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Referee 2 
 
The authors have addressed my comments to my satisfaction. I disagree that my 
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Addressing this point in in the discussion is useful. 
 
Dear referee, 
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Best regards 
 
 
   



Referee 3 
 
This is an update to a previously reviewed manuscript. The following comments are 
minor can be addressed without the need for another round of reviews.  
 
Dear referee,  
 
below we address your suggestions. 
 
Thank you for your assistance in leading this manuscript to publication. 
 
Best regards 
 
 
Page 1, Line 10: Suggest changing “observational indices” to “observations”. 
 
We change this accordingly. 
 
Page 1, Line 22: Suggest changing to “It strengthens our confidence if they prove to be 
consistent sources of information”. 
 
We change this to “It strengthens our confidence in inferrences if the sources of 
information prove to be consistent.” 
 
Page 2, Line 6: Suggest changing “data fields, the grid resolution” to “observations, the 
spatial resolution”. 
 
We change this to “fields of data, the spatial resolution”. 
 
Page 3, Line 3: Suggest changing “the South of Great Britain” to “southern Great Britain” 
to be consistent with the more common usage in the manuscript. 
 
We change this accordingly. 
 
Page 3, Line 9: Suggest removing “a simulation” after the comma. 
 
We do so. 
 
Page 3, Line 23: Suggest changing “not least” to “also”. 
 
We change this. 
 
Page 3, Line 26: Suggest moving the comma to before “especially”. 
 
We do so. 
 



Page 3, Line 29: Suggest removing “compare”. 
 
We remove this. 
 
Page 4, Line 1: Suggest changing “on” to “of”. 
 
We change this. 
 
Page 4, Line 10: Suggest changing “by” to “from”. 
 
We change this. 
 
Page 5, Line 20: Suggest changing “the South of Great Britain” to “southern Great 
Britain” to be consistent with the more common usage in the manuscript. 
 
We do so. 
 
Page 5, Line 33: Suggest changing “are, e.g.,” to “include”. 
 
We change this. 
 
Page 6, Line 2: Suggest changing “allow assessing” to “allow for assessment of”. 
 
We do so. 
 
Page 6, Line 7: Suggest changing “the South of Great Britain” to “southern Great Britain” 
to be consistent with the more common usage in the manuscript. 
 
We do so. 
 
Page 7, Line 7: Suggest putting June to August in parentheses and an “a” before “scaling” 
and “a” on the following line before “supplement”. 
 
We follow all three suggestions. 
 
Page 7, Line 12: Add the year of the reference in parentheses. 
 
We changed the reference style.  
 
Page 7, Line 23: Suggest removing the sentence starting “However” as it does not 
appear to add useful information. 
 
We remove the sentence. 
 
Page 7, Line 26: Suggest changing “the South of Britain” to “southern Great Britain” to be 
consistent with the more common usage in the manuscript. 



 
We do so. 
 
Page 7, Line 30: Suggest starting the sentence “To our knowledge, this simulation…” and 
removing the part after the comma at the end of the sentence. 
 
We change this accordingly. 
 
Page 8, Line 13: Suggest changing “degree” to “degrees”, also on Line 15. 
 
We change both instances. 
 
Page 9, Line 12: Suggest removing “at least”. 
 
We do so. 
 
Page 9, Line 16: Suggest changing “on” to “when”. 
 
We do so.  
 
Page 10, Line 11: Suggest combining these two sentences “data and there are…”. 
 
We do so and, then, also combine this paragraph with the following one. 
 
Page 10, Line 25: Suggest removing “at least”. 
 
As the recommendation by McKee et al. is explicitly for “at least 30” data points, we 
would prefer to keep this here. 
 
Page 10, Line 29: Suggest changing “this” to “the” and removing “interannually” on the 
following line. 
 
We apply both suggestions. 
 
Page 11, Line 5: Suggest adding “can” before “point”. 
 
We do so. 
 
Page 11, Line 5: Suggest changing “calculating” to “for the calculation of”. 
 
We change this. 
 
Page 11, Line 8: Suggest flipping “represent traditionally”. 
 
We do so. 
 



Page 11, Line 15: Suggest adding “the” before “reference”. 
 
We do so. 
 
Page 11, Line 30: I might add at the end of the sentence: “which have too much 
high-frequency variability and are too-smoothed, respectively”. 
 
We add: “ which have too much high-frequency variability or are too-smoothed, 
respectively” 
 
Figure 2 caption: Suggest removing the comma in the last sentence and replace it with 
“that”. 
 
We do so. 
 
Page 13, Line 7: Suggest changing the end of the sentence to: “than the agreement 
amongst the observational data”. 
 
We do so, but are unsure, which phrasing is better. 
 
Page 13, Line 10: Suggest removing “on interannual time-scales”. 
 
We do so.  
 
Page 13, Line 16: Suggest changing the beginning of the sentence to “There is a strong 
relationship…”. 
 
Since page 13 has not a Line 16, we are unclear, whether the referee refers to page 13 
Line 13 or page 14 Line 1. Therefore, we do not follow this suggestion. 
 
Page 14, Line 1: Suggest changing “relation” to “relationship” here and on Lines 3 and 7. 
 
We do so for the first two instances but prefer “Temperature-relations” on Line 7. 
 
Page 14, Line 12: Suggest removing “for this resolution”. 
 
We do so. 
 
Page 17, Line 4: Suggest changing “93.3th, i.e. wet, percentile” to “wet percentile” and a 
similar change with the dry percentile statement on Line 8. 
 
We follow both suggestions. 
 
Page 17, Line 10: Suggest adding “before transformation into a distributional form” at 
the end of the sentence. 
 



We do so. 
 
Page 19, Line 9: Suggest removing “per-se”. 
 
We do so. 
 
Page 20, Line 8: Remove “each window”. 
 
We thank the referee for spotting this, and we remove it. 
 
Page 21, Line 2: Suggest changing “of” to “for”. 
 
We do so. 
 
Page 21, Line 6: Suggest adding “the” before the list of percentiles. 
 
We do so. 
 
Page 22, Line 4: Suggest removing “shortly”. 
 
We remove shortly in Line 1 of page 22. 
 
Page 22, Line 8: I understand what you are saying but the sentence is a bit confusing, I 
suggest you revisit this with an eye towards clarity.  
 
We change this to: The amount of precipitation, which represents median values for the 
reference year 1815 CE, is representative of larger percentiles in later years (Figure 
\ref{fig:fig9}b). However, there is a slight decreasing trend from approximately the 
mid-19th century to the end of the simulation (Figure \ref{fig:fig9}b). 
 
Page 23, Line 11: Suggest changing “show again” to “again show”. 
 
We change this. 
 
Page 23, Line 15: Suggest changing “only shortly” to “briefly”. I would also move up the 
first sentence of the next paragraph into this first paragraph, changing the beginning of 
that sentence to read “In particular, we show…for this season.”. 
 
We follow the suggestions. 
 
Page 24, Line 2: Suggest changing “high” to “large” and adding “such” before “small”. 
 
We follow these suggestions. 
 
Page 24, Line 9: Suggest combining these two sentences. 
 



It is unclear which sentences are meant. We combine the sentences on Line 10: We do 
not show significance levels in Figure \ref{fig:fig11} but we note that for 51-year 
windows and the time series characteristics of the data (e.g., approximately 
uncorrelated noise for seasonal precipitation), one may regard absolute values of 
correlation coefficients larger than \(0.23\) as statistically significant at the 5% level. 
 
Page 24, Line 17: Suggest changing “relation” to “relationship”. 
 
We do so. 
 
Page 24, Line 24: Suggest changing “shortly” to “briefly”. 
 
We do so. 
 
Page 24, Line 27: Suggest changing “simulations” to “simulated”. 
 
We change this. 
 
Page 24, Line 4: Suggest changing “relation” to “relationship”. 
 
We change this. 
 
Page 25, Line 17: Suggest changing “shows again” to “again shows”. 
 
We change this. 
 
Page 25, Line 21: Suggest changing “in” to “with”. 
 
We change “in” to “by showing” 
 
Page 25, Line 22: Suggest changing “relation” to “relationship”. 
 
We do so. 
 
Page 25, Line 26: Suggest removing “of climate parameters”. 
 
We remove this. 
 
Page 25, Line 32: Suggest changing “which again” to “that” and removing “the input 
changed over time”. It is unclear what that sentence means—if you choose not to 
remove it you should revisit the sentence with an eye towards clarity.  
 
We modify the two sentences to: The observational England-Wales precipitation data is 
a weighted composite of regional series based on instrumental information. The 
information entering the composites and the regional index changed over time. 
 



Page 25, Line. 33: Suggest changing “proxy” to “proxies”. 
 
We do so. 
 
Page 26, Line 8: Suggest changing “relation” to “relationship”. 
 
We do so. 
 
Page 26, Line 11: Suggest removing “a priori” and “on” to “as to” on the following line. 
 
We do so. 
 
Page 26, Line 19: Suggest changing “to identify” to “the identification of”. 
 
We do so. 
 
Page 26, Line 29: Suggest changing “differences to” to “differences as compared to”. 
 
We change this accordingly. 
 
Page 26, Line 32: Suggest changing “the reconstructions relation to temperature” to “the 
relationship between the reconstructions and temperature” and “relate” to “reflect” on 
the following line. 
 
We change this. 
 
Page 27, Line 6: Suggest changing “relations” to “relationships” and removing “from 
March to July”. I would also change “relation” to “relationship” throughout this 
paragraph and the next. 
 
We make all these changes. 
 
Page 27, Line 14: Suggest adding “the” before “simulation”. I would also clarify what 
relationship you are talking about on the following line. 
 
We add “the” and add at the end of the sentence “ between temperature and 
precipitation in southern Great Britain”. 
 
Page 27, Line 18: Suggest adding “the” before “simulation”. 
 
We do so. 
 
Page 27, Line 24: Suggest adding “magnitude” after “large”. 
 
We add “amplitude” after large. 
 



Page 27, Line 27: Suggest removing “large”. 
 
We do so. 
 
Page 28, Line 9: Suggest adding “variability in” before “the North…” 
 
We do so. 
 
Page 28, Line 19: What is meant by “increase our confidence in forced changes”. 
 
We add “simulated” before “forced changes”. 
 
Page 28, Line 25: Suggest changing “comparing” to “comparison of”. 
 
We change this accordingly. 
 
Page 28, Line 30: Suggest removing “indeed”. 
 
We do so. 
 
Page 28, Line 32: Suggest changing “Particularly” to “In particular,”. This sentence does 
not appear to be consistent with the previous sentence where you note that they have 
limited agreement. “Comparable changes” implies consistency while “limited 
agreement” implies inconsistency. 
 
We change both sentences to: Second, the regional simulation shows occasional 
agreement with its observational target, the observational England-Wales precipitation 
data. In particular the variability in both data sources shows comparable changes for 
the full period of the observations. 
 
Page 28, Line 33: Suggest removing “mainly”. 
 
We do so. 
 
Page 29, Line 2: This sentence is vague, I suggest that you expand on the “different 
processes”. 
 
We change the sentence to: However, considering all associated uncertainties, we can 
not conclude that the agreement in properties does reflect agreement in the underlying 
processes in the respective data sources.  
 
Page 29, Line 8: Suggest changing “relation” to “relationship” here and on the next line. 
 
We change these two occurrences.  
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Abstract. The scarcity of long instrumental records, uncertainty in reconstructions, and insufficient skill in model simula-

tions hamper assessing how regional precipitation changed over past centuries. Here, we use standardised precipitation data

to compare a regional climate simulation, reconstructions, and long observational records of seasonal (March to July) mean

precipitation in England and Wales over the past 350 years. The Standardized Precipitation Index is a valuable tool for as-

sessing agreement between the different sources of information, as it allows for a comparison of the temporal evolution of5

percentiles of the precipitation distributions. These evolutions are not consistent among reconstructions, a regional simulation,

and instrumental observations for severe and extreme dry and wet conditions. The lack of consistency between the different

data sets may be due to the dominance of internal climate variability over the impact of natural exogenous forcing conditions

on multi-decadal time-scales. The disagreement between sources of information reduces our confidence in inferences about

the origins of hydroclimate variability for small regions. However, it is encouraging that there is still some agreement between10

a regional simulation and observational indices
::::::::::
observations. Our results emphasize the complexity of hydroclimate changes

during the recent centuries and stress the necessity of a thorough understanding of the processes affecting forced and unforced

precipitation variability.

1 Introduction

Confidence in future climate projections of, e.g., drought and wetness conditions requires understanding of past climate and15

hydroclimate variability and its drivers (e.g. Schmidt et al., 2014). Focussing on the hydroclimate, estimates of past and future

changes are still highly uncertain for precipitation at regional scales. Indeed, our understanding of internal, naturally forced,

and anthropogenically forced variability is weaker for precipitation than for temperature due to the more complex controls

on precipitation variability (e.g. Zhang et al., 2007; Hoerling et al., 2009; Iles et al., 2013; Fischer et al., 2014) and the more

local-scale nature of precipitation-processes.20

Consistency among estimates from early instrumental observations, paleo-reconstructions from environmental archives (i.e.,

paleo-observations), and climate simulations supports our understanding of past changes. It strengthens our confidence in

inferrences from the consistent
:
if
:::
the

:
sources of information

:::::
prove

::
to

::
be

:::::::::
consistent. Here, consistency among estimates simply

means that various sources of information do not contradict each other. Despite being a rather liberal metric, consistency is an

appropriate measure in view of the multiple sources of uncertainty in inferring past hydroclimate and precipitation variability.25
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Here, we explore consistency of observations, reconstructions, and simulations for one small region and focusing only on

precipitation changes. Specifically we set out to study the consistency in the statistical properties of precipitation distributions

in these sources of information.

Comparing precipitation among different data sources poses various challenges. Problems relate not only to pronounced

biases in the simulated precipitation, especially derived from raw global models, and to differences in representation or, in5

the case of data fields , the grid
::::
fields

:::
of

::::
data,

:::
the

::::::
spatial

:
resolution. In the context of long observational time series, data

inhomogeneities due to changes in instrumentation, measuring techniques, and changes in locations can further influence

estimates of longer-term trends (e.g., Frank et al., 2007; Wilson et al., 2005; Böhm et al., 2010; Burt and Howden, 2011;

Craddock and Craddock, 1977). Reconstructions likely represent only part of the variability spectrum of, e.g., precipitation,

dependent on the strength of the climatic signal in the original data and on further shortcomings of the underlying paleo-10

observations.

The PAGES Hydro2k Consortium (2017) discuss in more detail the problems in comparing hydroclimatic variables be-

tween reconstructions and simulations. They developed recommendations for the comparison of hydroclimate representations

in simulations and paleo-observations. They stress the complementary nature of simulated and environmental information con-

sidering their respective uncertainties. Estimates have to represent the same parameters on related spatial and temporal scales.15

Only then, a comparison can be valid. We need appropriate methods to bridge the gap between the local or regional recon-

struction and the simulation output that represents aggregates over larger spatial scales. Proxy system models are one means to

achieve this (Evans et al., 2013; PAGES Hydro2k Consortium, 2017).

Transforming precipitation estimates to the Standardized Precipitation Index (SPI; McKee et al., 1993) facilitates the com-

parison of different sources of information on precipitation in view of the mentioned challenges. It provides a common basis20

for comparisons between different locations, periods or seasons. The core of the SPI calculation is the fit of a distribution func-

tion to the precipitation estimates. We argue that the transformation of precipitation estimates to the SPI is a simple means to

compare the statistical properties of hydroclimatic parameters in simulations and paleo-observations. It is of value for periods

with and without comprehensive sets of climate and weather observations.

Previous usage of the SPI in paleoclimatology focussed on the index series (compare, e.g., Domínguez-Castro et al., 2008;25

Seftigen et al., 2013) and did not consider further information available through the transformation. We apply the SPI over

moving windows of 51 years to study variations in the properties of precipitation distributions on multi-decadal time-scales.

We concentrate on a regional domain where all sources of data, i.e., observations, reconstructions, and simulations are available.

By applying the SPI-transformation over moving windows, we are able to evaluate and compare percentiles of the estimates

as well as the moments of the distributions and the temporal changes of these distributional properties. We are essentially30

comparing sequences of climatologies.

Long observationally based records allow us to assess how the statistics of observed precipitation have changed over the

last couple of centuries. They, in turn, provide the basis for evaluating how state-of-the art regional or global climate model

simulations and reconstructions for the Common Era (CE) compare in domains co-located with the available observations. We

choose southern Great Britain as our domain of interest since there are precipitation observations available in the form of the35
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England-Wales precipitation data set (Alexander and Jones, 2000, for the period 1766 CE to present), its subdivisions, and

instrumental records for Oxford (cf. Radcliffe), Pode Hole and Kew Gardens. The instrumental records start in 1767 CE, 1726

CE, and 1697 CE, respectively.

A number of precipitation reconstructions are available for the South of
:::::::
southern Great Britain. We choose the millennium-

long tree-ring based data by Cooper et al. (2013) and Wilson et al. (2013) for East Anglia and Southern-Central England,5

respectively. We focus on an extended spring season (MAMJJ). The next section discusses our decision to concentrate on this

data instead of the δ18O based scaling approaches by Young et al. (2015, covering the period 1766 to present) and Rinne et al.

(2013, reconstructed values from 1613 to 1893 CE).

Regional simulations for the last 500 to 2000 years are rare. To our knowledge there are only two transient regional simula-

tions. Gómez-Navarro et al. (2015) compare one of these simulations, a simulation with the model MM5, to reconstructions for10

various parameters over larger regional domains within Europe. For precipitation, they compare the simulation to the gridded

precipitation reconstructions of Pauling et al. (2006) for Western Europe, which is based on a set of dendroclimatological and

other natural proxies and documentary information. Gómez-Navarro et al. (2015) find rather good agreement in the evolution

of median precipitation amounts between the reconstruction and their regional simulation for a domain including the British

Isles and Ireland for the summer season. The agreement is much weaker for the spring season. They also emphasize model15

shortcomings and the lack of agreement in the representations of extreme climate anomalies. On the side of the reconstructions,

Gómez-Navarro et al. (2015) stress the inconsistencies among the reconstructions of different parameters (i.e., temperature,

precipitation, and sea level pressure).

Here, we compare observations and paleo-observations with each other. We additionally compare them to output from a

regional simulation with the model CCLM for the European domain over the period 1645 to 1999 CE (compare Gómez-20

Navarro et al., 2014; Bierstedt et al., 2016). Our comparison differs from Gómez-Navarro et al. (2015) by using a different

regional model, focussing on a smaller region, and by using regional time series reconstructions instead of deriving records

from gridded products. Moreover, our general focus is on precipitation.

Our focus is not least
::::
also to motivate the use of the Standardized Precipitation Index in hydroclimatic comparisons be-

tween different data sets in paleoclimatology. We use the SPI to study the consistency of the different sources of precip-25

itation information for approximately the last 350 years. That is, we are looking at how well the sources of information

compare among each other. This is a limited aim, which is appropriate considering the various uncertainties
:
, especially in

simulations , and reconstructions, but also in observations. We explicitly do not expect the simulation output to agree with

the instrumental and paleo-observation data on the mean precipitation amount since spatial representations differ. We also

do not expect them necessarily to agree on decadal variations in precipitation because of the presence of internal variabil-30

ity (compare, e.g., Deser et al., 2012b, a; Swart et al., 2015)
:::::::::::::::::::::::::::::::::::::::
( e.g., Deser et al., 2012b, a; Swart et al., 2015) potentially mask-

ing commonly forced external signals. Even a large ensemble of simulations may not necessarily represent these variations

(see, e.g., Annan and Hargreaves, 2011). Since we transform precipitation to the Standardized Precipitation Index over moving

windows, our analyses essentially become comparisons between series of climatologies, thus potentially filtering shorter term

internal variability.35
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Table 1. List of data sets by region, parameter, type of data, period covered, season used, and source for obtaining the data.

Location/Region Parameter Type Period CE Season Source

England-Wales Precipitation Observations 1766–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/

South-West England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/

South-East England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/

Central England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/

East-Anglia Precipitation Reconstruction 900–2009 MAMJJ https://www.ncdc.noaa.gov/paleo-search/study/12896

Southern-Central England Precipitation Reconstruction 950–2009 MAMJJ https://www.ncdc.noaa.gov/paleo-search/study/12907

Southern England Precipitation Reconstruction 1613–1893 MJJA Correspondence with original author

United Kingdom δ18O Observations 1766–2012 JJA https://doi.org/10.1007/s00382-015-2559-4

Central England Temperature Observations 1659–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadcet/

Kew Gardens Precipitation Instrumental 1697–1999 MAMJJ https://climexp.knmi.nl/

Pode Hole Precipitation Instrumental 1726–1994 MAMJJ https://climexp.knmi.nl/

Oxford Precipitation Instrumental 1767–1996 MAMJJ https://climexp.knmi.nl/

Europe Precipitation Regional climate 1645–1999 MAMJJ http://doi.org/10.6084/m9.figshare.5952025

model simulation

Europe Temperature Regional climate 1645–1999 MAMJJ http://doi.org/10.6084/m9.figshare.5952025

model simulation

In the following, we first introduce and discuss our choices on
::
of data sets and methodology before comparing the data sets

and discussing the results. A supplementary document to this manuscript provides additional analyses that are non-essential

for our conclusions.

2 Data

Hydroclimatic changes affect humans and the environment mostly on the local and regional scale. Therefore, we focus on5

small domains and use precipitation data. Precipitation is a more tangible variable than, e.g., drought indicators like the Palmer

Drought Severity Index (PDSI).

We aim at describing how much agreement we can find between different sources of information for precipitation in a

small domain over a period with limited instrumental data, i.e., a period when we have to rely on reconstructions from paleo-

observations. Such an assessment helps to increase our confidence in the estimates by
::::
from the different sources of information.10

In turn, it also increases our understanding of past hydroclimatic variability.

4
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We use observationally derived data sets, reconstructions, and simulation output in our main analyses. We use further ob-

servationally derived records and instrumental station observations for assessing the quality of our main data sets. Table 1 lists

the sources of information. For all analyses, we use primarily the spring-summer season from March to July (MAMJJ).

Starting from the available regional climate simulation (see below), we choose the region for our study based on the avail-

ability of precipitation observation and reconstruction data. There are long records of instrumental measurements of climate5

parameters for a number of locations in Europe. For southern Great Britain, there exist observational regional domain compos-

ite records for temperature and precipitation, precipitation reconstructions, and long instrumental records.

2.1 Observations

The British Isles are unique because there exist long observation based indices for precipitation and temperature in the form

of the England-Wales precipitation data (Alexander and Jones, 2000) and the Central England Temperature data (Parker et al.,10

1992). In addition, there are long instrumental station precipitation observations available, e.g. in southern Great Britain, for

Kew Gardens, Oxford, and Pode Hole.

Alexander and Jones (2000; see also Wigley et al., 1984) describe the England-Wales precipitation (EWP) data. It is available

from the Met Office Hadley Centre at monthly resolution extending back to the year 1766. The Met Office Hadley Centre also

provides subdivisions of the data. We use those for South-West, South-East, and Central England. Alexander and Jones (2000)15

describe the automated method of updating long precipitation series like the data by Wigley et al. (1984) while also ensuring

the homogeneity of the data. Parker et al. (1992) similarly describe the production of the Central England Temperature data

and how to maintain quality-control and homogeneity.

The Central England and England-Wales observation indices are good representations of the late 20th century climate of

the South of
:::::::
southern Great Britain according to Croxton et al. (2006). Note that the composite series naturally rely on the20

instrumental series.

The Climate Explorer (http://climexp.knmi.nl/) provides access to a number of long series of monthly instrumental precipita-

tion observations from the Global Historical Climatology Network (Peterson and Vose, 1997). We use those from Oxford, Kew

Gardens, and Pode Hole in addition to the observationally derived Met Office Hadley Centre data sets. The Climate Explorer

provides monthly data for these locations from 1697 to 1999, 1726 to 1994, and 1767 to 1999 CE, respectively. The later years25

in the Oxford record include missing values and we therefore only use data from 1767 to 1996 CE.

Frank et al. (2007) noted the uncertainties in early instrumental temperature observations. Additionally, the very early data

in the Central England Temperature data includes non-instrumental indirect data to infer past temperature. Similarly, early

precipitation observations require rigorous quality control (e.g., Burt and Howden, 2011). Woodley (1996) reviews the history

of precipitation data for England and Wales as well as Scotland.30

2.2 Reconstructions

There are a number of gridded reconstructions of hydroclimatic parameters covering the European domain. Continental domain

gridded precipitation reconstructions are, e.g.,
::::::
include

:
Pauling et al. (2006), Casty et al. (2007), and Franke et al. (2017).

5
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Reconstructions of drought indices like the PDSI exist as gridded products, too, for various regions of the world including

Europe (The Old World Drought Atlas, Cook et al., 2015). These products allow assessing
:::
for

::::::::::
assessments

::
of the quality of the

hydroclimate in paleoclimate simulations (Smerdon et al., 2015).

We decide to use regional precipitation reconstructions for our domain instead of gridded products to minimise the effect of

the reconstruction method on the results. We focus on precipitation as it allows the direct comparison with long instrumental5

records and it is a parameter directly experienced by people.

To our knowledge, there are three precipitation reconstructions for small domains from the South of
:::::::
southern

:
Great Britain,

i.e., approximately within the domain of the England-Wales precipitation and the Central England temperature. These are for

East Anglia (Cooper et al., 2013), for Southern-Central England (Wilson et al., 2013), and the reconstruction for Southern

England by Rinne et al. (2013). The former two use tree-ring width data for their reconstructions, the latter uses tree-ring10

oxygen isotopes. There is additionally the work by Young et al. (2015), who scale a δ18O composite record from Great Britain

to the England-Wales precipitation.

In the main manuscript, we only use the data by Cooper et al. (2013) and Wilson et al. (2013) for, respectively, East Anglia

and Southern-Central England in March, April, May, June, July (MAMJJ). Cooper et al. (2013) and Wilson et al. (2013) iden-

tified this extended spring as the season their tree-ring width records are sensitive to for their reconstructions of precipitation.15

These authors calibrate their tree-ring data against gridded precipitation beyond their target regions of Southern-Central Eng-

land and East Anglia, respectively. Thereby the reconstructions are possibly biased beyond their respective regions of interest.

They compare their reconstructions against the long instrumental records and find a lack of stability of the relation to the in-

strumental data. They discuss the limitations of their reconstructions representing less than 40% of the regional precipitation

variance over the 20th century. Obviously, the reconstructions suffer from the limited lengths of the available tree ring samples.20

This may limit the resolution of precipitation variability at low frequencies in the reconstructions.

Although the reconstructions show a notable amount of low frequency variability, Cooper et al. (2013) cautions against too

much confidence in the reconstructed low frequency precipitation variability. Cooper et al. (2013) explicitly call their work

“preliminiary” with respect to reconstructing low frequency precipitation variability. Wilson et al. (2013) and Cooper et al.

(2013) emphasize the weaknesses of their reconstructions in representing extreme years. On the other hand, both are confident25

in the mid- to high-frequencies of their reconstructions.

The authors note variable relationships between tree growth and environmental controls for their regions in the past. Indeed

there are periods when the relationships between trees and precipitation are not significant. Wilson et al. (2013) and Cooper

et al. (2013) discuss the possibility that the tree-species used for their reconstructions were less sensitive to precipitation over

certain periods, e.g., the early 19th century. That is, the proxies, theoretically representing a precipitation signal, also contain30

a temperature signal, for instance, if they are sensitive to soil moisture. Wilson et al. further suggest an effect of the Industrial

Revolution and the associated pollution on the trees in their selection. Wilson et al. (2013) also discuss the reliability of the

instrumental data but conclude this is likely not an issue.
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The works by Rinne et al. (2013) and Young et al. (2015) use their δ18O data to reconstruct precipitation for Southern

England and Great Britain respectively. We shortly discuss results for both reconstructions below and give some more details

in the supplementary document.

Rinne et al. (2013) calibrate and scale their local isotope data from 1613 to 1893 CE against the station observations from

Oxford for the period 1815 to 1893 CE and concatenate the reconstruction with the observations for 1894 to 2003 CE. They5

target an extended summer season from May to August.

Young et al. (2015) use the England-Wales summer ,
:
(June to August, precipitation as )

:::::::::::
precipitation

::
as

:
a
:
scaling target for a

composite of eight isotope records from Scotland, Wales, and England for the period 1766 to 2012 CE. They provide the input

series as
:
a
:
supplement to their paper.

Both publications by Rinne et al. (2013) and Young et al. (2015) note the differences of their scaled δ18O data to the10

tree-ring width based works by Wilson et al. (2013) and Cooper et al. (2013). Young et al. (2015) emphasize that the extended

spring reconstructions are basically unrelated to the δ18O data. Young et al.
::::::::::::::::
Young et al. (2015) conclude that these differences

make it unlikely that the tree-ring based works and their δ18O based work represent the same environmental parameter. They

highlight the lack of a calibration against regional precipitation data. Young et al. (2015) conclude that their own data reliably

reflects precipitation while the tree-ring widths most likely represent the combination of various environmental influences on15

tree growth instead of a single climate parameter.

Despite the conclusions of Young et al. (2015) we decide to focus in the main manuscript on the two tree-ring width based

records by Cooper et al. (2013) and Wilson et al. (2013). The main reason for excluding the Rinne et al. record is that it

concatenates instrumental data from Radcliffe (cf. Oxford) station for 1894 to 2003 to the reconstructed values from 1613 until

1893. This reduces the time of overlap with the England-Wales precipitation data.20

We do not focus on the data by Young et al. (2015) for two reasons. Firstly, the authors do not provide the full reconstruction,

and, secondly, the data starts at the earliest in 1766 CE, which again minimises the period available for comparing it to the

simulation data. However, this is exactly the time period of the England-Wales precipitation series.

We think the focus on the tree-ring width based reconstructions is appropriate to present the possibilities of using the SPI

and to highlight potential consistencies and inconsistencies between the different data sources. In the following, we compare25

the two reconstructions for the South of
:::::::
southern

:::::
Great

:
Britain with the England-Wales precipitation observations.

2.3 Simulations

We compare the observations and the reconstructions to output from a regional simulation with the model CCLM for the

European domain over the period 1645 to 1999 as also used by Gómez-Navarro et al. (2014) and Bierstedt et al. (2016).

We use output from 1652 onwards (Gómez-Navarro et al., 2014). This
::
To

:::
our

::::::::::
knowledge,

:::
this

:
simulation is one of only two30

transient regional simulation for this region and the last fast few centuries, which exist to our knowledge.

Forcing for the regional simulation is from a global simulation with the Max-Planck-Institute Earth System Model (MPI-

ESM) in its Millennium-simulation COSMOS-setup. For details, see Jungclaus et al. (2010). This version of MPI-ESM couples

the atmosphere model ECHAM5, the ocean model MPI-OM, a land-surface module including vegetation (JSBACH), a module
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for ocean biogeochemistry (HAMOCC), and an interactive carbon cycle. For the simulation, ECHAM5 was run with a T31

horizontal resolution and with 19 vertical levels. MPI-OM used a variable resolution between 22 and 250 km on a conformal

grid for this simulation. The ensemble used diverse forcings. The driving simulation for the regional simulation with CCLM

is one MPI-ESM simulation with all external forcings and a reconstruction of the solar activity based on Bard et al. (2000),

i.e. with a comparatively large amplitude of solar variability.5

The regional climate model CCLM simulation (Wagner, personal communication; see also Gómez-Navarro et al., 2014;

Bierstedt et al., 2016) uses adjusted forcing fields relevant for paleoclimate simulations as also used with the global MPI-

ESM simulation. These include orbital forcing and solar and volcanic activity. Since the regional model does not represent

the stratosphere, the regional simulation considers the effect of volcanic aerosols as a reduction in solar constant equivalent

to the net solar shortwave radiation at the top of the troposphere in MPI-ESM. CO2 variability is prescribed and changes10

in greenhouse gases CO2, CH4, and N2O are based on data by Flückiger et al. (2002). Land-cover changes are included as

external lower boundary forcing using the same data set as the MPI-ESM simulation (Pongratz et al., 2008). The presented

CCLM simulation uses a rotated grid with a horizontal resolution of 0.44 by 0.44 degree
::::::
degrees and 32 vertical levels. The

sponge zone of seven grid points at each domain border is removed and fields are interpolated onto a regular horizontal grid of

0.5 by 0.5 degree
::::::
degrees.15

We choose the domain including grid points closest to the longitudinal and latitudinal borders 5.5W to 1.5E and 50.5 to 54.5N

to represent the England and Wales precipitation domain. This selection is somewhat arbitrary but we assume it sufficiently

represents the England-Wales precipitation domain to allow meaningful comparison of changes in percentiles, although not

in absolute percentile values. We choose the domain 5 to 0W and 50 to 55N as simulated counterpart of the Central England

Temperature. The simulated East Anglia series represents the domain 0E to 2E and 52N to 53N, and we choose the domain20

2.5W to 0E and 51N to 52.5N as equivalent for Southern-Central England. All analyses are for the extended spring season,

MAMJJ, since this is the seasonal focus of the reconstructions. The appendix provides a short evaluation of the simulation

against the observational CRU-data (Harris et al., 2014) over the European domain. We do not apply any bias correction to the

simulation output.

So far, global simulations for the last millennium have notably coarser resolutions than the 0.44 by 0.44 degree of the regional25

simulation we use here (compare, e.g., Fernández-Donado et al., 2013; PAGES 2k-PMIP3 Group, 2015). However, in contrast

to present-day and future scenario regional simulations, a 0.44 by 0.44 degree resolution represents a comparatively coarse

resolution dynamical downscaling. As a review by Ludwig et al. (2018, including two of the present authors) highlights, this is

because the demand for long simulation periods limits applications of regional models in paleoclimatology to relatively coarse

setups. Thus, one may question the benefits of the approach compared to more recent higher-resolution global simulations, e.g.,30

with the global models CCSM4 and CESM1 (Landrum et al., 2012; Lehner et al., 2015), which have resolutions of 0.9◦×1.25◦.

Sørland et al. (2018) discuss the benefits of regional climate simulations in studies on regional climates. Besides other

models, they also use CCLM in a 50km setup comparable to the simulation used here. They note that improved representation

of regional climate in a regional simulation is not solely due to the increased resolution but may be due to different strategies

in model-building and tuning. Pinto et al. (2018) explain differences in results from regional, including CCLM, and global35
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simulations for southern Africa by an interplay between the representation of sub-grid-scale processes in the different models

and factors related to the increased resolution.

Blenkinsop and Fowler (2007) find that regional climate models may be deficient in their ability to model persistent low

precipitation episodes for the British Isles, which has repercussions for their representation of drought events. The review by

Ludwig et al. (2018) reports more realistic distributions for precipitation in regional paleoclimate simulations.5

Flato et al. (2013, chapter 9 of the IPCC AR5) review the progress of regional downscaling and high-resolution modelling.

They emphasize that the skill of such exercises depends on the model used, the season, the domain of interest, and the con-

sidered meteorological variable. They highlight studies showing that there is not a linear increase in simulation skill towards

higher resolutions. Higher resolutions typically provide more reliable estimates of extremes, including heavy rainfall.

The quality of the simulated precipitation still strongly depends on the parameterisations implemented in the regional cli-10

mate model. Precipitation, especially convective precipitation events, are still sub-grid processes, even within regional climate

models. Concentrating on accumulated amounts on seasonal time-scales and their long-term changes, however, allows at least

a more robust comparison of simulated precipitation to observed and reconstructed data.

3 Methods

One objective of this manuscript is to highlight how the concept of the Standardised Precipitation Index (SPI, McKee et al.,15

1993) adds additional perspectives on
:::::
when

:
comparing various sources of information for periods with and without instru-

mental observations. Therefore, we shortly introduce the SPI-transformation procedure and how we use this information to

subsequently compare precipitation estimates from observations, reconstructions, and a regional climate simulation.

3.1 The Standardized Precipitation Index – SPI

Standardising precipitation data facilitates comparing precipitation distributions between different locations, time-scales, peri-20

ods, and data sources. For this purpose, McKee et al. (1993) introduced the Standardized Precipitation Index (SPI).

The Interregional Workshop on Indices and Early Warning Systems for Drought proposed the SPI as common index to

facilitate comparability between meteorological drought estimates for different regions (Hayes et al., 2011, see also Keyantash

et al. (2002)). The SPI should complement previously used indices.

Raible et al. (2017) find the SPI to be a reliable drought index for Western Europe including the British Isles. The standard-25

isation inherent to the SPI allows further applications, e.g., flood monitoring (Seiler et al., 2002), and the easy comparison of

normal, dry, and wet conditions between different sources of data. Indeed the UK drought portal (https://eip.ceh.ac.uk/droughts)

relies on the SPI. Sienz et al. (2012) discuss associated biases of the approach.

The SPI uses only precipitation, which makes it an ideal and relatively straightforward tool for comparing hydroclimatic data

between different data sources. Precipitation is a standard output of simulations, long instrumental records exist for various30

locations, and a number of reconstructions exist as well.
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However, as the SPI uses only precipitation, it is of less value when the interest is in, e.g., the water supply, runoff, or

streamflow (but see Seiler et al., 2002). The focus on precipitation also limits the applicability for studying temperature sensitive

parts of the hydrological cycle and impacts on biological and anthropogenic systems (e.g., PAGES Hydro2k Consortium, 2017;

Keyantash et al., 2002; Hayes et al., 2011; Van Loon, 2015).

Previous usage of the SPI in paleoclimatology focussed on the index series. For example, Domínguez-Castro et al. (2008)5

and Machado et al. (2011) compare SPI-series to differently derived hydroclimatic indices over approximately the last 500

years. Other studies reconstructed the SPI instead of absolute precipitation amounts (e.g. Seftigen et al., 2013; Yadav et al.,

2015; Tejedor et al., 2016; Klippel et al., 2018). Lehner et al. (2012) use the SPI to compute pseudo-proxies from re-analysis

data and long simulations with global climate models to test a reconstruction-method.

3.1.1 Transformation10

The SPI requires fitting a distribution function to the precipitation data . There
:::
and

::::
there

:
are various candidate distributions

(e.g., Sienz et al., 2012; Stagge et al., 2015, and their references).

In our analyses, we fit a Weibull distribution. Sienz et al. (2012) highlighted that the Weibull distribution performed better

in transforming the England-Wales precipitation data on a monthly time-scale compared to a number of other distributions.

However, other distributions outperformed the Weibull distribution for other data sets and other SPI time-scales. Results differ15

only little if we fit Gamma or Generalised Gamma distributions (not shown). Our procedure of the SPI-calculation follows the

detailed description by Sienz et al. (2012).

McKee et al. (1993) recommend at least 30 data points for successful distribution fits, but Guttman (1994) notes the lack

of stability for small sample sizes. We fit distributions over sliding 51-year windows. Thus, we use more data points than

recommended by McKee et al. (1993) but still less than the 60 points for which Guttman (1994) finds convergence of higher20

order L-moments. Appendix Figure B1 shows 95% intervals of a bootstrap procedure sampling 1000 times 40 data points from

each window and fitting distributions to these samples. The choice of 40 data points is an ad hoc decision. We could also have

chosen sample sizes of 49 data points.

3.1.2 Evaluation

Standardising precipitation data at least can attenuate some of the problems mentioned in the introduction. Transforming25

precipitation to standardised values provides further means to study the agreement or the lack thereof between different data

sources.

By transforming to the SPI over moving windows, we essentially compare climatologies and potentially filter shorter term

internal variability. If this
:::
the climatology for the observations is the target climatology, an ensemble of climate simulations

should sample this distribution interannually following the paradigm of a statistically indistiguishable ensemble (Annan and30

Hargreaves, 2011). Our analyses compare how well the climatologies agree in different sources of data.

One particular interest is to consider to what extent the different data sources describe comparable evolutions in various

percentiles, e.g., representing extremes. The SPI-transformation simplifies this. If the transformation over moving windows
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filters a certain amount of internal variability, if boundary and forcing conditions are sufficiently equivalent in the simulation

compared to the observed climate, and if simulated precipitation and the observed climate react equivalently to these conditions,

precipitation distributions and their properties may change consistently between different sources of information. The results

of Gómez-Navarro et al. (2015) give some indications that this expectation may be warranted. In the worst case, our analyses

:::
can point out that one of the data sources contradicts the others.5

For any given window, the fitted distribution parameters allow calculating
::
for

:::::::::
calculation

:::
of various properties. For example,

we can consider the changing amount of precipitation, which one would describe as average, extremely high, or extremely low

for subsequent periods. In the SPI-literature, the 6.7th and 93.3th percentiles represent traditionally
::::::::::
traditionally

::::::::
represent the

regions of severe (and extreme) dryness/wetness of the probability density function. Accordingly, we subsequently compare

6.7th and 93.3th percentiles for the fitted distributions over time. Further, we can compare the moments of the distributions. We10

choose to show the square-root of the Weibull distribution variance, i.e., the Weibull standard deviation over sliding windows.

This provides an additional clarification of how the precipitation distribution changes over time. The Appendix C shows

parameters for the distribution fits.

The fitted parameters allow further analyses, e.g., we can compare how likely a reference amount of precipitation is for

different periods. We do this for 50th, 6.7th, and 93.3th percentiles in a reference year. We choose 1815 CE as
:::
the reference15

year, since it is included in all data sets and it allows potentially equivalent analyses of the PMIP3 past1000 simulations (e.g.,

Schmidt et al., 2011).

3.2 Smoothing

Performing the transformation to standardised precipitation over 51-year windows results in smoothed estimates. For conve-

nience, we additionally plot smoothed time series in a number of figures. Filtered series are solely used for visualisation.20

We use a Hamming window. In most cases, this has a length of 51 points but we also occasionally use different window

lengths. The 51-point Hamming filter represents a different frequency cut-off than a simple 51-year moving median or moving

mean as can be obtained from fitting the distributions over 51-year moving windows.

4 Results

4.1 Relations among data sets25

4.1.1 Observational data and reconstructions

Figure 1 provides a first impression of the observational and reconstruction data we use in the following sections. All series

are for the extended spring season from March to July on which we focus. Panels show 31-point Hamming-filtered time

series. These allow a better qualitative assessment of the commonalities between the data sets and the differences compared to,

e.g., 11-point or 51-point Hamming-filtered time series
:
,
:::::
which

::::
have

:::
too

:::::
much

:::::::::::::
high-frequency

:::::::::
variability

::
or

:::
are

::::::::::::
too-smoothed,30

::::::::::
respectively.
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Figure 1. Visualisation of the observation based records for the extended spring season March to July (MAMJJ). We show 31-point

Hamming-filtered time series for a) the Met Office Hadley Centre observational precipitation series for England-Wales (EWP), South-West

(SWE), South-East (SEE), and Central England (CEP), b) the instrumental precipitation series for Pode Hole (Pod), Kew Gardens (Kew), and

Oxford (Oxf), c) the precipitation reconstructions for East Anglia (EAr) and Southern-Central England (SCEr), and d) the Central England

Temperature (CET) data.
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Figure 2. Correlation matrix for complete correlations between the observation or paleo-observation based data sets Central England Temper-

ature (CET), East Anglia precipitation reconstruction (EAr), Southern-Central England precipitation reconstruction (SCEr), England-Wales

precipitation (EWP), South-West England precipitation (SWE), South-East England precipitation (SEE), Central England precipiation (CEP),

Pode Hole precipitation (Pod), Kew Gardens precipitation (Kew), and Oxford precipitation (Oxf). Complete correlations mean ,
:::
that we only

use the years 1873 to 1994 for which all records have data. The season for all records is MAMJJ.

Observational precipitation series from the Met Office Hadley Centre for South-West, South-East, Central England, and

England-Wales show high agreement in their variations on these time-scales for the period of overlap (see Figure 1a, par-

ticularly the period 1890 to approximately 1980). The instrumental time series for Kew Gardens and Pode Hole show more

disagreement in certain periods for the considered smoothing, i.e., they even evolve oppositely at certain times, e.g., the mid-

19th and mid-20th centuries (see Figure 1b). The instrumental data for Oxford appears to agree better with the data for Kew5

Gardens, which is to be expected from the geographic locations of the stations. Visually, both reconstructions agree less well

with the observational series and with each other than the observational data does
::::::::
agreement

:::::::
amongst

:::
the

::::::::::::
observational

::::
data

(see Figure 1c). This holds for their variations and their overall level of variability. Figure 1d adds the Central England temper-

ature data for MAMJJ for completeness sake.

Correlation matrices (Figure 2, and supplementary document) and scatterplots (see supplementary document) emphasize the10

differing agreement between the various data sources even more clearlyon interannual time-scales. Figure 2 presents the cor-

relation matrix for complete observations, i.e. for the period 1873 to 1994 when all records have data. Correlation coefficients

change slightly if we consider pairwise complete records. Relations among precipitation data sets are always positive. They are

very strong between the England-Wales data and its subdivions, between the Kew Gardens series and the South-East England
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data, between the Pode Hole series and the Central England data, and between the Oxford record and the South-East England

data as well as the England-Wales precipitation. The relation
:::::::::
relationship

:
between the two reconstructions is also rather strong

over the sub-period. Correlations are, however, weaker between the reconstructions and the observed series.

There is a generally negative relation
:::::::::
relationship

:
between the Central England temperature and the precipitation data sets

for the chosen extended spring season from March to July. It is weakest for the Southern-Central England reconstruction but5

also rather weak for the East-Anglia reconstruction and the South-West England record from the Met Office Hadley Centre.

Scatterplots emphasize that even the temperature-precipitation relations with larger correlations scatter widely (not shown).

Temperature-relations are stronger for the observationally based data from the Met Office Hadley Centre and the instrumental

series for the summer season June to August (not shown).

Correlations for non-overlapping 11-year averages are positive and strongest between the England-Wales precipitation and10

the two instrumental series (not shown, see supplementary document, calculated for the period 1767 to 1986). This analysis also

gives reasonable correlations (r ≈ 0.51) between the pair of reconstructions and between the instrumental series. Otherwise,

correlations for this resolution are weak. Correlations for the extended spring season with the Central England temperature

data are largest for the non-overlapping 11-year averages of the Kew Gardens instrumental series. We choose 11-year non-

overlapping windows to balance the number of available data points and the filtering of interannual variability.15

4.1.2 (Paleo-)observational data and regional simulation output

Figure 3 presents the two reconstructions and the England-Wales precipitation in comparison to the respective data from the

regional simulation. All data are again for the extended spring season from March to July (MAMJJ), and the panels zoom in on

the period of the regional simulation. We show the interannual time series and the 51-point Hamming-filtered representation.

Considering the evolution of the records, the 51-point Hamming-filtered time series show pronounced differences besides20

some common features for the reconstructions for Southern-Central England (Wilson et al., 2013) and East Anglia (Cooper

et al., 2013) (black lines in Figure 3a and b) similar to the representations in Figure 1. Both reconstructions feature a relative

precipitation minimum centered on approximately the year 1800. The Southern-Central England reconstruction additionally

displays a relative minimum in the early 20th century.

The observed England-Wales precipitation is available at monthly resolution from the year 1766 onward. The Hamming-25

filtered time series shows markedly less multi-decadal to centennial variability compared to the reconstructions, but the ob-

servations have much more interannual variability than the reconstruction for East Anglia and slightly more variability than

the reconstruction for Southern-Central England (Figure 3c, black line). The filtered England-Wales time series also displays a

slightly negative trend.

Differences between the simulated regional records are generally smaller (blue lines in Figure 3). Existing differences high-30

light the spatial heterogeneity of precipitation, e.g., interannual pairwise correlation coefficients are about 0.9 between the

simulated East Anglia data and the other two records, while the simulated England-Wales precipitation correlates at approx-

imately 0.97 with the simulated Southern-Central England data. Absolute interannual precipitation differences between the

three data sets are at a maximum approximately 151 mm/season (not shown). A general feature for all regions is that excur-
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Figure 3. Extended spring (MAMJJ) precipitation in (paleo-)observation based data and simulation output, a) East Anglia precipitation in

reconstruction (black) and regional model (blue), b) Southern-Central England precipitation in reconstructions (black) and regional simula-

tion (blue), and c) England-Wales precipitation in observational data (black) and regional simulation (blue). We show interannual data (light

colors) and 51-point Hamming-filtered data (solid colored).
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sions of the filtered simulation output often, but not always, are opposite to those of the reconstructions or observation time

series.

There is an obvious bias in the absolute amounts between the simulation output and the other data sets. The simulation output

series give larger precipitation amounts. We do not try to attribute this difference. We note that it is not as prominent for the

more local comparison with the data from Rinne et al. (2013) for May to August and the bias is generally slightly negative for5

the summer season June to August for England-Wales precipitation (not shown, see supplementary document). We assume that

the differing spatial representations sufficiently explain the mismatch. However, the change of sign in the bias for the summer

season suggests that the simulation overestimates spring precipitation, underestimates summer precipitation, and the positive

spring bias is larger than the negative summer bias. See also Appendix A for a comparison of the simulation to observational

data over the full European model domain. Figure 3 shows a common feature for all three comparisons. Simulated records10

appear to show opposite evolutions compared to the (paleo-)observations overall but particularly in the late 18th to early 19th

century and in the early to mid-20th century.

This initial comparison already shows varying levels of agreement for the chosen data sets derived from observations and the

reconstructions. It highlights that the relationship between the reconstructions and the observational data sets are weaker than

between the instrumental data and the observational indices on interannual time-scales. Note that the regional observational15

indices include information from the instrumental data. On longer time-scales the reconstructions align less well among each

other than the observationally derived time series. However, the local, purely instrumental series also show more disagreement

among each other than the derived larger domain products. Filtered regional time series evolve often visually oppositely in the

simulation compared to the reconstructions and the observations.

So far, we used the precipitation and temperature data. In the following, we mainly use the information obtained via the20

transformation to standardised precipitation indices.

4.2 Comparing standardised precipitation data

Figure 4 to 6 add, respectively, the comparisons of the wet, i.e. 93.3th, percentile, the dry, i.e. 6.7th, percentile, and the square

root of the Weibull distribution variance to the comparison of the interannual and filtered time series in the previous section.

4.2.1 Observations vs. Reconstructions25

Since they represent different regions, we do not expect agreement in the absolute precipitation amounts representing wet

conditions between the England-Wales precipitation data and the reconstructions in Figure 4a. We note that the difference

between the wet percentile for the England-Wales precipitation and the reconstructions is larger than for the average amounts,

indicating a wider distribution for the data based on instrumental observations. Precipitation histograms confirm this (not

shown). On the other hand, differences are smaller for the dry percentile (Figure 5). Nevertheless, this is a sign that the30

reconstructions underestimate the width of the precipitation distributions of 51-year window climatologies.

Reconstructed and observation-based time series show a slightly opposite trend for the wet percentile over much of the period

of their overlap (Figure 4) from the second half of the 18th century to the mid-20th century. Smaller amplitude variations in the
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Figure 4. Visualisation of the MAMJJ precipitation amount identified as severely wet (93.3th percentile) over 51-year windows for England-

Wales (green solid lines), Southern-Central England (blue dashed lines), and East Anglia (black dash-dotted lines) in a) reconstructions and

observations, and b) simulations.

beginning of the wet percentile series are also opposite. The dry percentile series do not have a long term trend but multidecadal

variations evolve oppositely between reconstructed and observed dry percentiles from the end of the 18th century to the early

20th century (Figure 5).

The opposite trends in the wet percentiles mean that the observed 93.3th, i.e. wet ,
:::
wet

:
percentile represents lower pre-

cipitation amounts in the middle of the 20th century compared to the late 18th century, while the reconstructed wet percentile5

represents larger precipitation amounts in the middle of the 20th century compared to the late 18th century (Figure 4). Similarly

the opposite multidecadal variability in the 6.7th, i.e. dry ,
:::
dry

:
percentiles of reconstructions and observations means that when

the reconstructions represent a drying of the dry percentiles, the observations indicate the opposite and vice versa (Figure 5).

Generally, the series for the severe to extreme dryness and wetness percentiles reflect the smoothed evolution of the respective

data set
:::::
before

::::::::::::
transformation

::::
into

:
a
:::::::::::
distributional

::::
form

:
(compare Figure 3).10

We note that the data of Rinne et al. (2013) for Southern England in summer display an apparent opposite evolution of wet

percentiles for the period of overlap between reconstruction and observations from the late 18th to the late 19th century. On

the other hand dry percentiles agree well over this period (not shown, see supplementary document).

Parameters for the fitted distributions also allow us to evaluate the moments of the distributions. Estimates for the Weibull

standard deviations (SD in Figure 6) differ between observations and reconstructions as expected from the previously noted15

differences in percentiles. The reconstruction for East Anglia does not show a clear evolution in the Weibull standard deviations,
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Figure 5. Visualisation of the MAMJJ precipitation amount identified as severely dry (6.7th percentile) over 51-year windows for England-

Wales (green solid lines), Southern-Central England (blue dashed lines), and East Anglia (black dash-dotted lines) in a) reconstructions and

observations, and b) simulations.

whereas there is an increasing trend in the Weibull standard deviations for the Southern-Central England data. The observations

show a slight reduction in the standard deviation until the middle of the 20th century, with a strong increase afterwards.

4.2.2 Simulation output

The simulated time series in Figure 3 show large similarities between regions. This is also the case for the wet and dry

percentiles as well as for the standard deviations. Indeed, the respective statistics evolve simultaneously among the different5

regions, and the standard deviations overlap (Figures 4 to 6).

Thus, differences between regional domains are smaller for their simulated representations compared to the observed or

reconstructed records. They are slightly more notable for the moving window statistics compared to the Hamming-filtered

series. Dry percentiles are very similar for East Anglia and for Southern-Central England in the simulation but wet conditions

require larger precipitation amounts for Southern-Central compared to East Anglia. Appendix B highlights that this may be10

due to sampling variability. Smoothed simulated data and wetness percentiles evolve similarly, but opposite evolutions of the

dryness and wetness percentiles result in widening and shrinking of the distributions after approximately the year 1800.
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Figure 6. Visualisation of Weibull standard deviations (SD) over 51-year windows for MAMJJ precipitation for England-Wales (green solid

lines), Southern-Central England (blue dashed lines), and East Anglia (black dash-dotted lines) in a) reconstructions and observations, and

b) simulations.

4.2.3 Simulation output vs. observationally derived data and reconstructions

Simulations and reconstructions do not agree on the time evolution of precipitation percentiles (Figures 4 to 6). Any hint of

an agreement between reconstructed and simulated data is likely due to randomness (compare Figure 4). There is instead a

tendency towards opposite time evolutions between the data sources. This is best seen in the dry percentiles from the mid-18th

to mid-20th century (Figure 5).5

This apparent opposite evolution is the most common feature when comparing the percentiles derived from the simulation

and from the reconstructions. When the percentile series for the reconstructions show minima, the simulation commonly shows

maxima and vice versa. Obviously, using an ensemble of regional simulations would show a range of trajectories. Therefore,

these results do not preclude per-se that the model is capturing basic physical characteristics of precipitation variability in

northwestern Europe.10

The smoothed representations of the simulation output and the smoothed observed England-Wales precipitation show only

small multidecadal variations, which appear to be more or less in opposition (Figure 3). The wet percentiles do not show

any agreement although they both have a relative maximum in the late 18th century (Figure 4). On the other hand, the dry

percentiles show approximate agreement in their evolutions over the full time period of their overlap. Particularly noteworthy

are approximately concurrent maxima in the early 19th century and in the middle of the 20th century (Figure 5). Similarly the15
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Figure 7. Visualisation of how percentile-values change for over windows. We show, which percentile the the 93.3th percentile MAMJJ

precipitation amount for a reference window represents over time for England-Wales (green solid lines), Southern-Central England (blue

dashed lines), and East Anglia (black dash-dotted lines) in a) reconstructions and observations, and b) simulations. The reference window is

centred in 1815 CE.

Weibull standard deviations show some commonalities between the simulated representation of the England-Wales precipita-

tion and the observations (Figure 6) over the full period of their overlap.

We note that there is neither any clear commonality nor any overly opposite evolution in the dry percentiles when comparing

the regional simulation to the reconstruction for Southern England summer precipitation by Rinne et al. (2013, not shown,

see supplementary document). The wet percentiles, however, evolve oppositely in the 18th century but then show a common5

positive trend in the 19th century (not shown, see supplementary document).

Figure B1 provides uncertainty estimates for part of our analyses. The figure shows 95% intervals of a bootstrap procedure

sampling 1000 times 40 data points from the time windows each window and fitting distributions to these samples. The choice

of 40 data points is an ad hoc decision that lies between the recommendation by McKee et al. (1993) of 30 samples and our

window length of 51 years. Uncertainty on the fitted distributions varies in size over time and between data sets. Indeed, there10

are periods when sampling variability is so large that apparent differences in distributional properties between periods are not

significant for most sources of information.
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Figure 8. Visualisation of how percentile-values change for over windows. We show, which percentile the 50th percentile MAMJJ precip-

itation amount for a reference window represents over time for England-Wales (green solid lines), Southern-Central England (blue dashed

lines), and East Anglia (black dash-dotted lines) in a) reconstructions and observations, and b) simulations. The reference window is centred

in 1815 CE.

4.3 Changes in probability of certain precipitation amounts

In the methods section, we describe the procedure of
::
for

:
calculating standardized precipitation indices over moving time

windows. We obtain a distribution fit for each time window. The parameters of the fit for a window allow us to identify the

probability of a precipitation amount for the respective window. Figures 7 to 9 present changes in the probability of certain

amounts of precipitation, i.e. lines are the changing percentiles represented by a given amount of precipitation over time. The5

Figures show these changes for the precipitation amounts representing
:::
the 93.3th, 50th, and 6.7th percentiles, respectively, in a

reference window. For this comparison, the reference is the distribution of precipitation in the window centered around the year

1815 CE. The year 1815 CE is included in all data sets and it allows equivalent analyses of the PMIP3 past1000 simulations

(e.g., Schmidt et al., 2011). We estimate and plot the percentiles that correspond to these reference precipitation amounts in

other time windows.10

The England-Wales precipitation shows a slight increase over time in the reference 93.3th percentile in the year 1815 CE

(Figure 7a). Recently, there is a steep decrease in the series. Similarly, the 50th percentile for 1815 CE represents slightly

larger percentiles over time (Figure 8a). On the other hand, there are weak multi-decadal variations in the series for the 6.7th

percentile in the observations, and the 6.7th percentile from 1815 CE may become slightly less likely over time (Figure 9a).
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Figure 9. Visualisation of how percentile-values change for over windows. We show, which percentile the 6.7th percentile MAMJJ precip-

itation amount for a reference window represents over time for England-Wales (green solid lines), Southern-Central England (blue dashed

lines), and East Anglia (black dash-dotted lines) in a) reconstructions and observations, and b) simulations. The reference window is centred

in 1815 CE.

Before turning to the reconstructions, we shortly note that the simulations show similar trajectories for all three percentile

values and all three regions. There are not any obvious trends, but the series show multidecadal variations. The window cen-

tered in the year 1815 CE falls within a minimum or at the end of a minimum. The respective precipitation amount generally

represents larger percentiles before the time window centered in 1815 CE. After this time window, the 6.7th and 93.3th per-

centiles both approach a maximum in the series (Figures 7b and 9b). However, the 93.3th percentiles reach it about the year5

1850 CE and the 6.7th percentile only in approximately the year 1900 CE, when the 93.3th percentile is again in a relative

minimum. Thus, the wet and dry percentiles evolve oppositely from the early 19th century onwards, i.e. the distribution widens

and shrinks since approximately the year 1850 CE. The median reference for
::::::
amount

::
of

::::::::::::
precipitation,

:::::
which

::::::::
represents

:::::::
median

:::::
values

:::
for

:::
the

::::::::
reference

:::::
year 1815 CEalso represents larger percentiles later but ,

::
is
::::::::::::

representative
:::
of

:::::
larger

:::::::::
percentiles

:::
in

::::
later

::::
years

:::::::
(Figure

:::
8b).

:::::::::
However, there is a slight decreasing trend from approximately the mid-19th century to the end of the10

simulation (Figure 8b).

The reconstructions for East Anglia and Southern-Central England have some peculiar features (Figures 7a to 9a). For one,

it is not ideal to choose a reference year from the period around 1800 CE. The 6.7th percentile in 1815 CE is much less

likely earlier and later in both regions (Figure 9a). Similarly, average precipitation around 1815 CE represents approximately

the 20th percentiles in earlier and later periods for East Anglia (Figure 8a) but also represents much smaller percentiles in15
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Figure 10. Interannual correlations over 51-year windows between extended spring (MAMJJ) Central England Temperature and various pre-

cipitation records: extended spring (MAMJJ) precipitation series for observational England-Wales-precipitation (green), reconstructed East

Anglia precipitation (black), reconstructed Southern-Central England precipitation (blue). The grey line is for the simulated representations

of the England-Wales MAMJJ precipitation and the Central England Temperature in MAMJJ.

later periods for Southern-Central England. Severe and extreme wet conditions from this period may even represent long-term

average conditions for East Anglia (Figure 7a). We note that comparisons to the data by Rinne et al. (2013) do not feature such

peculiarities (not shown) but using a simple scaling approach for the δ18O data of Young et al. (2015) gives similar results (not

shown, but compare information given in the supplementary document).

In general, there are not any clear common evolutions between the different data sets before the 20th century. Only the dry5

percentiles in the simulation and the observations may evolve similarly in the period of their overlap (Figure 9). Interestingly,

there is an apparent contrast between simulation and reconstructions with potentially opposite evolutions in the period of their

overlap prior to the 20th century in all shown series. In the 20th century, on the other hand, some commonalities may be

inferred at least for the series representing the reference 93.3th percentile (Figure 7).

Most prominent in these analyses is that the distributions for reconstructed precipitation show large shifts to larger precipi-10

tation amounts compared to the simulations and observations. In contrast, the simulation and observations vary only within a

rather narrow range. This may relate to the weaknesses of the reconstructions in representing not only low-frequencies but also

extremes (compare Cooper et al., 2013; Wilson et al., 2013). The regional simulation and the reconstructions show again
:::::
again

::::
show

:
an apparent opposite evolution for East Anglia and Southern-Central England. All sources of information tend to show

shifts in the probability of precipitation amounts.15

4.4 Relation between Temperature and Precipitation in different data sources

We only shortly
:::::
briefly

:
explore the interrelation between the regional temperature and precipitation variability focussing on the

extended spring season from March to July.
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We
::
In

::::::::
particular,

:::
we

:
show how interannual correlations between the precipitation records and temperature series evolve over

time for the chosen season.
:::
this

::::::
season.

:

Figure 10 plots sliding interannual correlations for 51-year windows between the observed and reconstructed precipitation

data and the Central England temperature as well as the correlation between simulated England-Wales precipitation and sim-

ulated Central England temperature. We plot correlations for the untransformed precipitation records. All records are for the5

MAMJJ-season. Obviously, the high
::::
large amount of internal variability on local and regional scales complicates the compari-

son among different data sources when studying
::::
such small regions.

We expect variability of moving correlation coefficients simply due to sampling variability (Gershunov et al., 2001). For

example, a bootstrap procedure following Gershunov et al. (2001) suggests a 90% credible interval for 51-year moving window

correlations of between approximately −0.59 and approximately −0.21 for a correlation of approximately −0.43 between10

simulated Central England Temperature and England-Wales precipitation over the full period. That is, variations in Figure

10 are probably within the sampling variability estimates for 51-year moving window correlations. That further implies that

for overall uncorrelated data we can expect some windows to show statistically significant correlations. We do not show

significance levels in Figure 10 . We
::
but

:::
we

:
note that for 51-year windows and the time series characteristics of the data (e.g.,

approximately uncorrelated noise for seasonal precipitation), one may regard absolute values of correlation coefficients larger15

than 0.23 as statistically significant at the 5% level.

On interannual timescales and over 51-year moving windows, all data sets evolve similarly in Figure 10 for the extended

spring season. However, observed and reconstructed data show weaker correlations in the late 20th century, while the cor-

relation strength increases in the regional simulation. Both reconstructions do not show any statistically significant relation

between temperature and precipitation over the full period. The reconstruction for East Anglia is intermittently negatively cor-20

related with the temperature data. The observations show a notable negative relation
:::::::::
relationship

:
from the second half of the

19th to the mid-20th century. Only correlations between the regional simulation temperature and precipitation are negative and

relatively strong (r ≈ 0.5) throughout the full period.

The observed negative relation is well known. For example, Crhová and Holtanová (2018) show a slightly negative corre-

lation between temperature and precipitation in observations over the southern British Isles in spring and summer. They also25

show that regional climate simulations usually capture this feature successfully.

4.5 Considering further reconstructions and global simulations

Here, we shortly
:::::
briefly

:
describe additional results. If we perform similar analyses as described above but on a selection of

the PMIP3-ensemble of global simulations (Schmidt et al., 2011), we do not find commonalities between the simulations or

between the simulations and the other sources of information (not shown, see supplementary document). If we use different30

reconstructions, agreement between simulation
::::::::
simulated and reconstructed precipitation does not necessarily increase, but

differences between reconstructions and observations may be reduced (not shown, see supplementary document).

We use two different reconstructions based on δ18O. For one, we obtain the precipitation reconstruction by Rinne et al.

(2013) for Southern England for the May to August extended summer season. Secondly, we use the isotope records for England
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and Wales by Young et al. (2015) and scale the composite against the observational England-Wales precipitation data. We

follow the procedure described by Young et al. (2015) but for two seasonal estimates, the extended spring from March to July

used in our main analyses and, following Young et al. for the summer season from June to August.

The supplementary document provides some details for our summer season scaling of the isotope data of Young et al. (2015).

The most striking feature is again a notable difference in the percentiles prior to time windows approximately centered in the5

year 1850 compared to the later period. This feature resembles the behavior of the tree-ring width based reconstructions. While

this may be due to the chosen calibration method and period, it appears more likely that there is a problem in the relation

:::::::::
relationship

:
between isotopes and precipitation for this early period.

Comparing our extended spring season scaling to the equivalent observations, there is limited agreement for the dry per-

centile after approximately the year 1850 (not shown) but otherwise we cannot find any consistency of this data compared to10

the observational counterparts. We also see no agreement between the data by Young et al. and the regional simulation output.

The period covered by the data of Rinne et al. (2013) only shortly overlaps with the period of the observational data. For

this overlap dry percentiles tend to agree with the observations but wet percentiles evolve oppositely (compare supplementary

document). The change in average precipitation for a reference year also agrees between both data sets for the time of overlap

(not shown). Compared to the regional simulation output, evolutions tend to be opposite.15

If we consider the relation between temperature and precipitation in the additional data sets and their respective seasons, the

disagreement between data sources changes compared to our main analyses (not shown). The observations show consistently

negative correlations for the summer season, and the scaled isotope data by Young et al. (2015) agrees quite well with the

summer observations except for a large part of the 20th century when it shows a markedly weaker negative correlation (not

shown). The simulation shows again
:::::
again

:::::
shows

:
generally stronger correlations compared to the other data in summer and20

shows some agreement with the observations in the industrial period since approximately the year 1850 (not shown). If we

correlate the scaled isotope data to the temperature for an extended spring season from March to July, the correlations are quite

similar to those for the larger domain simulation output but differ notably from the observations (not shown). The extended

summer (MJJA) reconstruction by Rinne et al. (2013) agrees well with the respective observations in
::
by

:::::::
showing

:
a consistently

negative correlation (not shown). The relation
:::::::::
relationship

:
is weaker for the reconstruction prior to the period of the Oxford25

precipitation observations (not shown).

5 Discussions

5.1 Validity of approach

Information from reconstructions of climate parameters and from simulation output together increase our understanding of past

climates. The PAGES Hydro2k Consortium (2017) made recommendations for valid and appropriate comparisons of hydrocli-30

mate data from both sources of information. Here, we consider approximately the last 350 years by comparing both estimates

to long instrumental data. We have to consider whether our analyes are appropriate in the sense of the recommendations con-
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cerning uncertainties, the properties compared, and the expectations underlying the comparison (PAGES Hydro2k Consortium,

2017).

The observational England-Wales precipitation data is a weighted composite of regional series which again are based on

instrumental information. The input
::::::::::
information

:::::::
entering

:::
the

:::::::::
composites

::::
and

:::
the

:::::::
regional

:::::
index changed over time. Similarly,

the reconstructions combine spatially distributed proxy
::::::
proxies, e.g., tree-ring width series into regional scale composite series5

(Cooper et al., 2013; Wilson et al., 2013) to maximise the common signal between different locations. On the other hand, the

simulations are aggregations of various grid-point time series from the simulation output. We assume that the compositing and

the aggregation have similar effects in removing local variability. In this respect, records from different sources are similar to

each other and thus our comparison appears valid.

Explicit uncertainty estimates are only available for the reconstruction for East Anglia and only for a low-pass filtered version10

of the data (Cooper et al., 2013). Our results as well as the discussions of Cooper et al. (2013), Wilson et al. (2013), Rinne

et al. (2013), and Young et al. (2015) emphasize that uncertainties for the reconstructions are potentially large and that even the

relation
:::::::::
relationship to precipitation is not necessarily valid for some periods. Similarly, uncertainties affect the simulations not

only with respect to our domain choice but also with respect to the algorithms and parametrisations implemented for simulating

precipitation in the regional climate model.15

Considering the limitations of any simulation and the a priori known shortcomings of the reconstructions, questions may

arise on
::
as

::
to

:
the validity and robustness of our analyses. Even if one assumes that prior discussions on the reconstructions

invalidate their use, they would at least be a useful data source for our first goal of highlighting the benefits of adding the SPI

to our set of tools for studying past precipitation variability.

However, we do not agree with such an assumption. The reconstructions are still, at least ‘preliminary’ (as stated by Cooper20

et al., 2013), estimates of past precipitation for the southern British Isles. As such, it is of value to include them in a comparison

of distributional precipitation characteristics between different data sources for this domain. It is further of interest to highlight

for any available reconstruction in which properties the reconstructed precipitation distributions agree or disagree with the

other sources of information. That is, understanding our sources of information about past climates requires to identify
:::
the

:::::::::::
identification

::
of their strengths as well as their shortcomings.25

More generally, we argue that the transformation to standardized indices provides a sound basis for equivalence between

the different precipitation estimates for subsequent comparisons of the distributional properties. Then, we assume that the

comparison becomes informative for changes over time between these distributions. While we cannot expect accurate or even

approximate temporal agreement between time series from simulation output and observation based data on either interannual

or multi-decadal time-scales because of internal variability, the transformation makes our comparison one of climatologies.30

Furthermore, one may assume that the evolution of percentiles and variability may be more consistent between the different

data sets than the average conditions.
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5.2 Implications of the main results

Our analyses highlight the shortcomings of different reconstructions relative to observations. We also see that differences
::
as

::::::::
compared to observations may be comparable for reconstructions and simulations. Our approach further shows that apparently

the reconstructions and the simulations occasionally evolve in opposite directions. This may signal that we indeed do not

perform a valid comparison, that simulations may misrepresent forced responses, or, considering the reconstructions’ relation5

to
:::::::::
relationship

::::::::
between

:::
the

::::::::::::
reconstructions

::::
and temperature, that the reconstructions do not fully relate to

:::::
reflect precipitation.

We expect disagreement between simulations and observations not least because of differing influences of internal variability

(see discussions below). More critical is the lack of consistency between reconstructions and observations. Most notably the

reconstructions show unrealistically large changes in the cumulative probabilities represented by certain precipitation amounts

for the extended spring season MAMJJ (compare Figures 7 to 9). The reconstructions do not reliably represent the extended10

spring precipitation distributions in specific periods.

One result is the inconsistency of the relations
::::::::::
relationships

:
between temperature and precipitation in the data sets for the

considered domains for the extended spring seasonfrom March to July. Tout (1987) and Crhová and Holtanová (2018) both

note the negative relation
::::::::::
relationship between temperature and precipitation observations for Britain. Tout (1987) does not

find any changes in the negative relation
:::::::::
relationship

:
between England-Wales precipitation and Central England Temperature15

for the summer season from June to August between 1766 CE and 1980 CE. We find the negative relation
::::::::::
relationship for the

extended spring only consistently in the simulation, and from approximately 1850 CE to 1950 CE also in the observations.

The tree-ring width based reconstructions do not show any clear relation
:::::::::
relationship

:
for the extended spring season. The

disagreement between data sets changes for other seasons (not shown).

The differences
::
the

:
between simulation and observations may imply either shortcomings of any of the observational data sets20

in the early period or that the simulation presents a too stable relationship
:::::::
between

::::::::::
temperature

:::
and

:::::::::::
precipitation

::
in

::::::::
southern

::::
Great

:::::::
Britain. Explanations might be physical inconsistencies within the simulations. More generally, any of the data sources

may lack the physical relation
:::::::::
relationship

:
between the temperature and precipitation records in the chosen season. Another

possibility is that internal large-scale climate factors influencing the relation
:::::::::
relationship

:
between both parameters evolve

differently in
::
the

:
simulation and reality. Assuming that the observations are the more reliable data set, we tend to the inference25

that the disagreement between observations and reconstructions suggest major shortcomings in the reconstructions.

5.3 Internal vs. forced variability

If we expect temporal consistency among the different sources of information, then we are assuming that all the sources of

information are responding to the impact of external climate forcing, and that the regional simulation skillfully represents

the climate response to these conditions. Nevertheless, internal climate variability may dominate even for large
::::::::
amplitude30

exogenous forcing (compare, e.g. Deser et al., 2012a). We have to ask, what is our expectation of consistency between simulated

and observed responses to exogenous influences?
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The instrumental period overlaps with the industrial period of large anthropogenic climate forcing. Earlier exogenous forcing

is potentially weak despite relatively large variations in solar activity (Clette et al., 2014), and the occurrence of a number of

strong tropical volcanic eruptions during the period of interest (e.g., Schmidt et al., 2011).

Forced precipitation signals can agree in simulations, e.g., the CMIP5 21st century global projections (Fischer et al., 2014).

A lack of an identifiable relationship to the forcing between different data sources in our study does not necessarily imply5

that the underlying climate data are wrong but may simply suggest that internal, e.g., oceanic, atmospheric, or coupled climate

variability masks, modulates, or counteracts an external forcing influence. That is, the lack of consistent evolutions points to

shortcomings of the data sources or an overwhelming influence of internal variability. We have to emphasize that the regional

simulation and its driving MPI-ESM-COSMOS simulation both use variations of the total solar irradiance forcing that could

be unrealistically wide, and neither simulation includes a resolved stratosphere to account for potential UV-related top-down10

mechanisms (Anet et al., 2013, 2014).

In addition, our regional focus is close to the western boundary of the domain of the regional simulation, and, thus, we expect

a rather strong influence of the dynamical evolution of the driving coarse-resolution simulation with MPI-ESM-COSMOS.

Indeed, Blenkinsop and Fowler (2007) report a strong influence of the driving general circulation model on the representation

of drought in regional climate simulations in southern Great Britain.15

Relatedly, since the regional focus is a small domain, the influence of natural internal variability is likely large, e.g. in the

case of the British Isles,
::::::::
variability

::
in the North Atlantic Oscillation (Gómez-Navarro et al., 2012; Gómez-Navarro and Zorita,

2013; Hall and Hanna, 2018; Matthews et al., 2016). Thus, we should not expect simulations to agree with observations on the

evolution of regional climate parameters and even an ensemble may show diverse behavior. Differences in internal variability

between models, observations, and paleo-observations may include their representation of past changes in the relationship20

between the regional climate and the large-scale circulation (Pinto and Raible, 2012; Lehner et al., 2012; Raible et al., 2014).

Thus, while the forcing history suggests notable variations, and the large-scale temperature records indicate an imprint of

the forcing history on hemispheric and global temperatures, internal variability may dominate on smaller regional scales (e.g.,

Deser et al., 2012b). This is despite the fact that, e.g., the large scale storm track is indeed sensitive to solar (e.g., Ineson

et al., 2015) and volcanic forcing (e.g., Fischer et al., 2007; Trouet et al., 2018). Considering the possibly large role of internal25

variability on regional scales and the limitations of simulations in representing regional scale precipitation, the occasionally

consistent variations in precipitation distribution properties increase our confidence in
::::::::
simulated

:
forced changes. However,

while the regional simulation appears to present similar variations compared to the observations during some periods, we

cannot say whether it does so for the right reasons.

6 Conclusions30

This study pursued two goals. For one, we wanted to show that the Standardized Precipitation Index (SPI) over moving

windows helps in the rigorous comparison of different sources of precipitation information over paleoclimatic time-scales.

The information on precipitation distributions obtained by the SPI-approach eases comparing
::::::::::
comparison

::
of

:
how different
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sources of information represent climatologies of precipitation. Second, by using this approach, we studied the consistency of

the various sources of information for precipitation variations in a small regional domain in southern Great Britain.

Regarding the results for our specific study domain, first we did not find any clear consistency for precipitation signals

among a regional climate model simulation, an observational data set, and two local domain reconstructions. We conclude that

the considered reconstructions indeed appear to be unreliable representations of the observational series.5

Second, the regional simulation shows limited
::::::::
occasional

:
agreement with its observational target, the observational England-

Wales precipitation data. Particularly
::
In

::::::::
particular

:
the variability in both data sources shows comparable changes for the

full period of the observations. This is possibly mainly due to comparable changes in dryness, which also show some level

of agreement over the full period. This partial agreement between variability and dryness of the regional simulation and

observations is encouraging. However, considering all associated uncertainties, we conclude that it may be due to different10

:::
can

:::
not

::::::::
conclude

::::
that

:::
the

:::::::::
agreement

::
in

:::::::::
properties

::::
does

::::::
reflect

:::::::::
agreement

::
in

:::
the

:::::::::
underlying

:
processes in the respective data

sources.

Third, the simulation data does not agree with the reconstructions. Nevertheless, an interesting result is the at times opposite

evolution of the reconstructions and the regional simulations considering regional dryness and wetness, e.g., between 1750 and

1850. Again, considering all sources of uncertainty, we cannot attribute this to the external forcing or to errors in either data15

source.

Fourth, our data sources do not agree on the strength of the relation
:::::::::
relationship

:
between temperature and precipitation.

However, the relations
::::::::::
relationships

:
between both parameters share some common co-variance on interannual time scales

between the sources of information for the season from March to July, e.g. in the 19th century.

Generally, a dominant role of internal variability could explain the lack of consistency in standardised precipitation measures20

in the different data sets on the temporal and spatial scales we consider here; the relative role of the external climate forcing

generally becomes weaker at smaller spatial and shorter temporal scales (Deser et al., 2012b). The lack of general consistency

and slightly differing interannual relations between temperature and precipitation still require a closer look at the uncertainties

of observations, the methods and input data of reconstructions, and dynamical and thermodynamical representations of regional

climate in regional simulations.25

A supplementary document for this manuscript will be deposited at https://osf.io/duyqe/.
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Figure A1. Top: Difference between the driving MPI-ESM simulation and the CRU data for seasonal near surface air temperature. Bottom:

Difference for CCLM

Data availability. The Central England Temperature data is available from the Met Office, https://www.metoffice.gov.uk/hadobs/hadcet/.

The England-Wales Precipitation data is available from the Met Office, https://www.metoffice.gov.uk/hadobs/hadukp/ as are the subdivi-

sions for South-East, South-West, and Central England.

Station data for Oxford, Kew Gardens and Pode Hole is available at, e.g., the Climate Explorer (http://climexp.knmi.nl/) of the Koninklijk

Nederlands Meteorologisch Instituut (KNMI).5

The reconstruction data for Southern-Central England and East Anglia are available from the NOAA National Centers for Environmental

Information at, respectively, https://www.ncdc.noaa.gov/paleo-search/study/12907 and https://www.ncdc.noaa.gov/paleo-search/study/12896.

Temperature and precipitation fields from the regional simulation with CCLM are available at http://doi.org/10.6084/m9.figshare.5952025

(PRIME2, 2018).

If deemed relevant for future work, we are going to provide the standardised data as well via a public repository.10

Considering the data used in the supplementary document, we are unable to provide the data by Rinne et al. (2013) as we only obtained

it from the original author. The δ18O data from Young et al. (2015) is available from https://link.springer.com/article/10.1007%2Fs00382-

015-2559-4.

Appendix A: Evaluation of the simulation setup against the CRU-data

We shortly describe the performance of the COSMOS-MPI-ESM-CCLM-setup compared to the observational CRU-data (Har-15

ris et al., 2014; University of East Anglia Climatic Research Unit et al., 2017). We used version CRU TS 3.10, which has

subsequently been superseded. The current version CRU TS 4.01 is available at http://doi.org/10/gcmcz3 with further informa-

tion also given at https://crudata.uea.ac.uk/cru/data/hrg/ (last visited 20 September 2018).
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Figure A2. As Figure A1 but for the precipitation

The mean climate of the driving COSMOS-MPI-ESM simulation is too warm for much of the British Isles, the Scandinavian

Alps, northern North Africa, Iberia, the Alps, southern France, Turkey, and Greece for all seasons over the period 1951-2000

(Figure A1, top). It is generally too cold over the Baltic region, the eastern part of the model domain, the southern border of

the domain over Africa, and central Europe. High elevation and southern area warm biases frequently exceed 6K. Cold biases

exceed 2 to 4K occasionally over northeastern Europe and at the southern border of the domain. We attribute these biases to5

some extent to the cruder representation of the European orography and, possibly related to that, to biases in the modelled

atmospheric circulation. However, the specific choice of forcings may also influence the climatology.

In the regional CCLM simulation (Figure A1, bottom), warm biases for 1951-2000 are confined to the Atlas Mountains in

all seasons and to the South of the domain in spring and summer. Cold biases are common otherwise and are largest over the

Northeast frequently exceeding 3-4K.10

For precipitation, summer is frequently too dry in central Europe in COSMOS-MPI-ESM and especially at the west coast

of Scotland and in the Alps (Figure A2, top row). The southern domain is generally too dry in spring when Scandinavia is

slightly too wet. Coastal and mountainous regions as well as Iberia, Italy, and southern France are more likely to be too dry in

autumn and winter. Scandinavia is also too wet in autumn. The COSMOS-MPI-ESM winter climatology is too wet over much

of central, eastern, and northern Europe.15

In CCLM, too dry conditions are generally confined to southern Europe and North Africa and areas affected by the storm

track, i.e. the coasts of Scotland and Norway (Figure A2, bottom row). They extend to southern central Europe only in summer.

The climate is too wet in Scandinavia and northeastern Europe in most seasons. Large parts of Europe are too wet in all seasons

except summer. Noteworthy is the excess precipitation at the northern flank of the Alps from autumn to spring. Part of these

discrepancies are possibly attributable to a too zonal airflow outside the summer season.20
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Figure B1. Visualisation of uncertainty of the distributional properties. We use a bootstrap procedure on running estimates. We resample

40 year samples a thousand times from moving 51-year windows. Units are precipitation amounts. Shading are 95% intervals, lines are

medians. Top row: Weibull standard deviation. Bottom row: 93.3th, 50th, and 6.7th percentiles. Red: Reconstruction and observations. Blue:

CCLM. The left column is for East Anglia, the middle column for Southern-Central England, and the right column for the England-Wales

precipitation.

In summarizing, the model presents a too strong latitudinal temperature gradient over the European domain. The annual cycle

of temperature is apparently too strong in the South with warm biases in summer but cold biases in winter and it is slightly

too weak in the North with cold biases being stronger in summer than in winter. Similarly to temperature, the gradient in

precipitation also appears to be too strong and the annual cycle amplitude differs between simulation and gridded observational

estimates especially for Central Europe. Specifically, autumn to spring are wetter in the simulation while summer conditions5

differ only slightly or are too dry, which implies a weaker annual cycle compared to observations.

Appendix B: Uncertainty of running measures

Figure B1 shows bootstrap estimates over thousand 40-year samples for each 51-year window. The estimates are for the running

measures for reconstructions and observations for the three regions of interest (red) and the regional simulation (blue). The top

row are Weibull standard deviations and the bottom row is for the percentiles.10
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Figure C1. Evolution of the shape parameter k for the Weibull distribution fits for the a) East Anglia reconstruction, b) Southern-Central

England reconstruction, c) England-Wales precipitation observational data, d) East Anglia regional simulation, e) Southern-Central England

regional simulation, f) England-Wales precipitation regional simulation.

The Figure highlights that sampling variability is generally larger for the simulated data. Indeed sampling variability may

render differences between periods non-significant. However, also the bootstrap distributions appear strongly skewed.

Appendix C: Distributional parameters

The Weibull distribution is a two parameter distribution with a scale and a shape parameter. See, e.g., Sienz et al. (2012), for

more details and how the distribution compares to other distributions in computing the Standardised Precipitation Index.5

Figures C1 and C2 present the shape, k, and scale, λ, parameters of our Weibull distribution fits for the reconstructions for

East Anglia and Southern-Central England, the observational England-Wales precipitation, and the respective time series in

the simulation.

Results for the simulation show very similar evolutions among regions highlighting the homogeneity of the simulation

data. There are also similarities between the two reconstructions. One could argue the shape parameters evolve similarly in10

observation and simulation.
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Figure C2. Evolution of the scale parameter λ for the Weibull distribution fits for the a) East Anglia reconstruction, b) Southern-Central

England reconstruction, c) England-Wales precipitation observational data, d) East Anglia regional simulation, e) Southern-Central England

regional simulation, f) England-Wales precipitation regional simulation.

The shape parameter determines the ‘shape’ of the distribution. In our cases, changes in this parameter are rather small

(compare Figure C1). Nevertheless they can result in notably different widths of distributions for a specific data set over time.

It is interesting that there is only small overlap between the range of shape parameters for the East Anglia reconstruction and

all other series.

Larger scale parameters for a constant shape parameter result in a flatter distribution that extends further to larger values.5

Smaller values result in a narrower distribution with larger probability density at its peak.

The evolution of the shape parameter reflects, in our cases, the evolution of the skewness of the distributions (not shown).

All distributions show negative skewness, and the amplitude increases with increases in the shape parameter.

Figure C3 shows the excess kurtosis over the period of interest. The most common feature for the different records is a

negative excess kurtosis. Interestingly, the East Anglia reconstructions shows large positive values. The simulation data has10

a period with positive, or for the simulated England-Wales precipitation larger positive, values in the middle of the 20th

century, and the observed England-Wales precipitation shows only negative excess kurtosis. The scaling of the kurtosis-axes

for the reconstructions highlights that they show much larger values earlier in the last millennium (not shown, compare the

supplementary document).
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Figure C3. Evolution of the excess kurtosis of the fitted Weibull distributions for the a) East Anglia reconstruction, b) Southern-Central

England reconstruction, c) England-Wales precipitation observational data, d) East Anglia regional simulation, e) Southern-Central England

regional simulation, f) England-Wales precipitation regional simulation.

Appendix D: External code

This manuscript uses a number of external software-packages. File-manipulations used the Climate Data Operators (cdo,

https://code.mpimet.mpg.de/projects/cdo/). Furthermore, the following R (R Core Team, 2018) packages helped in the work:

gtools (Warnes et al., 2018), corrplot (Wei and Simko, 2017), ncdf (Pierce, 2015), VGAM (Yee, 2015), MASS (Venables and

Ripley, 2002), nortest (Gross and Ligges, 2015), dplR (Bunn et al., 2018), zoo (Zeileis and Grothendieck, 2005), latex2exp5

(Meschiari, 2015), knitr (Xie, 2015), and rmarkdown (Allaire et al., 2018). Furthermore, RStudio (RStudio Team, 2016) was

essential. The manuscript was prepared using the rticles-package (no reference available).

The SPI-code bases on work by Frank Sienz (e.g., Sienz et al., 2012). Christian Zang provided a Gershunov-bootstrap

procedure (compare, e.g., Gershunov et al., 2001; Zang and Biondi, 2015) that we modified.

Competing interests. The authors are not aware of any circumstances that might be seen as competing interests.10
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