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Response to Associate Editor 
 
Your paper submitted to Climate of the Past has now completed the discussion phase. 
During discussion it received comments from three reviewers. The comments provided 
by you to these reviews appear to be appropriate, so I would encourage you and your co-
authors to now prepare a revised manuscript. 
 
We appreciate the editor’s assessment of our manuscript and thank him for his effort to 
shepherd our work toward publication.  
 
In preparing your revised manuscript please pay particular attention to the concerns of 
reviewer #1, particularly regarding the climate-society links, which clearly adds to the 
importance of the study, and where I feel more effort than provided in the response 
should be put. Also, I agree that more information regarding the Harappan civilisation 
would be beneficial, and adding a text box seems a good way to do that. Finally, as 
suggested by reviewer #1, the discussion/conclusion section could be better structured. 
Personally I prefer a short conclusion section where the research questions/hypotheses in 
the introduction are answered, but at least it should be easy to navigate this particular part 
of the paper. 
 
We have expanded the discussion, added a text box with a primer on Harappans, and 
wrote a conclusion subchapter. 
 
I also invite you to carefully familiarise yourselves with CPs data policy 
(https://www.climate-of-the-past.net/about/data_policy.html), especially the "Statement 
on the availability of underlying data" section. 
 
Once the manuscript is published new data resulting from this study will be deposited in 
a reliable (public) data repository i.e. the Paleoclimatology Database (National Climatic 
Data Center, NOAA). 
 
Response to Reviewer 1: 
 
The article, in reality, consists of two parts: the presentation of a new quantitative 
reconstruction of Indian monsoon winter precipitation and a discussion of the 
interlinkages between hydroclimatic changes (e.g. drought) and the collapse of the 
Harappan civilization. There is no problem in itself with this, although the fact that there 
are two separate “stories” from time to time makes it slightly more difficult to follow the 
article. The article is, in general, well written but additional polishing of the text would be 
preferable prior to publication. The text contains quite a number of typos (especially in 
the references).  
 
We are thankful for the reviewer’s appreciation and suggestions. Typos are addressed. 
 
Moreover, especially the figures could be clearer and improved. As a minimum, all the 
graphs should be in colour to make them easier to read.  
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We adopted a philosophy of minimal use of color to highlight the important points of 
each figure. However, we made a few changes that address the reviewer’s point and 
increase readability: (1) we highlighted ENA in color; (2) we increased the visibility of 
records developed for this study by changing their color to distinguish them from other 
records used for comparison, and (3) colored some of the archaeological records that 
otherwise had a high potential to lead to confusions. See modified figures and captions at 
the end of this response. 
 
The article is clearly suited for publication in Climate of the Past but first after a careful 
revision where the authors can consider my suggestions below. I have no comments 
regarding the new Indian monsoon winter precipitation reconstruction. It is clearly an 
important palaeoclimatological contribution that in itself would merit publication in 
Climate of the Past. On the other hand, the general discussion about climatic–societal 
links in the past can clearly be improved. This field is nowadays large and the references 
provided are few and rather old. For example, I am missing the works by Carey (2012), 
McMichael (2012), Brooke (2014); Izdebski et al. (2015), d’Alpoim Guedes et al. (2016), 
Nelson et al. (2016), Ljungqvist (2017) and Haldon et al. (2018). The methodological and 
conceptional problems, and interdisciplinary challenges, connected with trying to link 
climatic changes with societal changes need to be discussed more.  
 
It was not our intention to expand the discussion of climate-society interactions but we 
added a sentence to that regard with the series of references suggested that highlights the 
renewed interest and advances on the topic.  
 
I would also advise the authors to describe various aspects of the Harappan civilization 
more in detail on 1–2 pages. Without this information, it is difficult for a non-expert 
reader to assess if the links to drought that the authors make are plausible or not. I 
understand that an article of this kind cannot contain a full “handbook text” but more of 
an introduction to the Harappan civilization would nevertheless be helpful. 
 
In agreement with the editor we added a primer on the “Indus Civilization and Climate” 
as Text Box. 
 
Finally, it would be helpful for the reader if the authors added a conclusion/ summary of 
the new reconstruction at the end of the article. As it is now, the conclusion is mainly 
devoted to the collapse of the Harappan civilization. 
 
In agreement with the editor we added a separate conclusion subchapter addressing this. 
 
Lines 35–36: This sentence is a bit unclear. Do the authors mean that the Little Ice Age 
only occurred in the extra-tropical Northern Hemisphere? It was indeed global. 
 
LIA appears to have indeed been global, although this is not universally accepted. On the 
other hand LIA was particularly strong and prolonged in the Northern Hemisphere (NH), 
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which indicates either a cause or a positive feedback in the NH as discussed in references 
cited. We added in the text that LIA has a global extent and cited appropriate references. 
 
Lines 41—-42 and elsewhere: I am not entirely happy with the phrase “Early Neoglacial 
Anomaly” – the Neoglaciation started well before the event in question and it is thus not 
“early”. 
 
The Neoglacial is not formally defined at a global scale as it is time-transgressive 
regionally. Instead we used the census approach of Solomina et al. (2015) where the 
Neoglacial became pervasive in the Northern Hemisphere since 4,500-4,400 years ago. 
ENA becomes manifest in most records around that time and extends for another ca. 
1,500 years, which makes it early Neoglacial rather than late Neoglacial. 
 
Line 43: Likely also in other parts of the world. 
 
Indeed there are some records suggestive of ENA in some Southern Hemisphere (SH) 
locales where records of appropriate resolution exist and we added text with references in 
that regard.  
 
In the abstract we changed the phrasing to “accompanied by changes in wind and 
precipitation patterns that are particularly evident across the eastern Northern Hemisphere 
and Tropics” to leave open the problem to future studies in other regions. 
 
Lines 49–50 and elsewhere: Consider using “Holocene Thermal Maximum” instead of 
“Holocene Optimum”. 
 
Changed accordingly. 
 
Lines 56–57: Consider revision here. Archaeologists work with inferring societal 
changes, and their possible causal connections, in societies lacking written sources all the 
time. 
 
We agree with the reviewer but that does not mean that such connections are not difficult 
to prove, especially at the scale of cultures and civilizations.  
 
Lines 59–60: Actually, our knowledge is in many cases rather good today so I would 
recommend to reformulate this sentence. 
 
We cannot agree with this point. In prehistory we lack the synoptic view afforded by 
modern or even historic climatic data to make such a claim yet.  
 
Line 313: “Boll” should be “Böll”. 
 
Done. 
 
Line 332: Please, make it clear if this ENA is thought to extend all the way to the 
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present. 
 
It was clearly defined just above that line: “…the Early Neoglacial Anomaly (ENA) 
between ca. 4,500 and 3,000 years ago…” 
 
Line 335: I would cite IPCC (2013) here rather than Mann et al. (2009). 
 
Added the suggested reference but also kept Mann et al. as it is a well-grounded, 
dedicated study of the problem. 
 
Lines 336–339: How are these LIALE related to, or the same as, the (controversial) so-
called “Bond events” detected for the North Atlantic region and elsewhere? I think this 
should be discussed here. 
 
This is indeed a controversial issue that would be better discussed at large in a review-
type context. 
 
Line 370 onward: I am not entirely convinced that the impacts of solar forcing and 
volcanic forcing were necessarily smaller in a warmer world with stronger orbital 
forcing. The mean state of climate was different but not necessarily the centennial- to 
decadal-scale variations. 
 
We agree with the reviewer and that is why we limited ourselves to examples based on 
cited literature. Some (e.g., Wirtz et al.) show increase or decrease in sub-orbital 
variability that is regionally organized. Testing how our suggested mechanism for ENA 
can be achieved in future modeling studies and is beyond the scope of our current study. 
 
Lines 373–374: Again, you may cite IPCC (2013) here. 
 
IPCC (2013) added. 
 
Fig. 1: Please, also insert in the legend directly in the figure what the coloured fields 
mean.  
 
Done. 
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Figs. 3–5: Please redraw the figures in colour and make them clearer. Now, both the 
graphs themselves and the text in them are not very distinct. 
 
Some changes made. Please see explanations above and figures below. 
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Response to Reviewer 2: 
 
The paper presents a reconstruction of the Indian winter monsoon in the Arabian Sea for 
the last 6000 years based on paleobiological records with different complexity. Based on 
the analysis of sedimentary paleo-DNA and planktonic foraminifers the authors show that 
stronger winter monsoons occurred between ca. 4,500 and 3,000 years ago. They call this 
period Early Neoglacial Anomaly (ENA) and argue that this climate reorganization may 
have helped trigger the well-known metamorphosis of the urban Harappan civilization 
into a rural society. As a dynamical climatologist I could principally review the 
climatological part of the paper. I was not able to evaluate the methodological part of the 
sediment core analysis. Overall the paper presents an interesting analysis on the activity 
of the Indian Winter Monsoon and its impacts on the Harappan civilization.  
 
We thank the reviewer for his/her overall positive judgement on our paper and 
suggestions.  
 
I am personally cautious if a new term for a climate period is defined. Are the authors 
convinced the ENA is a global phenomenon with high significance? Is it not possible that 
similar climate periods marking the transition to the Neoglacial occurred even earlier and 
in other areas of the globe? 
 
ENA is evident in many records (presented initially in our paper, in others that we added 
now and even more others that are cited). It does not need to have global extent although 
one may be detected in the future (similar to the initial description of the LIA as Western 
European event). However, the fact that records of interhemispheric temperature gradient 
document ENA, it is a good indication that it may have had a global effect. It is also not 
necessary to have strict time bounds either – for example in the southern hemisphere (see 
Neukom et al. paper suggested by reviewer) LIA would have been shorter and lagged to 
the NH definition if first discovered and defined there.  
 
Lines 34-36: Avoid creating the impression the Little Ice Age was not global. It was but, 
due to the inertial effect of the large ocean areas in the Southern Hemisphere, the cooling 
effect occurred later in this area (see Neukom et al., 2014, Nature Climate Change 4, 362-
367). 
 
LIA appears to have indeed been global, although this is not universally accepted. On the 
other hand LIA was particularly strong and prolonged in the Northern Hemisphere (NH), 
which indicates either a cause or a positive feedback in the NH as discussed in references 
cited. We added in the text that LIA has a global extent and cited appropriate references. 
Reference suggested now added. 
 
Lines 48-49: If you call a climate period as an optimum, it has to be related to a certain 
state or process. Therefore, I recommend using the classical term “Holocene Thermal 
Maximum”. 
 
Done. 
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Lines 67-73: The Indian Winter Monsoon is, simply said, driven by the thermal contrast 
between the cold Asian continent and the adjacent warm oceans (see e.g. Trenberth et al. 
al., 2006, in: The Asian Monsoon, Springer; Wang and Chen, 2014, J. Climate 27, 2361-
2374; Yancheva et al., 2007, Nature 445). 
 
While	references	listed	mainly	concern	the	East	Asian	Winter	Monsoon,	a	
phenomenon	with	different	dynamics	and	magnitude	compared	with	the	Indian	
Winter	Monsoon	(see	e.g.	Wang	et	al.,	2003,	Marine	Geology	or	Munz	et	al.,	2017),	
we	have	updated	our	text	to	incorporate	the	fact	that	the	initial	driver	for	the	winter	
monsoon	disturbances	is	potentially	the	thermal	contrast	between	the	Asian	
continent	and	the	Indian	Ocean	(Dimri	et	al.	2016).	
 
Line 116: Dimri et al., 2015? 
 
Fixed. 
 
Line 220: Pisias et al, 2013 is not in reference list. 
 
Fixed. 
 
Line 313: Böll et al., 2014. 
 
Fixed. 
 
Line 332 and lines 364-369: I do not recommend introducing a new term called Late 
Neoglacial Anomaly (LNA). First of all, this period consists of two cooler (Migration 
Period, Little Ice Age) and two warmer periods (Medieval Climate Anomaly and Modern 
Warming). Second, the dynamical background differs clearly from the so-called ENA: 
Orbital forcing set the stage, Grand Solar Minima, volcanic events and GHG forcing 
played a key role and, likely, internal variability had a significant influence (see Bradley 
et al., 2016, The Medieval Quiet Period. The Holocene, 
doi:10.1177/0959683615622552). 
 
We see the reviewer’s point. However, both ENA and LNA are composed of a series of 
anomalies (best expressed in the high resolution Cariaco ITCZ reconstruction but also in 
other records mentioned in the text - see figure 3) separated by a more quiescent interval. 
The problem then becomes the use of the singular form (“anomaly”) that indeed does not 
reflect the above described situation. This is now addressed by changing to the use of 
plural form: ENA – Early Neoglacial Anomalies and LNA – Late Neoglacial Anomalies. 
At this stage, we do not and cannot tackle the ultimate causes of each of these anomalies 
but only a possible mechanism of transmitting them at larger geographical scales (i.e., the 
inter-hemispheric thermal balance). 
 
Line 376: Büntgen et al., 2016 
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Fixed. 
 
Lines 380-383: I agree, but we should not forget mentioning internal variability! 
 
Internal variability was and is mentioned right at the top of the paragraph: “…could have 
provided favorable conditions for internal modes of climate variability, either tropical or 
polar, to become dominant…” 
 
Lines 431-432, 437: You mention several local names. I ask me if you should also add a 
Figure with a local map? 
 
We added a supplementary figure with a map of geographical names. 
 

 
 
Lines 480-485: This is a very important question. I am asking me whether or not 
literature about this phenomenon is available? 
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We could not track such seasonality in literature. But a recently published paper (now 
cited) suggests increased rain during ENA in the Kutch/Saurashtra region. 
 
Figure 1: I am not happy with the direction of the arrow marking the Summer Monsoon. 
Look at your Figure 2 A or consult Figure 1 in Chen et al., 2008, Quaternary Science 
Reviews 27, 351-364. Why did you not insert an arrow for Winter Monsoon? 
 
Fig. 1 shows direction of the dominant moisture sources during summer and winter for 
the Harappan domain, which are not necessarily monsoons directions. Fig. 2 shows that 
instead. We clarified this more in the caption. 
 
Figures 2-5: In my opinion, for a better orientation, it would make sense to denominate 
the Figures 2-5 with letters A, B, C etc. 
 
Fixed. 
 
Abbreviations: The paper contains numerous abbreviations. It would possibly make sense 
adding a list of abbreviations at the end of the paper text. 
 
We can certainly do that if the journal would accommodate it but wait for the editor’s 
decision on this point.  
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Response to Reviewer 3: 
 
This manuscript presents novel proxies for Indian winter monsoon variation form a core 
in the northeastern Arabian Sea and suggests that the intensified winter monsoon would 
contribute to the metamorphosis of the Harappan civilization from urban to rural society. 
The causal relationship between climate change and civilization has always been a 
question at debate due to lack of robust evidence. The variation in the winter monsoon 
and the distribution of the Harappan civilization archaeological sites in this paper is a 
great effort to answer this question. I support to be published the paper. However, there 
are some questions that the authors should address in next round of revision. 
 
We appreciate the reviewer’s comments and suggestions.  
 
The manuscript is not written in a very clear way, which make readers hard to follow 
what the authors said. For example, in figures 3-5, all the curves should be marked by 
such as a, b, c, etc., and in the text it is easy to cite such as “Fig. 3c” to indicate the exact 
curve, but not such as (Fig. 5; Dixit et al., 2014) in Line 425. 
 
We addressed this problem as suggested.  
 
The reference list should be carefully checked. Almost all references have some format 
problems or mistakes. For examples, Lines 516-518, use pp. to indicate pages, Lines 519-
521 the pages are used “959-962”. Also, the authors cited many published records in 
discussing Figure 3, but not showing any of them in the reference list. Readers and 
reviewers do not know what the authors discuss and compare when reading Line 259 to 
322. Please check all the references in the References 
 
Done. However, we found no missing references that are cited in figure 3. If the reviewer 
identified such references we would appreciate if he/she can point them to us. 
 
It seems to me that the authors overinterpreted the records, though the proxies for winter 
monsoon variation is reasonably sounding. For example, the authors stated that the core 
top missed (Line 161-162). However, the authors put much effort in discussion on LNA 
(Line 335-345) while not showing any records from this core. Actually, the Factor 1 data 
do show many data points since 2000 years, which does not show the LNA though the 
authors claimed that Factor 1 reflects temperature change. Please explain why. 
 
We discuss LNA based on cores nearby where it is well attested – Doose-Rolinski et al. 
for temperature, Böll et al and Munz et al. for mixing. This was clear in our original text: 
“Another cold yet variable period in the northern Arabian Sea (Doose-Rolinski et al., 
2001) occurred after ~1500 years ago under strong winter monsoon mixing (Böll et al., 
2014; Munz et al., 2015) and is seen in G. falconensis record of Schulz et al. (2002) but is 
not captured completely in our top-incomplete record.” 
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I am not convinced that changes in land cover and land use would affect movement of 
ITCZ. Please explain in detail. Does the authors mean the regions affected by heavy 
rains, which is not necessary the ITCZ? 
 
Previous studies cited show that landcover and landuse can affect the ITCZ using both 
modeling and data – e.g., Chung and Soden, 2017; Devaraju et al. 2015; Kang et al., 
2018; Smith et al., 2016. 
 
The authors raised a very important question at the beginning in Introduction, “Moreover, 
our knowledge of temporal and spatial climatic patterns remains too restricted to fully 
address social dynamics” (Line 59-60). However, I did not see the authors address this 
question later in text other than discuss a little bit on interhemispheric temperature 
gradients. 
 
We do show that ENA is detectable in the northern hemisphere (and now added 
references for a couple of cases in the southern hemisphere). This describes a novel 
temporal-spatial pattern affecting the winter rain in out region and suggests a “pull” 
factor for the Indus people’s migration. We now added a sentence in the conclusions to 
link to this point made in the introduction.  
 
The authors put much effort on distribution of Harappan sites, but did not show in any 
figures. It would be easier for readers to have a figures showing the distribution of the 
sites. 
 
We will add a supplementary figure addressing this. 
 
Why the numbers of data vary so much for Factor 1, 2 and 3? Please clarify in the text. 
 
The number of data for factors (black curves in Fig. 2) is the same for all factors (see also 
Suppl. Table 4). They are compared with other parameters (sea level, chlorophyll proxy, 
temperature) that each have their own resolution. 
 
Affiliations: should be consistent for all addresses. Some list to department, while others 
only list the university. 
 
Done. 
 
Introduction: The logic in Introduction is not clear. Please revise following clear logic. 
Abstract: The Abstract is not clear. For example, Line 32-34. 
 
These comments are unfortunately too vague. What one person might find as logic 
someone else might not. We would be happy to address them if clarified. 
 
The authors did not label various panels in figures clearly, which makes reading difficult. 
Please label the panels and cite in the text.  
 



	 15	

Done. 
 
The temporal resolution for samples should be clearly addressed. 
 
Unclear what is requested. Temporal resolution is variable depending on sedimentation 
rates. Data is all documented in tables at the depth/time resolution available. 
 
What is Calib 7.129? (Line 159) 
 
This was a mistake – it is the Calib 7.1 calibration program – corrected and citation 
added.  
 
Line 272, should use “cal years BP” or “years” without “BP”. Please check the whole 
text. 
 
We prefer to keep “years ago” throughout – now changed. 
 
Line 312, should be “3,000 years ago”  
 
Done. 
 
Figure 1: Please check the arrow of “summer monsoon”. The direction should be wrong. 
 
The arrow indicates the direction of moisture reaching the area of interest during summer 
monsoon, which is from the Bay of Bengal. That is now made clearer in the caption. 
 
Figure 3-5 quality is not high. Please improve them. 
 
If the reviewer refers to the resolution of figures this will be improved in the final 
version. The submitted figures for the review stage have downgraded resolution to get the 
manuscript at a manageable size. We also implemented some color changes to increase 
readability. 
 
Figure caption. Figure 1, there are three colors in the figure 1 but not two. Please change 
the figure or the caption; Figure 4, Line 921, better to give the full name of “ENA”. 
Figure 5, Line 943, change “of Dixit et al. (2014)” to “(Dixit et al., 2014)” 
 
Done.	
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Abstract:  35	
 36	
Climate exerted constraints on the growth and decline of past human societies but our knowledge 37	
of temporal and spatial climatic patterns is often too restricted to address causal connections. At 38	
a global scale, the inter-hemispheric thermal balance provides an emergent framework for 39	
understanding regional Holocene climate variability. As the thermal balance adjusted to gradual 40	
changes in the seasonality of insolation, the Inter-Tropical Convergence Zone migrated 41	
southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this 42	
trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of 43	
either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian 44	
Sea for the last 6000 years based on paleobiological records in sediments from the continental 45	
margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting 46	
water column environmental states and planktonic foraminifers sensitive to winter conditions. 47	
We show that strong winter monsoons between ca. 4,500 and 3,000 years ago occurred during a 48	
period characterized by a series of weak interhemispheric temperature contrast intervals, which 49	
we identify as the Early Neoglacial Anomalies (ENA). The strong winter monsoons during ENA 50	
were accompanied by changes in wind and precipitation patterns that are particularly evident 51	
across the eastern Northern Hemisphere and Tropics. This coordinated climate reorganization 52	
may have helped trigger the metamorphosis of the urban Harappan civilization into a rural 53	
society through a push-pull migration from summer flood-deficient river valleys to the 54	
Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon 55	
between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of 56	
the rural late Harappans during that time as the first Iron Age culture established itself on the 57	
Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive landcover changes due 58	
to aridification of the Tropics may have led to a generalized instability of the global climate 59	
during ENA at the transition from the warmer Holocene Thermal Maximum to the cooler 60	
Neoglacial. 61	
 62	
  63	
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1. Introduction 70	
 71	
The growth and decline of human societies can be affected by climate (e.g., Butzer, 2012; 72	
DeMenocal, 2001) but addressing causal connections is difficult, especially when no written 73	
records exist. Human agency sometimes confounds such connections by acting to mitigate 74	
climate pressures or, on the contrary, increasing the brittleness of social systems in face of 75	
climate variability (Rosen, 2007). Moreover, our knowledge of temporal and spatial climatic 76	
patterns remains too restricted, especially deeper in time, to fully address social dynamics. 77	
Significant progress in addressing this problem has been made especially for historical intervals 78	
(e.g., Carey, 2012; McMichael, 2012; Brooke, 2014; Izdebski et al., 2015; d’Alpoim Guedes et 79	
al., 2016; Nelson et al., 2016; Ljungqvist, 2017; Haldon et al., 2018) using theoretical 80	
reconsiderations, novel sources of data and sophisticated deep time modeling that could lead to 81	
better consilience between natural scientists, historians and archaeologists. The coalescence of 82	
migration phenomena, profound cultural transformations and/or collapse of prehistorical 83	
societies regardless of geographical and cultural boundaries during certain time periods 84	
characterized by climatic anomalies, events or regime shifts suggests that large scale climate 85	
variability may be involved (e.g., Donges et al., 2015 and references therein). At the global scale, 86	
the interhemispheric thermal balance provides an emergent framework for understanding such 87	
major Holocene climate events (Boos and Korty, 2016; Broecker and Putnam, 2013; McGee et 88	
al., 2014; Schneider et al., 2014). As this balance adjusted over the Holocene to gradual changes 89	
in the seasonality of insolation (Berger and Loutre, 1991), the Inter-Tropical Convergence Zone 90	
(ITCZ) migrated southward (e.g., Arbuszewski et al., 2013; Haug et al., 2001) accompanied by a 91	
weakening of the Indian summer monsoon (e.g., Fleitmann et al., 2003; Ponton et al., 2012). 92	
Superimposed on this trend, centennial- to millennial-scale anomalies point to asymmetric 93	
changes in the extratropics of either hemisphere (Boos and Korty, 2016; Broccoli et al., 2006; 94	
Chiang and Bitz, 2005; Chiang and Friedman, 2012; Schneider et al., 2014).  95	
 96	
The most extensive but least understood among the early urban civilizations, the Harappan (Fig. 97	
1; see supplementary materials for geography of the region and distribution of archaeological 98	
sites), collapsed ca. 3900 years ago (e.g., Shaffer, 1992). At their peak, the Harappans spread 99	
over the alluvial plain of the Indus and its tributaries, encroaching onto the Sutlej-Yamuna or 100	
Ghaggar-Hakra (G-H) interfluve that separates the Indus and Ganges drainage basins (Fig. 1). In 101	
the late Harappan phase that was characterized by more regional artefact styles and trading 102	
networks, cities and settlements along the Indus and its tributaries declined while the number of 103	
rural sites increased on the upper G-H interfluve (Gangal et al., 2001; Kenoyer, 1998; Mughal, 104	
1997; Possehl, 2002; Wright, 2010). The agricultural Harappan economy showed a large degree 105	
of versatility by adapting to water availability (e.g., Fuller, 2011; Giosan et al., 2012; Madella 106	
and Fuller, 2006; Petrie et al., 2017; Weber et al., 2010; Wright et al., 2008). Two precipitation 107	
sources, the summer monsoon and winter westerlies (Fig. 1), provide rainfall to the region 108	
(Bookhagen and Burbank, 2010; Petrie et al., 2017; Wright et al., 2008). Previous simple 109	
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modeling exercises suggested that winter rain increased in Punjab over the late Holocene 113	
(Wright et al., 2008). During the hydrologic year, part of this precipitation, stored as snow and 114	
ice in surrounding mountain ranges, is redistributed as meltwater by the Indus and its Himalayan 115	
tributaries to the arid and semi-arid landscape of the alluvial plain (Karim and Veizer, 2002).  116	
 117	
The climatic trigger for the urban Harappan collapse was probably the decline of the summer 118	
monsoon (e.g., Dixit et al., 2014; Kathayat et al., 2017; MacDonald, 2011; Singh et al., 1971; 119	
Staubwasser et al 2003; Stein, 1931) that led to less extensive and more erratic floods making 120	
inundation agriculture less sustainable along the Indus and its tributaries (Giosan et al., 2012) 121	
and may have led to bio-socio-economic stress and disruptions (e.g., Meadow, 1991; Schug et 122	
al., 2013). Still, the remarkable longevity of the decentralized rural phase until ca. 3200 years 123	
ago in the face of persistent late Holocene aridity (Dixit et al., 2014; Fleitmann et al., 2003; 124	
Ponton et al., 2012; Prasad and Enzel, 2006) remains puzzling. Whether the Harappan 125	
metamorphosis was simply the result of habitat tracking toward regions where summer monsoon 126	
floods were still reliable or also reflected a significant increase in winter rain remains unknown 127	
(Giosan et al., 2012; Madella and Fuller, 2006; Petrie et al., 2017; Wright et al., 2008). To 128	
address this dilemma, we present a proxy record for the Indian winter monsoon in the Arabian 129	
Sea and show that its variability was an expression of large scale climate reorganization across 130	
the eastern Northern Hemisphere and Tropics affecting precipitation patterns across the 131	
Harappan territory. Aided by an analysis of Harappan archaeological site redistribution, we 132	
speculate that the Harappan relocation after the collapse of its urban phase may have conformed 133	
to a push-pull migration model.   134	
 135	
2. Background  136	
 137	
Under modern climatological conditions (Fig. 2), the summer monsoon delivers most of the 138	
precipitation to the former Harappan territory, but winter rains are also significant in quantity 139	
along the Himalayan piedmont (i.e., between 15 and 30% annually). Winter rain is brought in 140	
primarily by extra-tropical cyclones embedded in the Westerlies (Dimri et al., 2015) and are 141	
known locally as Western Disturbances (WD). These cyclones distribute winter rains to a zonal 142	
swath extending from the Mediterranean through Mesopotamia, the Iranian Plateau and 143	
Baluchistan, all and across to the western Himalayas (Fig. 2). Stronger and more frequent WD 144	
rains in NW India are associated with southern shifts of the Westerly Jet in the upper troposphere 145	
(e.g., Dimri et al. 2017). Surface winter monsoon winds are generally directed towards the 146	
southwest but they blow preferentially toward the east-southeast along the coast in the 147	
northernmost Arabian Sea (Fig. 2). An enhanced eastward zonal component over the northern 148	
Arabian Sea is typical for more rainy winters (Dimri et al. 2017). Although limited in space and 149	
time, modern climatologies indicate a strong, physical linkage between winter sea-surface 150	
temperatures (SST) in the northern Arabian Sea and precipitation on the Himalayan piedmont, 151	
including the upper G-H interfluve (see also supplementary materials). Ultimately, the thermal 152	
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contrast between the cold Asian continent and relatively warmer Indian Ocean is thought to be 157	
the initial driver of the Indian monsoon winds (Dimri et al., 2016). 158	
 159	
In contrast to the wet summer monsoon, winds of the winter monsoon flow from the continent 160	
toward the ocean and are generally dry. That explains in part why Holocene reconstructions of 161	
the winter monsoon are few and contradictory, suggesting strong regional variabilities (Jia et al., 162	
2015; Kotlia et al., 2017; Li and Morrill, 2015; Sagawa et al., 2014; Wang et al., 2012; Yancheva 163	
et al., 2007). Holocene eolian deposits linked to the winter monsoon are also geographically-164	
limited (Li and Morrill, 2015). However, in the Arabian Sea indirect wind proxies based on 165	
changes in planktonic foraminifer assemblages and other mixing properties have been used to 166	
reconstruct distinct hydrographic states caused by seasonal winds (Böll et al., 2014; Curry et al., 167	
1992; Lückge et al., 2001; Munz et al., 2015; Schiebel et al., 2004; Schulz et al., 2002). Winter 168	
monsoon winds blowing over the northeast Arabian Sea cool its surface waters via evaporation 169	
and weaken thermal stratification promoting convective mixing (Banse and McClain, 1986; Luis 170	
and Kawamura, 2004). Cooler SSTs and the injection of nutrients into the photic zone lead in 171	
turn to changes in the plankton community (Madhupratap et al., 1996; Luis and Kawamura, 172	
2004; Schulz et al., 2002). To reconstruct the history of winter monsoon we thus employed 173	
complementary proxies for convective winter mixing, at two levels of ecological complexity: (a) 174	
sedimentary ancient DNA to assess the water column plankton community structure, and (b) the 175	
relative abundance of Globigerina falconensis, a planktonic foraminifer sensitive to winter 176	
conditions (Munz et al.; 2015; Schulz et al., 2002).  177	
 178	
3. Methods 179	
 180	
3.1 Sediment Core 181	
 182	
We sampled the upper 2.3 m, comprising the Holocene interval, in the 13-m-long piston core 183	
Indus 11C (Clift et al., 2014) retrieved during R/V Pelagia cruise 64PE300 in 2009 from the 184	
oxygen minimum zone (OMZ) in the northeastern Arabian Sea (23°07.30’N, 66°29.80’E; 566 m 185	
depth) (Fig. 1). The chronology for the Holocene section of the core was previously reported in 186	
Orsi et al. (2017) and is based on calibrated radiocarbon dates of five multi-specimen samples of 187	
planktonic foram Orbulina universa and one mixed planktonic foraminifer sample. Calibration 188	
was performed using Calib 7.1 program (Stuiver et al., 2018) with a reservoir age of 565 ± 35 189	
radiocarbon years following regional reservoir reconstructions by Staubwasser et al. (2002). 190	
Calibrated radiocarbon dates were used to derive a polynomial age model (see supplementary 191	
materials). The piston corer did not recover the last few hundred years of the Holocene record 192	
probably due to overpenetration. However, indistinct but continuous laminations downcore with 193	
no visual or X-radiograph discontinuities, together with the radiocarbon chronology indicate that 194	
the sedimentary record recovered is continuous. 195	
 196	
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3.2. Ancient DNA Analyses 204	
 205	
A total of five grams of wet weight sediment were extracted inside the ancient DNA-dedicated 206	
lab at Woods Hole Oceanographic Institution (WHOI), aseptically as described previously 207	
(Coolen et al., 2013) and transferred into 50 mL sterile tubes. The sediments were homogenized 208	
for 40 sec at speed 6 using a Fastprep 96 homogenizer (MP Biomedicals, Santa Ana, CA) in the 209	
presence of beads and 15 ml of preheated (50 °C) sterile filtered extraction buffer (77 vol% 1M 210	
phosphate buffer pH 8, 15 vol% 200 proof ethanol, and 8 vol% of MoBio’s lysis buffer solution 211	
C1 [MoBio, Carlsbad, CA]). The extraction was repeated with 10 ml of the same extraction 212	
buffer but without C1 lysis buffer (Orsi et al., 2017). After centrifugation, the supernatants were 213	
pooled and concentrated to a volume of 100 µl without loss of DNA using 50,000 NMWL 214	
Amicon® Ultra 15 mL centrifugal filters (Millipore) and contaminants were removed from the 215	
concentrated extract using the PowerClean® Pro DNA Clean-up Kit (MoBio). The exact same 216	
procedures were performed in triplicate without the addition of sediment as a control for 217	
contamination during extraction and purification of the sedimentary DNA.  218	
 219	
The extracted and purified sedimentary DNA was quantified fluorometrically using Quant-iT 220	
PicoGreen dsDNA Reagent (Invitrogen), and ~20 nanograms of each extract was used as 221	
template for PCR amplification of preserved planktonic 18S rRNA genes. The short (~130 base 222	
pair) 18S rDNA-V9 region was amplified using the domain-specific primer combination 1380F 223	
(5’-CCC TGC CHT TTG TAC ACA C-3’) and 1510R (5’CCT TCY GCA GGT TCA CCT AC-224	
3’)(Amaral-Zettler et al., 2009).  Quantitative PCR was performed using a SYBR®Green I 225	
nucleic acid stain (Invitrogen) and using a Realplex quantitative PCR system (Eppendorf, 226	
Hauppauge, NY). The annealing temperature was set to 66 °C and all reactions were stopped in 227	
the exponential phase after 35-42 cycles. 18S rRNA libraries were sequenced on an Illumina 228	
MiSeq sequencing using the facilities of the W.M. Keck Center for Comparative and Functional 229	
Genomics, University of Illinois at Urbana-Champaign, IL, USA sequenced 18S libraries that 230	
resulted in approximately 12 million DNA sequences. 231	
 232	
The 18S rRNA gene sequences were processed using the Quantitative Insights Into Microbial 233	
Ecology (QIIME) environment (Caporaso et al., 2010). Reads passing quality control (removal 234	
of any sequence containing an ‘N’, minimum read length 250 bp, minimum Phred score=20) 235	
were organized into operational taxonomic units (OTUs) sharing 95% sequence identity with 236	
UCLUST (Edgar et al., 2010) and assigned to taxonomic groups through BLASTn searches 237	
against the SILVA database (Pruesse et al., 2007). OTU tables were rarefied to the sample with 238	
the least number of sequences, and all OTUs containing less than one sequence were removed.  239	
OTUs that were detected in only one sample were also removed. Metagenomes were directly 240	
sequenced bi-directionally on an Illumina HiSeq, at the University of Delaware Sequencing and 241	
Genotyping Center (Delaware Biotechnology Institute).  Contigs were assembled de novo as 242	
described in Orsi et al. (2017). To identify contigs containing chlorophyll biosynthesis proteins, 243	
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open reading frames on the contig sequences were detected using FragGeneScan (Rho et al., 248	
2010), and protein homologs were identified through BLASTp searches against the SEED 249	
database (www.theseed.org).  Only hits to reference proteins with at least 60% amino acid 250	
similarity over an alignment length >50 amino acids were considered true homologs and used for 251	
downstream analysis. Assignment of ORFs to biochemical pathway classes were made based on 252	
the SEED metabolic pathway database and classification scheme. The relative abundance of 253	
reads mapping to ORFs was normalized against values of a suite of 35 universally conserved 254	
single copy genes (Orsi et al., 2015), per metagenome sample.  255	
 256	
3.3 Factor Analysis 257	
 258	
Q-mode Factor Analysis (QFA) was employed to simplify the ancient DNA dataset. Prior to the 259	
factor analysis the DNA database was reduced to the 124 most abundant taxonomic units from a 260	
total of 1,462 units identified by considering only those present in two or more samples with a 261	
cumulative abundance higher than 0.5±0.1% (Table S1). The data was pretreated with a range-262	
normalization and run though the QFA with a VARIMAX rotation (Pisias et al., 2013). QFA 263	
identified taxonomic groups that covary in our dataset and determined the minimum number of 264	
components (i.e., factors) needed to explain a given fraction of the variance of the data set (Fig. 265	
3; see supplementary materials). Each VARIMAX-rotated factor indicates an association of 266	
taxonomic groups that covary (i.e., behave similarly amongst the samples). Taxonomic groups 267	
that covary strongly within a factor will have high factor scores for that factor. We primarily 268	
used dominant taxa with scores higher than 0.2 in a factor to interpret the plankton taxonomic 269	
groups in that factor. The importance of a factor in any given sample is recorded by the factor 270	
loading that we used to interpret the importance of that factor with depth/time downcore.  271	
 272	
3.4 Foraminifera Counts 273	
 274	
Samples for counting planktonic foraminifer Globigerina falconensis were wet-sieved over a 63-275	
µm screen. Typical planktonic foraminifer assemblages for the NE Arabian Sea were observed: 276	
Globigerinoides ruber, Neogloboquadrina dutertrei, Globigerina falconensis, Orbulina 277	
universa, Globigerinoides sacculifer, Pulleniatina obliquiloculata, Globorotalia menardii. 278	
Counts of Globigerina falconensis were conducted on the size fraction >150 µm. We report 279	
counts for the samples yielding >300 foraminifer individuals (see supplementary materials).  280	
 281	
3.5 Harappan Sites 282	
 283	
Archaeological site distribution provides an important line of evidence for social changes in the 284	
Harappan domain (e.g., Possehl, 2000). We analyzed the redistribution of small (<20 ha), rural 285	
vs. large (>20 ha), possibly urban sites on the G-H interfluve from the Early Harappan period, 286	
through the Mature and Late periods to the post-Harappan Grey Ware culture (see supplementary 287	
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materials). Compared to settlements along the Indus and its tributaries that can be affected by 291	
fluvial erosion (Giosan et al., 2012), the distribution of archaeological sites on G-H, where large 292	
laterally-incising Himalayan rivers were absent during the Holocene, is probably more complete 293	
and representative of their original distribution. To observe trends related to partial or complete 294	
drying of the G-H system (Clift et al., 2012; Giosan et al., 2012; Singh et al., 2017), we divided 295	
the settlements into upper and lower G-H sites located in the modern regions of Punjab and 296	
Haryana in India, respectively Cholistan in Pakistan. For archaeological site locations and their 297	
radiocarbon and/or archaeological ages we follow Giosan et al. (2012), using data from the 298	
compilation by Gangal et al. (2001) with additions from regional gazetteers and surveys (Kumar, 299	
2009; Mallah, 2010; Mughal, 1996 and 1997; Possehl, 1999; Wright et al., 2005). 300	
 301	
4. Results 302	
 303	
Exceptional preservation of organic matter in the OMZ (Altabet et al., 1995; Schulz et al., 2002) 304	
allowed us to reconstruct the history of the planktonic communities based on their preserved 305	
sedimentary DNA (see also Orsi et al., 2017). The factor analysis of the dominant DNA species 306	
(Fig. 4) identified three significant factors that together explain 48% of the variability in the 307	
dataset (see supplementary materials). Additional factors were excluded as they would have 308	
increased the variability explained by an insignificant amount for each (< 3%). We interpret 309	
these factors as corresponding to the SST regime, nutrient availability, and sea level state, 310	
respectively (Fig. 3). Factor 1 (Fig. 3c) explains 20% of the variability and is largely dominated 311	
by radiolarians (Polycystinea) that prefer warmer sea surface conditions (e.g., Cortese and 312	
Ablemann, 2002; Kamikuri et al, 2008). High scores for jellyfish (Cnidaria) that thrive in warm, 313	
eutrophic waters (Purcell, 2005) also support interpreting Factor 1 as a proxy for a plankton 314	
community adapted to high sea surface temperatures. A general increase of the Factor 1 loadings 315	
since the early Holocene is in accordance with the UK

37 -reconstructed warming of Orsi et al. 316	
(2017). During the Holocene, relatively colder conditions are evident in Factor 1 between ~4500 317	
and 3000 years ago (Fig. 3) as previously detected in the higher resolution UK

37 record from a 318	
core located nearby on the Makran continental margin (Doose-Rolinski et al., 2001). 319	
 320	
Factor 2 (Fig. 3b) explains 18% of the variability and is dominated by marine dinoflagellates 321	
indicative of high nutrient, bloom conditions (e.g., Worden et al., 2015), flagellates (Cercozoa) 322	
and fungi. Parasitic Alveolates (Hematodinium and Syndiniales) that typically appear during 323	
blooms (Worden et al., 2015) are also important. Increased representation of chlorophyll 324	
biosynthesis genes (Fig. 3) in sediment metagenomes (Orsi et al., 2017) indicate higher 325	
productivity (Worden et al., 2015) during the Factor 2 peak. All these associations suggest that 326	
Factor 2 is a nutrient-sensitive proxy with a peak that overlaps with the colder conditions 327	
between ~4500 and 3000 years ago. The inland retreat of the Indus fluvial nutrient source as sea 328	
level rose (see below) probably explains the asymmetry in Factor 2 that exhibits higher scores in 329	
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the early vs. late Holocene. Overall, Factors 1 and 2 suggests enhanced winter convective mixing 336	
between ~4500 and 3000 years ago that brought colder, nutrient-rich waters to the surface.  337	
 338	
Factor 3 (Fig. 3a) explains 10% variability and is dominated by a wide group of taxa. The main 339	
identified contributors to Factor 3 include the coastal diatom Eucampia (Werner, 1977), the fish-340	
egg parasite dinoflagellate Ichthyodinium, also reported from coastal habitats (Shadrin, 2010), 341	
and soil ciliates (Colpodida), which altogether suggest a nearshore environment with fluvial 342	
inputs. The plankton community described by Factor 3 was dominant in the first half of the 343	
Holocene and became scarce as the sea level rose (Camoin et al., 2004) and the Indus coast 344	
retreated inland (Fig. 3) . 345	
 346	
At a simpler ecological level, Globigerina falconensis is the dominant planktonic foraminifer in 347	
the NE Arabian Sea under strong winter wind mixing conditions (Munz et al., 2015; Schulz et 348	
al., 2002). Over the last six millennia, after the sea level approached the present level, and when 349	
the plankton community was consistently outside the influence of coastal and fluvial processes, 350	
G. falconensis shows a peak in relative abundance between ~4500 and 3000 years during the 351	
cold reversal previously identified by the sedimentary ancient DNA (Fig. 3d). A similar peak in 352	
G. falconensis was detected in core SO42-74KL from the western Arabian Sea upwelling area 353	
(Schulz et al., 2002) suggesting that mixing occurred in the whole northern half of the Arabian 354	
Sea (Fig. 3d).  355	
 356	
5. Discussion  357	
 358	
5.1 Winter Monsoon Variability in the Neoglacial 359	
 360	
In concert with previous data from the northern Arabian Sea, our reconstructions suggest that 361	
convective mixing conditions indicative of a stronger winter monsoon occurred between ~4,500 362	
and 3,000 years ago. Another cold yet variable period in the northern Arabian Sea (Doose-363	
Rolinski et al., 2001) occurred after ~1500 years ago under strong winter monsoon mixing (Böll 364	
et al., 2014; Munz et al., 2015) and is seen in the  G. falconensis record of Schulz et al. (2002) 365	
but is not captured completely in our top-incomplete record. In accordance with modern 366	
climatologies colder SSTs in the northern coastal Arabian Sea correspond to increased westerly 367	
extratropical cyclones bringing winter rains as far as Baluchistan and the western Himalayas 368	
(Fig. 3). Pollen records offshore the Makran coast where rivers from Baluchistan and ephemeral 369	
streams flood during winter (von Rad et al., 1999) indeed indicate enhanced winter monsoon 370	
precipitation during between ~4,500 and 3,000 years ago (Ivory and Lezine, 2009). Bulk 371	
chemistry of sediments from the same Makran core were used to infer enhanced winter-monsoon 372	
conditions between 3900 and 3000 years ago (Lückge et al., 2001). Although not specifically 373	
identified as winter precipitation, increased moisture between ~4,600 and 2,500 years ago was 374	
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also documented immediately east of the Indus River mouths in the now arid Rann of Kutch 385	
(Pillai et al., 2018).  386	
 387	
In a comparison to published Holocene records (Fig. 4), two periods of weak interhemispheric 388	
thermal gradient for areas poleward of 30°N and 30°S occurred on top of more gradual, 389	
monotonic changes driven by the seasonality of insolation (Fig. 4e; Marcott et al., 2013; 390	
Schneider et al., 2014). These intervals are coeval within the limits of age models with the strong 391	
winter monsoon phases in the Arabian Sea (Fig. 4g) and southward swings of the Intertropical 392	
Convergence Zone (ITCZ) in the western Atlantic Ocean (Fig. 4f; Haug et al., 2001). Occurring 393	
when Neoglacial conditions became pervasive across the Northern Hemisphere (Solomina et al., 394	
2015), we identify the two late Holocene periods characterized by a series of low 395	
interhemispheric thermal gradient intervals as the Early Neoglacial Anomalies (ENA) between 396	
ca. 4,500 and 3,000 years ago and the Late Neoglacial Anomalies (LNA) after ~1,500, 397	
respectively.  398	
 399	
LNA includes well-known cold events such as the Little Ice Age (LIA), an episode of global 400	
reach but particularly strong in the Northern Hemisphere (IPCC, 2103; Mann et al., 2009; 401	
Neukom et al., 2014) and the preceding cold during the European Migration Period (Büntgen et 402	
al., 2016). ENA is more enigmatic at this point. The high resolution Cariaco ITCZ record 403	
showing successive southward excursions suggests a series of LIA-like events (LIALE in short - 404	
a term proposed by Sirocko, 2015). Furthermore, a dominantly negative phase of the North 405	
Atlantic Oscillation – NAO (Fig. 4b; Olsen et al., 2012) occurred during ENA, similar to 406	
synoptic conditions during LIA. This negative NAO phase was concurrent with moderate 407	
increases in storminess in the high-latitude North Atlantic region, as shown by sea-salt sodium in 408	
Greenland’s GISP2 core (O’Brien et al., 1995) and a cooling of the subpolar North Atlantic 409	
(Orme et al., 2018). During both ENA and LNA the tropical North Atlantic was remarkably 410	
quiescent in terms of hurricane activity (Fig. 4d), which appears to be the direct result of the 411	
prevailing southward position of the ITCZ (Donnelly and Woodruff, 2007; van Hengstum et al., 412	
2016).  413	
 414	
At mid latitudes, a southward position for the Westerlies wind belt, as expected during negative 415	
NAO conditions, is supported at the western end of our domain of interest by well-defined 416	
increases in spring floods in the Southern Alps (Fig. 4c) during both ENA and LNA (Wirth et al., 417	
2013). A higher precipitation-evaporation state in the northern Levant (Fig. 4h; Cheng et al., 418	
2015) and positive balances from lake isotope records in the Eastern Mediterranean (Fig. 4i; 419	
Roberts et al., 2011), including lakes in Iran, occur further along the southward Westerlies 420	
precipitation belt. The preferential southward track of the Westerlies during ENA and LNA is 421	
also in agreement with a stronger Siberian Anticyclone, the dominant mode of winter and spring 422	
climate in Eurasia, as interpreted from increases in the GISP2 non-sea-salt potassium (Fig. 4a). 423	
At the Far East end of the Westerly Jet, support comes from dust reconstructions in the Sea of 424	
Japan (Nagashima et al. 2013) and modeling (Kong et al., 2017), which suggest that the 425	
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Westerlies stayed preferentially further south in the late Holocene. As in modern climatologies, 445	
this suite of paleorecords supports our interpretation that stronger winter monsoon winds during 446	
ENA and LNA in the northernmost Arabian Sea, that ought to have driven more convective 447	
mixing at our core site, were accompanied by increased precipitation penetration along the 448	
Westerlies’ path across the Iranian Plateau, Baluchistan and Makran to the western Himalayas. 449	
Aridification after ca. 4200 years ago in a series of sensitive records from southern East Africa to 450	
Australia (Berke et al., 2012; de Boer et al., 2014; Denniston et al., 2013; Li et al., 2018; Russell 451	
et al., 2003; Schefuss et al., 2011; Wurtzel et al., 2018) argue for a narrowing of the ITCZ 452	
migration belt during ENA within and around the Indian Ocean domain (Li et al., 2018).  453	
 454	
In addition to its paleoclimatological value for the Harappan domain (see discussion below), a 455	
more fundamental question emerges from our analysis: what triggered ENA and LNA? The 456	
reduced influence of insolation on the ITCZ during the late Holocene (e.g., Haug et al., 2001; 457	
Schneider et al., 2014) could have provided favorable conditions for internal modes of climate 458	
variability, either tropical or polar, to become dominant (e.g., Wanner et al., 2008; Debret et al., 459	
2009; Thirumalai et al., 2018). In order to explain intervals of tropical instabilities that did not 460	
extend over the entire Neoglacial various trigger mechanisms and/or coupling intensities 461	
between climate subsystems could be invoked. For example, the weaker orbital forcing increased 462	
the susceptibility of climate to volcanic and/or solar irradiance, which have been proposed to 463	
explain decadal to centennial time events such as the Little Ice Age (e.g., IPCC, 2103; Mann et 464	
al., 2009; McGregor et al., 2005). For the recently defined Late Antique Little Ice Age between 465	
536 to about 660 AD, a cluster of volcanic eruptions sustained by ocean and sea-ice feedbacks 466	
and a solar minimum have been proposed as triggers (Büntgen et al., 2016). However, during 467	
ENA the solar irradiance was unusually stable without prominent minima (Stuiver and 468	
Braziunas, 1989; Steinhilber et al., 2012). The volcanic activity in the northern hemisphere was 469	
also not particularly higher during ENA than after (Zielenski et al., 1996) and it was matched by 470	
an equally active southern hemisphere volcanism (Castellano et al., 2005). As previously 471	
suggested for the Little Ice Age (Dull et al. 2010; Nevle and Bird, 2008), we speculate that 472	
mechanisms related to changes in landcover and possibly landuse could have instead been 473	
involved in triggering ENA.  474	
 475	
Biogeophysical effects of aerosol, albedo and evapotranspiration due to landcover changes were 476	
previously shown to be able to modify the position of ITCZ and lead to significant large scale 477	
geographic alterations in hydrology (e.g., Chung and Soden, 2017; Dallmeyer et al., 2017; 478	
Devaraju et al. 2015; Kang et al., 2018; Sagoo and Storelvmo, 2017; Tierney et al., 2017). 479	
Similarly, changes in tropical albedo and concurrent changes in regional atmospheric dust 480	
emissions due to aridification during the Neoglacial could have affected the ITCZ. 481	
Anthropogenic early land use changes could have also led to large scale biogeophysical impacts 482	
(e.g., Smith et al., 2016). Such landcover- and landuse-driven changes were time-transgressive 483	
across Asia and Africa (e.g., Lezine et al., 2017; Jung et al., 2004; Prasad and Enzel; 2006; 484	
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Shanahan et al., 2015; Tierney et al., 2017; Wang et al. 2010; Kaplan et al., 2011) and could 489	
have led to a generalized instability of the global climate as it passed from the warmer Holocene 490	
Thermal Maximum state to the cooler Neoglacial state. Therefore the instability seen during 491	
ENA may reflect threshold behavior of the global climate system characterized by fluctuations or 492	
flickering (Dakos et al., 2008; Thomas, 2016) or a combination of different mechanisms 493	
affecting the coupling intensity between climate subsystems (Wirtz et al. 2010).  494	
 495	
5.2 Climate Instability and the Harappan Metamorphosis  496	
 497	
In contrast to other urban civilizations of the Bronze Age, such as Egypt and Mesopotamia, 498	
Harappans did not employ canal irrigation to cope with the vagaries of river floods despite 499	
probable knowledge about this agricultural technology through their western trade network (e.g., 500	
Ratnagar, 2004). Instead, they relied on a multiple cropping system that started to develop prior 501	
to their urban rise (Madella and Fuller, 2006; Petrie et al., 2017) and integrated the winter crop 502	
package imported from the Fertile Crescent (e.g., wheat, barley, peas, lentil) with local summer 503	
crops (e.g., millets, sesame, limited rice). A diverse array of cropping practices using inundation 504	
and/or dry agriculture that were probably supplemented by labor-intensive well irrigation was 505	
employed across the Indus domain, dependent on the regional characteristics of seasonal rains 506	
and river floods (e.g., Weber 2003; Pokharia et al. 2014; Petrie and Bates, 2017; Petrie et al., 507	
2017). The alluvial plains adjacent to the foothills of the Himalayas were probably the Harappan 508	
region’s most amenable to multiple crops using summer monsoon and WD rains directly or 509	
redistributed via the perennial and/or ephemeral streams of the G-H interfluve. The 510	
orographically-controlled stability and availability of multiple water sources that could be used 511	
to mitigate climate risks probably made this area more attractive as the inundation agriculture 512	
faltered along the Indus and its tributaries when the summer monsoon became more erratic. 513	
 514	
Aridity intensified over most of the Indian subcontinent as the summer monsoon rains started to 515	
decline after 5,000 years ago (Ponton et al., 2012; Prasad et al., 2014). The closest and most 516	
detailed summer monsoon reconstruction to the Harappan domain shows a highly variable 517	
multicentennial trend to drier conditions between ca. 4,300 and 3,300 years ago (Fig. 5a and 5b; 518	
Kathayat et al., 2017). Thresholds in evaporation-precipitation affecting lakes on the upper G-H 519	
interfluve occurred during the same period (Fig. 5c; Dixit et al., 2014). The flood regime 520	
controlled by this variable and declining summer monsoon became more erratic and/or spatially 521	
restricted (Giosan et al., 2012; Durcan et al., 2017) making inundation agriculture less 522	
dependable. Whether fast or over generations, the bulk of Harappan settlements relocated toward 523	
the Himalayan foothills on the plains of the upper G-H interfluve (see supplementary materials; 524	
Possehl, 2002; Kenoyer, 1998; Wright, 2010; Madella and Fuller, 2006; Giosan et al., 2017). 525	
Abandoned by Himalayan rivers since the early Holocene (Giosan et al., 2012; Clift et al., 2012; 526	
Singh et al., 2017; Dave et al., 2018), this region between the Sutlej and Yamuna was watered by 527	
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orographically-enhanced rain feeding an intricate small river network (e.g., Yashpal et al., 1980; 533	
van Dijk et al., 2016; Orengo and Petrie, 2017).  534	
 535	
During the aridification process the number of large, urban-sized settlements on the G-H 536	
interfluve decreased and the number of small settlements drastically expanded (Fig. 5e and 5d 537	
respectively). The rivers on the G-H interfluve merged downstream to feed flows along the 538	
Hakra into Cholistan, at least seasonally, until the latest Holocene (Giosan et al., 2012; ; see 539	
supplementary materials for geography of the region). Regardless if these settlements on the 540	
lower G-H interfluve were temporary and mobile (Petrie et al., 2017) most of them were 541	
abandoned (Fig. 5d; see supplementary materials) as the region aridified, suggesting that flows 542	
became less reliable in this region. However, the dense stream network on the upper G-H 543	
interfluve must have played an important role in more uniformly watering that region, whether 544	
perennially or seasonally. Remarkably, Late Harappan settling did not extend toward the 545	
northwest along the entire Himalayan piedmont despite the fact that this region must have 546	
received orographically-enhanced rains too (Fig. 2). One possible reason is that interfluves 547	
between Indus tributaries (i.e., Sutlej, Beas, Ravi, Chenab, Jhelum; see supplementary materials 548	
for geography of the region) are not extensive. These Himalayan rivers are entrenched and 549	
collect flows inside their wide valleys rather than supporting extensive interfluve stream 550	
networks (Giosan et al., 2012). 551	
 552	
Our winter monsoon reconstruction suggests that WD precipitation intensified during the time of 553	
urban Harappan collapse (Fig. 5f). As the summer monsoon flickered and declined at the same 554	
time, the classical push-pull model (e.g., Dorigo and Tobler, 1983; Ravenstein, 1885; 1889) 555	
could help explain the Harappan migration. Push-pull factors induce people to migrate from 556	
negatively affected regions to more favorable locations. Inundation agriculture along the summer 557	
flood-deficient floodplains of the Indus and its tributaries became too risky, which pushed people 558	
out, in the same time as the upper G-H region became increasingly attractive due to augmented 559	
winter rain, which pulled migrants in. These winter rains would have supported traditional winter 560	
crops like wheat and barley, while drought tolerant millets could still be grown in rotation during 561	
the monsoon season. Diversification toward summer crops took place during the Mature 562	
Harappan period, as the winter monsoon steadily increased, beginning around 4,500 years ago 563	
(Fig. 5f), but a greater reliance on rain crops after the urban collapse implies that intense efforts 564	
were made to adapt to hydroclimatic stress at the arid outer edge of the monsoonal rain belt 565	
(Giosan et al., 2012; Madella and Fuller, 2006; Petrie and Bates, 2017; Wright et al., 2008). The 566	
longevity of the Late Harappan settlements in this region may be due to a consistent availability 567	
of multiple year-round sources of water. Summer monsoon remained strong enough locally due 568	
to orographic rainfall, while winter precipitation increased during ENA and both these sources 569	
provided relief from labor-intensive alternatives such as well irrigation. The decline in the winter 570	
monsoon between 3300 and 3000 years ago (Fig. 4) at the end of ENA could have also played a 571	
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role in the demise of the rural late Harappans during that time as the first Iron Age culture (i.e., 583	
the Painted Grey Ware) established itself on the Ghaggar-Hakra interfluve. 584	
 585	
The metamorphosis of Indus civilization remains an episode of great interest. The degradation of 586	
cities and disintegration of supra-regional elements of the Indus cultural system such as its script 587	
need not be sudden to be defined as a collapse. However, recent contributions of 588	
geoarchaeological and settlement patterns studies, together with refinements in chronology, 589	
require higher levels of sophistication for addressing links between climatic shifts and cultural 590	
decline. While variation in coverage and imprecision in dating sites require further efforts (Petrie 591	
et al., 2017), it remains clear that there were shifts in the distribution of population and the range 592	
of site sizes, with decline in the size of the largest sites. The impacts of climatic shifts while 593	
remarkable from recent chronological correlations (e.g., Katahayat et al 2017) must now be 594	
assessed regionally through a nuanced appreciation of rainfall quantities as well as its seasonality 595	
(e.g., Madella and Fuller, 2006; MacDonald, 2011; Petrie et al., 2017; Wright et al., 2008). How 596	
precipitation was distributed seasonally would have affected the long-term stability and upstream 597	
sources of the stream and river network (Giosan et al 2012; Singh et al 2017). Our study suggests 598	
broad spatial and temporal patterns of variability for summer and winter precipitation across the 599	
Harappan domain but the local hydroclimate aspects, as well as the role of seasonal gluts or 600	
shortage of rain on river discharge need also to be considered. For example, did the increase in 601	
winter rain during ENA lead to more snow accumulation in the Himalayas that affected the 602	
frequency and magnitude of floods along the Indus and its tributaries? Or did settlements in 603	
Kutch and Saurashtra, regions of relatively dense habitation during Late Harappan times, also 604	
benefit from increases in winter rains despite the fact that modern climatologies suggest scarce 605	
local precipitation?  606	
 607	
Local reconstructions of seasonal hydroclimatic regimes would greatly enhance our ability to 608	
understand social and economic choices made by Harappans. Attempts made to reconstruct WD 609	
precipitation in the western Himalayas (e.g., Kotlia et al., 2017) are confounded by the dominant 610	
summer monsoon (c.f., Kathayat et el., 2017). Developing local proxies based on summer vs. 611	
winter crop remains may provide a more fruitful route for disentangling the sources of water in 612	
the Harappan domain (e.g., Bates et al., 2017). The Indus civilization, especially in the northern 613	
and eastern regions, had a broad choice of crops of both seasons. Mixed cropping may have 614	
become increasingly important, including drought-tolerant, but less productive, summer millets 615	
that suited weakening monsoon and winter cereals, including drought-tolerant barley, that were 616	
aided by the heightened winter rains of Late Harappan era. Facilitated by this climatic 617	
reorganization during ENA, the eastward shift in settlements, while it may have undermined the 618	
pre-eminence of the largest urban centres like Harappa, can be seen as a strategic adjustment in 619	
subsistence to the summer monsoon decline. Ultimately, ENA is a synoptic pattern that provides 620	
a framework to address the role of climate in interacting with social dynamics at a scale larger 621	
than the Indus domain. As such, if ENA affected human habitation of the entire eastern Northern 622	
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Hemisphere, and particularly in the Fertile Crescent and Iran that also depend on winter rains, 628	
remains to be assessed. 629	
 630	
6. Conclusions 631	
 632	
To assess the role of winter precipitation in Harappan history, we reconstructed the Indian winter 633	
monsoon over the last 6000 years using paleobiological records from the Arabian Sea. According 634	
to modern climatologies, strong winter monsoon winds correspond to rains along a zonal swath 635	
extending through the western Himalayas. Changes in the planktonic community structure 636	
indicative of cool, productive waters highlight strong winter monsoon conditions between ca. 637	
4,500 and 3,000 years ago, an interval spanning the transition from peak development of the 638	
urban Harappan to the demise of its last rural elements. Inferred increases in winter rains during 639	
this time were contemporaneous with the regionally documented decline in summer monsoon, 640	
which has previously been interpreted as detrimental to the inundation agriculture practiced 641	
along the Indus and its tributaries. We propose that the combined changes in summer and winter 642	
monsoon hydroclimate triggered the metamorphosis of the urban Harappan civilization into a 643	
rural society. A push-pull migration can better explain the relocation of Harappans from summer 644	
flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains and 645	
a greater reliance on rainfed crops. Two seasons of cultivation helped to spread risk and enhance 646	
sustainability. Summer and winter orographic precipitation above and across the piedmont plains 647	
fed a dense stream network supporting agriculture close to another millennium for the rural late 648	
Harappans.  649	
 650	
Previous reconstructions and our new monsoon record, in concert with other paleoclimate series 651	
from the Northern Hemisphere and Tropics, display two late Holocene periods of generalized 652	
climate instability: ENA between ca. 4,500 and 3,000 years ago and LNA after ~1,500 years ago. 653	
The reduced influence of insolation during the late Holocene could have provided favorable 654	
conditions for internal modes of climate variability, either tropical or polar, to become dominant 655	
and lead to such instability intervals. Both ENA and LNA occurred during low interhemispheric 656	
thermal gradients and dominantly negative phases of NAO characterized by more southward 657	
swings of both the ITCZ and Westerlies belt at mid northern latitudes, reduced hurricane activity 658	
and increases in high-latitude storminess in the Atlantic. The preferential southward track of the 659	
Westerlies during ENA and LNA is supported by increased rains from WDs from the Levant into 660	
Iran and Baluchistan, but a stronger Siberian Anticyclone and weaker winds along the northern 661	
Westerly track as far east as the Sea of Japan. Susceptibility of climate to volcanic, solar 662	
irradiance and/or landcover were proposed to explain LNA but we speculate that time-663	
transgressive changes in landcover across Asia and Africa could have been involved in triggering 664	
ENA as it passed from the warmer Holocene Thermal Maximum state to the cooler Neoglacial 665	
state.  666	
 667	
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Text Box 1: Climate Variability and the Indus Civilization 1935	
 1936	
The Harappan or Indus (Valley) Civilization developed on the Indus alluvial plain and adjacent 1937	
regions (Fig. 1 and Suppl. Fig. 4). Between the Indus and Ganges watersheds, a now largely 1938	
defunct smaller drainage system, the Ghaggar-Hakra, was also heavily populated. The Harappan 1939	
cultural tradition (Kenoyer, 1998; Possehl, 2002; Wright, 2010) evolved during an Early Phase 1940	
(ca. 5,200–4,500 y ago) from antecedent agricultural communities of the hills bordering the 1941	
Indus plain to the west and reached its urban peak (Mature Phase) between ca. 4,500 and 3,900 1942	
years ago. The Harappans were agrarian but developed large, architecturally complex urban 1943	
centers and a sophisticated material culture coupled with a robust trade system. In contrast to the 1944	
neighboring hydraulic civilizations of Mesopotamia and Egypt, Harappans appear to have 1945	
invested less effort to control water resources by large-scale canal irrigation near cities but relied 1946	
primarily on fluvial inundation for winter crops and additionally on rain for summer crops. 1947	
Deurbanization ensued after approximately 3,900 years ago and was characterized by the 1948	
development of increasingly regional artefact styles and trading networks, as well as the 1949	
disappearance of the distinctive Harappan script. Some settlements exhibited continuity, albeit 1950	
with reduced size, whereas many riverine sites were abandoned, in particular along the Indus and 1951	
its tributaries. Between ca. 3,900 and 3,200 years ago, there was a proliferation of smaller, 1952	
village-type settlements, especially on the Ghaggar-Hakra interfluve. Socio-economic as well as 1953	
environmental hypotheses have been invoked to explain the collapse of urban Harappan society, 1954	
including foreign invasions, social instabilities, trade decline, climate deterioration, fluvial 1955	
dynamics, and human-induced environmental degradation.  1956	
 1957	
The “climate-culture hypothesis”, first clearly articulated by Singh (1971) and Singh et al. (1974) 1958	
based on pollen records from Rajasthan lakes, argues for climate variability at the vulnerable arid 1959	
outer edge of the monsoonal rain belt as a determining factor in Harappan cultural 1960	
transformations (Fig. 1; Suppl. Figs. 3 and 4). These reconstructions together with other early 1961	
paleoclimate forays in Rajasthan (see review of Madella and Fuller, 2006) proposed that 1962	
enhanced summer monsoon rains assisted the development of the urban Harappan but weakening 1963	
monsoon conditions after 4,200-3,800 years ago contributed to its collapse. In marine sediments, 1964	
planktonic oxygen isotope records in a core from the Makran continental margin were 1965	
interpreted to suggest a reduction in the Indus river discharge ca. 4,200 years ago (Staubwasser 1966	
et al., 2003). More recent work, proximal to the Harappan heartland, provides strong support for 1967	
this “climate-culture hypothesis” while emphasizing the complexity of both spatiotemporal 1968	
hydroclimate pattern and Harappan cultural responses. Paleohydrological records from lakes in 1969	
northern Rajasthan and Haryana show wetter conditions prevailing during the Early Harappan 1970	
phase, providing favorable climate conditions for urbanization (Dixit et al., 2018) and a distinct 1971	
weakening of summer monsoon around 4,100 years ago (Fig. 5c; Dixit et al., 2014). Another 1972	
summer monsoon reconstruction from Sahiya cave above the Himalayan piedmont (Fig. 5a and 1973	
5b; Kathayat et al., 2017) shows a pluvial optimum during most of the urban phase followed by 1974	
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drying after 4,100 years ago. This high resolution speleothem-based reconstruction also reveals 1975	
that the multicentennial trend to drier conditions between ca. 4,100 and 3,200 years ago was in 1976	
fact highly variable at centennial scales.  1977	
 1978	
Studies of fluvial dynamics on the Harappan territory are consistent with a dry late Holocene 1979	
affecting the Harappan way of life. Landscape semi-fossilization along the Indus and its 1980	
tributaries suggest that floods became erratic and less extensive making inundation agriculture 1981	
unsustainable for the post-urban Harappans (Giosan et al., 2012). In contrast to Himalayan 1982	
tributaries of the Indus, which incised their alluvial deposits in early-mid Holocene, the lack of 1983	
wide entrenched valleys on the Ghaggar-Hakra interfluve indicates that large, glacier-fed rivers 1984	
did not flow across this region during Harappan times. Geochemical fingerprinting of fluvial 1985	
deposits on the lower and upper Ghaggar-Hakra interfluve (Clift et al., 2012 and Dave et al., 1986	
2018 respectively) showed that the capture of the Yamuna to the Ganges basin occurred prior to 1987	
the Holocene. Similarly, abandonment and infilling of a large paleochannel demonstrates that the 1988	
Sutlej River relocated to its present course away from the Ghaggar-Hakra interfluve by 8,000 1989	
years ago, well before Harappan established themselves in the region (Singh et al., 2018). 1990	
However, widespread fluvial redistribution of sediment from the upper Ghaggar-Hakra interfluve 1991	
(e.g., Saini et al., 2009; Singh et al., 2018) all the way down to the lower Hakra (Clift et al., 1992	
2012) and toward the Nara valley (Giosan et al., 2012) suggests that monsoon rains were able to 1993	
sustain smaller streams through that time, but as the monsoon weakened, rivers gradually dried 1994	
or became seasonal, affecting habitability along their course.  1995	
 1996	
If the climatic trigger for the urban Harappan collapse was probably the decline of the summer 1997	
monsoon, the agricultural Harappan economy showed a large degree of adaptation to water 1998	
availability. The long-lived survival of Late Harappan cultures until ca. 3,200 years ago under a 1999	
drier climate and less active fluvial network is the subject of the present study and further 2000	
ongoing efforts (e.g., Kotlia et al., 2017; Petrie et al., 2017) that seek to understand the 2001	
variability in hydroclimate and moisture sources across the Indus domain and how these relate to 2002	
agricultural adaptations.  2003	
 2004	
  2005	
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Figure Captions  2006	
 2007	
Fig. 1. Physiography and precipitation sources for the Harappan domain. The dominant source 2008	
during summer monsoon is the Bay of Bengal while Western Disturbances provide the moisture 2009	
during winter. The extent of the Indus basin and Ghaggar-Hakra (G-H) interfluve are shown with 2010	
purple and brown masks, respectively. Locations for the cores discussed in the text are shown.  2011	
 2012	
Fig. 2. Modern seasonal climatology for South Asia. Average precipitation as well as wind 2013	
direction and intensity for the summer (June-July-August or JJA) and winter (December-2014	
January-February or DJF) months are presented in the left and right panels, respectively. Note 2015	
the differences in scales between panels for both rainfall and winds. Data used come from the 2016	
ERA-40 reanalysis dataset (Uppala et al., 2005) for winds (averaged from 1958-2001) and the 2017	
TRMM dataset (Huffman et al., 2007) for rainfall (averaged from 1998-2014). The white box 2018	
encompasses the upper G-H interfluve. 2019	
 2020	
Fig. 3. Holocene variability in plankton communities as reflected by their sedimentary DNA 2021	
factor loadings (panels marked a through c) and winter mixing-sensitive % G. falconensis (panel 2022	
marked d) in core Indus 11C in the NE Arabian Sea. Relative chlorophyll biosynthesis proteins 2023	
abundances are also shown. Sea level points are from Camoin et al. (2004); SSTs are from 2024	
Doose-Rolinski et al. (2001); and G. falconensis census from the NW Arabian Sea is from 2025	
Schulz et al. (2002). Triangles show radiocarbon dates for core Indus 11C. The period 2026	
corresponding to the Early Neoglacial Anomalies (ENA) is shaded in red hues. 2027	
 2028	
Fig. 4. Northern Hemisphere hydroclimatic conditions since the middle Holocene. The period 2029	
corresponding to the Early Neoglacial Anomalies (ENA) interval is shaded in red hues. From 2030	
high to low (panels marked a trough i): (a) Greenland dust from non-sea-salt K+ showing the 2031	
strength of the Siberian Anticyclone (O’Brien et al., 1995); (b) NAO proxy reconstruction (Olsen 2032	
et al., 2012) and (c) negative NAO-indicative floods in S Alps (Wirth et al., 2013); (d) grainsize-2033	
based hurricane reconstruction in the N Atlantic (van Hengstum et al., 2016); (e) 2034	
interhemispheric temperature anomaly (Marcot et al., 2013); (f) ITCZ reconstruction at the 2035	
Cariaco Basin (Haug et al., 2011); (g) winter monsoon ancient DNA-based reconstruction for the 2036	
NE Arabian Sea (this study – in purple); (h) speleothem δ18O-based precipitation reconstruction 2037	
for northern Levant (Cheng et al., 2015); and (i) stacked lake isotope records as a proxy 2038	
precipitation-evaporation regimes over Middle East and Iran (Roberts et al., 2011).  2039	
 2040	
Fig. 5. Monsoon hydroclimate changes since the middle Holocene and changes in settlement 2041	
distribution on the Ghaggar-Hakra interfluve. From high to low (panels marked a trough f): (a) 2042	
variability in summer monsoon calculated as 200-year window moving standard deviation of the 2043	
detrended monsoon record of Katahayat et al. (2017) and (b) the speleothem δ18O-based summer 2044	
monsoon reconstruction of Katahayat et al. (2017); (c) lacustrine gastropod δ18O-based summer 2045	
monsoon reconstruction (Dixit et al., 2014); (d and e) changes in the number of settlements on 2046	
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the Ghaggar-Hakra interfluve as a function of size and location; and (f) winter monsoon ancient 2057	
DNA-based reconstruction for the NE Arabian Sea (this study – in purple). The period 2058	
corresponding to the Early Neoglacial Anomalies (ENA) is shaded in red hues and durations for 2059	
Early (E), Mature (M) and Late (L) Harappan phases are shown with dashed lines.   2060	
 2061	
  2062	
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Fig. 1 2067	
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Fig. 2.  2073	
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Fig. 3.  2081	
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Fig. 4.  2086	
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Fig. 5.     2090	
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