
Dear	Associate	Editor:	
	
We	appreciate	your	assessment	and	the	reviewers’	final	suggestions.	Herein	we	
discuss	them	point	by	point	to	explain	how	we	addressed	them	in	the	submitted	
revised	manuscript.	
	
Reviewer	1:	
	
I	am	very	pleased	with	the	way	the	authors	have	addressed	the	previous	concern	
raised	by	me	and	the	other	reviewers.	Thus,	I	recommend	that	the	article	is	accepted	
now	pending	very	minor	corrections.	
	
I	am	overall	pleased	with	the	revision	and	especially	with	the	addition	of	the	Text	
Box.	I	would,	however,	suggest	to	include	the	new	Supplementary	map	showing	the	
locations	in	the	main	text.	
	
Done.	
	
Moreover,	instead	of	only	citing	for	the	Little	Ice	Age	IPCC	(2013),	Mann	et	al.	
(2009),	and	Neukom	et	al.	(2014)	I	would	also	recommend	to	in	addition	cite:	
	
PAGES	2k	Consortium.	2013:	Continental-scale	temperature	variability	during	the	
past	two	millennia.	Nature	Geoscience,	6:	339–346.	
	
Done.	
	
The	correct	title	of	Ljungqvist	(2017)	is:	Issues	and	Concepts	in	Historical	Ecology:	
The	Past	and	Future	of	Landscapes	and	Regions	
	
Corrected.	
	
Reviewer	2:	
	
General	remarks	
Compared	to	its	first	version	and	based	on	the	reviewers	comments,	the	paper	has	
heavily	improved.	I	am	still	not	very	happy	with	the	new	labels	ENA	and	LNA,	but	
can	live	with	it	if	it	is	published	in	this	form.	
	
Specific	remarks	
	
Lines	359-360	and	372:	
I	agree	the	tracks	of	the	Westerlies	lie	more	south	in	case	of	negative	NAO	indices.	
But,	in	this	case,	the	subpolar	North	Atlantic	area	is	rather	warm,	not	cool	(see	e.g.	
Visbeck	et	al.,	PNAS	Nov.	6/2001).	In	addition,	I	am	not	convinced	that	the	
storminess	increased.	
	



We	thank	the	reviewer	and	clarify	these	points.	Citing	Orme	et	al.	2018:		
	
“During	a	negative	NAO,	over	sub-annual	timescales,	the	response	to	air-sea	heat	
fluxes	and	wind-driven	Ekman	transport	is	warming	in	a	zonal	band	spanning	the	
North	Atlantic	north	of	45N	(Kushnir,	1994;	Seager	et	al.,	2000;	Visbeck	et	al.,	2003).	
However,	over	multi-annual	to	decadal/centennial	timescales	it	is	suggested	that	a	
negative)	NAO	causes	decreased	convective	activity	in	the	Labrador	Sea	and	
weakening	of	the	SPG	and	meridional	overturning	circulation,	resulting	in	
cooling)north	of	55N	(Eden	and	Jung,	2001;	Visbeck	et	al.,	2003;	H€akkinen	and	
Rhines,	2004;	Latif	et	al.,	2006).	During	a	negative	NAO	strengthened	northerly	winds	
to	the	east	of	Greenland	can	reinforce	the	East	Greenland	Current	(EGC)	and	increase	
the	export	of	sea	ice	and	freshwater	from	the	Arctic	to	the	North	Atlantic,	a	scenario	
which	in	the	twentieth	century	caused	‘Great	Salinity	Anomalies’	(Dickson	et	al.,	1996:	
Delworth	et	al.,	1997;	Belkin	et	al.,	1998;	Blindheim	et	al.,	2000;	Ionita	et	al.,	2016).	
Similar	episodes	have	been	identified	over	decadal-centennial	timescales	in	model	and	
paleoclimate	analyses	(Delworth	et	al.,	1997;	Renssen	et	al.,	2005;	Sicre	et	al.,	2008;	
Ran	et	al.,	2011).”	Also	increased	storminess	in	the	enhanced	storm	intensity	in	the	
Greenland	Sea	is	the	common	interpretation	of	non-sea-salt	Na	(Nesje	et	al.,	2008;	
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Abstract:  29	
 30	
Climate exerted constraints on the growth and decline of past human societies but our knowledge 31	
of temporal and spatial climatic patterns is often too restricted to address causal connections. At 32	
a global scale, the inter-hemispheric thermal balance provides an emergent framework for 33	
understanding regional Holocene climate variability. As the thermal balance adjusted to gradual 34	
changes in the seasonality of insolation, the Inter-Tropical Convergence Zone migrated 35	
southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this 36	
trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of 37	
either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian 38	
Sea for the last 6000 years based on paleobiological records in sediments from the continental 39	
margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting 40	
water column environmental states and planktonic foraminifers sensitive to winter conditions. 41	
We show that strong winter monsoons between ca. 4,500 and 3,000 years ago occurred during a 42	
period characterized by a series of weak interhemispheric temperature contrast intervals, which 43	
we identify as the Early Neoglacial Anomalies (ENA). The strong winter monsoons during ENA 44	
were accompanied by changes in wind and precipitation patterns that are particularly evident 45	
across the eastern Northern Hemisphere and Tropics. This coordinated climate reorganization 46	
may have helped trigger the metamorphosis of the urban Harappan civilization into a rural 47	
society through a push-pull migration from summer flood-deficient river valleys to the 48	
Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon 49	
between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of 50	
the rural late Harappans during that time as the first Iron Age culture established itself on the 51	
Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive landcover changes due 52	
to aridification of the Tropics may have led to a generalized instability of the global climate 53	
during ENA at the transition from the warmer Holocene Thermal Maximum to the cooler 54	
Neoglacial. 55	
 56	
  57	
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1. Introduction 58	
 59	
The growth and decline of human societies can be affected by climate (e.g., Butzer, 2012; 60	
DeMenocal, 2001) but addressing causal connections is difficult, especially when no written 61	
records exist. Human agency sometimes confounds such connections by acting to mitigate 62	
climate pressures or, on the contrary, increasing the brittleness of social systems in face of 63	
climate variability (Rosen, 2007). Moreover, our knowledge of temporal and spatial climatic 64	
patterns remains too restricted, especially deeper in time, to fully address social dynamics. 65	
Significant progress in addressing this problem has been made especially for historical intervals 66	
(e.g., Carey, 2012; McMichael, 2012; Brooke, 2014; Izdebski et al., 2015; d’Alpoim Guedes et 67	
al., 2016; Nelson et al., 2016; Ljungqvist, 2017; Haldon et al., 2018) using theoretical 68	
reconsiderations, novel sources of data and sophisticated deep time modeling that could lead to 69	
better consilience between natural scientists, historians and archaeologists. The coalescence of 70	
migration phenomena, profound cultural transformations and/or collapse of prehistorical 71	
societies regardless of geographical and cultural boundaries during certain time periods 72	
characterized by climatic anomalies, events or regime shifts suggests that large scale climate 73	
variability may be involved (e.g., Donges et al., 2015 and references therein). At the global scale, 74	
the interhemispheric thermal balance provides an emergent framework for understanding such 75	
major Holocene climate events (Boos and Korty, 2016; Broecker and Putnam, 2013; McGee et 76	
al., 2014; Schneider et al., 2014). As this balance adjusted over the Holocene to gradual changes 77	
in the seasonality of insolation (Berger and Loutre, 1991), the Inter-Tropical Convergence Zone 78	
(ITCZ) migrated southward (e.g., Arbuszewski et al., 2013; Haug et al., 2001) accompanied by a 79	
weakening of the Indian summer monsoon (e.g., Fleitmann et al., 2003; Ponton et al., 2012). 80	
Superimposed on this trend, centennial- to millennial-scale anomalies point to asymmetric 81	
changes in the extratropics of either hemisphere (Boos and Korty, 2016; Broccoli et al., 2006; 82	
Chiang and Bitz, 2005; Chiang and Friedman, 2012; Schneider et al., 2014).  83	
 84	
The most extensive but least understood among the early urban civilizations, the Harappan (Fig. 85	
1 and 2; see supplementary materials for distribution of archaeological sites), collapsed ca. 3900 86	
years ago (e.g., Shaffer, 1992). At their peak, the Harappans spread over the alluvial plain of the 87	
Indus and its tributaries, encroaching onto the Sutlej-Yamuna or Ghaggar-Hakra (G-H) interfluve 88	
that separates the Indus and Ganges drainage basins (Fig. 1). In the late Harappan phase that was 89	
characterized by more regional artefact styles and trading networks, cities and settlements along 90	
the Indus and its tributaries declined while the number of rural sites increased on the upper G-H 91	
interfluve (Gangal et al., 2001; Kenoyer, 1998; Mughal, 1997; Possehl, 2002; Wright, 2010). The 92	
agricultural Harappan economy showed a large degree of versatility by adapting to water 93	
availability (e.g., Fuller, 2011; Giosan et al., 2012; Madella and Fuller, 2006; Petrie et al., 2017; 94	
Weber et al., 2010; Wright et al., 2008). Two precipitation sources, the summer monsoon and 95	
winter westerlies (Fig. 1), provide rainfall to the region (Bookhagen and Burbank, 2010; Petrie et 96	
al., 2017; Wright et al., 2008). Previous simple modeling exercises suggested that winter rain 97	
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increased in Punjab over the late Holocene (Wright et al., 2008). During the hydrologic year, part 99	
of this precipitation, stored as snow and ice in surrounding mountain ranges, is redistributed as 100	
meltwater by the Indus and its Himalayan tributaries to the arid and semi-arid landscape of the 101	
alluvial plain (Karim and Veizer, 2002).  102	
 103	
The climatic trigger for the urban Harappan collapse was probably the decline of the summer 104	
monsoon (e.g., Dixit et al., 2014; Kathayat et al., 2017; MacDonald, 2011; Singh et al., 1971; 105	
Staubwasser et al 2003; Stein, 1931) that led to less extensive and more erratic floods making 106	
inundation agriculture less sustainable along the Indus and its tributaries (Giosan et al., 2012) 107	
and may have led to bio-socio-economic stress and disruptions (e.g., Meadow, 1991; Schug et 108	
al., 2013). Still, the remarkable longevity of the decentralized rural phase until ca. 3200 years 109	
ago in the face of persistent late Holocene aridity (Dixit et al., 2014; Fleitmann et al., 2003; 110	
Ponton et al., 2012; Prasad and Enzel, 2006) remains puzzling. Whether the Harappan 111	
metamorphosis was simply the result of habitat tracking toward regions where summer monsoon 112	
floods were still reliable or also reflected a significant increase in winter rain remains unknown 113	
(Giosan et al., 2012; Madella and Fuller, 2006; Petrie et al., 2017; Wright et al., 2008). To 114	
address this dilemma, we present a proxy record for the Indian winter monsoon in the Arabian 115	
Sea and show that its variability was an expression of large scale climate reorganization across 116	
the eastern Northern Hemisphere and Tropics affecting precipitation patterns across the 117	
Harappan territory. Aided by an analysis of Harappan archaeological site redistribution, we 118	
speculate that the Harappan relocation after the collapse of its urban phase may have conformed 119	
to a push-pull migration model.   120	
 121	
2. Background  122	
 123	
Under modern climatological conditions (Fig. 3), the summer monsoon delivers most of the 124	
precipitation to the former Harappan territory, but winter rains are also significant in quantity 125	
along the Himalayan piedmont (i.e., between 15 and 30% annually). Winter rain is brought in 126	
primarily by extra-tropical cyclones embedded in the Westerlies (Dimri et al., 2015) and are 127	
known locally as Western Disturbances (WD). These cyclones distribute winter rains to a zonal 128	
swath extending from the Mediterranean through Mesopotamia, the Iranian Plateau and 129	
Baluchistan, all and across to the western Himalayas (Fig. 3). Stronger and more frequent WD 130	
rains in NW India are associated with southern shifts of the Westerly Jet in the upper troposphere 131	
(e.g., Dimri et al. 2017). Surface winter monsoon winds are generally directed towards the 132	
southwest but they blow preferentially toward the east-southeast along the coast in the 133	
northernmost Arabian Sea (Fig. 3). An enhanced eastward zonal component over the northern 134	
Arabian Sea is typical for more rainy winters (Dimri et al. 2017). Although limited in space and 135	
time, modern climatologies indicate a strong, physical linkage between winter sea-surface 136	
temperatures (SST) in the northern Arabian Sea and precipitation on the Himalayan piedmont, 137	
including the upper G-H interfluve (see also supplementary materials). Ultimately, the thermal 138	

Liviu Giosan� 10/17/2018 1:41 PM
Deleted: 2139	

Liviu Giosan� 10/17/2018 1:41 PM
Deleted: 2140	

Liviu Giosan� 10/17/2018 1:41 PM
Deleted: 2141	



	

	 5	

contrast between the cold Asian continent and relatively warmer Indian Ocean is thought to be 142	
the initial driver of the Indian monsoon winds (Dimri et al., 2016). 143	
 144	
In contrast to the wet summer monsoon, winds of the winter monsoon flow from the continent 145	
toward the ocean and are generally dry. That explains in part why Holocene reconstructions of 146	
the winter monsoon are few and contradictory, suggesting strong regional variabilities (Jia et al., 147	
2015; Kotlia et al., 2017; Li and Morrill, 2015; Sagawa et al., 2014; Wang et al., 2012; Yancheva 148	
et al., 2007). Holocene eolian deposits linked to the winter monsoon are also geographically-149	
limited (Li and Morrill, 2015). However, in the Arabian Sea indirect wind proxies based on 150	
changes in planktonic foraminifer assemblages and other mixing properties have been used to 151	
reconstruct distinct hydrographic states caused by seasonal winds (Böll et al., 2014; Curry et al., 152	
1992; Lückge et al., 2001; Munz et al., 2015; Schiebel et al., 2004; Schulz et al., 2002). Winter 153	
monsoon winds blowing over the northeast Arabian Sea cool its surface waters via evaporation 154	
and weaken thermal stratification promoting convective mixing (Banse and McClain, 1986; Luis 155	
and Kawamura, 2004). Cooler SSTs and the injection of nutrients into the photic zone lead in 156	
turn to changes in the plankton community (Madhupratap et al., 1996; Luis and Kawamura, 157	
2004; Schulz et al., 2002). To reconstruct the history of winter monsoon we thus employed 158	
complementary proxies for convective winter mixing, at two levels of ecological complexity: (a) 159	
sedimentary ancient DNA to assess the water column plankton community structure, and (b) the 160	
relative abundance of Globigerina falconensis, a planktonic foraminifer sensitive to winter 161	
conditions (Munz et al.; 2015; Schulz et al., 2002).  162	
 163	
3. Methods 164	
 165	
3.1 Sediment Core 166	
 167	
We sampled the upper 2.3 m, comprising the Holocene interval, in the 13-m-long piston core 168	
Indus 11C (Clift et al., 2014) retrieved during R/V Pelagia cruise 64PE300 in 2009 from the 169	
oxygen minimum zone (OMZ) in the northeastern Arabian Sea (23°07.30’N, 66°29.80’E; 566 m 170	
depth) (Fig. 1). The chronology for the Holocene section of the core was previously reported in 171	
Orsi et al. (2017) and is based on calibrated radiocarbon dates of five multi-specimen samples of 172	
planktonic foram Orbulina universa and one mixed planktonic foraminifer sample. Calibration 173	
was performed using Calib 7.1 program (Stuiver et al., 2018) with a reservoir age of 565 ± 35 174	
radiocarbon years following regional reservoir reconstructions by Staubwasser et al. (2002). 175	
Calibrated radiocarbon dates were used to derive a polynomial age model (see supplementary 176	
materials). The piston corer did not recover the last few hundred years of the Holocene record 177	
probably due to overpenetration. However, indistinct but continuous laminations downcore with 178	
no visual or X-radiograph discontinuities, together with the radiocarbon chronology indicate that 179	
the sedimentary record recovered is continuous. 180	
 181	
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3.2. Ancient DNA Analyses 182	
 183	
A total of five grams of wet weight sediment were extracted inside the ancient DNA-dedicated 184	
lab at Woods Hole Oceanographic Institution (WHOI), aseptically as described previously 185	
(Coolen et al., 2013) and transferred into 50 mL sterile tubes. The sediments were homogenized 186	
for 40 sec at speed 6 using a Fastprep 96 homogenizer (MP Biomedicals, Santa Ana, CA) in the 187	
presence of beads and 15 ml of preheated (50 °C) sterile filtered extraction buffer (77 vol% 1M 188	
phosphate buffer pH 8, 15 vol% 200 proof ethanol, and 8 vol% of MoBio’s lysis buffer solution 189	
C1 [MoBio, Carlsbad, CA]). The extraction was repeated with 10 ml of the same extraction 190	
buffer but without C1 lysis buffer (Orsi et al., 2017). After centrifugation, the supernatants were 191	
pooled and concentrated to a volume of 100 µl without loss of DNA using 50,000 NMWL 192	
Amicon® Ultra 15 mL centrifugal filters (Millipore) and contaminants were removed from the 193	
concentrated extract using the PowerClean® Pro DNA Clean-up Kit (MoBio). The exact same 194	
procedures were performed in triplicate without the addition of sediment as a control for 195	
contamination during extraction and purification of the sedimentary DNA.  196	
 197	
The extracted and purified sedimentary DNA was quantified fluorometrically using Quant-iT 198	
PicoGreen dsDNA Reagent (Invitrogen), and ~20 nanograms of each extract was used as 199	
template for PCR amplification of preserved planktonic 18S rRNA genes. The short (~130 base 200	
pair) 18S rDNA-V9 region was amplified using the domain-specific primer combination 1380F 201	
(5’-CCC TGC CHT TTG TAC ACA C-3’) and 1510R (5’CCT TCY GCA GGT TCA CCT AC-202	
3’)(Amaral-Zettler et al., 2009).  Quantitative PCR was performed using a SYBR®Green I 203	
nucleic acid stain (Invitrogen) and using a Realplex quantitative PCR system (Eppendorf, 204	
Hauppauge, NY). The annealing temperature was set to 66 °C and all reactions were stopped in 205	
the exponential phase after 35-42 cycles. 18S rRNA libraries were sequenced on an Illumina 206	
MiSeq sequencing using the facilities of the W.M. Keck Center for Comparative and Functional 207	
Genomics, University of Illinois at Urbana-Champaign, IL, USA sequenced 18S libraries that 208	
resulted in approximately 12 million DNA sequences. 209	
 210	
The 18S rRNA gene sequences were processed using the Quantitative Insights Into Microbial 211	
Ecology (QIIME) environment (Caporaso et al., 2010). Reads passing quality control (removal 212	
of any sequence containing an ‘N’, minimum read length 250 bp, minimum Phred score=20) 213	
were organized into operational taxonomic units (OTUs) sharing 95% sequence identity with 214	
UCLUST (Edgar et al., 2010) and assigned to taxonomic groups through BLASTn searches 215	
against the SILVA database (Pruesse et al., 2007). OTU tables were rarefied to the sample with 216	
the least number of sequences, and all OTUs containing less than one sequence were removed.  217	
OTUs that were detected in only one sample were also removed. Metagenomes were directly 218	
sequenced bi-directionally on an Illumina HiSeq, at the University of Delaware Sequencing and 219	
Genotyping Center (Delaware Biotechnology Institute). Contigs were assembled de novo as 220	
described in Orsi et al. (2017). To identify contigs containing chlorophyll biosynthesis proteins, 221	 Liviu Giosan� 10/17/2018 1:41 PM
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open reading frames on the contig sequences were detected using FragGeneScan (Rho et al., 223	
2010), and protein homologs were identified through BLASTp searches against the SEED 224	
database (www.theseed.org).  Only hits to reference proteins with at least 60% amino acid 225	
similarity over an alignment length >50 amino acids were considered true homologs and used for 226	
downstream analysis. Assignment of ORFs to biochemical pathway classes were made based on 227	
the SEED metabolic pathway database and classification scheme. The relative abundance of 228	
reads mapping to ORFs was normalized against values of a suite of 35 universally conserved 229	
single copy genes (Orsi et al., 2015), per metagenome sample.  230	
 231	
3.3 Factor Analysis 232	
 233	
Q-mode Factor Analysis (QFA) was employed to simplify the ancient DNA dataset. Prior to the 234	
factor analysis the DNA database was reduced to the 124 most abundant taxonomic units from a 235	
total of 1,462 units identified by considering only those present in two or more samples with a 236	
cumulative abundance higher than 0.5±0.1% (Table S1). The data was pretreated with a range-237	
normalization and run though the QFA with a VARIMAX rotation (Pisias et al., 2013). QFA 238	
identified taxonomic groups that covary in our dataset and determined the minimum number of 239	
components (i.e., factors) needed to explain a given fraction of the variance of the data set (Fig. 240	
4; see supplementary materials). Each VARIMAX-rotated factor indicates an association of 241	
taxonomic groups that covary (i.e., behave similarly amongst the samples). Taxonomic groups 242	
that covary strongly within a factor will have high factor scores for that factor. We primarily 243	
used dominant taxa with scores higher than 0.2 in a factor to interpret the plankton taxonomic 244	
groups in that factor. The importance of a factor in any given sample is recorded by the factor 245	
loading that we used to interpret the importance of that factor with depth/time downcore.  246	
 247	
3.4 Foraminifera Counts 248	
 249	
Samples for counting planktonic foraminifer Globigerina falconensis were wet-sieved over a 63-250	
µm screen. Typical planktonic foraminifer assemblages for the NE Arabian Sea were observed: 251	
Globigerinoides ruber, Neogloboquadrina dutertrei, Globigerina falconensis, Orbulina 252	
universa, Globigerinoides sacculifer, Pulleniatina obliquiloculata, Globorotalia menardii. 253	
Counts of Globigerina falconensis were conducted on the size fraction >150 µm. We report 254	
counts for the samples yielding >300 foraminifer individuals (see supplementary materials).  255	
 256	
3.5 Harappan Sites 257	
 258	
Archaeological site distribution provides an important line of evidence for social changes in the 259	
Harappan domain (e.g., Possehl, 2000). We analyzed the redistribution of small (<20 ha), rural 260	
vs. large (>20 ha), possibly urban sites on the G-H interfluve from the Early Harappan period, 261	
through the Mature and Late periods to the post-Harappan Grey Ware culture (see supplementary 262	
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materials). Compared to settlements along the Indus and its tributaries that can be affected by 264	
fluvial erosion (Giosan et al., 2012), the distribution of archaeological sites on G-H, where large 265	
laterally-incising Himalayan rivers were absent during the Holocene, is probably more complete 266	
and representative of their original distribution. To observe trends related to partial or complete 267	
drying of the G-H system (Clift et al., 2012; Giosan et al., 2012; Singh et al., 2017), we divided 268	
the settlements into upper and lower G-H sites located in the modern regions of Punjab and 269	
Haryana in India, respectively Cholistan in Pakistan. For archaeological site locations and their 270	
radiocarbon and/or archaeological ages we follow Giosan et al. (2012), using data from the 271	
compilation by Gangal et al. (2001) with additions from regional gazetteers and surveys (Kumar, 272	
2009; Mallah, 2010; Mughal, 1996 and 1997; Possehl, 1999; Wright et al., 2005). 273	
 274	
4. Results 275	
 276	
Exceptional preservation of organic matter in the OMZ (Altabet et al., 1995; Schulz et al., 2002) 277	
allowed us to reconstruct the history of the planktonic communities based on their preserved 278	
sedimentary DNA (see also Orsi et al., 2017). The factor analysis of the dominant DNA species 279	
(Fig. 4) identified three significant factors that together explain 48% of the variability in the 280	
dataset (see supplementary materials). Additional factors were excluded as they would have 281	
increased the variability explained by an insignificant amount for each (< 3%). We interpret 282	
these factors as corresponding to the SST regime, nutrient availability, and sea level state, 283	
respectively (Fig. 4). Factor 1 (Fig. 4c) explains 20% of the variability and is largely dominated 284	
by radiolarians (Polycystinea) that prefer warmer sea surface conditions (e.g., Cortese and 285	
Ablemann, 2002; Kamikuri et al, 2008). High scores for jellyfish (Cnidaria) that thrive in warm, 286	
eutrophic waters (Purcell, 2005) also support interpreting Factor 1 as a proxy for a plankton 287	
community adapted to high sea surface temperatures. A general increase of the Factor 1 loadings 288	
since the early Holocene is in accordance with the UK

37 -reconstructed warming of Orsi et al. 289	
(2017). During the Holocene, relatively colder conditions are evident in Factor 1 between ~4500 290	
and 3000 years ago (Fig. 4) as previously detected in the higher resolution UK

37 record from a 291	
core located nearby on the Makran continental margin (Doose-Rolinski et al., 2001). 292	
 293	
Factor 2 (Fig. 4b) explains 18% of the variability and is dominated by marine dinoflagellates 294	
indicative of high nutrient, bloom conditions (e.g., Worden et al., 2015), flagellates (Cercozoa) 295	
and fungi. Parasitic Alveolates (Hematodinium and Syndiniales) that typically appear during 296	
blooms (Worden et al., 2015) are also important. Increased representation of chlorophyll 297	
biosynthesis genes (Fig. 4) in sediment metagenomes (Orsi et al., 2017) indicate higher 298	
productivity (Worden et al., 2015) during the Factor 2 peak. All these associations suggest that 299	
Factor 2 is a nutrient-sensitive proxy with a peak that overlaps with the colder conditions 300	
between ~4500 and 3000 years ago. The inland retreat of the Indus fluvial nutrient source as sea 301	
level rose (see below) probably explains the asymmetry in Factor 2 that exhibits higher scores in 302	
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the early vs. late Holocene. Overall, Factors 1 and 2 suggests enhanced winter convective mixing 308	
between ~4500 and 3000 years ago that brought colder, nutrient-rich waters to the surface.  309	
 310	
Factor 3 (Fig. 4a) explains 10% variability and is dominated by a wide group of taxa. The main 311	
identified contributors to Factor 3 include the coastal diatom Eucampia (Werner, 1977), the fish-312	
egg parasite dinoflagellate Ichthyodinium, also reported from coastal habitats (Shadrin, 2010), 313	
and soil ciliates (Colpodida), which altogether suggest a nearshore environment with fluvial 314	
inputs. The plankton community described by Factor 3 was dominant in the first half of the 315	
Holocene and became scarce as the sea level rose (Camoin et al., 2004) and the Indus coast 316	
retreated inland (Fig. 4) . 317	
 318	
At a simpler ecological level, Globigerina falconensis is the dominant planktonic foraminifer in 319	
the NE Arabian Sea under strong winter wind mixing conditions (Munz et al., 2015; Schulz et 320	
al., 2002). Over the last six millennia, after the sea level approached the present level, and when 321	
the plankton community was consistently outside the influence of coastal and fluvial processes, 322	
G. falconensis shows a peak in relative abundance between ~4500 and 3000 years during the 323	
cold reversal previously identified by the sedimentary ancient DNA (Fig. 4d). A similar peak in 324	
G. falconensis was detected in core SO42-74KL from the western Arabian Sea upwelling area 325	
(Schulz et al., 2002) suggesting that mixing occurred in the whole northern half of the Arabian 326	
Sea (Fig. 4d).  327	
 328	
5. Discussion  329	
 330	
5.1 Winter Monsoon Variability in the Neoglacial 331	
 332	
In concert with previous data from the northern Arabian Sea, our reconstructions suggest that 333	
convective mixing conditions indicative of a stronger winter monsoon occurred between ~4,500 334	
and 3,000 years ago. Another cold yet variable period in the northern Arabian Sea (Doose-335	
Rolinski et al., 2001) occurred after ~1500 years ago under strong winter monsoon mixing (Böll 336	
et al., 2014; Munz et al., 2015) and is seen in the  G. falconensis record of Schulz et al. (2002) 337	
but is not captured completely in our top-incomplete record. In accordance with modern 338	
climatologies colder SSTs in the northern coastal Arabian Sea correspond to increased westerly 339	
extratropical cyclones bringing winter rains as far as Baluchistan and the western Himalayas 340	
(Fig. 3 and Suppl. Fig. 1). Pollen records offshore the Makran coast where rivers from 341	
Baluchistan and ephemeral streams flood during winter (von Rad et al., 1999) indeed indicate 342	
enhanced winter monsoon precipitation during between ~4,500 and 3,000 years ago (Ivory and 343	
Lezine, 2009). Bulk chemistry of sediments from the same Makran core were used to infer 344	
enhanced winter-monsoon conditions between 3900 and 3000 years ago (Lückge et al., 2001). 345	
Although not specifically identified as winter precipitation, increased moisture between ~4,600 346	
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and 2,500 years ago was also documented immediately east of the Indus River mouths in the 352	
now arid Rann of Kutch (Pillai et al., 2018).  353	
 354	
In a comparison to published Holocene records (Fig. 5), two periods of weak interhemispheric 355	
thermal gradient for areas poleward of 30°N and 30°S occurred on top of more gradual, 356	
monotonic changes driven by the seasonality of insolation (Fig. 5e; Marcott et al., 2013; 357	
Schneider et al., 2014). These intervals are coeval within the limits of age models with the strong 358	
winter monsoon phases in the Arabian Sea (Fig. 5g) and southward swings of the Intertropical 359	
Convergence Zone (ITCZ) in the western Atlantic Ocean (Fig. 5f; Haug et al., 2001). Occurring 360	
when Neoglacial conditions became pervasive across the Northern Hemisphere (Solomina et al., 361	
2015), we identify the two late Holocene periods characterized by a series of low 362	
interhemispheric thermal gradient intervals as the Early Neoglacial Anomalies (ENA) between 363	
ca. 4,500 and 3,000 years ago and the Late Neoglacial Anomalies (LNA) after ~1,500, 364	
respectively.  365	
 366	
LNA includes well-known cold events such as the Little Ice Age (LIA), an episode of global 367	
reach but particularly strong in the Northern Hemisphere (IPCC, 2103; Mann et al., 2009; 368	
Neukom et al., 2014; PAGES 2k Consortium, 2013) and the preceding cold during the European 369	
Migration Period (Büntgen et al., 2016). ENA is more enigmatic at this point. The high 370	
resolution Cariaco ITCZ record showing successive southward excursions suggests a series of 371	
“LIA-like events” (LIALE in short - a term proposed by Sirocko, 2015). Furthermore, a 372	
dominantly negative phase of the North Atlantic Oscillation – NAO (Fig. 5b; Olsen et al., 2012) 373	
occurred during ENA, similar to synoptic conditions during LIA. This negative NAO phase was 374	
concurrent with moderate increases in storminess in the Greenland Sea, as shown by sea-salt 375	
sodium in the GISP2 core (O’Brien et al., 1995) and a cooling of the Iceland Basin and probably 376	
the Nordic Seas (Orme et al., 2018). During both ENA and LNA the tropical North Atlantic was 377	
remarkably quiescent in terms of hurricane activity (Fig. 5d), which appears to be the direct 378	
result of the prevailing southward position of the ITCZ (Donnelly and Woodruff, 2007; van 379	
Hengstum et al., 2016).  380	
 381	
At mid latitudes, a southward position for the Westerlies wind belt, as expected during negative 382	
NAO conditions, is supported at the western end of our domain of interest by well-defined 383	
increases in spring floods in the Southern Alps (Fig. 5c) during both ENA and LNA (Wirth et al., 384	
2013). A higher precipitation-evaporation state in the northern Levant (Fig. 5h; Cheng et al., 385	
2015) and positive balances from lake isotope records in the Eastern Mediterranean (Fig. 5i; 386	
Roberts et al., 2011), including lakes in Iran, occur further along the southward Westerlies 387	
precipitation belt. The preferential southward track of the Westerlies during ENA and LNA is 388	
also in agreement with a stronger Siberian Anticyclone, the dominant mode of winter and spring 389	
climate in Eurasia, as interpreted from increases in the GISP2 non-sea-salt potassium (Fig. 5a). 390	
At the Far East end of the Westerly Jet, support comes from dust reconstructions in the Sea of 391	
Japan (Nagashima et al. 2013) and modeling (Kong et al., 2017), which suggest that the 392	
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Westerlies stayed preferentially further south in the late Holocene. As in modern climatologies, 406	
this suite of paleorecords supports our interpretation that stronger winter monsoon winds during 407	
ENA and LNA in the northernmost Arabian Sea, that ought to have driven more convective 408	
mixing at our core site, were accompanied by increased precipitation penetration along the 409	
Westerlies’ path across the Iranian Plateau, Baluchistan and Makran to the western Himalayas. 410	
Aridification after ca. 4200 years ago in a series of sensitive records from southern East Africa to 411	
Australia (Berke et al., 2012; de Boer et al., 2014; Denniston et al., 2013; Li et al., 2018; Russell 412	
et al., 2003; Schefuss et al., 2011; Wurtzel et al., 2018) argue for a narrowing of the ITCZ 413	
migration belt during ENA within and around the Indian Ocean domain (Li et al., 2018).  414	
 415	
In addition to its paleoclimatological value for the Harappan domain (see discussion below), a 416	
more fundamental question emerges from our analysis: what triggered ENA and LNA? The 417	
reduced influence of insolation on the ITCZ during the late Holocene (e.g., Haug et al., 2001; 418	
Schneider et al., 2014) could have provided favorable conditions for internal modes of climate 419	
variability, either tropical or polar, to become dominant (e.g., Wanner et al., 2008; Debret et al., 420	
2009; Thirumalai et al., 2018). In order to explain intervals of tropical instabilities that did not 421	
extend over the entire Neoglacial various trigger mechanisms and/or coupling intensities 422	
between climate subsystems could be invoked. For example, the weaker orbital forcing increased 423	
the susceptibility of climate to volcanic and/or solar irradiance, which have been proposed to 424	
explain decadal to centennial time events such as the Little Ice Age (e.g., IPCC, 2103; Mann et 425	
al., 2009; McGregor et al., 2005; PAGES 2k Consortium. 2013). For the recently defined Late 426	
Antique Little Ice Age between 536 to about 660 AD, a cluster of volcanic eruptions sustained 427	
by ocean and sea-ice feedbacks and a solar minimum have been proposed as triggers (Büntgen et 428	
al., 2016). However, during ENA the solar irradiance was unusually stable without prominent 429	
minima (Stuiver and Braziunas, 1989; Steinhilber et al., 2012). The volcanic activity in the 430	
northern hemisphere was also not particularly higher during ENA than after (Zielenski et al., 431	
1996) and it was matched by an equally active southern hemisphere volcanism (Castellano et al., 432	
2005). As previously suggested for the Little Ice Age (Dull et al. 2010; Nevle and Bird, 2008), 433	
we speculate that mechanisms related to changes in landcover and possibly landuse could have 434	
instead been involved in triggering ENA.  435	
 436	
Biogeophysical effects of aerosol, albedo and evapotranspiration due to landcover changes were 437	
previously shown to be able to modify the position of ITCZ and lead to significant large scale 438	
geographic alterations in hydrology (e.g., Chung and Soden, 2017; Dallmeyer et al., 2017; 439	
Devaraju et al. 2015; Kang et al., 2018; Sagoo and Storelvmo, 2017; Tierney et al., 2017). 440	
Similarly, changes in tropical albedo and concurrent changes in regional atmospheric dust 441	
emissions due to aridification during the Neoglacial could have affected the ITCZ. 442	
Anthropogenic early land use changes could have also led to large scale biogeophysical impacts 443	
(e.g., Smith et al., 2016). Such landcover- and landuse-driven changes were time-transgressive 444	
across Asia and Africa (e.g., Lezine et al., 2017; Jung et al., 2004; Prasad and Enzel; 2006; 445	
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Shanahan et al., 2015; Tierney et al., 2017; Wang et al. 2010; Kaplan et al., 2011) and could 447	
have led to a generalized instability of the global climate as it passed from the warmer Holocene 448	
Thermal Maximum state to the cooler Neoglacial state. Therefore the instability seen during 449	
ENA may reflect threshold behavior of the global climate system characterized by fluctuations or 450	
flickering (Dakos et al., 2008; Thomas, 2016) or a combination of different mechanisms 451	
affecting the coupling intensity between climate subsystems (Wirtz et al. 2010).  452	
 453	
5.2 Climate Instability and the Harappan Metamorphosis  454	
 455	
In contrast to other urban civilizations of the Bronze Age, such as Egypt and Mesopotamia, 456	
Harappans did not employ canal irrigation to cope with the vagaries of river floods despite 457	
probable knowledge about this agricultural technology through their western trade network (e.g., 458	
Ratnagar, 2004). Instead, they relied on a multiple cropping system that started to develop prior 459	
to their urban rise (Madella and Fuller, 2006; Petrie et al., 2017) and integrated the winter crop 460	
package imported from the Fertile Crescent (e.g., wheat, barley, peas, lentil) with local summer 461	
crops (e.g., millets, sesame, limited rice). A diverse array of cropping practices using inundation 462	
and/or dry agriculture that were probably supplemented by labor-intensive well irrigation was 463	
employed across the Indus domain, dependent on the regional characteristics of seasonal rains 464	
and river floods (e.g., Weber 2003; Pokharia et al. 2014; Petrie and Bates, 2017; Petrie et al., 465	
2017). The alluvial plains adjacent to the foothills of the Himalayas were probably the Harappan 466	
region’s most amenable to multiple crops using summer monsoon and WD rains directly or 467	
redistributed via the perennial and/or ephemeral streams of the G-H interfluve. The 468	
orographically-controlled stability and availability of multiple water sources that could be used 469	
to mitigate climate risks probably made this area more attractive as the inundation agriculture 470	
faltered along the Indus and its tributaries when the summer monsoon became more erratic. 471	
 472	
Aridity intensified over most of the Indian subcontinent as the summer monsoon rains started to 473	
decline after 5,000 years ago (Ponton et al., 2012; Prasad et al., 2014). The closest and most 474	
detailed summer monsoon reconstruction to the Harappan domain shows a highly variable 475	
multicentennial trend to drier conditions between ca. 4,300 and 3,300 years ago (Fig. 6a and 6b; 476	
Kathayat et al., 2017). Thresholds in evaporation-precipitation affecting lakes on the upper G-H 477	
interfluve occurred during the same period (Fig. 6c; Dixit et al., 2014). The flood regime 478	
controlled by this variable and declining summer monsoon became more erratic and/or spatially 479	
restricted (Giosan et al., 2012; Durcan et al., 2017) making inundation agriculture less 480	
dependable. Whether fast or over generations, the bulk of Harappan settlements relocated toward 481	
the Himalayan foothills on the plains of the upper G-H interfluve (see supplementary materials; 482	
Possehl, 2002; Kenoyer, 1998; Wright, 2010; Madella and Fuller, 2006; Giosan et al., 2017). 483	
Abandoned by Himalayan rivers since the early Holocene (Giosan et al., 2012; Clift et al., 2012; 484	
Singh et al., 2017; Dave et al., 2018), this region between the Sutlej and Yamuna was watered by 485	
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orographically-enhanced rain feeding an intricate small river network (e.g., Yashpal et al., 1980; 489	
van Dijk et al., 2016; Orengo and Petrie, 2017).  490	
 491	
During the aridification process the number of large, urban-sized settlements on the G-H 492	
interfluve decreased and the number of small settlements drastically expanded (Fig. 6e and 6d 493	
respectively). The rivers on the G-H interfluve merged downstream to feed flows along the 494	
Hakra into Cholistan, at least seasonally, until the latest Holocene (Giosan et al., 2012; Fig. 2). 495	
Regardless if these settlements on the lower G-H interfluve were temporary and mobile (Petrie et 496	
al., 2017) most of them were abandoned (Fig. 6d; see also supplementary materials) as the region 497	
aridified, suggesting that flows became less reliable in this region. However, the dense stream 498	
network on the upper G-H interfluve must have played an important role in more uniformly 499	
watering that region, whether perennially or seasonally. Remarkably, Late Harappan settling did 500	
not extend toward the northwest along the entire Himalayan piedmont despite the fact that this 501	
region must have received orographically-enhanced rains too (Fig. 3 and Suppl. Fig. 1). One 502	
possible reason is that interfluves between Indus tributaries (i.e., Sutlej, Beas, Ravi, Chenab, 503	
Jhelum; Fig. 2) are not extensive. These Himalayan rivers are entrenched and collect flows inside 504	
their wide valleys rather than supporting extensive interfluve stream networks (Giosan et al., 505	
2012). 506	
 507	
Our winter monsoon reconstruction suggests that WD precipitation intensified during the time of 508	
urban Harappan collapse (Fig. 6f). As the summer monsoon flickered and declined at the same 509	
time, the classical push-pull model (e.g., Dorigo and Tobler, 1983; Ravenstein, 1885; 1889) 510	
could help explain the Harappan migration. Push-pull factors induce people to migrate from 511	
negatively affected regions to more favorable locations. Inundation agriculture along the summer 512	
flood-deficient floodplains of the Indus and its tributaries became too risky, which pushed people 513	
out, in the same time as the upper G-H region became increasingly attractive due to augmented 514	
winter rain, which pulled migrants in. These winter rains would have supported traditional winter 515	
crops like wheat and barley, while drought tolerant millets could still be grown in rotation during 516	
the monsoon season. Diversification toward summer crops took place during the Mature 517	
Harappan period, as the winter monsoon steadily increased, beginning around 4,500 years ago 518	
(Fig. 6f), but a greater reliance on rain crops after the urban collapse implies that intense efforts 519	
were made to adapt to hydroclimatic stress at the arid outer edge of the monsoonal rain belt 520	
(Giosan et al., 2012; Madella and Fuller, 2006; Petrie and Bates, 2017; Wright et al., 2008). The 521	
longevity of the Late Harappan settlements in this region may be due to a consistent availability 522	
of multiple year-round sources of water. Summer monsoon remained strong enough locally due 523	
to orographic rainfall, while winter precipitation increased during ENA and both these sources 524	
provided relief from labor-intensive alternatives such as well irrigation. The decline in the winter 525	
monsoon between 3300 and 3000 years ago (Fig. 6) at the end of ENA could have also played a 526	
role in the demise of the rural late Harappans during that time as the first Iron Age culture (i.e., 527	
the Painted Grey Ware) established itself on the Ghaggar-Hakra interfluve. 528	
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 540	
The metamorphosis of Indus civilization remains an episode of great interest. The degradation of 541	
cities and disintegration of supra-regional elements of the Indus cultural system such as its script 542	
need not be sudden to be defined as a collapse. However, recent contributions of 543	
geoarchaeological and settlement patterns studies, together with refinements in chronology, 544	
require higher levels of sophistication for addressing links between climatic shifts and cultural 545	
decline. While variation in coverage and imprecision in dating sites require further efforts (Petrie 546	
et al., 2017), it remains clear that there were shifts in the distribution of population and the range 547	
of site sizes, with decline in the size of the largest sites. The impacts of climatic shifts while 548	
remarkable from recent chronological correlations (e.g., Katahayat et al 2017) must now be 549	
assessed regionally through a nuanced appreciation of rainfall quantities as well as its seasonality 550	
(e.g., Madella and Fuller, 2006; MacDonald, 2011; Petrie et al., 2017; Wright et al., 2008). How 551	
precipitation was distributed seasonally would have affected the long-term stability and upstream 552	
sources of the stream and river network (Giosan et al 2012; Singh et al 2017). Our study suggests 553	
broad spatial and temporal patterns of variability for summer and winter precipitation across the 554	
Harappan domain but the local hydroclimate aspects, as well as the role of seasonal gluts or 555	
shortage of rain on river discharge need also to be considered. For example, did the increase in 556	
winter rain during ENA lead to more snow accumulation in the Himalayas that affected the 557	
frequency and magnitude of floods along the Indus and its tributaries? Or did settlements in 558	
Kutch and Saurashtra, regions of relatively dense habitation during Late Harappan times, also 559	
benefit from increases in winter rains despite the fact that modern climatologies suggest scarce 560	
local precipitation?  561	
 562	
Local reconstructions of seasonal hydroclimatic regimes would greatly enhance our ability to 563	
understand social and economic choices made by Harappans. Attempts made to reconstruct WD 564	
precipitation in the western Himalayas (e.g., Kotlia et al., 2017) are confounded by the dominant 565	
summer monsoon (c.f., Kathayat et el., 2017). Developing local proxies based on summer vs. 566	
winter crop remains may provide a more fruitful route for disentangling the sources of water in 567	
the Harappan domain (e.g., Bates et al., 2017). The Indus civilization, especially in the northern 568	
and eastern regions, had a broad choice of crops of both seasons. Mixed cropping may have 569	
become increasingly important, including drought-tolerant, but less productive, summer millets 570	
that suited weakening monsoon and winter cereals, including drought-tolerant barley, that were 571	
aided by the heightened winter rains of Late Harappan era. Facilitated by this climatic 572	
reorganization during ENA, the eastward shift in settlements, while it may have undermined the 573	
pre-eminence of the largest urban centres like Harappa, can be seen as a strategic adjustment in 574	
subsistence to the summer monsoon decline. Ultimately, ENA is a synoptic pattern that provides 575	
a framework to address the role of climate in interacting with social dynamics at a scale larger 576	
than the Indus domain. As such, if ENA affected human habitation of the entire eastern Northern 577	
Hemisphere, and particularly in the Fertile Crescent and Iran that also depend on winter rains, 578	
remains to be assessed. 579	
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 580	
6. Conclusions 581	
 582	
To assess the role of winter precipitation in Harappan history, we reconstructed the Indian winter 583	
monsoon over the last 6000 years using paleobiological records from the Arabian Sea. According 584	
to modern climatologies, strong winter monsoon winds correspond to rains along a zonal swath 585	
extending through the western Himalayas. Changes in the planktonic community structure 586	
indicative of cool, productive waters highlight strong winter monsoon conditions between ca. 587	
4,500 and 3,000 years ago, an interval spanning the transition from peak development of the 588	
urban Harappan to the demise of its last rural elements. Inferred increases in winter rains during 589	
this time were contemporaneous with the regionally documented decline in summer monsoon, 590	
which has previously been interpreted as detrimental to the inundation agriculture practiced 591	
along the Indus and its tributaries. We propose that the combined changes in summer and winter 592	
monsoon hydroclimate triggered the metamorphosis of the urban Harappan civilization into a 593	
rural society. A push-pull migration can better explain the relocation of Harappans from summer 594	
flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains and 595	
a greater reliance on rainfed crops. Two seasons of cultivation helped to spread risk and enhance 596	
sustainability. Summer and winter orographic precipitation above and across the piedmont plains 597	
fed a dense stream network supporting agriculture close to another millennium for the rural late 598	
Harappans.  599	
 600	
Previous reconstructions and our new monsoon record, in concert with other paleoclimate series 601	
from the Northern Hemisphere and Tropics, display two late Holocene periods of generalized 602	
climate instability: ENA between ca. 4,500 and 3,000 years ago and LNA after ~1,500 years ago. 603	
The reduced influence of insolation during the late Holocene could have provided favorable 604	
conditions for internal modes of climate variability, either tropical or polar, to become dominant 605	
and lead to such instability intervals. Both ENA and LNA occurred during low interhemispheric 606	
thermal gradients and dominantly negative phases of NAO characterized by more southward 607	
swings of both the ITCZ and Westerlies belt at mid northern latitudes, reduced hurricane activity 608	
and increases in high-latitude storminess in the Atlantic. The preferential southward track of the 609	
Westerlies during ENA and LNA is supported by increased rains from WDs from the Levant into 610	
Iran and Baluchistan, but a stronger Siberian Anticyclone and weaker winds along the northern 611	
Westerly track as far east as the Sea of Japan. Susceptibility of climate to volcanic, solar 612	
irradiance and/or landcover were proposed to explain LNA but we speculate that time-613	
transgressive changes in landcover across Asia and Africa could have been involved in triggering 614	
ENA as it passed from the warmer Holocene Thermal Maximum state to the cooler Neoglacial 615	
state.  616	
 617	
  618	
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Text Box 1: Climate Variability and the Indus Civilization 1104	
 1105	
The Harappan or Indus (Valley) Civilization developed on the Indus alluvial plain and adjacent 1106	
regions (Fig. 1 and 2) Between the Indus and Ganges watersheds, a now largely defunct smaller 1107	
drainage system, the Ghaggar-Hakra, was also heavily populated. The Harappan cultural 1108	
tradition (Kenoyer, 1998; Possehl, 2002; Wright, 2010) evolved during an Early Phase (ca. 1109	
5,200–4,500 y ago) from antecedent agricultural communities of the hills bordering the Indus 1110	
plain to the west and reached its urban peak (Mature Phase) between ca. 4,500 and 3,900 years 1111	
ago. The Harappans were agrarian but developed large, architecturally complex urban centers 1112	
and a sophisticated material culture coupled with a robust trade system. In contrast to the 1113	
neighboring hydraulic civilizations of Mesopotamia and Egypt, Harappans appear to have 1114	
invested less effort to control water resources by large-scale canal irrigation near cities but relied 1115	
primarily on fluvial inundation for winter crops and additionally on rain for summer crops. 1116	
Deurbanization ensued after approximately 3,900 years ago and was characterized by the 1117	
development of increasingly regional artefact styles and trading networks, as well as the 1118	
disappearance of the distinctive Harappan script. Some settlements exhibited continuity, albeit 1119	
with reduced size, whereas many riverine sites were abandoned, in particular along the Indus and 1120	
its tributaries. Between ca. 3,900 and 3,200 years ago, there was a proliferation of smaller, 1121	
village-type settlements, especially on the Ghaggar-Hakra interfluve. Socio-economic as well as 1122	
environmental hypotheses have been invoked to explain the collapse of urban Harappan society, 1123	
including foreign invasions, social instabilities, trade decline, climate deterioration, fluvial 1124	
dynamics, and human-induced environmental degradation.  1125	
 1126	
The “climate-culture hypothesis”, first clearly articulated by Singh (1971) and Singh et al. (1974) 1127	
based on pollen records from Rajasthan lakes, argues for climate variability at the vulnerable arid 1128	
outer edge of the monsoonal rain belt as a determining factor in Harappan cultural 1129	
transformations (Fig. 1 and 2; Suppl. Fig. 4). These reconstructions together with other early 1130	
paleoclimate forays in Rajasthan (see review of Madella and Fuller, 2006) proposed that 1131	
enhanced summer monsoon rains assisted the development of the urban Harappan but weakening 1132	
monsoon conditions after 4,200-3,800 years ago contributed to its collapse. In marine sediments, 1133	
planktonic oxygen isotope records in a core from the Makran continental margin were 1134	
interpreted to suggest a reduction in the Indus river discharge ca. 4,200 years ago (Staubwasser 1135	
et al., 2003). More recent work, proximal to the Harappan heartland, provides strong support for 1136	
this “climate-culture hypothesis” while emphasizing the complexity of both spatiotemporal 1137	
hydroclimate pattern and Harappan cultural responses. Paleohydrological records from lakes in 1138	
northern Rajasthan and Haryana show wetter conditions prevailing during the Early Harappan 1139	
phase, providing favorable climate conditions for urbanization (Dixit et al., 2018) and a distinct 1140	
weakening of summer monsoon around 4,100 years ago (Fig. 6c; Dixit et al., 2014). Another 1141	
summer monsoon reconstruction from Sahiya cave above the Himalayan piedmont (Fig. 6a and 1142	
6b; Kathayat et al., 2017) shows a pluvial optimum during most of the urban phase followed by 1143	
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drying after 4,100 years ago. This high resolution speleothem-based reconstruction also reveals 1150	
that the multicentennial trend to drier conditions between ca. 4,100 and 3,200 years ago was in 1151	
fact highly variable at centennial scales.  1152	
 1153	
Studies of fluvial dynamics on the Harappan territory are consistent with a dry late Holocene 1154	
affecting the Harappan way of life. Landscape semi-fossilization along the Indus and its 1155	
tributaries suggest that floods became erratic and less extensive making inundation agriculture 1156	
unsustainable for the post-urban Harappans (Giosan et al., 2012). In contrast to Himalayan 1157	
tributaries of the Indus, which incised their alluvial deposits in early-mid Holocene, the lack of 1158	
wide entrenched valleys on the Ghaggar-Hakra interfluve indicates that large, glacier-fed rivers 1159	
did not flow across this region during Harappan times. Geochemical fingerprinting of fluvial 1160	
deposits on the lower and upper Ghaggar-Hakra interfluve (Clift et al., 2012 and Dave et al., 1161	
2018 respectively) showed that the capture of the Yamuna to the Ganges basin occurred prior to 1162	
the Holocene. Similarly, abandonment and infilling of a large paleochannel demonstrates that the 1163	
Sutlej River relocated to its present course away from the Ghaggar-Hakra interfluve by 8,000 1164	
years ago, well before Harappan established themselves in the region (Singh et al., 2018). 1165	
However, widespread fluvial redistribution of sediment from the upper Ghaggar-Hakra interfluve 1166	
(e.g., Saini et al., 2009; Singh et al., 2018) all the way down to the lower Hakra (Clift et al., 1167	
2012) and toward the Nara valley (Giosan et al., 2012) suggests that monsoon rains were able to 1168	
sustain smaller streams through that time, but as the monsoon weakened, rivers gradually dried 1169	
or became seasonal, affecting habitability along their course.  1170	
 1171	
If the climatic trigger for the urban Harappan collapse was probably the decline of the summer 1172	
monsoon, the agricultural Harappan economy showed a large degree of adaptation to water 1173	
availability. The long-lived survival of Late Harappan cultures until ca. 3,200 years ago under a 1174	
drier climate and less active fluvial network is the subject of the present study and further 1175	
ongoing efforts (e.g., Kotlia et al., 2017; Petrie et al., 2017) that seek to understand the 1176	
variability in hydroclimate and moisture sources across the Indus domain and how these relate to 1177	
agricultural adaptations.  1178	
 1179	
  1180	
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Figure Captions  1181	
 1182	
Fig. 1. Physiography, winds and precipitation sources for the Harappan domain. The dominant 1183	
source during summer monsoon is the Bay of Bengal while Western Disturbances provide the 1184	
moisture during winter. The extent of the Indus basin and Ghaggar-Hakra (G-H) interfluve are 1185	
shown with purple and brown masks, respectively. Locations for the cores discussed in the text 1186	
are shown.  1187	
 1188	
Fig. 2. Geographical regions and rivers of the Indus domain discussed in text. 1189	
 1190	
Fig. 3. Modern seasonal climatology for South Asia. Average precipitation as well as wind 1191	
direction and intensity for the summer (June-July-August or JJA) and winter (December-1192	
January-February or DJF) months are presented in the left and right panels, respectively. Note 1193	
the differences in scales between panels for both rainfall and winds. Data used come from the 1194	
ERA-40 reanalysis dataset (Uppala et al., 2005) for winds (averaged from 1958-2001) and the 1195	
TRMM dataset (Huffman et al., 2007) for rainfall (averaged from 1998-2014). The white box 1196	
encompasses the upper G-H interfluve. 1197	
 1198	
Fig. 4. Holocene variability in plankton communities as reflected by their sedimentary DNA 1199	
factor loadings (panels marked a through c) and winter mixing-sensitive % G. falconensis (panel 1200	
marked d) in core Indus 11C in the NE Arabian Sea. Relative chlorophyll biosynthesis proteins 1201	
abundances are also shown. Sea level points are from Camoin et al. (2004); SSTs are from 1202	
Doose-Rolinski et al. (2001); and G. falconensis census from the NW Arabian Sea is from 1203	
Schulz et al. (2002). Triangles show radiocarbon dates for core Indus 11C. The period 1204	
corresponding to the Early Neoglacial Anomalies (ENA) is shaded in red hues. 1205	
 1206	
Fig. 5. Northern Hemisphere hydroclimatic conditions since the middle Holocene. The period 1207	
corresponding to the Early Neoglacial Anomalies (ENA) interval is shaded in red hues. From 1208	
high to low (panels marked a trough i): (a) Greenland dust from non-sea-salt K+ showing the 1209	
strength of the Siberian Anticyclone (O’Brien et al., 1995); (b) NAO proxy reconstruction (Olsen 1210	
et al., 2012) and (c) negative NAO-indicative floods in S Alps (Wirth et al., 2013); (d) grainsize-1211	
based hurricane reconstruction in the N Atlantic (van Hengstum et al., 2016); (e) 1212	
interhemispheric temperature anomaly (Marcott et al., 2013); (f) ITCZ reconstruction at the 1213	
Cariaco Basin (Haug et al., 2011); (g) winter monsoon ancient DNA-based reconstruction for the 1214	
NE Arabian Sea (this study – in purple); (h) speleothem δ18O-based precipitation reconstruction 1215	
for northern Levant (Cheng et al., 2015); and (i) stacked lake isotope records as a proxy 1216	
precipitation-evaporation regimes over Middle East and Iran (Roberts et al., 2011).  1217	
 1218	
Fig. 6. Monsoon hydroclimate changes since the middle Holocene and changes in settlement 1219	
distribution on the Ghaggar-Hakra interfluve. From high to low (panels marked a trough f): (a) 1220	
variability in summer monsoon calculated as 200-year window moving standard deviation of the 1221	
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detrended monsoon record of Katahayat et al. (2017) and (b) the speleothem δ18O-based summer 1226	
monsoon reconstruction of Katahayat et al. (2017); (c) lacustrine gastropod δ18O-based summer 1227	
monsoon reconstruction (Dixit et al., 2014); (d and e) changes in the number of settlements on 1228	
the Ghaggar-Hakra interfluve as a function of size and location; and (f) winter monsoon ancient 1229	
DNA-based reconstruction for the NE Arabian Sea (this study – in purple). The period 1230	
corresponding to the Early Neoglacial Anomalies (ENA) is shaded in red hues and durations for 1231	
Early (E), Mature (M) and Late (L) Harappan phases are shown with dashed lines.    1232	
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Fig. 1 1233	
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Fig. 2 1240	
 1241	

 1242	
 1243	
Fig. 2. Geographical regions and rivers of the Indus domain discussed in text. 1244	
  1245	
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Fig. 3.  1248	
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Fig. 4 1255	
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Fig. 5.  1258	
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Fig. 6.     1261	
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