are abundant in the N. Atlantic STG
308	University of Kiel (for technical details see Richter et al., 2006). To obtain intensities of elements with lower	\mathbb{N}	during winter-spring time (Jonkers and Kucera, 2015).
309	atomic weight (e.g., calcium (Ca), chlorine (Cl)), XRF scanning measurements were carried out with the X-ray		Deleted: X-ray fluorescence (
310	tube voltage of 10 kv, the tube current of 750 μ A and the counting time of 10 seconds. To analyze heavy elements	/	Deleted:
311	(e.g., iron (Fe), Sr), the X-ray generator setting of 30 kv and 2000 μ A and the counting time of 20 seconds were		
312	used; a palladium thick filter was placed in the X-ray tube to reduce the high background radiation generated by		

331	the higher source energies. XRF Core Scanner data were collected directly from the split core sediment surface,	
332	that had been flattened and covered with a 4 µm-thick ULTRALENE SPEXCerti Prep, film to prevent	Deleted: E SPEXCerti Prep
333	contamination of the measurement unit and desiccation of the sediment (Richter et al., 2006; Tjallingii et al.,	
334	2007). The core section between 150 and 465 cm was scanned at 3 mm step size, whereas the coarser-grained	
335	interval between 465 and 600 cm was analyzed at 10 mm resolution.	
336	To account for potential biases related to physical properties of the sediment core (see e.g., Chabaud, 2016), XRF	
337	intensities of Sr were normalized to Ca, the raw total counts of Fe and Sr were normalized to the total counts of	Deleted: (Fig. 2)
338	the 30kv-run; counts of Ca and Cl were normalized to the total counts of 10kv-run, excluding Rh intensity, because	
339	this element intensities are biased by the signal generation (Bahr et al., 2014).	
340		Deleted: All data will be made available in the online
241		database PANGAEA (www.pangaea.de). ¶
242		
242	By using our foraminiferal assemblage data, we were able to refine the previously published age model of core	
343	MD99-2202 (Lantzsch et al., 2007). To correctly frame MIS 5e, stratigraphic subdivision of the unconsolidated	
344	aragonite (Sr)-rich sediment package between 190 and 464 m is essential (Fig. 2). In agreement with Lantzsch et	Deleted: aragonite
345	al. (2007), we interpret this core section to comprise MIS 5, which is supported by key biostratigraphic markers	Deleted: 3
346	used to identify the well-established faunal zones of late Quaternary (Ericson and Wollin, 1968). Thus, the last	Deleted: at
347	occurrence of G. menardii at the end of the aragonite-rich sediment package is in agreement with the estimated	Deleted: s
3/18	late MIS 5 age (or 80.00 ke; Beli and Saundars 1085; Slowey et al. 2002; Bahr et al. 2011; Chabaud 2016)	Deleted: and G. menardii flexuosa
	iate MIS 5 age (ca. 80-90 ka, Boli and Saunders, 1965, Slowey et al., 2002, Bain et al., 2011, Chabaud, 2010).	Deleted: are
349	The coherent variability in the ~200-300 cm core interval, observed between, aragonite content and relative	Deleted:
350	abundances of warm surface-dwelling foraminifera of Globigerinoides genus (G. ruber, white and pink varieties,	
351	G. conglobatus and G. sacculifer), points to simultaneous climate and sea level-related changes and likely reflects	Deleted: between ~200-300 cm
352	the warm/cold substages of MIS 5. The identified substages were then correlated with the global isotope benthic	Deleted: detected
353	stack LS16 (Lisiecki and Stern, 2016) using AnalySeries 2.0.8 (Paillard et al., 1996). Further, boundaries between	
354	MIS 6/5e and 5e/5d as well as the penultimate glaciation (MIS 6) peak, defined from δ^{18} O record of <i>G. ruber</i>	
355	(white), were aligned to the global benthic stack (Lisiecki and Stern, 2016).	
356	Given that sedimentation rates at the glacial/interglacial transition could have changed drastically due to increased	
357	production of Sr-rich aragonite material above the initially flooded carbonate platform top (Roth and Reijmer,	
358	2004), we applied an additional age marker to better frame the onset of the MIS 5e "plateau" (Masson-Delmotte	Deleted: ; Chabaud et al., 2016
359	et al., 2013) and to allow for a better core-to-core comparison. Thus, we tied the increased relative abundances of	
360	warm surface-dwelling foraminifera of Globigerinoides genus, which coincides with the rapid decrease in	

376	for aminiferal $\delta^{18}O$ record at 456 cm, with the onset of MIS 5e "plateau" at ~129 ka (Masson-Delmotte et al.,		
377	2013). This age is in good agreement with many marine and speleothem records, dating a rapid post-stadial		
378	warming and monsoon intensification to 129-128.7 ka (Govin et al., 2015; Jiménez-Amat and Zahn, 2015; Deaney		(Deleted: Galaasen et al., 2014;
379	et al., 2017), coincident with the sharp methane increase in the EPICA Dome C ice core (Loulergue et al., 2008;		
380	Govin et al., 2012). Although we do not apply a specific age marker to frame the decline of the MIS 5e "plateau",		
381	the resulting decrease in the percentage of warm surface-dwelling foraminifera of Globigerinoides genus as well		
382	as the initial increase in the planktic δ^{18} O values dates back to ~117 ka (Figs. 3-5), which broadly coincides with		(Deleted: 4
383	the cooling over Greenland (NGRIP community members, 2004). A similar subtropical-polar climatic coupling		
384	was proposed in earlier studies from the western North, Atlantic STG (e.g., Vautravers et al., 2004; Schmidt et al.,		Deleted:
385	2006a; Bahr et al., 2013; Deaney et al., 2017).		
386			
387	5 Results		
388	5.1 XRF data in the lithological context		
389	In Fig. 3. XRF-derived elemental data are plotted against lithological and sedimentological records. Beyond the		(Deleted: 2
390	intervals with low Ca counts and correspondingly high Cl intensities (at 300-325 cm and 395-440 cm). Ca		Deleted: physical
201			Deleted: properties
391	intensities do not vary significantly, which is in line with a stable carbonate content of about 94.% Wt (Lantzsch		Deleted: to
392	et al., 2007). Our Sr record closely follows the aragonite curve, demonstrating that the interglacial minerology is		(Deleted: and the grain size data
393	dominated by aragonite. Beyond the intervals containing reduced Ca intensities, a good coherence between Sr/Ca		
394	and aragonite content is observed. The rapid increase in Sr/Ca and aragonite is found at the end of the penultimate		
395	deglaciation (T2), coeval with the elevated absolute abundances of G. menardii per sample (Fig. 3). The gradual	~	Deleted: Termination 2,
396	step-like Sr/Ca and aragonite decrease characterizes both the glacial inception and the later MIS 5 phase.		(Deleted: 4
397	Intensities of Fe abruptly decrease at the beginning of the last interglacial, but gradually increase during the glacial		
398	inception (Fig. 4). Between ~112 and 114.5 ka, the actual XRF measurements were affected by a low sediment		Deleted: 5D
399	level in the core tube.	and the second second	Deleted: At ~120 ka (355 cm), a minor but clear increase in Sr intensities goes along with the change in argonite and
400			grain-size (Figs. 2 and 4), arguing that this feature is not a signal artefact but represents a significant sedimentological
401	5.2 Climate-related proxies		shitt.
402	To calculate δ^{18} O gradients across the upper water column, we also used the published δ^{18} O data by Lantzsch et		(Deleted: in
403	al. (2007) which were measured on the surface-dwelling foraminifera G. ruber (white). These isotopic data can		Deleted: δ^{18} O values
404	be generally associated with mean annual conditions (Tedesco et al. 2007) however, during colder time intervals		Deleted: could
405	or privately associated with induitation of the second state of th		
407	productivity peak of $(\tau, ruper)$ (white) could shift towards warmer months leading to underestimation of the actual		

nvironmental change (Schmidt et al., 2006a, b; Jonkers and Kucera, 2015). During the penultimate glacial	Å	Dele
maximum (MIS 6), δ^{18} gradients between G. ruber (white) and G. truncatulinoides (dex) and G. inflata are very	4	Dele
w (Fig. 4), succeeded by a gradually increasing difference across T2, ~135-129 ka. Changes in the isotopic		Dele Dele
radient between surface- and thermocline-dwelling foraminifera closely follow variations in the relative	4	Dele
bundances of G. truncatulinoides (dex) and G. inflata (Fig. 4). Across MIS 5e species of Globigerinoides genus		G. tru high
ominate the total assemblage, however, significant changes in the proportions of three main <i>Globigerinoides</i>	(Dele
becies are observed (Fig. 5): <i>G. sacculifer</i> and <i>G. ruber</i> (pink) essentially dominate the assemblage during early		saccu with
IIS 5e (120-124 kg), whereas G. where (white) proportions are at their maximum during late MIS 5e (124-117		than t
no se (127-124 ka), whereas 0. <i>Tuber</i> (white) proportions are at their maximum during fate who se (124-117		Dele
a). At around 127 ka, all δ^{18} O records abruptly increase together with a reappearance of G. inflata (Fig. 4) and a	\leq	Dele
elative abundance decrease of G. ruber (pink) and G. sacculifer (Fig. 5). After 120 ka, δ^{18} O values in G. ruber	(Dele
white) and G. truncatulinoides (dex) become unstable (Fig. 4). That instability coincides with an abrupt drop in	\mathbb{N}	Dele
E. sacculifer relative abundances (Fig. 5).		Dele
		Dele
Discussion		Dele
	Ý	Dele
1 Platform sedimentology and <u>relative</u> sea level change		<u>></u>
.1 Platform sedimentology and <u>relative</u> sea level change	Ì	Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some	Ì	Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is		Dele Dele Dele Dele
.1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL)		Dele Dele Dele Dele
.1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic		Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic increase in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and /		Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic acrease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding -		Dele Dele Dele Dele Dele Dele Chang
A Platform sedimentology and relative sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic merease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and / chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL, can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016).		Dele Dele Dele Dele Dele Dele Chang Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic increase in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). (bile our Sr record likely represents a non affected circula because of good coherence with the aragonite record.		Dele Dele Dele Dele Dele Dele Chang Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic acrease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016).		Dele Dele Dele Dele Dele Dele Chang Dele Dele Dele Dele Dele
A Platform sedimentology and relative sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic merease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). //hile our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, //ome of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously		Dele Dele Dele Dele Dele Dele Dele Dele
A Platform sedimentology and relative sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic acrease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). /hile our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, ome of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously neasured elevated Cl intensities (Fig. 3). Because enhanced seawater content in the sediment appears to reduce		Dele Dele Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic merease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). While our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, one of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously neasured elevated Cl intensities (Fig. 2). Because enhanced seawater content in the sediment appears to reduce mly Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007;		Dele Dele Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic acrease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL_can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). /hile our Sr record likely represents a non-affected signal because of good coherence with the aragonite second, one of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously neasured elevated Cl intensities (Fig. 3). Because enhanced seawater content in the sediment appears to reduce nly Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007; ennekam and de Lange, 2012), normalization of Sr counts to Ca results in very high Sr/Ca intensity ratios across		Dele Dele Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic acrease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). // while our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, // ome of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously neasured elevated Cl intensities (Fig. 3). Because enhanced seawater content in the sediment appears to reduce / nly Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007; / / tennekam and de Lange, 2012), normalization of Sr counts to Ca results in very high Sr/Ca intensity ratios across the Cl-rich intervals, Regardless of these problematic intervals described above, the XRF-derived Sr/Ca values		Dele Dele Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic merease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). /hile our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, /ome of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously neasured elevated Cl intensities (Fig. 3). Because enhanced seawater content in the sediment appears to reduce nly Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007; tennekam and de Lange, 2012), normalization of Sr counts to Ca results in very high Sr/Ca intensity ratios across the Cl-rich intervals. <u>Regardless of these problematic intervals described above, the XRF-derived Sr/Ca values</u> prese well with the actually measured aragonite values that it came participal to intervent them in terms of PSL		Dele Dele Dele Dele Dele Dele Dele Dele
1 Platform sedimentology and <u>relative</u> sea level change he modern LBB lagoon is shallow with an average water depth between 6-10 m (Williams, 1985). Despite some ossible isostatic subsidence of 1-2 m per hundred thousand years (Carew and Mylroie, 1995), the LBB region is enerally regarded as tectonically stable (Hearty and Neumann, 2001). Considering this, a relative sea level (RSL) se above -6 m of its present position is required to completely flood the platform top and allow for a drastic herease in platform-derived (Sr-rich aragonite) sediment particles (Neumann and Land, 1975; Droxler and chlager, 1985; Schlager et al., 1994; Carew and Mylroie, 1997). As such, the LBB flooding periods exceeding - m RSL can be defined from downcore variations in Sr/Ca intensity ratio (Chabaud et al., 2016). //hile our Sr record likely represents a non-affected signal because of good coherence with the aragonite record, //ome of the Ca intensity values are reduced due increased seawater content, as evidenced by simultaneously heasured elevated Cl intensities (Fig. 2). Because enhanced seawater content in the sediment appears to reduce nly Ca intensities, which leaves elements of higher atomic order (e.g., Fe, Sr) less affected (Tjallingii et al., 2007; // ennekam and de Lange, 2012), normalization of Sr counts to Ca results in very high Sr/Ca intensity ratios across he Cl-rich intervals. Regardless of these problematic intervals described above, the XRF-derived Sr/Ca values gree well with the actually measured aragonite values that it seem permissible to interpret them in terms of RSL		Dele Dele Dele Dele Dele Dele Dele Dele
	aximum (MIS 6), δ^{18} O gradients between <i>G. ruber</i> (white) and <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> are very w (Fig. 4), succeeded by a gradually increasing difference across T2, ~135-129 ka. Changes in the isotopic adient between surface- and thermocline-dwelling foraminifera closely follow variations in the relative bundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> (Fig. 4). Across MIS 5e species of <i>Globigerinoides</i> genus ominate the total assemblage, however, significant changes in the proportions of three main <i>Globigerinoides</i> becies are observed (Fig. 5): <i>G. sacculifer</i> and <i>G. ruber</i> (pink) essentially dominate the assemblage during early IS 5e (129-124 ka), whereas <i>G. ruber</i> (white) proportions are at their maximum during late MIS 5e (124-117 at). At around 127 ka, all δ^{18} O records abruptly increase together with a reappearance of <i>G. inflata</i> (Fig. 4) and a lative abundance decrease of <i>G. ruber</i> (pink) and <i>G. sacculifer</i> (Fig. 5). After 120 ka, δ^{18} O values in <i>G. ruber</i> white) and <i>G. truncatulinoides</i> (dex) become unstable (Fig. 4). That instability coincides with an abrupt drop in <i>sacculifer</i> relative abundances (Fig. 5).	aximum (MIS 6), δ^{18} O gradients between <i>G. ruber</i> (white) and <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> are very w (Fig. 4), succeeded by a gradually increasing difference across T2, ~135-129 ka. Changes in the isotopic adient between surface- and thermocline-dwelling foraminifera closely follow variations in the relative bundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> (Fig. 4). Across MIS 5e species of <i>Globigerinoides</i> genus ominate the total assemblage, however, significant changes in the proportions of three main <i>Globigerinoides</i> access are observed (Fig. 5): <i>G. sacculifer</i> and <i>G. ruber</i> (pink) essentially dominate the assemblage during early IS 5e (129-124 ka), whereas <i>G. ruber</i> (white) proportions are at their maximum during late MIS 5e (124-117 a). At around 127 ka, all δ^{18} O records abruptly increase together with a reappearance of <i>G. inflata</i> (Fig. 4) and a lative abundance decrease of <i>G. ruber</i> (pink) and <i>G. sacculifer</i> (Fig. 5). After 120 ka, δ^{18} O values in <i>G. ruber</i> white) and <i>G. truncatulinoides</i> (dex) become unstable (Fig. 4). That instability coincides with an abrupt drop in <i>. sacculifer</i> relative abundances (Fig. 5).

Α	Deleted: isotopic
	Deleted: ,
	Deleted: the major deglacial transition
امر	Deleted: ,
	Deleted: low isotopic gradients between <i>G. ruber</i> (white), <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> are consistent with high
	Deleted: 5
	Deleted: At the onset of MIS 5e, <i>G. ruber</i> (pink) and <i>G. sacculifer</i> relative abundances rise in a successive manner, with a rapid increase in <i>G. sacculifer</i> occurring c. 2 ka later than the rise in <i>G. ruber</i> (pink) proportions.
1	Deleted: ,
	Deleted: G. falconensis and
	Deleted: reappear
	Deleted: , while
7	Deleted: s
$\langle \rangle$	Deleted: become reduced
()	Deleted: s
$\left(\right)$	Deleted: 5-6
$\left(\right)$	Deleted: 5A-B
$\langle \rangle$	Deleted: is
	Deleted: 6B
М	Deleted: M
Λ	Deleted: (
	Deleted: ,
1	Deleted: vs. pelagic (Sr-poor calcite or aragonite)
4	Deleted: In shallow-water records from the Bahamas
þ	Deleted: ,
/)	Deleted: can be applied
/	Deleted: as a good proxy for relative sea level (RSL) change
X	Deleted: However, given that the measured intensities of [6]
λ	Deleted: curve
1	Deleted: 2
9	Deleted: leaving measures of
Ņ	Deleted: with
A	Deleted: numbers
1	Deleted: The general consistency of the measured Sr \dots [7]
4	Deleted: Beyond
2	Deleted: curve
2	Deleted: and, thus,
1	(Deleted: can
	Deleted: be
	Deleted: ed
	Deleted: (Fig. 4)

525	Around 129 ka, Sr/Ca rapidly reach maximum values, indicating the onset of the LBB flooding interval with the
526	inferred RSL above -6 m (Fig. 3). Absolute abundance of G. menardii per sample support the inferred onset of
527	the flooding interval, since amounts of planktic foraminifera in the sample can be used to assess the relative
528	accumulation of platform-derived versus pelagic sediment particles (Slowey et al., 2002). After G. menardii
529	repopulated the (sub)tropical waters at the end of the penultimate glaciation (Bahr et al., 2011; Chabaud, 2016),
530	its increased absolute abundances are found around Bahamas between ~131-129 ka. This feature could be
531	attributed to a reduced input of fine-grained aragonite at times of partly flooded platform. Consequently, as the
532	platform top became completely submerged, established aragonite shedding gained over pelagic input, thereby
533	reducing the number of G. menardii per given sample. Our proxy records further suggest that the aragonite
534	production on top of the platform was abundant until late MIS 5e (unequivocally delimited by foraminiferal $\delta^{18}O$
535	and faunal data), The drop in RSL below -6 m only during the terminal phase of MIS 5e (117-115 ka on our
536	timescale) is corroborated by a coincident changeover in the aragonite content and and increase in absolute
537	abundance of G. menardii, further supporting the hypothesis that aragonite shedding was suppressed at that time,
538	causing relative enrichment in foraminiferal abundances
539	The exact timing of the last interglacial global sea level peak is a rather controversial matter of debate as studies
540	place it into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann,
541	2001; Hearty et al., 2007; Kopp et al., 2009; O'Leary et al., 2013; Spratt and Lisiecki, 2016). Although the Bahama
542	region is located quite away from the former Laurentide Ice Sheet, there still could have been some influence by
543	glacio-isostatic adjustments, causing our RSL signals to deviate from the global sea level during MIS 5e (Stirling
544	et al., 1998). Therefore, we refrain from making any further evaluation of this issue at this point.
545	
546	6.2 Deglacial changes in the vertical water mass structure
547	Particularly high proportions of thermocline-dwelling foraminifera G. inflata and G. truncatulinoides (dex) are
548	found off LBB during late MIS 6 and T2 (Fig. 4). To define mechanisms controlling the faunal assemblage, we
549	look at δ^{18} O values in those for a miniferal species, which document hydrographic changes across the upper water
550	column, i.e., spanning from the uppermost mixed layer down to the permanent thermocline. The strongly reduced
551	δ^{18} O gradients between surface-dwelling species G. ruber (white) and two thermocline-dwelling for a G.
552	truncatulinoides (dex) and G. inflata during T2 and particularly during late MIS 6 could be interpreted in terms
553	of decreased water column stratification, a condition which is favored by thermocline-dwelling foraminifera (e.g.,
554	Mulitza et al., 1997). Specifically, for G. truncatulinoides (dex), this hypothesis is supported by its increased
1	

	Deleted: as well as aragonite content	
	Deleted: s	
-1	Deleted: (Fig. 4D)	5
1	Deleted: .	5
Å	Deleted: That)
()	Deleted:	
1	Deleted: 117	
ll	Deleted: the	
1	Deleted: (per sample)	
()	Deleted: Because	2
l	Deleted: not	2
	Deleted: far	2
	Deleted: and, thus,	\downarrow
	Deleted: likely have	2
	Deleted: d	\downarrow
	Deleted: processes	2
	Deleted:	2
	Deleted: ,	2
	Deleted: could	2
Ŵ	Deleted: significantly	2
11	Deleted: actual eustatic	2
//	Deleted: change	\prec
Ŋ	Deleted: As such. Oour data do not allow to make	
/	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8]	י []
/	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: 1 [9	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: 1 [9 Deleted: a Deleted: ly placed by different studies into either early. [10	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: ,	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: , Deleted: ing	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: 1 [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: ing Deleted: permanent	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: 1 [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: termination 2 Deleted: various Deleted: ing Deleted: permanent Deleted: In the first place	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: ing Deleted: permanent Deleted: In the first place Deleted: ,	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: termination 2 Deleted: various Deleted: ing Deleted: permanent Deleted: In the first place Deleted: , Deleted: The	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: 1 [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: termination 2 Deleted: various Deleted: ing Deleted: ing Deleted: much first place Deleted: , Deleted: The Deleted: The Deleted: t	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: ing Deleted: permanent Deleted: In the first place Deleted: , Deleted: , Deleted: , Deleted: t Deleted: t Deleted: different	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: ing Deleted: ing Deleted: permanent Deleted: In the first place Deleted: The Deleted: The Deleted: t Deleted: t Deleted: different Deleted: Isotopic gradients between <i>d</i> ¹⁸ O values in surface	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: ing Deleted: ing Deleted: permanent Deleted: In the first place Deleted: The Deleted: t Deleted: t Deleted: t Deleted: t Deleted: foraminifera during T2 are strongly reduced, [12	FF
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: termination 2 Deleted: various Deleted: number of the studies of the studies of the studies Deleted: ing Deleted: permanent Deleted: In the first place Deleted: The Deleted: t Deleted: t Deleted: different Deleted: foraminifera during T2 are strongly reduced, [12 Deleted: , in turn,	
	assumptions about the exact timing of the last interglacial sea level peak, which is controversially placed by different studies into either early (Grant et al., 2012; Lisiecki and Stern, 2016), mid or late MIS 5e (Hearty and Neumann, [8 Deleted: ¶ [9 Deleted: ¶ [9 Deleted: a Deleted: ly placed by different studies into either early. [10 Deleted: Termination 2 Deleted: various Deleted: our Deleted: nu Deleted: ing Deleted: permanent Deleted: nu Deleted: The Deleted: The Deleted: t Deleted: t Deleted: different Deleted: foraminifera during T2 are strongly reduced, [12 Deleted: for enhanced abundances of	

662	abundance, within the regions characterized by deep winter vertical mixing (Siccha and Kučera, 2017). Such		Deleted: High abundancesof G. truncatulinoides (Fig.
663	environmental preference may be explained by species ontogeny, given that G. truncatulinoides (dex) requires	_	5E) further support the hypothesis involvingithin the regions characterized by reduced stratification and [13]
664	reduced upper water column stratification to be able to complete its reproduction cycle with habitats ranging from		Deleted: isay be explained by the [14]
665	c 400-600 m to near-surface depths: in well-stratified waters however reproduction of G truncatulinoides (dex)	$\langle \rangle \langle \rangle$	
000	e. Too ooo in to near surface depinition strained waters, novever, epirodaeton or o. suncatamonaes (des)		Deleted: G
666	would be inhibited by a strong thermocline Lohmann and Schweizer, 1990; Hilbrecht, 1996; Mulitza et al., 1997;		Deleted: g
667	Schmuker and Schiebel, 2000).		Deleted: this speciesequires reduced upper water column stratification during winter time
668	To explain the inferred reduced upper water mass stratification during late MIS 6 and T2, sea surface		Deleted: changingabitats, [16]
669	cooling/salinification and/or subsurface warming could be invoked (e.g., Zhang, 2007; Chiang et al., 2008).		Deleted: (Lohmann and Schweizer, 1990; Hilbrecht, 1996; Mulitza et al., 1997) [17]
670	While Mg/Ca-based temperature estimations during late MIS 6 so far reveal cold subsurface conditions for the		Deleted: while
671	subtronical western North Atlantic (Bahr et al. 2011: 2013), it should be noted that species-specific signals (i.e.		Deleted: I
071	subtropical western (<u>orther standie (Dam et al., 2011, 2015), it should be noted and species specific signals (i.e.,</u>	M	Deleted: i
672	δ^{18} O values, Mg/Ca-ratios) could be complicated due to adaptation strategies of foraminifera, such as seasonal		Deleted: howeverowever, . For instance, in the modern tropical Caribbean enroduction of <i>G truncatulinoides</i>
673	shifts in the peak foraminiferal tests flux and/or habitat changes (Schmidt et al., 2006a, b; Cléroux et al., 2007;	\mathbb{N}	(dex) would beisinhibited by a strong thermocline in well- stratified waters[18]
674	Bahr et al., 2013; Jonkers and Kučera, 2015). However, further insights into the past hydrographic changes could		Deleted: sea surface cooling/salinification and/or
675	be provided from the conspicuous millennial-scale reversion found at 131 ka (Fig. 4), associated with a shift		Chiang et al., 2008). At C of suppressed overturning during T2 (Deaney et al., 2017), the inferred decreased stratification
676	towards lower surface-thermocline isotopic gradients (i.e., reduced stratification). When compared to the abrupt		could have resulted from sea surface cooling/salinification and/or subsurface warming (e.g., Zhang, 2007)hile
677	increase in G. ruber (white) δ^{18} O values at 131 ka, which indicates sea surface cooling or salinification, the		estimations acrossuring T2 and early MIS 5ate MIS
678	isotopic response in thermocline-dwelling species remains rather muted. The latter could be explained either by		6eso far reveal warm/old subsurface conditions for the subtropical western NorthAtlantic (Bahr et al., 2011; 2013), it should be noted ashat species-specific
679	foraminiferal adaptation strategies, stable subsurface conditions and/or incorporation of opposing signals during	\mathcal{N}	temperatureignals (i.e., δ^{18} O values, Mg/Ca-ratios) should be considered with caution, as they [19]
680	foraminiferal ontogenetic cycle that would mitigate the actual environmental change. Regardless of the exact	Ň	Deleted: ingsea surface cooling or salinification, the
681	mechanism, there is a good coherence between δ^{18} O values in <i>G. ruber</i> (white) and relative abundances of <i>G</i> .		(isotopic response in mermocrine-dwenning species is [20]
682	inflata and G. truncatulinoides (dex), suggesting a possible link between thermocline species abundance, and	-7	Deleted: for our subtropical settings possible link
683	conditions occurring nearer to the sea surface (Mulitza et al., 1997; Jonkers and Kučera, 2017). Specifically,		between thermocline species abundancesand conditions occurring nearer to the sea surface (Mulitza et al., 1997; Jonkers and Kučera, 2016 [21]
684	steadily increasing upper water column stratification across glacial-interglacial transition could have suppressed		Deleted: Namely
685	reproduction of G. truncatulinoides (dex) and G. inflata, while the short-term stratification reduction at 131 ka		Deleted:
686	may have promoted favorable conditions for the thermocline-dwelling species through sea surface cooling and/or		Deleted: could
687	salinification		Deleted: for transitional to subpalar species <i>G</i> inflata
607	<u>ournintoutory</u>		Deleteu. foi transitional to subpolar species o. mjulu
688	It should be noted, however, that stratification is not a sole mechanism for explaining variability in the		Deleted: Alternatively, reduced water column stratification during winter could have led to a situation when calcification
689	thermocline-associated assemblage. Thus, while relative abundances of G. inflata become strongly reduced at the		of the thermocline-dwelling foraminifera could have
690	onset of MIS 5e, there is no such response in the G. truncatulinoides (dex) proportions (Fig. 4). Whereas G. inflata		commenced in shallower and, therefore, relatively warmer waters, causing a lower isotopic gradient between shallow- and deep-dwelling foraminifera (Mulitza et al., 1997).¶
691	is generally regarded as subpolar to transitional species, preferring little seasonal variations in salinity (Hilbrecht,	\	Deleted: noted

799	1996), G. truncatulinoides (dex) was shown to dwell in warmer temperatures (Siccha and Kučera, 2017) and	(
800	occurs in small amounts also in the modern tropical Atlantic (Jentzen et al., 2018). However, an abrupt increase	
801	in the latter species proportions during the sea surface cooling/salinification event at ~127 ka (see further below),	
802	coupled with reduced upper water column stratification, supports the underlying "sea surface" control on the	
803	general abundance of G. truncatulinoides (dex).	// {
804	A southern position of the mean annual ITCZ during the penultimate (de)glaciation could be inferred based on	1
805	previous studies (Yarincik et al., 2000; Wang et al., 2004; Schmidt et al., 2006a; Carlson et al., 2008; Arbuszewski	c s
806	et al., 2013; Bahr et al., 2013), By analogy with the modern atmospheric forcing in the region, a southern location	
807	of the ITCZ could have caused enhanced upper water column mixing and evaporative cooling through intensified	
808	trade winds (e.g., Wilson and Roberts, 1995). Acknowledging the fact that our study region lies too far north to	
809	be influenced by changes in the winter position of the ITCZ (Ziegler et al., 2008) - this would be of primary	
810	importance for modern-like winter-spring reproduction timing of G. truncatulinoides (dex) and G. inflata (Jonkers	// i 2
811	and Kučera, 2015) - we suggest that a southern location of the mean annual position of the ITCZ during the	
812	penultimate (de)glaciation could have facilitated favorable conditions for the latter species through generally	
813	strong sea surface cooling/salinification in the subtropical North Atlantic.	c t
814	Previous studies attributed increased Fe content in the Bahamas sediments to enhanced trade winds strength.given	
815	that siliclastic inputs by other processes than wind transport are very limited (Roth and Reijmer, 2004).	s
816	Accordingly, elevated XRF-derived Fe counts in our record during T2 (Fig. 4) may support intensification of the	(t
817	trade winds and possibly increased transport of Saharan dust at times of enhanced aridity over Northern, Africa,	t c
818	(Muhs et al., 2007; Helmke et al., 2008). We, however, refrain from further interpretations of our XRF record due	k s
819	to a variety of additional effects that may have influenced our Fe-record (e.g., diagenesis, change in the source	
820	and/or properties of eolian inputs, sensitivity of the study region to atmospheric shifts, etc.).	
821		
822	6.3 MIS 5e climate in the subtropics: orbital versus subpolar forcing	
823	Various environmental changes within the mixed layer (SST, SSS, nutrients) can account for the proportional	
824	change in different <i>Globigerinoides</i> species (Fig. 5). <i>G. sacculifer</i> – it makes up less than 10% of the planktic	$\langle \rangle$
825	foraminiferal assemblage around the LBB today (Siccha and Kučera, 2017) – is abundant in the Caribbean Sea	
826	and tropical Atlantic and commonly used as a tracer of tropical waters and geographical shifts of the ITCZ (Poore	
827	et al., 2003; Vautravers et al., 2007). Also, G. ruber (pink) shows rather coherent abundance maxima in the tropics.	
828	while no such affinity is observed for G. ruber (white) and G. conglobatus (Siccha and Kučera, 2017; Schiebel	
		····(I

Deleted: the overall
Deleted: in our subtropical settings
Deleted: inferred
Deleted: mean
Deleted:
Deleted: could be inferred bsed
Deleted: Previous studies from the western subtropical North Atlantic have shown that time periods with reduced MMOC strength are consistent with southward displacement. of the ITCZ and its associated rainfall belt, causing sea surface salinification

Deleted:

Deleted: in the region through

Deleted: and
Deleted: ¶

Deleted: produce

Deleted: As a southern mean position of the ITCZ is inferred for T2, based on Brazilian wet periods (Wang et al., 2004), it seems plausible that elevated proportions of *G. truncatulinoides* during T2 may serve as indication of strong sea surface winter cooling/salinification amplified by intensified atmospheric circulationintensified trade winds coupled with cold meteorological fronts enhance upper water column mixing in the region through evaporative cooling during boreal winter, when the ITCZ is at the southernmost position (e.g., Wilson and Roberts, 1995).

Deleted: ¶

This is in contrast to the subtropical N. Atlantic where winter sea surface cooling (T<23°C) and deep mixing occur alongside with increase of *G. truncatulinoides* up to 15% (Levitus et al., 2013; Siccha and Kučera, 2017). It could, therefore, be proposed that the overall abundance of *G. truncatulinoides* in our subtropical settings was at least partly controlled by oceanic conditions occurring nearer to the sea surface (Mulitza et al., 1997; Jonkers and Kučera, 2016).¶ elevated occurrences of transitional to subpolar species *G. inflata* indicate generally cold-water conditions off the LEP21

Deleted: is

Deleted: , therefore, increased Fe content in the sediments 3]
Deleted: the
Deleted: 5D
Deleted: .
Deleted: , i.e., during colder periods
Deleted: ; Tjallingii et al., 2008
Deleted: ,
Deleted: Finally, increased velocities of the wind-driven24
Deleted: Early
Deleted: properties (temperature, salinity, nutrients)
Deleted: i
Deleted: 6
Deleted: 5

Deleted: (between 20°N and 20°S),

961	and Hemleben, 2017). Therefore, fluctuations in relative abundances of G. sacculifer and G. ruber (pink) are
962	referred here as to represent a warm "tropical" end-member (Fig. <u>1b</u>).
963	Relative abundances of the tropical foraminifera (here and further in the text G. ruber (pink) and G. sacculifer
964	calculated together) in our core suggest an early thermal maximum (between ~129 and 124 ka), which agrees well
965	with the recent compilation of global MIS 5e SST (Hoffman et al., 2017). The sea surface warming could be
966	related to a northward expansion of the Atlantic Warm Pool (Ziegler et al., 2008), in response to a northern
967	location of the mean annual position of the ITCZ. The latter shift in the atmospheric circulation is explained by
968	the particularly, strong northern hemisphere insolation during early MIS 5e (Fig. 6), resulting in a cross-latitudinal
969	thermal gradient change, and in turn, forcing the ITCZ towards a warming (northern) hemisphere (Schneider et
970	al., 2014). A northern location of the mean annual position of the ITCZ during the first phase of the last interglacial
971	is supported by the XRF data from the Cariaco Basin, showing highest accumulation of the redox-sensitive
972	element molybdenum (Mo) during early MIS 5e (Fig. 6). At that latter location, high Mo content is found in
973	sediments deposited under anoxic conditions, occurring only during warm interstadial periods associated with a
974	northerly shifted ITCZ (Gibson and Peterson, 2014).
975	Further, our data reveal a millennial-scale cooling/salinification event at ~127 ka, characterized by decreased
976	proportions of the tropical foraminifera and elevated planktic δ^{18} O values (Fig. 6). That this, abrupt cooling
977	characterized the entire upper water column at the onset of the event is indicated by the re-occurrence of cold-
978	water species G . inflata coincident with the brief positive excursions in δ^{18} O values in the shallow and
979	thermocline-dwelling foraminifera (Fig. 4). Simultaneously, the XRF record from the Cariaco Basin reveals a
980	stadial-like Mo-depleted (i.e., southward ITCZ shift) interval (Fig. 6). The close similarity between the tropical-
981	species record from the Bahamas and the XRF data from the Cariaco Basin supports the hypothesis that the annual
982	displacements of the ITCZ are also documented in our faunal counts. Thus, a southward shift in the mean annual
983	position of the ITCZ at ~127 ka could have restricted influence of the Atlantic Warm Pool in the Bahama region,
984	reducing SST and possibly increasing SSS, and in turn, affecting the foraminiferal assemblage. Moreover, because
985	the aforementioned abrupt climatic shift at ~127 ka cannot be reconciled with insolation changes, other forcing
986	factors at play during early MIS 5e should be considered. Studies from the low-latitude Atlantic reveal strong
987	coupling between the ITCZ position and the AMOC strength associated with millennial-scale climatic variability
988	(Rühlemann et al., 1999; Schmidt et al., 2006a; Carlson et al., 2008). In particular, model simulations and proxy
989	data suggest that freshwater inputs as well as sea-ice extent in the (sub)polar North Atlantic can affect the ITCZ

Deleted:	1B
Deleted:	¶

1	Deleted: ¶
	As shown in Fig. 7B, relative abundances of tropical species (here and further in the text <i>G. ruber</i> (pink) and <i>G. sacculifer</i> calculated together) increased before the onset of the last interglacial "plateau" at ~129 ka. This transition was
Å	Deleted: possibly coupled
[]	Deleted: with
4	Deleted: the intensification of the Gulf Stream at MIS 6/5e boundary (Bahr et al., 2011).
Å	Deleted: Accordingly,
4	Deleted: In addition, a gradual rise in
	Deleted: in sediment data from Cariaco Basin is observed across the penultimate deglaciation
[])	Deleted: 7D
[]]	Deleted: s
/	Deleted: 4-7
	Deleted: e
$\ $	Deleted: across the
	Deleted: occurred
	Deleted: G. falconensis and
$\ \ $	Deleted: of
	Deleted: deep
	Deleted: A coherent cooling event, dated by U-Th to be centered around 127 ka, is also evident in an isotopic record from the southwestern slope of the LBB (Slowey et al., 1996; Henderson et al., 2000), suggesting at least a regional expression of the event.
Å	Deleted: sediments
4	Deleted: southward
4	Deleted: 7D
1	Deleted: the
- //	Deleted: additional
	Deleted: . ¶ ¶ a gradual northward migration of the mean annual position of the ITCZ at the onset of MIS 5e could be implied. In line with increasing low latitude summer insolation (Fig. 7C), this ITCZ displacement would also promote a northward

a gradual northward migration of the mean annual position of the ITCZ at the onset of MIS 5e could be implied. In line with increasing low latitude summer insolation (Fig. 7C), this ITCZ displacement would also promote a northward expansion of tropical pool waters (Ziegler et al., 2008). Because core MD99-2202 is located at the northern edge of ITCZ influence, the rapid shift in foraminiferal proportions at ~130 ka could, in fact, represent the onset of warm pool waters influence, which resulted from a gradual northwarddirected ITCZ movement. Accordingly, a gradual northwarddirected ITCZ movement. Accordingly, a gradual northwarddirected ITCZ movement. Accordingly, a gradual northward wigration of the mean annual position of the ITCZ at the onset of MIS 5e could be implied. In line with increasing low latitude summer insolation (Fig. 7C), this ITCZ displacement would also promote a northward expansion of tropical pool waters (Ziegler et al., 2008). Because core MD99-2202 is located at the northern edge of ITCZ influence, the rapid shift in foraminiferal proportions at ~130 ka could, in fact, represent the onset of warm pool waters influence, which resulted from a gradual northward-directed ITCZ movement. Similarly, the pronounced increase in the tropical species [25]

1077	position through feedbacks on the thermohaline circulation and associated change in the cross-latitudinal heat
1078	redistribution (e.g., Chiang et al., 2003; Broccoli et al., 2006; Gibson and Peterson, 2014).
1079	It is well-established that the deepwater overflow from the Nordic Seas, which constitutes the deepest southward-
1080	flowing branch of the AMOC today (e.g., Stahr and Sanford, 1999), strengthened (deepened) only during the
1081	second phase of MIS 5e (at ~124 ka), and after the deglacial meltwater input into the region ceased (Hodell et al.,
1082	2009; Barker et al., 2015). Nevertheless, several studies show that the deep-water ventilation and presumably the
1083	AMOC abruptly recovered at the beginning of MIS 5e, at ~129 ka (Fig. 6), possibly linked to a deepened winter
1084	convection in the Northwestern Atlantic (Adkins et al., 1997; Galaasen et al., 2014; Deaney et al., 2017).
1085	Accordingly, the resumption of the AMOC could have added to a meridional redistribution of the incoming solar
1086	heat, changing cross-latitudinal thermal gradient and, thus, contributing to the inferred "orbitally-driven"
1087	northward ITCZ shift during early MIS 5e (see above). In turn, the millennial-scale climatic reversal between 127
1088	and 126 ka could have been related to the known reductions of deep water ventilation (Galaasen et al, 2014;
1089	Deaney et al., 2017), possibly attributed to a brief increase in the freshwater input into the subpolar North Atlantic
1090	and accompanied by a regional sea surface cooling (Irvali et al., 2012; Zhuravleva et al., 2017b).
1091	A corresponding cooling and freshening event, referred here and elsewhere as to a Younger Dryas-like event, is
1092	captured in some high- and mid-latitude North Atlantic records (Sarnthein and Tiedemann, 1990; Bauch et al.,
1093	2012; Irvali et al., 2012; Schwab et al., 2013; Govin et al., 2014; Jiménez-Amat and Zahn, 2015). Coherently with
1094	the Younger Dryas-like cooling and the reduction (shallowing) in the North Atlantic Deep Water, formation, an
1095	increase in the Antarctic Bottom Water influence is revealed in the Southern Ocean, sediments, arguing for the
1096	existence of an "interglacial" bipolar seesaw (Hayes et al., 2014). The out-of-phase climatic relationship between
1097	high northern and high southern latitudes, typical for the last glacial termination (Barker et al., 2009), could be
1098	attributed to a strong sensitivity of the transitional climatic regime of early MIS 5e due to persistent high-latitude
1099	freshening (continuing deglaciation, Fig. 6) and suppressed overturning in the Nordic Seas (Hodell et al., 2009).
1100	This assumption seems of crucial importance as it might help explain a relatively "late" occurrence of the Younger
1101	Dryas-like event during the last interglacial, when compared to the actual Younger Dryas during the last
1102	deglaciation (Bauch et al., 2012). The recognition of the transitional phase during early MIS 5e is not new, but
1103	only few authors have pointed out its importance for understanding the last interglacial climatic evolution beyond
1104	the subpolar regions (e.g., Govin et al., 2012; Schwab et al., 2013; Kandiano et al., 2014).
1105	As insolation forcing decreased during late MIS 5e and the ITCZ gradually moved southward, the white variety
1106	of <i>G. ruber</i> started to dominate the assemblage (Fig. 5), arguing for generally colder sea surface conditions in the
1	

	Deleted: ¶
/	Deleted:
	Deleted: s
	Deleted: ing
-	Deleted: today
/	Deleted: ¶
	Although the full resumption of the AMOC from a shallow or weak mode during T2 occurred only by ~ 124 ka.
	Deleted: apparently
	Deleted: due
	Deleted: Labrador Sea
/	Deleted: In accordance with previous studies from the tropical N. Atlantic suggesting a coupling between ITCZ position and ocean overturning (Rühlemann et al., 1999; Schmidt et al., 2006a; Carlson et al., 2008), it could be argged
/	Deleted: during early MIS 5e
1	Deleted: -
h	Deleted: elsewhere
7)	Deleted: type
9	Deleted: -
7	Deleted: .
2	Deleted: 1????
/	Deleted: ; Zhuravleva et al., 2017a
/	Deleted: type
2	Deleted: /shallowing
	Deleted: NADW
	Deleted: formation
	Deleted:
	Deleted: core data
7	Deleted: is
h	Deleted: t
1)	Deleted: because
9	Deleted: it
/	Deleted: s
	Deleted: to
••••	Deleted: such
	Deleted: type
~	Deleted: T2
Ż	Deleted: ,
N	Deleted: in
~	Deleted: several
	Deleted: ¶ [27]
•••••	Deleted: the
~	Deleted: (Fig. 7C-D)
-	Deleted: 6

1169	Bahama region. The inferred broad salinity tolerance of this species, also to neritic conditions (Bé and Tolderlund,
1170	1971; Schmuker and Schiebel, 2002), was used in some studies to link high proportions of <i>G. ruber</i> (pink and
1171	white varieties) with low SSS (Vautravers et al., 2007; Kandiano et al., 2012). The plots of the global distribution
1172	pattern of G. ruber (white) and G. ruber (pink), however, suggest that when relative abundances of these two
1173	species are approaching maximum values (40% and 10%, respectively), the SSSs would be higher for specimens
1174	of the white variety of <i>G. ruber</i> (Hilbrecht, 1996). Therefore, the strongly dominating white versus pink <i>G. ruber</i>
1175	variety observed in our records during late MIS 5e could be linked not only to decreasing <u>SSTs</u> , but also to
1176	increasing <u>SSSs</u> .
1177	In their study from the western STG, Bahr et al. (2013) also reconstruct sea surface salinification during late MIS
1178	5e in response to enhanced wind stress at times of deteriorating high-latitude climate and increasing meridional
1179	gradients. Accordingly, our isotopic and faunal data (note the abrupt decrease in <i>G. sacculifer</i> proportion at 120
1180	ka; Fig. 5) suggest a pronounced climatic shift that could be attributed to the so-called "neoglaciation", consistent
1181	with the sea surface cooling in the western Nordic Seas and the Labrador Sea (Van Nieuwenhove et al., 2013;
1182	Irvali et al., 2016) as well as with a renewed growth of terrestrial ice (Fronval and Jansen, 1997; Zhuravleva et
1183	al., <u>2017a</u>).
1184	7 Conclusions
1184 1185	7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic
1184 1185 1186	7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage
1184 1185 1186 1187	7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes.
1184 1185 1186 1187 1188	 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-
1184 1185 1186 1187 1188 1189	 ζ Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline- dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances
1184 1185 1186 1187 1188 1188 1189 1190	 <i>ζ</i> Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be a
1184 1185 1186 1187 1188 1188 1189 1190 1191	 <i>ζ</i> Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted
1184 1185 1186 1187 1188 1189 1190 1191 1192	7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ ¹⁸ O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> . The lowered upper water column stratification, in turn, could be a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193	 7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be, a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194	 7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high gelative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be, a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well with the published ITCZ-related Cariaco Basin_record (Gibson and Peterson, 2014), suggesting a_climatic
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195	 <i>7</i> Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well with the published ITCZ-related Cariaco Basin_record (Gibson and Peterson, 2014), suggesting a_climatic coupling between the regions. Based on these data, a northward/southward displacement of the mean annual ITCZ
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196	 <i>J</i> Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be, a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well with the published ITCZ-related Cariaco Basin_record (Gibson and Peterson, 2014), suggesting a_climatic coupling between the regions. Based on these data, a northward/southward displacement of the mean annual ITCZ position, in line with strong/weak northern hemisphere_insolation, could be inferred for early/late MIS 5e.
1184 1185 1186 1187 1188 1190 1191 1192 1193 1195 1196 1197	7 Conclusions New faunal, isotopic, and XRF evidence from the Bahama region, were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, strongly reduced δ ¹⁸ O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i> . The lowered upper water column stratification, in turn, could be a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well with the published ITCZ-related Cariaco Basin record (Gibson and Peterson, 2014), suggesting a climatic coupling between the regions. Based on these data, a northward/southward displacement of the mean annual ITCZ position, in line with strong/weak northern hemisphere insolation, could be inferred for early/late MIS 5e.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198	 <i>J</i> Conclusions New faunal, isotopic, and XRF evidence from the Bahama region were studied for past subtropical climatic evolution, with special attention given to (a) the mechanisms controlling the planktic foraminiferal assemblage and (b) the climatic feedbacks between low and high latitudes. During late MIS 6 and glacial termination, gtrongly reduced δ¹⁸O gradients between surface, and thermocline-dwelling foraminifera suggest decreased water column stratification, which promoted high relative abundances of <i>G. truncatulinoides</i> (dex) and <i>G. inflata</i>. The lowered upper water column stratification, in turn, could be a result of sea surface cooling/salinification and intensified trade winds strength at times of the ITCZ being shifted far to the south. Computed together, relative abundances of the tropical foraminifera <i>G. sacculifer</i> and <i>G. ruber</i> (pink) agree well with the published ITCZ-related Cariaco Basin_record (Gibson and Peterson, 2014), suggesting a_climatic coupling between the regions. Based on these data, a northward/southward displacement of the mean annual ITCZ position, in line with strong/weak northern hemisphere_insolation, could be inferred for early/late MIS 5e. Crucially, an abrupt Younger Dryas-like sea surface cooling/salinification event_at ~127 ka intersected the early MIS 5e warmth (between ~129 and 124 ka) and could be associated with a sudden southward displacement of the

Deleted: surface salinities

Deleted: the sea surface salinities			
Deleted: s.			
Deleted: SST			
Deleted: sea surface salinity			
Deleted: 6B			
Deleted: a			

Deleted: 2017b

Deleted: Notably, a small but coherent increase in the aragonite content and Sr counts is evident at 120 ka and coincides with the change towards finer-grained sediments, altogether arguing for a change in sedimentary regime before the end of the major flooding interval at ~117 ka (Figs. 2 and 4). Further interpretations of the aragonite changes based on the available data appear rather speculative, given that the aragonite precipitation on the platform top at times of sea level highstand is controlled by level of aragonite supersaturation, which, in turn, depends on a number of climate-related parameters, such as CO₂ amounts, temperature, salinity, water depth above the bank top as well as residence time of the water mass above the platform (Morse and Mackenzie, 1990; Morse and He, 1993; Roth and Reijmer, 2004; 2005). Nevertheless, the coherent shift in the carbonate minerology revealed after 120 ka may support major oceanographic and atmospheric changes during the late phase of MIS Se possibly coupled with a significant sea level change. ¶

Deleted: , faunal

1	Deleted: combined with published sedimentological data from a sediment core obtained from the slope of the LBB
/	Deleted: changes in water masses, sedimentary regimes, and RSL change across the last interglacial. By using new data, we were able to better constrain the last interglacial cycle in the investigated core section (cf. Lantzsch et al., [28])
1	Deleted: 2:
-1	Deleted: S
-	Deleted: mixed-laye
٦	Deleted: r
٦	Deleted: . H
Ì	Deleted: proportions
Y	Deleted: c
ľ,	Deleted: attributed
Ì	Deleted: to a deep winter mixing as
()	Deleted: winter
Ì,	Deleted: depressed
Ì	Deleted: ¶
Ì	Deleted: Early MIS 5e:
(Deleted: forcing
-1	Deleted: However
	Deleted: event
(Deleted: (give age!!!)

1270	ITCZ. This atmospheric shift, could be, in turn, related to a millennial-scale instability in the ocean overturning,		
1271	supporting a cross-latitudinal teleconnection that influenced the subtropical climate via ocean-atmospheric		
1272	forcing. These observations lead to an inference that the persistent ocean freshening in the high northern latitudes		
1273	(i.e., continuing deglaciation) and, therefore, unstable deep water overturning during early MIS 5e accounted for		
1274	a particularly sensitive climatic regime, associated with the abrupt warm-cold switches that could be traced across		
1275	various oceanic basins,		Deleted: ¶
1276 1277 1278	Data availability All data will be made available in the online database PANGAEA (www.pangaea.de).		This so-called Younger Dryas type cooling event likely involved AMOC-related forcing that influenced (sub)tropical climate. The relatively late occurrence of Younger Dryas type cooling event, when compared to the actual Younger Dryas in the last deglaciation, is attributed to the transitional climatic regime of early MIS 5e, characterized by persistent high-
1279			N. Atlantic. ¶
1280	Acknowledgments		Late MIS be: Overall sea surface cooling and possibly salinification is reconstructed for the Bahama region, in accordance with insolation decrease and a gradual couthward
1281	We wish to thank H. Lantzsch and J.J.G. Reijmer for providing us with the sediment core and data from core		displacement of the mean annual ITCZ. A coherent change is observed in faunal isotopic and sedimentological proxies
1282	MD99-2202, S. Fessler for performing measurements on stable isotopes, S. Müller and D. Garbe-Schönberg for		arguing for coupled oceanic and northern hemisphere cryospheric reorganizations before the end of the major
1283	technical assistance during XRF scanning, J. Lübbers for her help with sample preparation, and E. Kandiano for		flooding period.
1284	introduction into tropical foraminiferal assemblages. Comments by A. Bahr and one anonymous reviewer greatly	l	
1285	improved the manuscript. A. Z. acknowledges funding from German Research Foundation (DFG grant_		Deleted: Comments by A. Bahr and one anonymous reviewer greatly improved the manuscript
1286	BA1367/12-1).		reviewer greatly improved the manuscript.
1287	۲		Deleted: ¶
1288	Defenences		
1200			
1289	Adkins, J. F., Boyle, E. A., Keigwin, L. and Cortijo, E.: Variability of the North Atlantic thermohaline circulation		
1290	during the last interglacial period, Nature, 390, 154, doi:10.1038/36540, 1997.	\leq	Deleted:
1291	Arbuszewski, J. A., deMenocal, P. B., Cléroux, C., Bradtmiller, L., Mix, A.: Meridional shifts of the Atlantic		
1292	intertropical convergence zone since the Last Glacial Maximum, Nature Geosci. 6, 959, doi:		
1293	<u>10.1038/ngeo1961, 2013.</u>		
1294	Bahr, A., Nürnberg, D., Schönfeld, J., Garbe-Schönberg, D.: Hydrological variability in Florida Straits during	(Deleted: ¶
1295	Marine Isotope Stage 5 cold events, Paleoceanography, 26, doi:10.1029/2010PA002015, 2011.		
1296	Bahr, A., Nürnberg, D., Karas, C. and Grützner, J.: Millennial-scale versus long-term dynamics in the surface and		
1297	subsurface of the western North Atlantic Subtropical Gyre during Marine Isotope Stage 5, Glob. Planet.		
1298	Change, 111, 77-87, doi:10.1016/j.gloplacha.2013.08.013, 2013.		

1325	Bahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P., Hernández-Molina F. J., Röhl U., Voelker A. H. L.,	
1326	Escutia C., Stow D. A. V., Hodell D. and Alvarez-Zarikian C. A.: Deciphering bottom current velocity	
1327	and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: An	
1328	inorganic geochemical approach, Geochem. Geophys. Geosyst., 15, 3145-3160,	
1329	doi:10.1002/2014GC005356, 2014.	
1330	Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R. and Broecker, W. S.: Interhemispheric Atlantic	
1331	seesaw response during the last deglaciation, Nature, 457, 1097, doi:10.1038/nature07770, 2009.	
1332	Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D.: Icebergs not the trigger for North Atlantic	
1333	cold events, Nature 520, 333, doi: 10.1038/nature14330, 2015.	
1334	Bauch, H. A., Kandiano, E. S. and Helmke, J. P.: Contrasting ocean changes between the subpolar and polar North	Deleted: ¶
1335	Atlantic during the past 135 ka, Geophys. Res. Lett., 39, doi:10.1029/2012GL051800, 2012.	
1336	Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters	
1337	of the Atlantic and Indian Oceans, in: Funnel, B. and Riedel, W.R. (Eds.), The Micropalaeontology of	
1338	Oceans, Cambridge University Press, Cambridge, pp. 105-149, 1971.	
1339	Boli, H. M. and Saunders, J. B.: Oligocene to Holocene low latitude planktic foraminifera, in: Bolli, H.M.,	
1340	Saunders, J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy, Cambridge University Press, New York,	
1341	pp. 155–262, 1985.	
1342	Broccoli, A. J., Dahl, K. A., Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys.	
1343	Res. Lett. 33, doi:10.1029/2005GL024546, 2006.	
1344	Carew, J. L. and Mylroie, J. E.: Quaternary tectonic stability of the Bahamian archipelago: evidence from fossil	Deleted: ¶
1345	coral reefs and flank margin caves, Quat. Sci. Rev., 14, 145-153, doi:10.1016/0277-3791(94)00108-N,	
1346	1995.	
1347	Carew, J. L. and Mylroie, J. E.: Geology of the Bahamas, in: Geology and Hydrogeology of Carbonate Islands,	
1348	Developments in Sedimentology, 54, Elsevier Science, pp. 91-139, 1997.	
1349	Carlson, A. E., Oppo, D. W., Came, R. E., LeGrande, A. N., Keigwin, L. D. and Curry, W. B.: Subtropical Atlantic	
1350	salinity variability and Atlantic meridional circulation during the last deglaciation, Geology, 991-994,	
1351	doi:10.1130/G25080A, 2008.	
1352	Chabaud, L.: Modèle stratigraphique et processus sédimentaires au Quaternaire sur deux pentes carbonatées des	
1353	Bahamas (leeward et windward), Doctoral dissertation, Université de Bordeaux, Francais, 2016.	

1356	Chabaud, L., Ducassou, E., Tournadour, E., Mulder, T., Reijmer, J. J. G., Conesa, G., Giraudeau, J., Hanquiez, Deleted: Chabaud, L.: Mod'ele stratigraphique et
1357	V., Borgomano, J. and Ross, L.: Sedimentary processes determining the modern carbonate periplatform Straticraphic Lineward et windward), Straticraphic Lineward et windward),
1358	drift of Little Bahama Bank, Mar. Geol., 378, 213–229, doi:10.1016/j.margeo.2015.11.006, 2016.
1359	Chang, P., Zhang, R., Hazeleger, W., Wen, C., Wan, X., Ji, L., Haarsma, R. J., Breugem, WP., Seidel, H.:
1360	Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon, Nat.
1361	Geosci., 1, 444, doi:10.1038/ngeo218, 2008.
1362	Chiang, J. C. H., Biasutti, M., Battisti, D.S.: Sensitivity of the Atlantic Intertropical Convergence Zone to Last
1363	Glacial Maximum boundary conditions, Paleoceanography, 18, doi:10.1029/2003PA000916, 2003.
1364	Chiang, J. C. H., Cheng, W., Bitz, C.M.: Fast teleconnections to the tropical Atlantic sector from Atlantic
1365	thermohaline adjustment, Geophys. Res. Lett., 35, doi:10.1029/2008GL033292, 2008.
1366	Cléroux, C., Cortijo, E., Duplessy, J. and Zahn, R.: Deep-dwelling foraminifera as thermocline temperature Deleted: 1
1367	recorders, Geochem. Geophys. Geosyst., 8(4), doi:10.1029/2006GC001474, 2007.
1368	Cortijo, E., Lehman, S., Keigwin, L., Chapman, M., Paillard, D. and Labeyrie, L.: Changes in Meridional
1369	Temperature and Salinity Gradients in the North Atlantic Ocean (30°-72°N) during the Last Interglacial
1370	Period, Paleoceanography, 14, 23-33, doi:10.1029/1998PA900004, 1999.
1371	Deaney, E. L., Barker, S. and van de Flierdt, T.: Timing and nature of AMOC recovery across Termination 2 and
1372	magnitude of deglacial CO2 change, Nat. Commun., 8, 14595, doi:10.1038/ncomms14595, 2017.
1373	Droxler, A. W. and Schlager, W.: Glacial versus interglacial sedimentation rates and turbidite frequency in the
1374 1375	Bahamas, Geology 13, 799–802, 1985.
1376	Raymo M. E.: Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349
1377	doi:10.1126/science.aa24019.2015
1378	Frieson D B and Wollin G: Pleistocene climates and chronology in deen-sea sediments. Science, 162(3859)
1379	1227-1234 1968
1380	Fronval T and Jansen E · Femian and Early Weichselian (140–60 ka) Paleoceanography and naleoclimate in the
1381	Nordic Seas with comparisons to Holocene conditions Paleoceanography 12 443–462
1382	doi:10.1029/97PA00322.1997
1383	Galaasen E. V. Ninnemann U. S. Irvali N. Kleiven H. (Kikki) F. Rosenthal Y. Kissel C. and Hodell D. A
1384	Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period. Science.
1385	343, 1129, doi:10.1126/science.1248667.2014

1392	Gibson, K. A. and Peterson, L. C.: A 0.6 million year record of millennial-scale climate variability in the tropics,
1393	Geophys. Res. Lett., 41, 969–975, doi:10.1002/2013GL058846, 2014.
1394	Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, JC., Jansen, E., Labeyrie, L., Landais, A., Marti, O.,
1395	Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D. and Waelbroeck, C.: Persistent influence
1396	of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8,
1397	483–507, doi:10.5194/cp-8-483-2012, 2012.
1398	Govin, A., Varma, V. and Prange, M.: Astronomically forced variations in western African rainfall (21°N–20°S)
1399	during the Last Interglacial period, Geophys. Res. Lett., 41, 2117-2125, doi:10.1002/2013GL058999,
1400	2014.
1401	Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B., Hillaire-Marcel, C., St-Onge, G., Stoner, J. S.,
1402	Bassinot, F., Bazin, L., Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D., Gersonde, R.,
1403	Jiménez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin, F., Seidenkrantz, MS.,
1404	Veres, D., Waelbroeck, C. and Zahn, R.: Sequence of events from the onset to the demise of the Last
1405	Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives, Quat. Sci.
1406	Rev., 129, 1–36, doi:10.1016/j.quascirev.2015.09.018, 2015.
1407	Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Ramsey, C. B., Satow, C. and
1408	Roberts, A. P.: Rapid coupling between ice volume and polar temperature over the past 150,000 years,
1409	Nature, 491, 744, doi:10.1038/nature11593, 2012.
1410	Groeneveld, J. and Chiessi, C. M.: Mg/Ca of Globorotalia inflata as a recorder of permanent thermocline
1411	temperatures in the South Atlantic, Paleoceanography, 26, doi:10.1029/2010PA001940, 2011.
1412	Hayes, C. T., Martínez-García, A., Hasenfratz, A. P., Jaccard, S. L., Hodell, D. A., Sigman, D. M., Haug, G. H.
1413	and Anderson, R. F.: A stagnation event in the deep South Atlantic during the last interglacial period,
1414	Science, 346, 1514–1517, doi:10.1126/science.1256620, 2014.
1415	Hearty, P. J. and Neumann, A. C.: Rapid sea level and climate change at the close of the Last Interglaciation (MIS
1416	5e): evidence from the Bahama Islands, Quat. Sci. Rev., 20, 1881-1895, doi:10.1016/S0277-
1417	3791(01)00021-X, 2001.
1418	Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J. and McCulloch, M.: Global sea-level fluctuations

 1419
 during the Last Interglaciation (MIS 5e), Quat. Sci. Rev., 26, 2090–2112, doi:

 1420
 10.1016/j.quascirev.2007.06.019, 2007.

1421	Helmke, J. P., Bauch, H. A., Röhl, U. and Kandiano, E. S.: Uniform climate development between the subtropical	
1422	and subpolar Northeast Atlantic across marine isotope stage 11, Clim. Past, 4, 181-190, doi:10.5194/cp-	
1423	4-181-2008, 2008.	
1424	Hennekam, R. and de Lange, G., X-ray fluorescence core scanning of wet marine sediments: methods to improve	Deleted: Henderson, G. M. and Slowey, N. C.: Evidence
1425	quality and reproducibility of high-resolution paleoenvironmental records, Limnol. Oceanogr., 10, 991-	trom U-1n dating against Northern Hemisphere forcing of the penultimate deglaciation, Nature, 404, 61, doi:10.1038/35003541_2000.
1426	1003, doi:10.4319/lom.2012.10.991, 2012.	Henderson, G. M., Rendle, R. H., Slowey, N. C., and Reijmer, J. J. G.: U-Th dating and diagenesis of
1427	Hilbrecht, H.: Extant planktic foraminifera and the physical environment in the Atlantic and Indian Oceans: an	Pleistocene highstand sediments from the Bahamas slope, Ocean Drilling Program, Scientific Results, 166, 61–76,
1428	atlas based on Climap and Levitus (1982) data. Mitteilungen aus dem Geologischen Institut der Eidgen.	2000.¶
1429	Technischen Hochschule und der Universität Zürich, Neue Folge, Zürich, 93 pp, 1996.	
1430	Hodell, D. A., Minth, E. K., Curtis, J. H., McCave, I. N., Hall, I. R., Channell, J. E. T., Xuan, C.: Surface and	
1431	deep-water hydrography on Gardar Drift (Iceland Basin) during the last interglacial period, Earth Planet.	
1432	Sci. Lett., 288, 10-19, doi:10.1016/j.epsl.2009.08.040, 2009.	
1433	Hoffman, J. S., Clark, P. U., Parnell, A. C. and He, F.: Regional and global sea-surface temperatures during the	Deleted: ¶
1434	last interglaciation, Science, 355, 276, doi:10.1126/science.aai8464, 2017.	
1435	Irvali, N., Ninnemann, U. S., Galaasen, E. V., Rosenthal, Y., Kroon, D., Oppo, D. W., Kleiven, H. F., Darling, K.	
1436	F. and Kissel, C.: Rapid switches in subpolar North Atlantic hydrography and climate during the Last	
1437	Interglacial (MIS 5e), Paleoceanography, 27, PA2207, doi:10.1029/2011PA002244, 2012.	
1438	Irvali, N., Ninnemann, U. S., Kleiven, H. (Kikki) F., Galaasen, E. V., Morley, A. and Rosenthal, Y.: Evidence for	
1439	regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last	
1440	interglacial, Quat. Sci. Rev., 150, 184-199, doi:10.1016/j.quascirev.2016.08.029, 2016.	
1441	Jentzen, A., Schönfeld, J., Schiebel, R.: Assessment of the Effect of Increasing Temperature On the Ecology and	
1442	Assemblage Structure of Modern Planktic Foraminifers in the Caribbean and Surrounding Seas, J.	
1443	Foraminiferal Res. 251-272, doi: 10.2113/gsjfr.48.3.251, 2018.	
1444	Jiménez-Amat, P. and Zahn, R.: Offset timing of climate oscillations during the last two glacial-interglacial	Deleted: 1
1445	transitions connected with large-scale freshwater perturbation, Paleoceanography, 30, 768-788,	
1446	doi:10.1002/2014PA002710, 2015.	
1447	Johns, W. E., Townsend, T. L., Fratantoni, D. M. and Wilson, W. D.: On the Atlantic inflow to the Caribbean	
1448	Sea. Deep Sea Research Part I: Oceanogr. Res. Pap., 49, 211-243. doi:10.1016/S0967-0637(01)00041-	
1449	3. 2002.	

1461	Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera,		
1462	Biogeosci., 12, 2207-2226, doi:10.5194/bg-12-2207-2015, 2015.		
1463	Kandiano, E. S., Bauch, H. A., Fahl, K., Helmke, J. P., Röhl, U., Pérez-Folgado, M. and Cacho, I.: The meridional		
1464	temperature gradient in the eastern North Atlantic during MIS 11 and its link to the ocean-atmosphere		
1465	system, Palaeogeogr. Palaeoclimatol. Palaeoecol., 333-334, 24-39, doi:10.1016/j.palaeo.2012.03.005,		
1466	2012.		
1467	Kandiano, E. S., Bauch, H. A., Fahl, K., 2014. Last interglacial surface water structure in the western		
1468	Mediterranean (Balearic) Sea: Climatic variability and link between low and high latitudes, Glob. Planet.		
1469	Change, 123, 67-76, doi:10.1016/j.gloplacha.2014.10.004, 2014.		
1470	Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. and Oppenheimer, M.: Probabilistic assessment of sea	 Deleted: ¶	
1471	level during the last interglacial stage, Nature, 462, 863-867, doi:10.1038/nature08686, 2009.		
1472	Lantzsch, H., Roth, S., Reijmer, J. J. G. and Kinkel, H.: Sea-level related resedimentation processes on the	 Deleted: Labeyrie	, L.
1473	northern slope of Little Bahama Bank (Middle Pleistocene to Holocene), Sedimentology, 54, 1307-1322,	doi:10.1594/PANG	ent of AE
1474	doi:10.1111/j.1365-3091.2007.00882.x, 2007.		
1475	Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M. and Levrard, B.: A long-term numerical		
1476	solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261-285, doi:10.1051/0004-		
1477	6361:20041335, 2004.		
1478	Levitus, S., Antonov, J. I., Baranova, O. K., Boyer, T. P., Coleman, C. L., Garcia, H. E., Grodsky, A. I., Johnson,		
1479	D. R., Locarnini, R. A. and Mishonov, A. V.: The world ocean database, Data Sci. J., 12, WDS229-		
1480	WDS234, 2013.		
1481	Lisiecki, L. E. and Stern, J. V.: Regional and global benthic $\delta 180$ stacks for the last glacial cycle,		
1482	Paleoceanography, 31, 1368-1394, doi:10.1002/2016PA003002, 2016.		
1483	Lohmann, G. P. and Schweitzer, P. N.: Globorotalia truncatulinoides' Growth and chemistry as probes of the past		
1484	thermocline: 1. Shell size, Paleoceanography, 5, 55-75, doi:10.1029/PA005i001p00055, 2010.		
1485	Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, JM., Raynaud,		
1486	D., Stocker, T. F. and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the		
1487	past 800,000 years, Nature, 453, 383-386, doi:10.1038/nature06950, 2008.		
1488	Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E.,		
1489	Lambeck, K., Luterbacher, J. and Naish, T.: Information from paleoclimate archives, in: Stocker, T. F.,		
1490	Qin, D., Plattner, GK., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley,		

Deleted: Labeyrie, L. D. and Reijmer, J. J. G.: Physical roperties of sediment core MD99-2202. oi:10.1594/PANGAEA.253089, 2005.¶

1495	P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the	
1496	Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 383-464, 2013.	
1497	Morse, J. W. and MacKenzie, F. T.: Geochemistry of sedimentary carbonates, Elsevier, 1990.	Deleted: Morse, J. W. and He, S.: Influences of T, S and
1498	Muhs, D. R., Budahn, J. R., Prospero, J. M., Carey, S. N.: Geochemical evidence for African dust inputs to soils	PCO2 on the pseudo-homogeneous precipitation of CaCO3 from seawater: implications for whiting formation, Mar.
1499	of western Atlantic islands: Barbados, the Bahamas, and Florida, J. Geophys. Res.: Earth Surface, 112,	Cnem., 41, 291–297, dol:10.1016/0304-4203(93)90261-L, 1993.¶
1500	doi:10.1029/2005JF0004452007, 2007.	Deleted: Mackenzie
1501	Mulitza, S., Dürkoop, A., Hale, W., Wefer, G. and Niebler, H. S.: Planktonic foraminifera as recorders of past	Deleted: ¶
1502	surface-water stratification, Geology, 25(4), 335-338, doi:10.1130/0091-	
1503	7613(1997)025<0335:PFAROP>2.3.CO;2, 1997.	
1504	Neumann, A. C. and Land, L. S.: Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas; a	
1505	budget, J. Sediment. Res., 45, 763-786, 1975.	
1506	NGRIP community members: High-resolution record of Northern Hemisphere climate extending into the last	Deleted: ¶
1507	interglacial period, Nature, 431, 147-151, doi:10.1038/nature02805, 2004.	Neumann, A. C. and Moore, W. S.: Sea Level Events and Pleistocene Coral Ages in the Northern Bahamas, Quat.
1508	Paillard, D., Labeyrie, L. and Yiou, P.: Macintosh Program performs time-series analysis, Eos Trans, AGU 77,	Res., 5, 215–224, doi:10.1016/0033-5894(75)90024-1, 1975.¶
1509	379-379, doi:10.1029/96EO00259, 1996.	Deleted: O'Leary, M. J., Hearty, P. J., Thompson, W. G., Raymo, M. E., Mitrovica, J. X. and Webster, J. M.: Ice
1510	Peterson, L. C. and Haug, G. H.: Variability in the mean latitude of the Atlantic Intertropical Convergence Zone	sheet collapse following a prolonged period of stable sea level during the last interglacial, Nature Geosci., 6, 796,
1511	as recorded by riverine input of sediments to the Cariaco Basin (Venezuela), Palaeogeogr.	doi:10.1038/nge01890, 2013.1
1512	Palaeoclimatol. Palaeoecol. 234, 97-113, doi:10.1016/j.palaeo.2005.10.021, 2006.	
1513	Poore, R. Z., Dowsett, H. J., Verardo, S., and Quinn, T. M.: Millennial- to century-scale variability in Gulf of	Deleted: 1
1514	Mexico Holocene climate records, Paleoceanography, 18, doi:10.1029/2002PA000868, 2003.	
1515	Richter, T. O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de Stigter, H. C., De Haas, H. and van Weering,	
1516	T. C. E.: The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic	
1517	sediments, Geol. Soc. London, Special Publications, 267, 39, doi:10.1144/GSL.SP.2006.267.01.03,	
1518	2006.	
1519	Roth, S. and Reijmer, J. J. G.: Holocene Atlantic climate variations deduced from carbonate periplatform	
1520	sediments (leeward margin, Great Bahama Bank), Paleoceanography, 19, PA1003,	
1521	doi:10.1029/2003PA000885, 2004.	
1522	Roth, S. and Reijmer, J. J. G.: Holocene millennial to centennial carbonate cyclicity recorded in slope sediments	
1523	of the Great Bahama Bank and its climatic implications, Sedimentology, 52, 161-181,	
1524	doi:10.1111/j.1365-3091.2004.00684.x, 2005.	

1543	Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G. and Zahn, R.: Warming of the tropical Atlantic Ocean and	
1544	slowdown of thermohaline circulation during the last deglaciation, Nature, 402, 511,	
1545	doi:10.1038/990069, 1999.	
1546	Sarnthein, M. and Tiedemann, R.: Younger Dryas-style cooling events at glacial terminations I-VI at ODP site	
1547	658: Associated benthic 613C anomalies constrain meltwater hypothesis. Paleoceanography and	
1548	Paleoclimatology, 5, 1041-1055, doi: 10.1029/PA005i006p01041, 1990.	
1549	Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean, Springer, 2017.	Deleted: ¶
1550	Schlager, W., Reijmer, J. J. G. and Droxler, A.: Highstand Shedding of Carbonate Platforms, J. Sedim. Res., 64B,	
1551	270–281, 1994.	
1552	Schlitzer, R.: Ocean data view, edited, 2012.	
1553	Schmidt, M. W., Vautravers, M. J. and Spero, H. J.: Rapid subtropical North Atlantic salinity oscillations across	
1554	Dansgaard-Oeschger cycles, Nature, 443, 561, doi:10.1038/nature05121, 2006a.	
1555	Schmidt, M. W., Vautravers, M. J. and Spero, H. J.: Western Caribbean sea surface temperatures during the late	
1556	Quaternary, Geochem. Geophys. Geosyst., 7, doi:10.1029/2005GC000957, 2006b.	
1557	Schmitz, W. J. and McCartney, M. S.: On the North Atlantic Circulation, Rev. Geophys., 31, 29-49,	
1558	doi:10.1029/92RG02583, 1993,	Deleted: 2010
1559	Schmitz, W. J. and Richardson, P. L.: On the sources of the Florida Current. Deep Sea Res. Part A: Oceanogr.	
1560	Res. Pap., 38, S379–S409, doi:10.1016/S0198-0149(12)80018-5, 1991.	
1561	Schmuker, B. and Schiebel, R.: Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea,	
1562	Mar. Micropal., 46, 387-403, doi:10.1016/S0377-8398(02)00082-8, 2002.	
1563	Schneider, T., Bischoff, T., Haug, G. H.: Migrations and dynamics of the intertropical convergence zone, Nature,	
1564	513, 45, doi: 10.1038/nature13636, 2014.	
1565	Schwab, C., Kinkel, H., Weinelt, M. and Repschläger, J.: A coccolithophore based view on paleoenvironmental	Deleted: ¶
1566	changes in the open ocean mid-latitude North Atlantic between 130 and 48 ka BP with special emphasis	
1567	on MIS 5e, Quat. Sci. Rev., 81, 35-47, doi:10.1016/j.quascirev.2013.09.021, 2013.	
1568	Siccha, M. and Kučera, M.: ForCenS, a curated database of planktonic foraminifera census counts in marine	
1569	surface sediment samples, Sci. Data, 4, 170109, 2017.	
1570	Slowey, N. C. and Curry, W. B.: Glacial-interglacial differences in circulation and carbon cycling within the upper	
1571	western North Atlantic, Paleoceanography, 10, 715-732, doi:10.1029/95PA01166, 1995.	

1575	Slowey, N. C., Wilber, R. J., Haddad, G. A. and Henderson, G. M.: Glacial-to-Holocene sedimentation on the Deleted: Slowey, N. C., Henderson, G. M. and Curry, W. B.: Direct LL-Th dating of marine sediments from the two
1576	western slope of Great Bahama Bank, Mar. Geol., 185, 165–176, doi:10.1016/S0025-3227(01)00295-X, doi:10.1038/383242a0, 1996.
1577	2002.
1578	Stahr, F. R. and Sanford, T. B.: Transport and bottom boundary layerobservations of the North Atlantic Deep
1579	Western Boundary Current at the Blake Outer Ridge, Deep Sea Res. Part II: Topical Studies in
1580	Oceanography 46, 205–243, doi:10.1016/S0967-0645(98)00101-5, 1999.
1581	Stirling, C., Esat, T., Lambeck, K., McCulloch, M.: Timing and duration of the Last Interglacial: evidence for a
1582	restricted interval of widespread coral reef growth, Earth Planet. Sci. Lett., 160, 745-762,
1583	doi:10.1016/S0012-821X(98)00125-3, 1998.
1584	Stramma, L. and Schott, F.: The mean flow field of the tropical Atlantic Ocean. Deep Sea Res. Part II: Trop. Stud.,
1585	Oceanogr., 46, 279–303, doi:10.1016/S0967-0645(98)00109-X, 1999.
1586	Tjallingii, R., Röhl, U., Kölling, M. and Bickert, T.: Influence of the water content on X-ray fluorescence core-
1587	scanning measurements in soft marine sediments, Geochem. Geophys. Geosyst., 8,
1588	doi:10.1029/2006GC001393, 2007.
1589	Van Nieuwenhove, N., Bauch, H. A. and Andruleit, H.: Multiproxy fossil comparison reveals contrasting surface
1590	ocean conditions in the western Iceland Sea for the last two interglacials, Palaeogeogr. Palaeoclimatol.
1591	Palaeoecol., 370, 247-259, doi:10.1016/j.palaeo.2012.12.018, 2013.
1592	Vautravers, M. J., Shackleton, N. J., Lopez-Martinez, C. and Grimalt, J. O.: Gulf Stream variability during marine
1593	isotope stage 3, Paleoceanography, 19, PA2011, doi:10.1029/2003PA000966, 2004.
1594	Vautravers, M. J., Bianchil, G. and Sackleton, N. J.: Subtropical NW Atlantic surface water variability during the
1595	last interglacial, in: Sirocko, F., Claussen, M., Sánches-Goñi, M. F., Litt, T. (Eds.), The Climate of Past
1596	Interglacials, Developm. in Quat. Sci., Elsevier, pp. 289-303, doi:10.1016/S1571-0866(07)80045-5,
1597	2007.
1598	Vellinga, M. and Wood, R. A.: Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation,
1599	Clim. Change, 54, 251–267, doi: 10.1023/A:1016168827653, 2002.
1600	Wang, C. and Lee, S.: Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic Deleted:
1601	hurricanes, Geophys. Res. Lett., 34, doi:10.1029/2006GL028579, 2007.
1602	Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., Shen, CC.:
1603	Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies, Nature, 432,
1604	740, doi:10.1038/nature03067, 2004.
1	

1616	Williams, S. C.: Stratigraphy, Facies Evolution and Diagenesis of Late Cenozoic Lime- stones and Dolomites,	
1617	Little Bahama Bank, Bahamas, Univ. Miami, Coral Gables FL, 1985.	
1618	Wilson, P. A. and Roberts, H. H.: Density cascading: off-shelf sediment transport, evidence and implications,	Deleted: ¶
1619	Bahama Banks, J. Sedim. Res., 65(1), 45-56, 1995.	
1620	Yarincik, K. M., Murray, R. W., Peterson, L. C.: Climatically sensitive eolian and hemipelagic deposition in the	
1621	Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al, Paleoceanography,	
1622	<u>15, 210–228, doi:10.1029/1999PA900048, 2000.</u>	
1623	Zhang, R.: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic,	Deleted: 1
1624	Geophys. Res. Lett., 34, doi:10.1029/2007GL030225, 2007.	
1625	Zhuravleva, A., Bauch, H. A. and Spielhagen, R. F.: Atlantic water heat transfer through the Arctic Gateway	
1626	(Fram Strait) during the Last Interglacial, Glob. Planet. Change, 157, 232-243,	
1627	doi:10.1016/j.gloplacha.2017.09.005, 2017a.	
1628	Zhuravleva, A., Bauch, H.A. and Van Nieuwenhove, N.: Last Interglacial (MIS5e) hydrographic shifts linked to	
1629	meltwater discharges from the East Greenland margin, Quat. Sci. Rev., 164, 95-109,	
1630	doi:10.1016/j.quascirev.2017.03.026, <u>2017b</u> .	Deleted: 2017a
1631	Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R. and Lourens, L. J.: Persistent summer expansion of the	Deleted: Zhuravleva, A., Bauch, H. A. and Spielhagen,
1632	Atlantic Warm Pool during glacial abrupt cold events, Nature Geosci., 1, 601, doi:10.1038/ngeo277,	R. F.: Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial, Glob. Planet Change 157, 232–243
1633	2008.	doi:10.1016/j.gloplacha.2017.09.005, 2017b.¶
1634		
1635		

1644 Figure captions

1645 Figure 1: Maps showing positions of investigated sediment records and oceanic/atmospheric circulation. 1646 (a) Simplified surface water circulation in the (sub)tropical North Atlantic and positions of investigated core 1 647 records: MD99-2202 (27°34.5', N, 78°57.9', W, 460 m water depth; this study), Ocean Drilling Program (ODP) 1648 Site 1002 (10°42.7' N, 65°10.2' W, 893 m water depth; Gibson and Peterson, 2014), MD03-2664, 57°26.3' N, 1649 48°36.4' W, 3442 m water depth, Galaasen et al., 2014 and PS1243 (69°22.3' N, 06°33.2' W, 2710 m water 1650 depth, Bauch et al., 2012), (b) Relative abundances of the tropical foraminifera G. sacculifer and G. ruber (pink) 1651 (Siccha and Kučera, 2017) and positions of the Intertropical Convergence Zone (ITCZ) during boreal winter and 1652 summer. (c) Summer and winter hydrographic sections (as defined by the black line in b), showing temperature 1653 and salinity obtained from the World Ocean Atlas (Levitus et al., 2013). Vertical bars denote calcification depths 1654 of G. ruber (white) and G. truncatulinoides (dex), Note, that G. truncatulinoides (dex) reproduce in winter time 1655 and due to its life cycle with changing habitats (as shown with arrows) accumulate signals from different water 1656 depths. Maps are created using Ocean Data View (Schlitzer, 2016). 1657

	X
1658	Figure 2: The age model for MIS 5 in core MD99-2202. The temporal framework is based on alignment of (b)
1659	planktic δ^{18} O values (Lantzsch et al., 2007) and (d) relative abundance record of <i>Globigerinoides</i> species with (a)
1660	global benthic isotope stack LS16 (Lisiecki and Stern, 2016). (c) Aragonite content in black (Lantzsch et al., 2007)
1661	and normalized elemental intensities of Sr in lilac as well as (c) relative abundances of G. menardii are shown to
1662	support the stratigraphic subdivision of MIS 5.
1663	
1664	Figure 3: XRF-scan results, sedimentological and foraminiferal data from core MD99-2202 for the period
1665	140-100 ka. (a) δ ¹⁸ O values in G. ruber (white); (b) aragonite content; (a-b) is from Lantzsch et al. (2007).
1666	Normalized elemental intensities of (c) Sr, (e) Ca and (f) Cl, (d) Sr/Ca intensity ratio (truncated at 0.6) and (g)
1667	absolute abundances of G. menardii per sample. Green bars denote core intervals with biased elemental intensities
1668	due to high seawater content. The inferred platform flooding interval (see text) is consistent with the enhanced
1669	production of Sr-rich aragonite needles and a RSL above -6 m (d). T2 – refers to the position of the penultimate
1670	deglaciation (Termination 2),
1671	•
1672	Figure 4: Proxy records from core MD99-2202 over the last interglacial cycle. (a) δ^{18} O values in G. ruber

1673 (white) (Lantzsch et al., 2007), (b) δ^{18} O values in G. truncatulinoides (dex) (black) and G. inflata (blue), (c-d)

Deleted: core ...ediment records and oceanic/atmospheric/oceanic...circulation. (A

Deleted:

Deleted: sediment ...ore records: MD99-2202 (27°34.5′ N, 78°57.9′ ..., 460 m water depth; *this study*), Ocean Drilling Program (ODP) Site 1002 (10°42.7′ ..., 65°10.2′ W, 893 m water depth; Gibson and Peterson, 2014), MD03-2664 and...ODP Site 1063 (...57°26.3′ N, 48°36.4′ W, 3442 m water depth, Galaasen et al., 201433°41.4′ N, 57°37.2′ W, 4584 m water depth; Deaney et al., 2017... and PS1243 (69°22.3′ N, 06°33.2′ W, 2710 m water depth, Bauch et al., 2012).....(**B**[30]

[29]

. [31]

Deleted: i...tertropical Cc...nvergence Zz

Deleted: C...) Summer and winter hydrographic sections (as defined by the black line in **B**...), showing temperature and salinity obtained from the World Ocean Atlas (Levitus et al., 2013). Vertical bars denote calcification depths of *G*. *ruber* (white) and *G*. *truncatulinoides* (dex), respectively [32]

Deleted: . NEC – North Equatorial Current, AC – Antilles Current, FC – Florida Current, STG – subtropical gyre... Maps are created using Ocean Data View (Schlitzer, 2016) 3

Deleted: Figure 2: XRF-scan results and

sedimentological data from core MD99-2202. (A) $\delta^{18}{\rm O}$ values in *G. ruber* (white); (B) aragonite content; (C) fraction with grain size <63 μm ; (A-C) is from Lantzsch et al. (2007). Normalized elemental intensities of (D) Sr, (E) Ca and (G) Cl and (F) Sr/Ca intensity ratio. Green bars denote core intervals with biased elemental intensities due to inferred high seawater content (see main text). The white arrows mark a coherent change in sedimentological proxies at 350 cm (B-D).

Deleted: ¶

Figure 3...: The age model for MIS 5Chronology...of...n core MD99-2202.... The temporal framework Age model...is based on alignment of (b) planktic δ^{18} O values (Lantzsch et al., 2007) and (D) ...d) relative abundance record of *Globigerinoides* species and (B) planktic δ^{18} O values (Lantzsch et al., 2007) ...ith (A...) global benthic isotope stack LS16 (Lisiecki and Stern, 2016). (C...) Aragonite content in black (Lantzsch et al., 2007) and normalized elemental intensities of Sr in lilac and ...s well as (E...) relative abundances of *G. menardii* and *G. menardii* flexuosa [34]

Deleted: 2...: XRF-scan results, and...sedimentological and foraminiferal data from core MD99-2202 for the period 140-100 ka. (a) δ^{18} O values in *G. ruber* (white); (b) aragonite content; (C) fraction with grain size <63 µm; ...a-C...) is from Lantzsch et al. (2007). Normalized elemental intensities of (D...) Sr, (e) Ca and (G...) Cl, and ...(F...) Sr/Ca intensity ratio (truncated at 0.6) and (g) absolute abundances of *G. menardii* per sample. Green bars denote core intervals with biased elemental intensities due to high35]

Deleted: Figure 2: XRF-scan results and sedimentological data from core MD99-2202. (A) δ^{18} O values in *G. ruber* (white); (B) aragonite content; (C) fraction with grain size <63 μ m; (A-C) is from Lantzsch et al. (2007). Normalized elemental intensities of (D) Sr, (E) Ca and (QB6)

Deleted: 5...: Proxy records from core MD99-2202 over the last interglacial cycle. (A...) δ^{18} O values in *G. ruber* (white) (Lantzsch et al., 2007), (B...) δ^{18} O values in *G. truncatulinoides* (dex) (black) and *G. inflata* (blue), (C...[37]

1865	isotopic gradients between δ^{18} O values in G. ruber (white) and G. truncatulinoides (dex) and G. ruber (white)	1	De
1866	and G. inflata, respectively, (e-f) relative abundances of G. inflata and G. truncatulinoides (dex), respectively, (g)		ind infl
1867	normalized Fe intensities, Also shown in (e) and (f) are modern relative foraminiferal abundances (average value		of . sin
1868	$\pm 1\sigma$) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. $\frac{12}{2}$	i	nte
1869	Termination 2.	1	no ±1c
1870			ila
1871	Figure 5 : Relative abundances of main <i>Globigerinoides</i> species in core MD99-2202 over the last interglacial	1	De
1872	<u>cycle</u> . (a) δ^{18} O values in <i>G. ruber</i> (white) (Lantzsch et al., 2007), relative abundances of (b) <i>G. sacculifer</i> , (c) <i>G.</i>	// i	inte
1873	ruber (pink), (d) G. conglobatus and (e) G. ruber (white). Also shown in (b-e) are modern relative foraminiferal		<i>ac</i>
1874	abundances (average value ±1 o) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera	1	no ±1€
1875	(2017) database. T2 – Termination 2.	1	san ila
1876			
1877	Figure <u>6</u> : Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the		De
1877 1878	Figure $\underline{\delta}$: Comparison of proxy records from tropical, subtropical and subpolar North Atlantic over the last interglacial cycle, (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative		De [su] ove
1877 1878 1879	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record		De (sul ove rub (B.
1877 1878 1879 1880	Figure $\underline{\delta}$: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core		De su rub B. sac sun
1877 1878 1879 1880 1881	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core		De (sul pve rub (B. sac sun Ana (20) Site
1877 1878 1879 1880 1881 1882	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b), Also shown is (a) boreal summer		De (sul rub (B. (ac) Sun (20) Site (Ga
1877 1878 1879 1880 1881 1882 1883	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b), Also shown is (a) boreal summer insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004)		De su rub B. Sac Sun Ana (20) Site (Ga (20) 20) 20)
1877 1878 1879 1880 1881 1882 1883 1884	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b), Also shown is (a) boreal summer insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004) data. Shown in (c) are modern relative abundances of <i>G. sacculifer</i> and <i>G. ruber</i> (pink) (average value $\pm 1\sigma$)		De (sul rub (B. (Sac Sun (Ca (Ca (Ca (Ca (Ca) (Ca) (Ca) (Ca) (Ca
1877 1878 1879 1880 1881 1882 1883 1884 1885	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b), Also shown is (a) boreal summer insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004) data. Shown in (c) are modern relative abundances of <i>G. sacculifer</i> and <i>G. ruber</i> (pink) (average value ±1 σ) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. The blue band		De [sul pove rub B. cac sun Ana (Ga 201 201 abu Site sun Ana (20 201 201 abu
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North, Atlantic over the last interglacial cycle, (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b), Also shown is (a) boreal summer insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004) data. Shown in (c) are modern relative abundances of <i>G. sacculifer</i> and <i>G. ruber</i> (pink) (average value ±1 σ) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. The blue band suggests correlation of events (Younger Dryas-Jike cooling), across tropical, subtropical and subpolar North,		De sub sub Sac Sun Ana (20) Site (Ga 201 201 abu Site sun (20) 201 abu Site sun (20) Site (30) (20) Site (30) (20) Site (30) (20) (20) (20) (20) (20) (20) (20) (2
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887	Figure 6: Comparison of proxy records from tropical, subtropical and subpolar North Atlantic over the last interglacial cycle. (b) δ^{18} O values in <i>G. ruber</i> (white) in core MD99-2202 (Lantzsch et al., 2007), (c) relative abundances of the tropical species <i>G. sacculifer</i> and <i>G. ruber</i> (pink) in core MD99-2202, (d) molybdenum record from ODP Site 1002 (Gibson and Peterson, 2014), (c) δ^{13} C values measured in benthic foraminifera from core MD03-2664 (Galaasen et al., 2014, age model is from Zhuravleva et al., 2017b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2012, age model is from Zhuravleva et al., 2017b). Also shown is (a) boreal summer insolation (21 June, 30° N), computed with AnalySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. (2004) data. Shown in (c) are modern relative abundances of <i>G. sacculifer</i> and <i>G. ruber</i> (pink) (average value ±1σ) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. The blue band suggests correlation of events (Younger Dryas-like cooling), across tropical, subtropical and subpolar North. Atlantic (see text). T2 – Termination 2.		De (sul rub (B. (20) Site (Ga 201 201 abu Site sun (Ga 201 201 abu Site sun (Ga 201 abu Site sun (Ga 201 abu Site sun (20)

Deleted: $\Delta\delta^{18}O$... etween $\delta^{18}O$ values in *G. ruber* (white) and *G. truncatulinoides* (dex) and *G. ruber* (white) and *G. inflata*, ... respectively, (**D...f**) relative abundances of *G. inflata* and normalized Fe intensities, (E) relative abundances of *truncatulinoides* (dex) (green) and *G. truncatulinoides* (sin) (black)... respectively, ...(g) normalized Fe intensities(F) relative abundances of *G. falconensis* (violet) and *G. inflata* (black)... Also shown in (**E...**) and (**F...**) are modern relative foraminiferal abundancess...(average value $\pm 1\sigma$) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. Shaded in lilac is the platform flooding interval (as defined in Fig. 4p3g].

Deleted: 6...: Relative abundancess...of main *Globigerinoides* species in core MD99-2202 over the last interglacial cycle. (A...) δ^{18} O values in *G. ruber* (white) (Lantzsch et al., 2007), relative abundancess...of (B...) *G. sacculifer*, (C...) *G. ruber* (pink), (D...) *G. conglobatus* and,...(E...) *G. ruber* (white). Also shown in (B...-E...) are modern relative foraminiferal abundances... (average value $\pm 1\sigma$) around Bahama Bank, computed using 7 nearest samples from Siccha and Kučera (2017) database. Shaded in lilac is the platform flooding interval (as defined in Fig. 439]

leted: 7...: Comparison of proxy records from b)...ropical, subtropical and subpolar North....Atlantic er the last interglacial cycle. (A) ... b) δ^{18} O values in G. per (white) in core MD99-2202 (Lantzsch et al., 2007), ...) relative abundances of the tropical species G. cculifer and G. ruber (pink) in core MD99-2202, (C) boreal nmer insolation (21 June, 30° N), computed with alySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. 004) data, ...**D...**) molybdenum (Mo) ...ecord from ODP 1002 (Gibson and Peterson, 2014), (E...-F... δ¹³C values asured in benthic foraminifera from core MD03-2664 alaasen et al., 2014, age model is from Zhuravleva et al., 7b), (f) Ice-rafted debris in core PS1243 (Bauch et al., 2, age model is from Zhuravleva et al., 2017b)and relative indances of *G. ruber* (total) and *G. sacculifer* from ODP e 1063 (Deaney et al., 2017)... Also shown is (**a**) boreal nmer insolation (21 June, 30° N), computed with alySeries 2.0.8 (Paillard et al., 1996) using Laskar et al. 004) data. Also s...hown in (**B...**) are modern relative indances of G. sacculifer and G. ruber (pink) (average ue $\pm 1\sigma$) around Bahama Bank, computed using 7 nearest nples from Siccha and Kučera (2017) database. The blue ows ... and and the dashed line ... uggests correlation of ents ((so-called ...ounger Dryas- type ...ike bling))...in...cross the ...ropical, subtropical and pical...ubpolar North....Atlantic (see text). Shaded in lilac is the platform flooding interval (as defined in Fig. 4). ... [40]