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Abstract. The effect of aerosols is one of the many uncertain factors in projections of the future climate. However, 10 

the behaviour of mineral dust aerosol (dust) can be investigated in the context of past climate changes. The Last 

Glacial Maximum (LGM) is known to have resulted in an enhancement of the dust deposition, especially over the 

polar regions. Using the Model for Interdisciplinary Research on Climate Earth System Model (MIROC-ESM), 

we investigated the impact of glaciogenic dust on the climate of the LGM and found that the effect of the 

enhancement of dust results in less cooling over the polar regions. One of the major reasons of the reduced 15 

cooling is the ageing of snow or ice, resulting in the reduction of the albedo by a high dust deposition, especially 

in the vicinity of high glaciogenic dust emissions. Although the net radiative perturbations in the lee of high 

glaciogenic dust provenances are negative, warming by ageing of snow overcomes this radiative perturbation in 

the Northern Hemisphere. In contrast, the radiative perturbation by the high dust loading in the troposphere acts 

to warm the surface surrounding Antarctica, which is mainly caused by the longwave aerosol–cloud interaction of 20 

dust and is likely the result of the greenhouse effect of the enhanced cloud fraction in the upper troposphere. 

Although our analysis mainly focused on the results of the experiments using the atmospheric part of the 

MIROC-ESM, we also conducted full MIROC-ESM experiments for a first trial of glacial dust modelling. The 

long-term trend to enhance warming in the Northern Hemisphere with the increase of glaciogenic dust was 

observed, whereas the warming level around Antarctica is almost unchanged, even after an extended interaction 25 

with the ocean. 
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1 Introduction 

The Last Glacial Maximum (c.a. 21,000 years before present; LGM) is the distinct and most recent period 

featuring the maximum expansion of the land ice sheets in the Northern Hemisphere, and has been intensely 

investigated with the help of various paleo-proxy records and modelling studies (Braconnot et al., 2007a,b, 

Kageyama et al., 2006, 2017). Global warming is clearly an important driver for investigations seeking to clarify 5 

the mechanisms of climate change, as repeatedly stated in the assessment reports of the Intergovernmental Panel 

on Climate Change (IPCC) (IPCC, 2013). For this purpose, it is especially important to evaluate the ability of 

models to capture past climate sensitivity. 

Both the collection of paleo-proxy data and modelling studies are required to properly understand past climates, 

with the focus here on modelling. General circulation models (GCM) are one of the most widely used tools for 10 

investigating the mechanisms of the climate and climate change. The development of increased computational 

resources enables us to develop models with a higher complexity, with various components of the climate able to 

be coupled interactively. Previous modelling works targeting the LGM tend to underestimate cooling especially 

over high latitudes compared with the proxy data (Masson-Delmotte et al., 2006, 2010). The importance of the 

dust and vegetation feedback is frequently pointed out in IPCC AR5 Chapter 5 (IPCC, 2013). 15 

The effect of aerosols is one of the most uncertain factors on the radiative perturbation in estimates of global 

warming. Although mineral dust aerosol is not the most significant cause of warming, its effect is not negligible 

because it is the most abundant aerosol. For example, Mahowald et al. (2010) investigated the trend of the dust 

amount in the 20th century both from observations and modelling, and reported the increase of desert dust and a 

net negative radiative perturbation. 20 

Ice and sediment core data suggest a clear enhancement of dust during the LGM, which is especially pronounced 

at high latitudes, reaching levels more than 20 times compared with the present day over Antarctica. The 

enhancement of deposition is less over lower latitudes, but still a few factors higher compared with the present 
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day (Winckler et al., 2008), with the deposition flux greater towards higher latitudes (Lambert et al., 2008, Lamy 

et al., 2014, Dome Fuji Ice Core Project Members, 2017).  

In earlier times, off-line aerosol models were used with the output of atmospheric general circulation models 

(AGCM) (Mahowald et al., 1999, Lunt and Valdes, 2002, Claquin et al., 2003) to simulate glacial dust aerosols. 

Although a higher dust amount was estimated during the LGM compared with the pre-industrial (PI) period, the 5 

dust amount over Antarctica was still underestimated. Claquin et al. (2003) used an off-line tracer transport 

model and estimated the radiative perturbation at the top of the atmosphere (TOA). Later, Mahowald et al. 

(2006a,b) used the Community Atmosphere Model (CAM3) coupled with a mixed-layer ocean model and an on-

line aerosol module to estimate the glaciogenic dust flux (Mahowald et al., 2006a) and the aerosol–radiation 

interaction (Mahowald et al. 2006b). Their standard LGM experiment simulated underestimation of dust 10 

deposition flux especially over the high latitudes compared to a proxy data archive, DIRTMAP. Then, they 

postulated “glaciogenic dust” sources surrounding of ice sheets and glaciers, where supposed to generate 

substantial amount of moraine debris during glacial periods. They let emit various dust fluxes from different 

source area and obtained a best fit to the DIRTMAP deposition distribution. Although this estimate could conceal 

the other possible and non-introduced processes of dust source, it is still a big step forward to obtain reasonable 15 

representation of dust load in the atmosphere and deposition distribution. Takemura et al. (2009) used the Model 

for Interdisciplinary Research on Climate (MIROC) AGCM with the online aerosol module to determine the 

aerosol–radiation and aerosol–cloud interactions for the LGM and pre-industrial (PI) periods at the surface and 

tropopause for the first time, but underestimated the amount of dust over Antarctica. Yue et al. (2011) used an 

AGCM to estimate the aerosol–radiation interaction by dust, and reported a cooling effect. Hopcroft et al. (2015) 20 

investigated the aerosol–radiation interaction at the TOA using an AGCM and the land module of an earth system 

model (ESM), the Hadley Centre Global Environment Model, and suggested the necessity of analyses of aerosol–
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cloud interaction as future work. We also note that previous works rarely discuss the total effect of dust on the 

climate. Lambert et al. (2013) pointed out the possibility of polar amplification by dust. 

Previous studies have used an AGCM, an AGCM coupled with a slab ocean model, or an AGCM with the land 

module of an ESM. Consequently, the feedback of the aerosol to the ocean and sea ice and back to the 

atmosphere was not taken into account. Here, in addition to the AGCM experiments, we simulate the LGM with 5 

sensitivity experiments targeting the effect of dust using the full ESM for the first time. Moreover, we evaluate 

the effect of dust on the surface temperature in detail during the LGM for the first time.  

The following section explains the model and experimental set-up. The resulting dust amount and deposition 

distribution are presented in Sect. 3.1, with the influence of the dust on the atmosphere described in Sect. 3.2, the 

radiative perturbation by dust described in Sect. 3.3, and the effect of glaciogenic dust on the ocean described in 10 

Sect. 3.4. The results of the simulations are summarised and discussed in Sect. 4. 

2 Model and experimental design 

2.1 Description of the MIROC-ESM 

The MIROC-ESM (Watanabe et al., 2011) used here is the version submitted to the Coupled Model 

Intercomparison Project phase 5 (CMIP5), and the Paleoclimate Modelling Intercomparison Project phase 3 15 

(PMIP3). The resolution of the atmosphere is T42 with 80 vertical levels, while that of the ocean is about 1° (256 

x 192). While the model is capable of prognosing the carbon dioxide (CO2) amount in the atmosphere, the 

atmospheric CO2 is prescribed in our experimental set-up. The spatially explicit individual-based Dynamic 

Global Vegetation Model (SEIB-DGVM) is implemented into the system, and returns the leaf area index (LAI) 

back to the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land module. Also 20 

implemented is the on-line aerosol module Spectral Radiation-Transport Model for Aerosol Species 

(SPRINTARS) (Takemura et al., 2000, 2002, 2005, and 2009), which explicitly treats organic, black carbon and 
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mineral dust, sea-salt aerosols, sulfate and the precursor gases of sulfate. It is coupled with the radiation and 

cloud microphysical schemes to calculate the aerosol-radiation and aerosol-cloud interactions. In the calculation 

of the aerosol-radiation interaction, the refractive indices depending on wavelengths, size distributions, and 

hygroscopic growth are considered. Number concentrations for cloud droplets and ice crystals are prognostic 

variables as well as their mass mixing ratios, and changes in their radii and precipitation rates are calculated, i.e., 5 

aerosol-cloud interaction is taken into account. The processes correlated to the dust generation are the surface 

wind, the vegetation type, soil moisture, the LAI, and snow cover. Once dust is generated, it is transported by the 

atmospheric circulation, and deposits by the processes of wet and dry deposition, and gravitational settling. 

In MATSIRO module, the effect of dirt in snow (ageing of snow) varies with the dirt concentration at the snow 

surface to fit to an observed relation between snow albedo and dirt concentration (Aoki et al., 2006). The dirt 10 

concentration in snow is calculated from the deposition fluxes of dust and soot calculated in SPRINTARS. The 

relative strength of the absorption coefficients for dust and soot (0.012 for dust and 0.988 for black carbon) are 

weighted to the deposition fluxes to obtain a radiatively effective amount of dirt in snow. 

 Oceanic biogeochemical process is not coupled with dust in the model. One needs an off-line model to evaluate 

the carbon uptake by dust. 15 

 

 

2.2 Experimental design 

We performed eight experiments, with five experiments using the AGCM part of the MIROC-ESM, and the other 

three using the full MIROC-ESM. The particular experiments labelled as PI.a and PI.e represent the 1850 A.D. 20 

control climate of the PI era, with PI.e having been submitted to CMIP5. The last 100-year climatology of sea-

surface temperatures (SST) and the sea ice of the period submitted to CMIP5 are used as the boundary conditions 
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for PI.a. The experiments labelled as LGM.e and LGM.a represent the LGM climate following the PMIP3 

protocol (Abe-Ouchi et al., 2015). The LGM.e experiment has been submitted to CMIP5/PMIP3 (Sueyoshi et al., 

2013). The LGM.a experiment is the AGCM experiment using the SST and sea ice taken from the PMIP3 LGM 

experiment (LGM.e). The LGM.e experiment has been extended for a further 800 years beyond the PMIP3 

period (Fig. 1). The LGMglac.a experiment is a new experiment with the same conditions as LGM.a, but with an 5 

additional glaciogenic dust flux following Mahowald et al. (2006a). The LGMglac.naging.a and LGM.naging.a 

experiments have the same settings as LGMglac.a and LGM.a, but without the ageing effect of snow. The 

LGMglac.e experiment is the full ESM version of LGMglac.a, which branches from the LGM.e experiment 40 

years prior to the period submitted to CMIP5/PMIP3 (Fig. 1). The glaciogenic dust flux from each area is set 

identical to the estimate of Mahowald et al. (2006a). The emission area is also consistent between the 10 

experiments, with little deviation following the land–sea mask of MIROC-ESM. There are three strong emission 

areas, the Pampas of South America, central North America and eastern Siberia. The integration of LGMglac.e 

was performed for 940 years. Table 1 lists the experiments. 

3 Results 

3.1 Dust amount and comparison with data archives 15 

The emission flux of dust (g m-2 year-1) is shown in Figure 2 for the PI.a, LGM.a and LGMglac.a experiments. 

For the PI.a experiment, the major dust sources are the Saharan, Arabian, Gobi and Taklamakan Desert areas. A 

minor source is also found in the mid-latitude of South America. While these dust sources look reasonable based 

on the present-day situation, there is little dust emission from the plausible dust source of Australia. The wet bias 

over Australia in the PI.a experiment leads to excess vegetation, which prevents the emission of dust, and persists 20 

in the LGM.a and LGMglac.a experiments. In these experiments, the dust emission flux in the Saharan, Gobi and 
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Taklamakan Deserts is significantly enhanced, which is the result of a drier climate during the LGM, with an 

additional emission flux evident from northern Siberia. In contrast, the emission flux from South America is 

reduced, which is probably because of the increased soil moisture, resulting in an enhancement of precipitation 

enhancement in this region. For the LGMglac.a experiment, the glaciogenic dust emission is clearly evident 

surrounding the extended ice sheets during the LGM. The total emission amount is 80.6 (Mg s-1) for the PI.a 5 

experiment, 230.0 (Mg s-1) for the LGM.a experiment and 426.3 (Mg s-1) for the LGMglac.a experiment. The 

change in the zonal mean dust loading in the atmosphere is shown in Figure 3 for the ratios LGM.a/PI.a (a), 

LGMglac.a/PI.a (b). In the LGM.a experiment, the dust mass concentration in the Northern Hemisphere is 

enhanced, but decreased in the Southern Hemisphere compared with the PI.a experiment. In contrast, the mass 

concentration enhanced significantly in both the northern and southern high latitudes in the LGMglac.a 10 

experiment. The higher uplift of the glaciogenic dust in the Southern Hemisphere compared with the Northern 

Hemisphere can be attributed to the different conditions of the strong dust sources, which, for the Southern 

Hemisphere, is exposed to the stronger wind speed resulting from the lack of continental land; in the Northern 

Hemisphere, the strong glaciogenic sources located over the continents are subject to lower wind speeds. The 

distribution of dust deposition for each experiment is shown in Figure 4 (a) (b) and (c), and the ratio to PI.a in 15 

Figure 5 in comparison with the archives of the ice and sediment core data as indicated by the coloured circles 

(Kohfeld et al., 2013, Albani et al., 2014). The scatter plots (Fig. 4 d, e, f) compare the data with the modelled 

deposition rate at the grids corresponding to the data locations. The colour and mark type are used for 

categorisation according to the area and the type of core data. A reasonable correlation is seen for the PI.a 

experiment, except in the grids over the Southern Ocean, which are mostly located in the southern Pacific Ocean 20 

region. The main location of the dust deposition in this region is expected to be Australia (Li et al., 2010, Albani 

et al., 2012), where our model underestimates the emission. In the LGM.a experiment, the dust deposition flux is 

underestimated in North America, Eurasia, the South Pacific, the Southern Ocean and Antarctica. In contrast, in 
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the LGMglac.a experiment, the underestimation is generally improved. The model-data linear correlation 

coefficients in the logarithmic scale are 0.79, 0.62 and 0.80 for the PI.a, LGM.a, and LGMglac.a experiments, 

respectively. The differences of the deposition flux between the PI.a and PI.e experiments, the LGM.a and 

LGM.e experiments, and the LGMglac.a and LGMglac.e experiments are almost negligible. 

3.2 Effect of the increased amount of glacial dust on surface temperature 5 

The surface temperature at a height of 2 m is influenced by the increased amount of glacial dust, with the 

difference of LGMglac.a relative to LGM.a presented in Fig. 6. The warming (i.e., less cooling compared with 

the PI.a results) is pronounced in the high latitudes in contrast to the expectation of the cooling effect of the dust.  

The changes in the LGMglac.a result relative to the LGM.a result for the net, longwave and shortwave 

downwards radiation at the surface are presented in Fig. 7. It represents the total effect of the glaciogenic dust on 10 

radiation towards the earth surface. Figure 7 showing a reduction in the shortwave radiation in the vicinity of the 

strong glaciogenic dust sources, as well as at the northern high latitudes and the edge of Antarctica. In contrast, 

the enhancement of the longwave radiation in the LGMglac.a experiment is pronounced surrounding Antarctica 

and in the northern high latitudes. While the reduced shortwave radiation dominates the net change in the vicinity 

of the glaciogenic emission area, the positive longwave change dominates the region surrounding Antarctica. The 15 

radiative perturbation by the dust is detailed in the next section. 

Figure 8 shows that the warming of LGMglac.a−LGM.a south of 55° S is evident without the inclusion of the 

effects of the ageing of snow (LGMglac.naging.a−LGM.naging.a). This suggests that the warming around 

Antarctica is not the result of the ageing of snow. Figure 8 shows that the warming of LGMglac.a−LGM.a south 

of 55° S is evident without the inclusion of the effects of the ageing of snow (LGMglac.naging.a−LGM.naging.a). 20 

This suggests that the warming around Antarctica is not the result of the ageing of snow, but follows from the 
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change in the radiation balance in the atmosphere. Moreover, the magnitude of the warming is not significantly 

affected by ocean coupling (LGMglac.e−LGM.e).  

In contrast, more than 80 % of the warming in the Northern Hemisphere is the result of the ageing of the snow 

surface as evident by inspection of the LGMglac.naging.a−LGM.naging.a results (Fig. 8). The high dust 

deposition rate reduces the albedo of the surface, and leads to the reduction of the shortwave reflected radiation, 5 

which overcomes the cooling effect of the dust loading in the atmosphere, resulting in warming. The warming in 

the Northern Hemisphere is the most pronounced over eastern Siberia and central North America, where a large 

amount of the glaciogenic dust is deposited, and therefore where the albedo of the LGMglac.a experiment is 

reduced significantly. The snow in the LGMglac.a experiment thaws earlier in the year than for the LGM.a 

experiment over eastern Siberia. A substantial amount of snow melted over a large area in this region, which 10 

accelerated the warming by the reduction in the albedo. In contrast, in central North America, the snow reduced 

compared with the LGM.a experiment, but is still significantly higher than the PI.a experiment. The position of 

the −2 °C isopleth averaged from June to August shifted northwards by about 1° latitude, which is significantly 

less than the model resolution. Here, we question whether the model is able to represent the appropriate ageing of 

snow under such a high dust deposition flux. As this is beyond the scope of our study, further evaluations of the 15 

effects of the ageing of snow are required. 

3.3 Aerosol–radiation and aerosol–cloud interactions by dust 

The aerosol–radiation and aerosol–cloud interactions are estimated using the same method as Takemura et al. 

(2009). The net global mean radiative perturbation (aerosol–radiation and aerosol–cloud) of dust is a cooling at 

the Earth’s surface for all the experiments. The breakdown of the LGM experiments relative to the PI experiment 20 

for the change in the global mean radiative perturbation is listed in Table 2. The net change of the global mean 

aerosol–radiation interaction at the TOA is slightly positive for the LGM.a−PI.a results and amounts to 0.12 W 
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m-2 for the LGMglac.a−PI.a results. However, the changes at the surface are both negative (−0.21 W m-2 and 

−0.30 W m-2 with and without glaciogenic dust, respectively, which is close to the previous studies -0.25 and -

0.56 W m-2 with and without glaciogenic dust in Mahowald et al. (2006b), -0.23 W m-2 (Takemura et al., 2009)), 

and are mainly caused by changes in the shortwave radiation. The net change of the global mean aerosol–cloud 

interaction at the TOA for the LGM.a−PI.a result is −0.36 W m-2. Both the shortwave and longwave radiation 5 

increased with the glaciogenic dust, with the resulting net change of −0.39 W m-2. At the surface, without 

glaciogenic dust, a net negative value reduced compared to the TOA. With the inclusion of glaciogenic dust, 

however, the change at the surface is a little more negative than the change at TOA. Considering the total effect 

of dust, but without glaciogenic dust, the radiative perturbation change at the TOA relative to the surface is small, 

whereas the inclusion of glaciogenic dust results in the cooling of the surface by the aerosol–radiation interaction. 10 

Figure 9 shows the spatial distribution of radiative perturbation by dust at the TOA, with a smaller difference 

between the LGMglac.a and LGM.a results compared with that at the surface (Figure 10 (a)). At the TOA, 

although the influence of glaciogenic dust from the Pampas region distributes over the Southern Ocean, the 

positive longwave and negative shortwave radiation almost cancel each other out. There are local negative effects 

at the strong glaciogenic dust sources, but the amplitudes are much smaller than at the surface (Fig. 10). 15 

Therefore, the action of the glaciogenic dust as seen at the surface occurs between the TOA and the Earth’s 

surface. Therefore, we investigate the change in the spatial distribution and strength under different climatic 

conditions. 

Except in the vicinity of massive dust sources, such as the Saharan Desert, the aerosol–cloud interaction 

dominates the radiative perturbation. Figure 10 shows the change of the net radiative perturbation at the surface 20 

for the LGMglac.a−LGM.a, LGMglac.a−PI.a and LGM.a−PI.a experiments. The additional glaciogenic dust 

worked to reduce the shortwave radiation. The negative radiative perturbation is distinct in the vicinity of the 

emission area. In contrast, for the longwave radiation, the general positive radiative perturbation resulting from 

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-2
Manuscript under review for journal Clim. Past
Discussion started: 21 February 2018
c© Author(s) 2018. CC BY 4.0 License.



11 

 

the glaciogenic dust is obvious, especially in the vicinity of the strong dust sources, and at the edge of Antarctica. 

The negative shortwave radiation forcing overcomes the positive longwave radiation forcing in the vicinity of the 

glaciogenic sources. However, the positive longwave radiative perturbation plays a role in the regions 

surrounding Antarctica. The higher dust loading promotes the generation of cloud ice and high-level clouds, 

especially in the regions surrounding Antarctica, likely resulting in an enhanced greenhouse effect, which warms 5 

the lower troposphere (Fig. 3 (c), and Fig. 11). 

3.4 Influence of glaciogenic dust on the ocean 

We have extended the LGM.e experiment by 800 years beyond the original PMIP3 period (Fig. 1), and the 

LGMglac.e experiment by 940 years. The last 300 years averaged surface air temperature and SST changes 

according to the LGMglac.e–LGM.e results are presented in Fig. 12. Compared to a pollen proxy archive 10 

(Bartlein et al., 2011), the difference between LGM.e and LGMglac.e looks minor. Warming of the SST by the 

increased air temperature is obvious in the northern high latitudes, but the magnitude of the SST change is mostly 

below 0.5°C. A local strong warming along the Gulf Stream can be attributed to the difference of the 

thermohaline circulation strength. While we leave the investigation of the effect of dust on the thermohaline 

circulation for future work, we note that there may be a possibility of the effect of strong ageing of the snow in 15 

the Northern Hemisphere. In contrast, no change in the SST around Antarctica is calculated (Fig. 12 (f)), which 

confirms that the warming around Antarctica is not the result of the change in the temperature of the ocean. Even 

after the extended integration times of our simulations, the high plateau over the Antarctica, which is often the 

location of ice core sites, does not warm further (see circled alphabets in Fig. 12, a-c). The LGMglac.e cooling 

from the PI.e results for this area are more or less within the range of observational estimates (−7 to −10°C) 20 

(Stenni et al., 2010, Uemura et al., 2012).  
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The SSTs in the LGM.e and LGMglac.e experiments compared with the PI.e experiment both appear reasonable 

compared with the LGM SST reconstruction in coloured circles (MARGO project members, 2009) (Fig. 12 (d) 

(e)). A local cooling of the ocean temperature is seen in the lee of the glaciogenic dust source from Argentina, 

which would be caused by the negative radiative perturbation (Fig. 7 and 10 (a)). 

4 Conclusion 5 

We have used the MIROC-ESM to investigate the effect of mineral dust aerosol on the glacial climate. The 

representations of climatology by the PI.a and PI.e simulations are reasonable for a state-of-the-art ESM 

(Watanabe et al. 2011). The cooling evident in the LGM.e experiment compared with the PI.e results is also 

generally comparable with paleo-proxy archives (Fig. 12). We have mainly discussed the effect of the 

glaciogenic dust in the new experiments using the AGCM part of the MIROC-ESM in terms of the LGMglac.a 10 

results compared with the LGM.a results. The additional glaciogenic dust effect on the climate is mainly evident 

as a warming of the high latitudes in contrast to general expectations, and to that demonstrated by Mahowald et al. 

(2006b) as a zonal mean. Especially for the northern high latitudes, areas are warmed by the reduced albedo 

because of the snow surface covered by dust, and even the prolonged snow disappearance in certain seasons, 

which is especially pronounced in eastern Siberia. Although the longwave radiative perturbation worked 15 

negatively in the vicinity of the high glaciogenic dust flux sources, the ageing effect overcomes this cooling 

effect, resulting in a net increase in temperature. 

The warming effect resulting from additional dust is also seen surrounding Antarctica, which is not attributable to 

the ageing of snow, but to the longwave aerosol–cloud interactions. Accounting for this effect would alter the 

distribution of the scatter evident in Figure 5.5(d) in the IPCC’s Fifth Assessment Report, showing the 20 

importance of the eastern Antarctic cooling during the LGM for the climate.  
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We have adopted additional dust sources from Mahowald et al. (2006a,b) as a first step, where their glaciogenic 

dust flux is identified to best fit to the data archives, but, as we have noted, it does not correspond well to the new 

proxy data at locations in the Southern Ocean. However, this mismatch may also be attributed to a feature of our 

model, i.e., insufficient dust emission from Australia, which is mainly caused by the overestimation of soil 

moisture and also by the resulting excess of plants. Our study draws attention to the high dust loading over the 5 

Southern Ocean affecting the increase in surface temperature surrounding the Antarctica, implying the need to 

investigate the climate sensitivity of the amount of dust emissions in future work. On the other hand over the 

Southern Ocean, the SST is hardly affected (Fig. 8) under the surface radiation change (Fig. 7 (a) and Fig. 10 (a)) 

probably because of the large heat capacity of ocean. 

In the tropics, the dust effect on the surface temperature with an enhanced dust input is similar to what Mahowald 10 

et al. (2010) reported in studying the mid to late 20th century, but with a contrasting effect at high latitudes. The 

major difference is that the dust is enhanced at low latitudes, i.e., the Sahara-Sahel draught in the 20th century 

perturbation compared with the additional high dust inputs at high latitudes in our study, where the background 

albedo is high resulting from the extended snow and ice-covered areas. 

In the MIROC-ESM, snow cover in the PI.e (PI.a) experiment tends to persist in the boreal spring over Siberia 15 

compared with a re-analyses data (Dee et al. 2011). This positive bias may influence the change we see in the 

LGM.e (LGM.a) and LGMglac.e (LGMglac.a) experiments. 

The strong effect of the ageing of snow is especially significant in the Northern Hemisphere. Because snow 

ageing has been tuned to fit modern observations in Hokkaido, Japan (Aoki et al., 2003, 2006) in MIROC-ESM, 

a strong dust provenance in the vicinity of the snow-covered areas is lacking, such as the glaciogenic dust 20 

situation seen in the eastern Siberia. Therefore, the evaluation of the quantitative influence of ageing with various 

observational sites is needed. 
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Although we were unable to treat the effect of the iron supply to the ocean in this model, activating the iron-

fertilization effect and enhancing the amount of plankton would influence CO2 uptake especially over the Southern 

Ocean (Martin, 1990). The better representation of the distribution of dust deposition is possible as a boundary 

condition for off-line biogeochemical models to investigate CO2 uptake, for example, in a more realistic version 

of the experiments by Oka et al. (2011). Further investigation of the non-negligible effect of the change in the 5 

size distribution of dust as pointed out in Hopcroft et al. (2015) may also be necessary. 

Plant functional types are prognosed in the dynamic vegetation module but are not returned to the land module in 

the MIROC-ESM; i.e., the climate–vegetation interaction is limited. The importance of full vegetation coupling is 

pointed out in O’ishi and Abe-Ouchi (2013), suggesting the necessity of future models to evaluate the change of 

plant functional types and especially the effect on dust cycles.  10 

Under global warming, the dust emission amount is uncertain (Woodward et al., 2005, Tegen et al., 2004, 

Jacobson and Streets, 2009, Liao et al., 2009, Mahowald et al., 2006a, Ito and Kok, 2017). Therefore, improving 

the understanding of dust processes in models of the past climate would be a way to reduce the uncertainty of 

projections into the future. 

 15 
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Figure 1: The time series of (a) global mean annual mean temperature at 2 m height (degree C) and of (b) the peak 

strength of the Atlantic meridional overturning circulation (Sv), for LGM.e and LGMglac.e. The year zero is set to 

the beginning of the period submitted to CMIP5. 
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Figure 2: The dust emission flux (g m-2 year-1) for (a) PI.a, (b) LGM.a and (c) LGMglac.a. The oceanic area is coloured with dark 

gray. The ice sheet area is coloured with white.  
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Figure 3: All panels are zonal mean-height plots. Ratio of the dust mass concentration for (a) LGM.a/PI.a, (b) 

LGMglac.a/PI.a and (c)  temperature change for LGMglac.a-LGM.a. The contour lines in (a) and (b) is the dust mass 

concentration for PI.a (g cm-3) and in (c) is the temperature change for LGM.a-PI.a (oC). 
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Figure 4: The model-data comparison of the dust deposition flux (g m-2 year-1) estimated from the ice and sediment 

core data archives obtained from Kohfeld et al. 2013 and Albani et al. 2014. The map for the (a) PI.a (b) LGM.a(c) 
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LGMglac.a. The data-model scatter plots for (d) PI.a(e) LGM.a and (f) LGMglac.a. The colours and marks represent 

area and core types. Red for Eurasia, brown for North America, orange for the Indian Ocean, pink and light blue for 

the Atlantic and the Pacific Oceans in the northern hemisphere, Green and light green for the Atlantic and the Pacific 

Oceans in the southern hemisphere, blue for the Southern Ocean and turquoise blue for the Arctic and dark blue for 

the Antarctica. Crosses represents terrestrial sediment core, circles for the marine sediment core and diamonds for 5 

the ice core data. 

 

 
 

Figure 5: The model-data comparison of ratio of the dust deposition flux estimated from the ice and sediment core 10 

data archives obtained from Kohfeld et al. (2013) and Albani et al. (2014). The map for ratio (a) LGM.a/PI.a. (b) 

LGMglac.a/PI.a. 
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Figure 6: The difference of the surface temperature at 2 m height for LGMglac.a-LGM.a. The change is not 

significant at the hatched area by t-test in 95 % confidence. 
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Figure 7: the change in the (a) net, (b) longwave and (c) shortwave downward radiation at the surface LGMglac.a-

LGM.a (W m-2) (downward, positive). 
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Figure 8: 2 m air temperature difference between LGMglac and LGM. Red line denotes LGMglac.a-LGM.a. Green 

line denotes LGMglac.naging.a-LGM.naging.a, which means the change arose from non-aging effect of snow albedo. 

Thin and thick black lines denote LGMglac.e-LGM.e at the beginning (1 to 100th year average in Figure 1) and the 

end (701 to 900th year average) of the experiments, respectively. Shades represent the year to year standard deviation. 5 

. 

 

 
Fig. 9: Change of the net radiative perturbation by dust at the top of the atmosphere for (a) LGMglac.a-LGM.a (b) 

LGMglac.a-PI.a and (c) LGM.a-PI.a. 10 
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Figure 10: Change of the net radiative perturbation by dust at the surface for (a) LGMglac.a-LGM.a (b) LGMglac.a-5 

PI.a and (c) LGM.a-PI.a. The decomposition of the net change for the longwave for (d) LGMglac.a-LGM.a (e) 

LGMglac.a-PI.a and (f) LGM.a-PI.aand for the shortwave for (g) LGMglac.a-LGM.a (h) LGMglac.a-PI.a (i) LGM.a-

PI.a. 
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Figure 11: 60° S-80° S averaged value-height plot for change in LGMglac.a-LGM.a for the temperature in red, cloud 

fraction in blue and cloud ice mass concentration in green. Note that the cloud ice mass concentration is plotted only 

at the value exceed 1e-8 kg kg-1 in LGM.a. 

. 5 
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Figure 12: The difference of the surface temperature at 2 m height for (a) LGM.e-PI.e (b) LGMglac.e-PI.e and (c) 

LGMglac.e-LGM.e. Colored circles represent reconstructed temperature change by pollen proxy archives (Bartlein 

et al., 2011). Circled alphabets on the Antarctica represents four ice core locations. E for EDML, F for Dome Fuji, V 

for Vostok, and C for Dome C. The sea surface temperature changes for (d) LGM.e-PI.e, (e) LGMglac.e-PI.e and (f) 5 

LGMglac.e-LGM.e. The purple and red lines in (d) and (e) are 85 % sea ice concentration in February and August 

for PI (thin) and LGM (thick), respectively. Colored circles represent MARGO SST reconstruction (MARGO project 

members, 2009). Gray area represents ice sheet covered area. 
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Table 1:      list of experiments 

(a) Experiment using MIROC-ESM 

Experiment names Explanation Integration length (years) 

PI.e The piControl experiment submitted to 

CMIP5 

530 

LGM.e The lgm experiment submitted to 

CMIP5/PMIP3. The integration is 

extended further 800 years 

1200 

LGMglac.e LGM.e + adding glaciogenic dust flux 

following Mahowald et al. (2006a) 

940 

 

(b) Experiments using AGCM part of MIROC-ESM 

Experiment names Explanation 

PI.a Pre-industrial control, SST, sea ice and LAI are taken from the climatology of 

LGM.a The lgm experiment submitted to CMIP5/PMIP3. The integration is extended 

further 800 years 

LGMglac.a LGM.e + adding glaciogenic dust flux following Mahowald et al. (2006a) 

LGM.naging.a LGM.a + no ageing of snow albedo 

LGMglac.naging.a LGMglac.a + no ageing of snow albedo 

 5 

Table 2: LGMglac.a-PI.a and LGM.a-PI.a changes in global mean radiative perturbation by dust at the (a) surface 

and (b) the top of atmosphere (W m-2). 

 

(a) surface LGMglac.a-PI.a 

Aerosol-radiation 

LGM.a-PI.a 

Aerosol-radiation 

LGMglac.a-PI.a 

Aerosol-cloud 

LGM.a-PI.a 

Aerosol-cloud 

net -0.30 -0.21 -0.42 -0.28 

Long wave 0.37 0.28 0.50 0.34 

Short wave -0.67 -0.50 -0.92 -0.62 

 

 10 

(b) TOA LGMglac.a-PI.a 

Aerosol-radiation 

LGM.a-PI.a 

Aerosol-radiation 

LGMglac.a-PI.a 

Aerosol-cloud 

LGM.a-PI.a 

Aerosol-cloud 

net 0.12 0.07 -0.39 -0.36 

Long wave 0.17 0.14 0.62 0.26 

Short wave -0.05 -0.07 -1.01 -0.63 
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