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Abstract. Paleoclimatic and paleoenvironmental reconstructions are fundamentally uncertain because no proxy is a direct 10 

record of a single environmental variable of interest; all proxies are indirect and sensitive to multiple forcing factors. One 

productive approach to reducing proxy uncertainty is the integration of information from multiple proxy systems with 

complimentary, overlapping sensitivity. Most such analyses are conducted in an ad-hoc fashion, either through qualitative 

comparison to assess the similarity of single-proxy reconstructions or through step-wise quantitative interpretations where one 

proxy is used to constrain a variable relevant to the interpretation of a second proxy. Here we propose the integration of 15 

multiple proxies via the joint inversion of proxy system and paleoenvironmental time series models in a Bayesian hierarchical 

framework. The “Joint Proxy Inversion” (JPI) method provides a statistically robust approach to producing self-consistent 

interpretations of multi-proxy datasets, allowing full and simultaneous assessment of all proxy and model uncertainties to 

obtain quantitative estimates of past environmental conditions. Other benefits of the method include the ability to use 

independent information on climate and environmental systems to inform the interpretation of proxy data, to fully leverage 20 

information from unevenly- and differently-sampled proxy records, and to obtain refined estimates of proxy model parameters 

that are conditioned on paleo-archive data. Application of JPI to the marine Mg/Ca and δ18O proxy systems at two distinct 

timescales demonstrates many of the key properties, benefits, and sensitivities of the method, and produces new, statistically-

grounded reconstructions of Neogene ocean temperature and chemistry from previously published data. We suggest that JPI 

is a universally applicable method that can be implemented using proxy models of wide-ranging complexity to generate more 25 

robust, quantitative understanding of past climatic and environmental change. 

1 Introduction 

Paleoenvironmental reconstructions, including reconstructions of past climate, provide a powerful tool to document the 

sensitivity of Earth systems to forcing, characterize the range of natural responses associated with different modes of global 

change, and identify key mechanisms governing these responses. Throughout the vast majority of the planet’s history, however, 30 
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estimates of environmental conditions can only be obtained through proxy reconstructions. The word proxy is derived from 

the Latin word procurare, which in this context means ‘to care’ or ‘to manage’. The measurable physico-chemical quantity in 

sediments is thus ‘managed’ into a parameter we want to reconstruct. As implied, the result is an indirect estimate of past 

environmental conditions, often subject to substantial, sometimes poorly characterized, uncertainty.  

The simplest proxy reconstructions typically focus on a single environmental variable of interest. Experimental or 5 

natural calibration datasets are used to calibrate mathematical relationships between the environmental variable and proxy 

measure, and these relationships are inverted to obtain quantitative estimates of that variable. Residual variance in the 

calibration is treated as noise. In reality, however, no proxy exists that is sensitive only to a single paleoenvironmentally-

relevant variable, and a large part of the proxy system noise reflects the uncharacterized influence of other environmental and 

post-depositional variables. Fossil leaf assemblages, for example, exhibit variability that can be associated with mean annual 10 

air temperature, but also may be influenced by many other environmental variables and evolutionary history (Royer et al., 

2005;Greenwood et al., 2004). The saturation state of alkenones produced by marine phytoplankton is a sensitive recorder of 

water temperature, but characteristics of alkenones preserved in marine sediments are also strongly affected by physiological 

factors, seasonality of production, and selective degradation (Conte et al., 1998;Conte et al., 2006). Even recently emerging 

clumped isotope techniques, which are in theory a direct recorder of the temperature of carbonate mineral formation, can be 15 

affected by factors such as growth-rate, carbonate system disequilibrium, and poorly constrained, potentially variable offsets 

between the environment of carbonate formation and more commonly targeted atmospheric temperature conditions (Passey et 

al., 2010;Affek et al., 2014;Saenger et al., 2012).  

Failure to recognize and consider the sensitivity of proxies to multiple environmental factors leads to two important 

problems in traditional proxy interpretations. First, considering only a single environmental variable in our interpretations 20 

maximizes the uncertainty in our reconstructions. Uncertainty could be reduced if the influence of other variables is described 

and constrained. Second, unacknowledged sensitivity to multiple variables creates potential for biased proxy interpretations if 

variation in these variables is non-random across the reconstruction. 

A productive approach to addressing these issues is the use of proxy system models in the interpretation of proxy data 

(Evans et al., 2013). These models represent an attempt to mathematically describe the complex of environmental, physical, 25 

and biological factors that control how environmental signals are sampled, recorded, and preserved in proxy measurements. 

Recent reviews and perspectives are available discussing the concepts underlying proxy system models and different ways that 

they have been applied to proxy interpretation, ranging from substitution for empirical calibrations in inverse estimation of 

environmental signals to formal integration within climate model data assimilation schemes (Evans et al., 2013;Dee et al., 

2016). A growing number of proxy system models and modeling systems are being developed (e.g., Tolwinski-Ward et al., 30 

2011;Stoll et al., 2012;Dee et al., 2015), and useful models span a range of complexity from empirically-constrained 

regressions to mechanistic, theory-based formulations. Key to any such model is accurate representation of uncertainty in each 

model component, which allows even relatively simple, potentially incomplete models to be used to obtain reconstructions 

with quantifiable uncertainty bounds. 
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Reducing the uncertainty of quantitative paleoenvironmental reconstructions, however, further requires adding 

constraints to proxy interpretations. In situations where two or more proxies share sensitivity to common or complimentary 

environmental variables, it stands to reason that the information provided by each can be used to refine interpretation of the 

multi-proxy suite. In practice, a variety of approaches have been used. Commonly, multi-proxy integration has been qualitative 

and focused on confirmation: trends reconstructed using one proxy system are cross-checked against a second, providing 5 

increased confidence in the reconstruction where the patterns match and further investigation where they don’t (e.g., Grauel et 

al., 2013;Keating-Bitonti et al., 2011;Zachos et al., 2006). In other cases, proxies have been combined quantitatively, but 

usually in a stepwise fashion: one proxy system is used to reconstruct an environmental variable to which it is sensitive, and 

those reconstructed values are then used to constrain the interpretation of a second proxy (e.g., Fricke et al., 1998;Lear et al., 

2000). Although it provides a simple strategy to combining complimentary proxy information, this approach does not fully 10 

leverage overlapping information that may be contained in multiple systems that respond to common forcing, is not conducive 

to robust quantification of uncertainty, and requires that both proxies sample coeval paleoenvironmental conditions. 

Here we propose a general approach to proxy interpretation that leverages the benefits of proxy models and provides 

a robust statistical basis for multi-proxy integration. The method, which we call Joint Proxy Inversion (JPI), couples proxy 

models with simple environmental time series models representing paleoenvironmental target variables in a Bayesian 15 

hierarchical modeling framework (Fig. 1). The hierarchical model is then inverted using Markov Chain Monte Carlo methods 

(Geman and Geman, 1984) to obtain posterior parameter estimates and paleoenvironmental time series that are conditioned 

simultaneously on all proxy and calibration data. Similar approaches have been applied in a limited number of cases to conduct 

large-scale meta-analyses (Tingley and Huybers, 2010;Li et al., 2010;Tingley et al., 2012;Garreta et al., 2010), but have not 

found widespread use in quantitative proxy interpretation. We begin by describing an implementation of JPI for the widely-20 

used foraminiferal Mg/Ca and δ18O multi-proxy system, and then present results demonstrating many of the merits and 

challenges of this approach. The examples are not intended to probe a particularly challenging application or to formally test 

or validate the approach, but rather to illustrate how JPI offers a robust, accessible framework for the types of quantitative 

proxy data interpretations routinely conducted within the paleoenvironmental research community. 

2 Methods 25 

2.1 Data 

Proxy and proxy model calibration datasets were compiled from published work (Fig. 1). Estimates from fluid inclusions, 

calcite veins, large foraminifera, and echinoderm fossils (Dickson, 2002;Coggon et al., 2010;Lowenstein et al., 2001;Evans et 

al., 2018;Horita et al., 2002) were combined with information on modern seawater Mg/Ca (de Villiers and Nelson, 1999) to 

represent variation in seawater Mg/Ca since 80 Ma. For simplicity, and because of the relatively low sensitivity of the other 30 

paleoenvironmental variables to seawater Mg/Ca estimates, we use interpreted seawater Mg/Ca estimates given by these 

authors instead of developing formal models for each Mg/Ca proxy system. Because uncertainty exists in the form of the 
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partitioning function between seawater and echinoderm carbonate, our dataset includes both the original estimates from 

Dickson (2002) and the reinterpreted estimates of Hasiuk and Lohmann (2010). The uncertainty associated with each estimate 

was approximated from the primary publication, and ranged from 0.03 mol/mol for modern seawater to ~0.5 mol/mol for some 

of the proxy estimates (1 σ, see data and code available at https://github.com/SPATIAL-Lab/JPI_marine).  

Foraminiferal Mg/Ca and δ18O data were compiled from three Ocean Drilling Program (ODP) sites: site 806, Ontong 5 

Java Plateau (Lear et al., 2015;Lear et al., 2003;Bickert et al., 1993); site 1123, Chatham Rise (Elderfield et al., 2012), and site 

U1385, Iberian Margin (Birner et al., 2016). All Mg/Ca data are all derived from infaunal foraminifera, which exhibit little to 

no Mg/Ca sensitivity to changing bottom water saturation state (Elderfield et al., 2010). Data from site 806 constitute a low-

resolution record from ~18 Ma to present, with an average sampling resolution of 1 sample per 240 and 180 kyr for Mg/Ca 

and δ18O, respectively, prior to 800 ka (sampling for δ18O, in particular, increases several fold thereafter). Mg/Ca measurements 10 

were made on Oridorsalis umbonatus, and δ18O data represent the benthic genus Cibicidoides. For the other two sites, data 

were extracted for the overlapping period (1.32 – 1.23 Ma) and comprise a set of higher-resolution records (sampling resolution 

between 1 per 110 and 1 per 1,700 years across both proxies) spanning two glacial/interglacial cycles. Mg/Ca measurements 

were made on tests of Uvigerina spp at both sites, and δ18O data are from either Uvigerina spp (site 1123) or Cibicidoides 

wuellerstorfi (site U1385). Variance in the foraminiferal data, e.g., due to analytical effects and sample heterogeneity, was not 15 

estimated independently but rather treated as a model parameter and conditioned on the calibration and proxy data. 

Calibration datasets were compiled to constrain the Mg/Ca and δ18O proxy system models. Mg/Ca calibration data 

for O. umbonatus are from the compilation of Lear et al. (2015), and include both modern core-top samples and samples from 

Paleocene and Eocene sediments of ODP site 690B. Data from site 690B include an adjustment for differences in cleaning 

procedures used for those samples (Lear et al., 2015). For Uvigerina spp our reconstructions are based on core-top calibration 20 

samples compiled by Elderfield et al. (2010). We also evaluated the now widely-used down-core calibration proposed by 

Elderfield et al. (2010), which optimizes the foraminiferal Mg/Ca temperature sensitivity to match Holocene to Last Glacial 

Maximum temperature change inferred from foraminiferal δ18O values and independent constraints on seawater δ18O change. 

We found that this approach provided relatively weak constraints on the Mg/Ca proxy model parameters and posterior 

parameter estimates that were entirely consistent with the stronger constraints obtained from core-top calibration (Fig. S1). 25 

Including both calibration datasets in JPI produced results similar to the core-top-only approach; as a result, we exclude the 

down-core calibration for simplicity, but note that multiple calibration approaches can be integrated and/or evaluated within 

JPI. Each Mg/Ca datum is accompanied by a bottom water temperature (BWT) estimate based on syntheses of observational 

data (modern) or δ18O thermometry (paleo), the latter assuming ice-free conditions (Lear et al., 2015). We adopt both sets of 

estimates directly. Given that systematic uncertainty estimates for the BWT values are not available, we approximate these 30 

uncertainties as normally distributed with standard deviations of 0.2 and 1 °C for the modern and paleo data, respectively. 

These values represent rough estimates of the average uncertainty associated with each data type, based on the primary data 

sources.  

https://github.com/SPATIAL-Lab/JPI_marine
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For δ18O we used the compilation of Marchitto et al. (2014) including new and published coretop data for the genera 

Cibicidoides and Uvigerina (Keigwin, 1998;Grossman and Ku, 1986;Shackleton, 1974). Estimates of BWT and δ18O of 

seawater from the original authors were adopted with an estimated uncertainty of 0.2 °C (1 σ) for BWT; as for Mg/Ca we do 

not attempt to constrain the uncertainty in the relationship between temperature and δ18O fractionation between seawater and 

calcite directly, but treat it as a model parameter. 5 

The age of each pre-modern datum was taken from the primary source. Age uncertainties, where known, can be 

incorporated in the JPI analysis framework by treating ages as random variables rather than as fixed values and/or including 

proxy model components representing processes governing the time-integration of observations. For simplicity, we do not 

include such a treatment here. In the discussion we note examples where including age uncertainty would produce a more 

robust analysis. 10 

2.2 Proxy models 

The proxy system models comprise the ‘data model’ layer of the hierarchical model, representing how environmental signals 

are embedded in the paleo-proxy and proxy calibration data. The models used here are comprised of simple transfer functions 

relating proxy data to contemporaneous environmental variables, and as such can be considered “sensor models” in the 

terminology of Evans et al. (2013), with aspects of proxy signal integration and sampling treated in the “archive” and 15 

“observation” models of those authors being swept into the error terms of our data model equations (1-3). The simplest model 

is that for seawater Mg/Ca proxy data, where, as noted above, we consider the interpreted data directly, giving: 

 

𝑀𝑔𝐶𝑎𝑠𝑤𝑝(𝑖)~𝑁[𝑀𝑔𝐶𝑎𝑠𝑤(𝑡𝑠𝑤𝑝[𝑖]), 𝜎𝑠𝑤𝑝(𝑖)].       Eq. (1) 

 20 

Here MgCaswp(i) is the ith proxy estimate, N represents the normal distribution, MgCasw is the paleo-seawater Mg/Ca value, 

and tswp and σswp are the estimated age and MgCaswp uncertainty, respectively, associated with each observation. 

We model foraminiferal Mg/Ca (MgCaf, including both calibration and proxy data) as a function of seawater 

chemistry and bottom water temperature, using the widely-applied linear form for temperature sensitivity (Elderfield et al., 

2010;Bryan and Marchitto, 2008;Lear et al., 2015): 25 

 

𝑀𝑔𝐶𝑎𝑓(𝑖)~𝑁[{𝛼1 + 𝛼2 × 𝐵𝑊𝑇(𝑡𝑀𝑔𝐶𝑎𝑓[𝑖])} × 𝑀𝑔𝐶𝑎𝑠𝑤(𝑡𝑀𝑔𝐶𝑎𝑓[𝑖])𝛼3 , 𝜏𝑀𝑔𝐶𝑎𝑓],   Eq. (2) 

 

where α1-3 and τMgCaf are the parameters and precision (1/σ2) associated with the transfer function, respectively, and other 

parameters are analogous to equation 1. Experiments conducted using the also-common exponential form produced similar 30 

results. In the absence of theoretical constraints, we assign normally distributed priors to the α parameters based on Bayesian 

regression of the expression for the mean in equation 2 against the calibration datasets. These independent regression estimates, 
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used only to specify the prior probability of the model parameters in the full analysis, require an estimate of Paleocene-Eocene 

Mg/Ca for the Oridorsalis calibration; we use a value of 1.5 mol/mol (Lear et al., 2015). This gives values of α1 ~ N[1.5, σ = 

0.1], α2 ~ N[0.1, σ = 0.01], and α3 ~ N[-0.02, σ = 0.03] for Oridorsalis and α1 ~ N[1.02, σ = 0.1] and α2 ~ N[0.07, σ = 0.01] 

for Uvigerina. We apply the α3 prior estimated from the Oridorsalis data set to Uvigerina because no calibration data were 

available representing non-modern MgCasw. For both genera, the prior estimate on the precision of the foraminiferal Mg/Ca 5 

model, τMgCaf, is the gamma distribution Γ[shape = 2, rate = 1/30], which approximates the precision of the independent 

regressions. 

Foraminiferal calibration and proxy δ18O values (δ18Of) are modeled similarly, using the standard 2nd order 

temperature sensitivity equation (Marchitto et al., 2014;Shackleton, 1974) applied in most paleoceanographic work: 

 10 

𝛿18𝑂𝑓(𝑖)~𝑁 [𝛿18𝑂𝑠𝑤(𝑡𝛿18𝑂𝑓[𝑖]) + 𝛽1 + 𝛽2𝐵𝑊𝑇(𝑡𝛿18𝑂𝑓[𝑖]) + 𝛽3𝐵𝑊𝑇(𝑡𝛿18𝑂𝑓[𝑖])
2

, 𝜏𝛿18𝑂𝑓(𝑖) ]. Eq. (3) 

 

Here δ18Osw is the modeled seawater isotope composition and β1-3 are the transfer function coefficients. In this analysis we treat 

the scale conversion factor between the SMOW and PDB reference scales (Shackleton, 1974) as implicit in the transfer function 

intercept term (β1), which is relevant only in comparing our posterior parameter estimates to other work. Prior estimates of the 15 

model parameters were obtained and specified as for Mg/Ca; these are β1 ~ N[3.32, σ = 0.02], β2 ~ N[-0.237, σ = 0.01], β3 ~ 

N[0.001, σ = 0.0005] for Cibicidoides and β1 ~ N[4.05, σ = 0.06], β2 ~ N[-0.215, σ = 0.02], β3 ~ N[-0.001, σ = 0.001] for 

Uvigerina. Because our analysis focuses on Myr-scale trends and the amplitude of high-frequency (i.e. below the resolution 

of our model) δ18Osw variance in the record from site 806 increased substantially with the onset of modern, 100 kyr glacial 

cycles, we modeled τδ18Of(i) separately for proxy data younger than 800 ka (prior on τδ18Of ~ Γ[6, 1]) and for all other proxy and 20 

calibration data (Γ[3, 1/30]). The former estimate is based on the observed proxy variance since 800 ka, whereas the latter 

approximates the precision of the calibration relationships. Alternatively, if reconstruction of sub-Myr variability in this part 

of the record was a target, the change in properties of the δ18Osw record could be represented by addition of a periodic model 

component in the environmental time series model.  

2.3 Environmental models 25 

Although not treated as such in most reconstructions, paleoenvironmental conditions are autocorrelated in time, meaning that 

each proxy observation provides information about conditions not just at a single point in time but across a segment of time. 

To reflect this, we model paleoenvironmental variables as time series using a correlated random walk model. This 

parameterization is desirable in that it is minimally prescriptive (i.e. no preferred state or pattern of change is proscribed) but 

allows incorporation of constraints on (and extraction of inference about) two basic characteristics of the paleoenvironmental 30 

system – namely its rate and directedness of change. The environmental models represent the “process model” layer of the 

Bayesian hierarchical model.  
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The correlated random walk for variable Y (where Y is MgCasw, δ18Osw, or BWT) is expressed as: 

 

𝑌(𝑡) = 𝑌(𝑡 − 1) + 𝜖𝑌(𝑡),          Eq. (4) 

 

where the error term ϵY is a continuous-time autoregressive process with mean zero, temporal autocorrelation of φY: 5 

 

𝜖𝑌(𝑡) = 𝑁 [𝜖𝑌(𝑡 − 1) × 𝜙𝑌
∆𝑡 , 𝜏𝑌

(1−𝜙𝑌
2)

(1−𝜙𝑌
2∆𝑡)

]        Eq. (5) 

 

(e.g., Johnson et al., 2008). Here τy gives the error precision for a step size (Δt) of 1 and error precision saturates at τy(1 - φY
2) 

for an infinitely large step size, exactly reproducing the behaviour of a discrete-time, first-order autoregressive processes. In 10 

short, Y follows a random walk in time in which the next value is a function only of the time step size, the current value, and 

ϵY. This gives three independent parameters, φY, τy, and an initial value of Y at the beginning of the time series. Each variable 

is modeled on a time series composed of a regularly-spaced base series appropriate to the record duration and resolution plus 

all proxy sample ages, with Δt representing the time shift between all adjacent base and proxy ages. We do not explicitly model 

the covariance among environmental variables, but let this emerge from the data. 15 

For seawater Mg/Ca, which is thought to evolve gradually (the oceanic residence times of Mg and Ca are 13 Ma and 

1 Ma, respectively) in response to long-term tectonic and biogeochemical forcing (Wilkinson and Algeo, 1989), we use a base 

series of 1 Myr steps from 80 Ma to present. Although the foraminiferal proxy data used here span only the interval from ~18 

Ma to present, extending the seawater model over this longer temporal domain was necessary in order to generate a stable time 

series, conditioned on sparse seawater Mg/Ca proxy data that spanned both the proxy records and the Paleogene-aged Mg/Ca 20 

proxy calibration data. Given that the modeled quantity is a ratio, we treat the error term in this time series model as a 

proportion, such that the change in MgCasw between two time steps is MgCasw(t-1) * ϵMgCasw.  We adopt priors that imply 

relatively slow change and strong temporal trends (φMgCasw is given by a uniform distribution, U[0.9, 1]; τMgCasw ~ Γ[100, 0.01]). 

We use a weak prior on the initial state of MgCasw at 80 Ma, U[1, 3], consistent with independent interpretations of Cretaceous 

proxy data (Coggon et al., 2010). 25 

We select the bounds, base resolution, and prior distributions for the bottom water temperature and δ18O time series 

models based on the properties of each record. For site 806 we use a base series of 50 kyr steps from 18 Ma to present, adequate 

to allow the time series model to adapt across the range of supra-orbital timescales represented in the sample distribution. Prior 

estimates of the error term parameters were chosen to allow sampling across all possible autocorrelation states and and a range 

of error variances that were consistent with first-order interpretations of the proxy data (φ ~ U[0, 1] for both proxies; τBWT ~ 30 

Γ[20, 0.1]; τδ18Osw ~ Γ[30, 0.01]). We use weakly informative uniform priors for initial values at 18 Ma (BWT(-18) ~ U[3, 8], 

δ18Osw(-18) ~ U[-1, 1]). For the higher-resolution Pleistocene records, we bound the models between 1.32 and 1.235 Ma and 
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adopt a base series of 1 kyr steps, accommodating orbital time-scale changes in the paleoenvironmental variables, and adopt 

the same prior distributions for τ and φ as in the long-term model. 

2.4 Model inversion 

The model structure described above was coded in the BUGS (Bayesian inference Using Gibbs Sampling) language (Lunn et 

al., 2012) and Markov Chain Monte Carlo was used to generate samples from the posterior distribution of all model parameters 5 

conditioned on the proxy and calibration datasets. The analysis was implemented in R version 3.5.1 (R Core Team, 2019) 

using the rjags (Plummer, 2018) and R2jags (Su and Yajima, 2015) packages. Three chains were run in parallel. Convergence 

was assessed visually via trace plots and with reference to the Gelman and Rubin convergence factor (Rhat; Gelman and Rubin, 

1992) and effective sample sizes reported by rjags.  

For the site 806 analysis, nine chains were run to a length of 5e5 samples with a burn-in period of 10e4 samples and 10 

thinning to retain 1,500 posterior samples per chain. All parameters showed strong convergence (Rhat << 1.05, effective 

sample size > 3,500) with the exception of some parts of the seawater Mg/Ca time series, which was characterized by very 

strong autocorrelation and weak data constraints. Qualitative assessment showed no perceptible covariance between seawater 

Mg/Ca and other parameters in the posterior samples, nor was the posterior distribution obtained from this inversion 

substantially different from one produced by inverting the Mg/Ca proxy model alone (which was run to an effective sample 15 

size >4,000 beyond the initialization period); as a result, we do not believe the weaker sampling from the MgCasw posterior 

has a significant impact on our results or interpretations. The analysis took approximately 36 hours running on nine cores of a 

Windows desktop computer. 

For the Pleistocene data we conducted three different analyses, the first two inverting data from each site 

independently and the third inverting both records together. For the joint inversion of both records, we treated each 20 

paleoenvironmental timeseries as independent, i.e. no correlation structure was imposed on or fit to the conditions simulated 

at the two sites, and the model consists of four time-series process models (one each for BWT and δ18Osw at each site) and a 

single set of data models for the foraminiferal Mg/Ca and δ18O proxy systems. The use of these common data models 

constitutes the primary difference between the two analyses, in that individual posterior samples from the joint analysis include 

paleoenvironmental time series at both sites that are consistent with a single set of data model parameters. The implicit 25 

assumption behind this approach is that the proxy calibration is imperfectly known but that ‘correct’ calibration, if known, 

would be the same at the two sites. A more comprehensive analysis could include cross-site paleoenvironmental correlation, 

e.g., as in Tingley and Huybers (2010), but here we opt for a minimal model form and any evidence for correlation emerges 

from the proxy data directly. Because of the short time interval covered by these analyses we did not model the seawater 

Mg/Ca explicitly, but estimated paleo-seawater Mg/Ca values, where needed, from the posterior distributions of an 30 

independent inversion of the seawater Mg/Ca proxy data. Three chains were run to 5e5 samples for the single-site analyses and 

nine chains to 2.5e5 samples for the multi-site, using a burn in period of 1e4 samples and thinning to retain 5,000 posterior 

samples per chain. All parameters showed strong convergence (Rhat << 1.05) and effective samples sizes were >4,000 for 
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most parameters and >2,000 for all parameters excluding the initialization period of the time series (i.e. prior to the first  

observation). Total analysis time ranged from <1 hour (site 1123) to ~4 days (multi-site).  

Run times for all analyses can be substantially reduced by adopting a smaller number of time steps (e.g., only the 

base series) and using interpolation to estimate environmental parameter values at the proxy observation time-points. Results 

from experiments using this approach (not shown) were not detectably different from those shown here. 5 

3 Results and Discussion 

3.1 JPI paleoenvironmental reconstructions 

The paleoenvironmental reconstructions obtained by applying JPI to the site 806 data are similar, to first order, to the 

reconstructions from Lear et al. (2015; hereafter L15) on which our analysis was modeled (Figs. 2 and 3). Our estimates of 

seawater Mg/Ca match those obtained by L15 using polynomial curve-fitting throughout most of the common period of 10 

analysis (Fig. 2). Prior to 40 Ma our estimates diverge somewhat, reflecting the additional data used in our analysis, but this 

difference does not impact other interpretations given that L15 did not use the curve-fit estimates from this part of the record 

in their work. Our reconstruction shows strong support for ~2 °C of bottom-water warming at site 806 during the mid-Miocene 

Climatic Optimum (centered here on ~15.5 Ma), and although abrupt cooling followed this event, water temperatures warmed 

again by ~1 °C into the late Miocene (Fig. 3). A strong and sustained multi-Myr cooling trend began at the site just prior to 5 15 

Ma and persisted throughout the remainder of the record. Our median temperature estimates are most similar to those obtained 

by L15 using their “NBB” calibrations, which was based on the same compilation of calibration data used here. 95% credible 

intervals estimated from JPI average 2.4 °C and 0.6 ‰, which is similar to the uncertainty bounds provided by L15 based on 

iterative estimation using different calibration functions. The width of the JPI CIs varies subtly across the time series, with 

somewhat narrower intervals during periods of dense sampling, e.g., in the late Pleistocene. 20 

JPI paleoenvironmental time series for the single- and multi-site analysis of the Pleistocene data were nearly identical, 

with slightly broader credible intervals for both parameters (BWT and δ18Osw) and sites in the single-site analyses (Figs. S2 

and S3). The multi-site analysis showed coherent and slightly phase-shifted patterns of BWT variation across glacial-

interglacial cycles at the two sites, with the amplitude of variation being approximately twice as high and median BWT 

estimates 2 to 5 °C warmer at U1385 (Fig. 4a). Reconstructed δ18Osw values show greater glacial-scale variability at site 1123, 25 

with abrupt decreases of ~0.5‰ accompanying both glacial terminations (Fig. 4b). In contrast, the seawater δ18O time series 

reconstructed for site U1385 shows little response to the termination at ~1.295 Ma and exhibits high-frequency variability not 

seen at 1123. The reconstructions are similar in nature to those by Elderfield et al. (2012) and Birner et al. (2016). Absolute 

temperatures and δ18Osw values match well if the published reconstructions are adjusted using the Mg/Ca proxy sensitivity 

inferred here (0.068 mmol/mol per degree; Fig. 4); the Elderfield et al. (2010) calibration used by the original authors offsets 30 

the warmer site U1385 temperatures from JPI results by as much as ca. -2 °C (Figs. S2 and S3). Neither of these studies 

presents quantitative uncertainty bounds on individual paleotemperature or δ18Osw estimates, but both provide estimates of 
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average uncertainty based on propagation of errors. The average width of our 95% CIs is actually somewhat narrower than the 

2σ values from the original papers, and the JPI CIs are notably narrower for the U1385 record (2.7 °C, 0.6‰) than for 1123 

(3.3 °C, 0.8‰; all estimates from the multi-site analysis).  

3.2 Time series properties 

We will now examine several characteristics of the paleoenvironmental time series obtained in the JPI posterior sample, and 5 

contrast them with reconstructions obtained through traditional proxy interpretation methods. One visually striking difference 

between the JPI and L15 reconstructions is the higher BWT and δ18Osw variability implied by L15 (Fig. 3). As is common in 

traditional proxy interpretations, the L15 paleoenvironmental record treats each individual proxy observation as an estimate of 

an independent environmental state, giving a reconstruction centered on ‘best estimates’ derived from each data point. In 

reality, however, the environmental states giving rise to the proxy data are not independent if autocorrelation exists at the 10 

resolution at which the time series is sampled. For BWT and δ18Osw this is true over a broad spectrum of temporal resolutions 

including those considered here; e.g., values of these variables are known to vary systematically over millions of years due to 

long-term fluctuations in Neogene climate and ice volume (Zachos et al., 2001;Raymo and Ruddiman, 1992) and over tens to 

hundreds of thousands of years due to orbital forcing (Imbrie et al., 1984;Shackleton, 2000). This is often implicitly 

acknowledged in the presentation of traditional proxy reconstructions by including a smoothed representation of the record, 15 

obtained using a (usually somewhat arbitrary) filter (e.g., Elderfield et al., 2012). 

JPI, in contrast, explicitly considers temporal autocorrelation of the underlying environmental variables, treating each 

proxy observation as a sample arising from one or more underlying, autocorrelated environmental time series. The properties 

of the time series themselves, rather than being assumed, are estimated using the proxy models and the data, meaning that the 

smoothed reconstruction reflects the information content of the data. For very certain proxy models or densely distributed data 20 

that record high-frequency variability, the reconstructed time series will express short-term changes in the environment. In 

contrast, reconstructions based on uncertain models or sparsely-sampled data will tend toward greater smoothing and reflect 

the longer-term evolution of the mean state of the system. This is nicely illustrated by comparison of JPI δ18Osw reconstructions 

for sites 1123 and U1385: the sample density of the U1385 proxy record is approximately 15 times greater, and the resultant 

time series reconstruction expresses much stronger variability at millennial timescales (Fig. 4b). Again, similar results can be 25 

achieved using other post-hoc smoothing approaches, but the integration of smoothing, informed by the proxy system model 

and data properties, within the core data analysis framework is an advantage of JPI. 

Another advantage of embedding time series models in JPI is that it offers an explicit framework for integration of 

differently-sampled proxy records. In most of the studies reviewed here foraminiferal δ18O values are more densely sampled 

than Mg/Ca. In a traditional, piece-wise interpretation of these proxy data, δ18Osw can only be estimated if paired oxygen and 30 

Mg/Ca data are available for a given core level. Thus, if Mg/Ca data are missing at a level either this value must be estimated, 

usually through linear interpolation, or the foraminiferal δ18O data excluded from the analysis. JPI eliminates the need to 

exclude or selectively interpolate data by linking all proxy measurements to a common set of continuous time series. The 
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temporal interpolation required to integrate data sampled at different times is conducted for each environmental variable (which 

are in reality the quantities that are related in time), rather than for the proxy values themselves, as an explicit component of 

the analysis. One note of caution is warranted here: potential for artefacts to emerge from the integration of datasets with very 

different sampling densities remains. For example, the high-frequency variability in estimated seawater δ18O at site U1385 

(Fig. 4b) stems from high-frequency variance in the densely-sampled δ18Of record at this site, but without MgCaf at similar 5 

resolution it is impossible to determine whether the isotopic proxy record variance truly reflects millennial-scale changes in 

seawater δ18O or instead is driven by un-documented, high-frequency BWT variation. 

A final outgrowth of the integration of proxy system and paleoenvironmental time series models via JPI is that the 

method provides quantitative uncertainty bounds that are linked to and reflect the stratigraphic distribution and density of 

proxy information. Because environmental parameters are modeled as continuous time series, estimates of central tendency 10 

and dispersion (e.g., credible intervals) are obtained throughout the reconstruction period. For time steps in which no 

observational data are available, the dispersion of posterior estimates increases consistent with the properties of the time series 

model (e.g., between ~55 and 75 Ma or 5 and 15 Ma in the seawater Mg/Ca model; Fig. 2), providing quantitative estimates 

of the constraints provided by the data within these intervals. Moreover, because the paleoenvironmental time series are 

temporally autocorrelated, each proxy observation helps constrain the environmental state not just at the time associated with 15 

its stratigraphic depth, but also provides (weaker) information about conditions earlier and later in the record (with the decay 

of that information with time being a function of the process model parameters). As a result, credible intervals in the posterior 

distribution adjust with the density of the proxy observations, and stratigraphic intervals with higher sampling density have 

lower CIs reflecting the cumulative constraints provided by multiple observations. This can be seen, for example, in the broader 

95% CIs for the sparsely-sampled portion of the site 806 record between ~7 and 10 Ma (Fig. 3) or in the contrasting width of 20 

the CIs for the two Pleistocene sites (Fig. 4). 

3.3 Model properties 

In addition to estimating the paleoenvironmental record, JPI provides posterior estimates of parameters in the underlying 

paleoenvironmental time series models and proxy (calibration) models, and these themselves can be informative. Bayesian 

inversion has previously been used to estimate proxy model parameter values in situations where these are poorly constrained 25 

(Tolwinski-Ward et al., 2013), and the joint inversion of proxy and environmental time series models performed in JPI can 

similarly be used to provide constraints on parameter values for all model components (e.g., Fig. S4). Because the proxy system 

models used here are simple, and the calibration data themselves are used to generate prior estimates on model parameters, the 

posterior estimates are generally quite similar to the priors (Fig. 5). The only notable exception is β3 the second-order parameter 

in the δ18Of model, for which the posterior mean is shifted subtly toward zero (Fig. 5g). Our prior estimates of parameter 30 

variance were slightly inflated to ensure that we did not over-constrain these values, and the posteriors show sharpening of the 

distributions for most parameters. Posterior estimates for proxy model precision (or variance), however, are much more 

strongly constrained than those obtained from independent estimation using calibration data only (Figs. 5d and h). We note 
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that our results suggest limited sensitivity of the proxies to some model parameters (e.g., α3 and β3; Figs. 5c and g). Although 

this suggests that more parsimonious models omitting these parameters could be used, we retain the ‘canonical’ forms to 

support comparison with previous work. 

These refinements reflect a combination of the constraints offered by the calibration and down-core proxy data. 

Although at first consideration the relevance of the latter to calibrating proxy model parameters might not be apparent, in fact 5 

the proxy model must not only be consistent with the calibration data but also explain the observed proxy data given the ‘true’ 

environmental conditions. As a result, for a given set of proxy data and environmental time series model properties only a 

subset of proxy model parameter values will be plausible. Consider, for example, the proxy model precision parameter. In our 

model construction, this value explains the “noise” both within the model calibration dataset and the proxy record, each of 

which can arise from a similar ensemble of factors (e.g., temporal variation in the environment at time scales below the time 10 

series model time step, biological or random variation in the environment-proxy relationship). Our analysis suggests that before 

the mid-Pleistocene transition, the proxy model variance implied by the full JPI inversion is similar to that estimated from the 

calibration data alone (solid curves in Figs. 5d and h), with slightly higher δ18O and lower Mg/Ca variance implied by the full 

analysis. The site 806 δ18Of record, however, is much more densely sampled after 800 ka, and the combination of higher δ18Osw 

variability and dense sampling that more strongly records this variability requires a much higher proxy model variance (dashed 15 

lines in Fig. 5h). The proxy calibration data offer no constraints on this value, rather the JPI posterior estimates the parameter 

value to reconcile the environmental time series (representing the longer-term evolution of the mean system state) with the 

variance expressed in the proxy observations. 

Because the JPI analysis involves sampling of all model parameters simultaneously, it also can identify and account 

for correlation among parameters. The proxy model parameter estimates for site 806 provide a clear example (Fig. 6). The 20 

posterior distributions show strong correlation between the seawater Mg/Ca sensitivity term (α3) and both the intercept and 

sensitivity terms (α1 and α2) in the MgCaf model and between the first- and second-order terms (β2 and β3) in the δ18Of model. 

This is not at all surprising: in all cases these terms are interactive and for a given estimate of the model calibration a change 

in one will generally be offset by a change in the other. Accounting for this covariance is important in assessing the uncertainty 

of proxy reconstructions, however, and may in part account for the more optimistic uncertainty estimates obtained here relative 25 

to those based on propagation of errors assuming independence of parameters, in that the latter approach will inflate uncertainty 

associated with correlated parameters. 

JPI also provides posterior estimates on the environmental time series model parameters, and these distributions can 

provide information complimentary to the reconstructed time series themselves. Comparing prior and posterior estimates at all 

three study sites (Fig. 7), the analysis provides strong posterior constraints on the error autocorrelation (i.e. directedness of 30 

change). Posterior estimates of the error variance (i.e. magnitude of change between time steps) for δ18Osw and BWT are more 

similar to the priors, but additional experiments using alternative priors (not shown) suggest that this reflects the 

appropriateness of the prior estimates and rather than a lack of constraints from the data (i.e. posterior distributions were 

substantially different from the alternative priors). Interestingly, the error variance estimates are quite similar for both 
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environmental variables at all sites despite the ~2 order of magnitude difference in the resolution and length of the records, 

suggesting scale-independence of short-term rates of change in these systems.  

In contrast, the error autocorrelation term, which reflects the directedness of environmental change across model time 

steps, shows substantial variation among the data sets (Fig. 7, left column). The highest posterior values (mean values of 0.77 

and 0.92 for BWT and δ18Osw, respectively) were obtained for the long record at site 806, which expresses long-term (multi-5 

Myr), high-amplitude transitions in paleoenvironmental states. Among the Pleistocene analyses, the strongest error 

autocorrelation is inferred for BWT at site U1385 (mean = 0.12). There, the data suggest coherent cyclic variation in BWT 

across two glacial cycles, consistent with stronger error autocorrelation, but several more abrupt, short-term shifts are also 

implied (e.g., at ~1.31 Ma) and likely reduce the posterior estimate of autocorrelation across the record as a whole. In contrast, 

δ18Osw variation estimated at this site is only weakly directional and features strong, chaotic, millennial-scale variability, 10 

reflected in a low posterior estimate (mean = 0.02) for error autocorrelation (Fig. 7d). 

3.4 Derivative analyses 

In this final section, we explore additional examples of how JPI results might be used to support inference or hypothesis testing 

in paleoenvironmental reconstruction. The multivariate posterior samples produced by JPI provide a sound basis for testing 

hypotheses of change within or between proxy records. Consider the case where we want to assess the magnitude of change 15 

in site 806 bottom water temperature relative to the modern (core top) value. Unlike the raw proxy data or traditional 

interpretations thereof the JPI samples provide distributions for the environmental variables that support testing at any point 

in time represented in the paleo-environmental time series. Other interpolation or smoothing methods can and have been used 

to conduct such tests, for example of change in global temperature relative to modern (Marcott et al., 2013), but an advantage 

of JPI, again, is that correlation among model parameters and temporal autocorrelation are included and optimized in the 20 

analysis, reducing the need to independently and subjectively specify these.  

The effect of parameter correlation can be seen in comparing change relative to modern within individual posterior 

samples (within-sample) versus change between each posterior sample and the 0 Ma median value (between-sample; Fig. 8a), 

the latter being equivalent to a traditional test for non-zero difference that assumes independence. At short time lags (less than 

~400 kyr) the within-sample comparison actually implies slightly higher (~4%) probability of significant change for the time 25 

steps with largest BWT differences relative to modern. This reflects the influence of error autocorrelation in the time series 

model: within an individual posterior sample, directional change is likely to persist over multiple time steps, meaning that the 

‘signal to noise ratio’ over short periods is higher if estimated based on within-sample vs. between-sample change. Beyond 

this time frame, however, the relationship between methods inverts, and the method assuming independence gives exaggerated 

estimates of the significance of change. Beyond the scale of significant time series error autocorrelation, the variance of change 30 

estimated from the within-sample comparison is substantially greater than that estimated between samples, reflecting the fact 

that some possible BWT trajectories within the posterior ‘wander’ across the distribution of possible values over time, 

increasing the dispersion of the change estimates. The net result is that in this case, using a one-sided 95% credible interval 
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threshold (equivalent to p=0.05), one would estimate that site 806 bottom water temperatures diverged from modern some 1 

Ma earlier without accounting for parameter and time-series correlation.  

Another example involves cross-site comparison. Here, we similarly ask whether seawater δ18O values were different 

at sites 1123 and U1385 throughout the period of study based on comparisons of the posteriors from the multi-site analysis or 

the two single-site JPI analyses (Fig. 8b). The assessment that assumes independence of estimates at the two sites (the latter 5 

one) consistently under-estimates the significance of the difference between the sites. This can be explained intuitively in terms 

of the impact of other model parameters on posterior estimates of δ18Osw values at both sites. In a given sample from the 

posterior of the multi-site analysis, if one of the δ18Of proxy system model parameters deviates from the central estimate, for 

example, it will similarly impact the seawater isotope reconstructions at both sites. As a result, the variance of the between-

site differences is reduced in the comparison based on the multi-site analysis, producing stronger results in the post-hoc tests 10 

of difference. In this example the choice of approach would have little impact on inferences drawn based on the 95% credible 

interval, but at the 99% level several parts of the time series would be considered different using the multi-site comparison and 

not different with the traditional approach (Fig. 8b). Including factors contributing to age model uncertainty for individual 

records would further improve JPI-based interpretations of this type. 

Finally, because JPI results provide integrated, self-consistent estimates of multiple environmental variables, it can 15 

be used to identify and characterize multivariate modes of environmental change in Earth’s past. Results from the site 806 

analysis, for example, demonstrate non-linear coupling between changes in BWT and δ18Osw since the mid-Miocene (Fig. 9). 

These patterns, including limited coupling between δ18Osw and BWT change prior to ~5 Ma and strong bottom water cooling 

accompanied by a modest δ18Osw decrease into the Pleistocene, were previously noted by L15. What is apparent here, however, 

is the suggestion that the system transitioned between at least three semi-stable states during this time. Jumps between a mid-20 

Miocene warm, low-δ18Osw state, late Miocene warm, high-δ18Osw state, and Plio-Pleistocene cool state were in each case 

relatively abrupt, with the system spending the majority of the reconstruction period within, rather than between, states. 

4 Conclusion 

Traditional approaches to proxy interpretation suffer from broad and poorly characterized uncertainty and potential biases 

related to the sensitivity of proxies to multiple environmental factors (Sweeney et al., 2018). Proxy system modeling and multi-25 

proxy reconstruction provide partial solutions to these issues, but a robust, accessible framework for integrating these two 

approaches in the development of paleoenvironmental reconstructions is also needed. We suggest that Bayesian hierarchical 

models that leverage simple time series representations of paleoenvironmental conditions offer such a framework. This 

approach is broadly generalizable to any set of proxies for which appropriate forward models can be written. It confers many 

of the advantages of more complex data assimilation methods that leverage Earth system models (Evans et al., 2013), while 30 

remaining independent of the assumptions embedded in these models and flexible enough to be applied over a wide range of 

systems and time scales. As with any statistically-based analysis, JPI results are model-dependent: they provide a basis for 
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interpreting data in the context of a specific model and its assumptions, and this dependence should be acknowledged and 

considered in the presentation and interpretation of results. 

Our illustration of the method based on the coupled Mg/Ca and δ18O systems in benthic foraminifera demonstrates 

the flexibility of JPI through applications to two contrasting time scales and both single- and multi-site proxy records. Despite 

the simplicity of this system and the proxy models used, the example illustrates how JPI can be applied to widely used proxy 5 

systems to give improved characterization of uncertainty, explicit estimates of the properties of paleoenvironmental systems, 

and refined proxy model calibrations. Implementations similar to those demonstrated here could easily and immediately 

become standard practice in the interpretation of many paleoenvironmental proxy data. As the underlying proxy system models 

mature, JPI-based interpretations can be revised and refined to incorporate new understanding and/or leverage additional proxy 

types, minimizing, but also accurately representing, bias and uncertainty in our paleoenvironmental reconstructions. 10 

Data and code availability 

All data and code used to conduct the analyses and create figures reported in this manuscript are archived online (Bowen, 

2019) and available at https://doi.org/10.5281/zenodo.3537974. 

Author contribution 

GJB conceived of, designed, and conducted the analyses, with support from BFF, AS, and G-JR. CHL provided access to data 15 

and advice on application of the Mg/Ca paleo-thermometer. GJB wrote the manuscript with input from all coauthors. 

Competing interests 

The authors declare that they have no conflict of interest.  

https://doi.org/10.5281/zenodo.3537974


16 

 

References 

Affek, H. P., Matthews, A., Ayalon, A., Bar-Matthews, M., Burstyn, Y., Zaarur, S., and Zilberman, T.: Accounting for kinetic isotope 

effects in Soreq Cave (Israel) speleothems, Geochim. Cosmochim. Acta, 143, 303-318, https://doi.org/10.1016/j.gca.2014.08.008, 2014. 

Bickert, T., Berger, W., Burke, S., Schmidt, H., and Wefer, G.: Late Quaternary stable isotope record of benthic foraminifers: Sites 805 

and 806, Ontong Java Plateau 1, Proceedings of the Ocean Drilling Program, Scientific Results, 130, 411-420, 1993. 5 
Birner, B., Hodell, D. A., Tzedakis, P. C., and Skinner, L. C.: Similar millennial climate variability on the Iberian margin during two early 

Pleistocene glacials and MIS 3, Paleoceanography, 31, 203-217, 2016. 

Bowen, G. J.: SPATIAL-Lab/JPI_marine: CoP accepted (v. 1.1.1). Zenodo, 2019. 

Bryan, S. P., and Marchitto, T. M.: Mg/Ca–temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a 

hypothesis regarding Mg/Li, Paleoceanography and Paleoclimatology, 23, 2008. 10 
Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C., and Cooper, M. J.: Reconstructing past seawater Mg/Ca and Sr/Ca from 

mid-ocean ridge flank calcium carbonate veins, Science, 327, 1114-1117, 10.1126/science.1182252, 2010. 

Conte, M. H., Thompson, A., Lesley, D., and Harris, R. P.: Genetic and physiological influences on the alkenone/alkenoate versus growth 

temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica, Geochim. Cosmochim. Acta, 62, 51-68, 1998. 

Conte, M. H., Sicre, M.-A., Rühlemann, C., Weber, J. C., Schulte, S., Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the 15 
alkenone unsaturation index (UK′37) in surface waters and comparison with surface sediments, Geochemistry, Geophysics, Geosystems, 

7, 10.1029/2005GC001054, 2006. 

de Villiers, S., and Nelson, B. K.: Detection of Low-Temperature Hydrothermal Fluxes by Seawater Mg and Ca Anomalies, Science, 285, 

721, 1999. 

Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D. M.: PRYSM: An open-source framework for PRoxY 20 
System Modeling, with applications to oxygen-isotope systems, Journal of Advances in Modeling Earth Systems, 7, 1220-1247, 

10.1002/2015MS000447, 2015. 

Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility of proxy system models for estimating climate states over the 

common era, Journal of Advances in Modeling Earth Systems, 8, 1164-1179, 10.1002/2016MS000677, 2016. 

Dickson, J. A. D.: Fossil Echinoderms As Monitor of the Mg/Ca Ratio of Phanerozoic Oceans, Science, 298, 1222, 2002. 25 
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., Crowhurst, S., Booth, L., and Daunt, C.: A record of bottom 

water temperature and seawater δ18O for the Southern Ocean over the past 440kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp, 

Quaternary Science Reviews, 29, 160-169, https://doi.org/10.1016/j.quascirev.2009.07.013, 2010. 

Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., and Piotrowski, A. M.: Evolution of Ocean Temperature 

and Ice Volume Through the Mid-Pleistocene Climate Transition, Science, 337, 704, 2012. 30 
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, 

P. J., and Affek, H. P.: Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry, Proc. Natl. Acad. Sci. 

U.S.A., 115, 1174, 2018. 

Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.: Applications of proxy system modeling in high resolution 

paleoclimatology, Quaternary Science Reviews, 76, 16-28, https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. 35 
Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D.: Evidence for rapid climate change in North America during the latest 

Paleocene thermal maximum; oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming), Earth Planet. Sci. 

Lett., 160, 193-208, 1998. 

Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M. T., and Litt, T.: A method for climate and vegetation reconstruction 

through the inversion of a dynamic vegetation model, Climate Dynamics, 35, 371-389, 2010. 40 
Gelman, A., and Rubin, D. B.: Inference from iterative simulation using multiple sequences, Stat Sci, 7, 457-472, 1992. 

Geman, S., and Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on 

pattern analysis and machine intelligence, 6, 721-741, 1984. 

Grauel, A.-L., Leider, A., Goudeau, M.-L. S., Müller, I. A., Bernasconi, S. M., Hinrichs, K.-U., de Lange, G. J., Zonneveld, K. A. F., and 

Versteegh, G. J. M.: What do SST proxies really tell us? A high-resolution multiproxy (UK′37, TEXH86 and foraminifera δ18O) study in 45 
the Gulf of Taranto, central Mediterranean Sea, Quaternary Science Reviews, 73, 115-131, 

https://doi.org/10.1016/j.quascirev.2013.05.007, 2013. 

Greenwood, D. R., Wilf, P., Wing, S. L., and Christophel, D. C.: Paleotemperature estimation using leaf-margin analysis: Is Australia 

different?, Palaios, 19, 129-142, 2004. 

Grossman, E. L., and Ku, T. L.: Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects, Chem Geol, 59, 59-50 
74, 1986. 

Hasiuk, F. J., and Lohmann, K. C.: Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca, Geochim. 

Cosmochim. Acta, 74, 6751-6763, https://doi.org/10.1016/j.gca.2010.07.030, 2010. 

Horita, J., Zimmermann, H., and Holland, H. D.: Chemical evolution of seawater during the Phanerozoic: Implications from the record of 

marine evaporites, Geochim. Cosmochim. Acta, 66, 3733-3756, 2002. 55 

https://doi.org/10.1016/j.gca.2014.08.008
https://doi.org/10.1016/j.quascirev.2009.07.013
https://doi.org/10.1016/j.quascirev.2013.05.024
https://doi.org/10.1016/j.quascirev.2013.05.007
https://doi.org/10.1016/j.gca.2010.07.030


17 

 

Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: The 

orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record, in: Milankovitch and Climate, edited 

by: Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., Reidel, Dordrecht, 269-306, 1984. 

Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W.: Continuous‐time correlated random walk model for animal telemetry data, 

Ecology, 89, 1208-1215, 2008. 5 
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D.: Warm, not super-hot, temperatures in the early Eocene 

subtropics, Geology, 39, 771-774, 2011. 

Keigwin, L. D.: Glacial-age hydrography of the far northwest Pacific Ocean, Paleoceanography, 13, 323-339, 10.1029/98PA00874, 1998. 

Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic 

foraminiferal calcite, Science, 287, 269-287, 2000. 10 
Lear, C. H., Rosenthal, Y., and Wright, J. D.: The closing of a seaway: ocean water masses and global climate change, Earth Planet. Sci. 

Lett., 210, 425-436, 2003. 

Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: 

Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437-

1454, 2015. 15 
Li, B., Nychka, D. W., and Ammann, C. M.: The Value of Multiproxy Reconstruction of Past Climate, J Am Stat Assoc, 105, 883-895, 

10.1198/jasa.2010.ap09379, 2010. 

Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V.: Oscillations in Phanerozoic seawater chemistry:  

Evidence from fluid inclusions, Science, 294, 1086-1088, 10.1126/science.1064280, 2001. 

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D.: The BUGS Book: A Practical Introduction to Bayesian Analysis, CRC 20 
Press / Chapman and Hall, 2012. 

Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C.: Improved oxygen isotope temperature 

calibrations for cosmopolitan benthic foraminifera, Geochim. Cosmochim. Acta, 130, 1-11, https://doi.org/10.1016/j.gca.2013.12.034, 

2014. 

Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years, 25 
Science, 339, 1198, 10.1126/science.1228026, 2013. 

Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M.: High-temperature environments of human evolution in East 

Africa based on bond ordering in paleosol carbonates, PNAS, 107, 11245-11249, 10.1073/pnas.1001824107, 2010. 

Plummer, M.: rjags: Bayesian graphical models using MCMC. R package version 4-8. https://CRAN.R-project.org/package=rjags. 2018. 

R Core Team: R: A language and environment for statistical computing, R Foundation for  Statistical Computing, Vienna, Austria. 30 
https://www.R-project.org/, 2019. 

Raymo, M. E., and Ruddiman, W. F.: Tectonic Forcing of Late Cenozoic Climate, Nature, 359, 117-122, 1992. 

Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., and Dilcher, D. L.: Correlations of climate and plant ecology to leaf size and 

shape: Potential proxies for the fossil record, Am. J. Bot., 92, 1141-1151, 2005. 

Saenger, C., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., and Holcomb, M.: Carbonate clumped isotope variability in shallow 35 
water corals: Temperature dependence and growth-related vital effects, Geochim. Cosmochim. Acta, 99, 224-242, 

https://doi.org/10.1016/j.gca.2012.09.035, 2012. 

Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic 

changes in the ocean during the last glacial, Colloques Internationaux du C.N.R.S, 219, 203-209, 1974. 

Shackleton, N. J.: The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, 40 
Science, 289, 1897-1902, 2000. 

Stoll, H. M., Müller, W., and Prieto, M.: I-STAL, a model for interpretation of Mg/Ca, Sr/Ca and Ba/Ca variations in speleothems and its 

forward and inverse application on seasonal to millennial scales, Geochemistry, Geophysics, Geosystems, 13, 10.1029/2012GC004183, 

2012. 

Su, Y.-S., and Yajima, M.: R2jags: Using R to Run 'JAGS'. R package version 0.5-7. https://CRAN.R-project.org/package=R2jags, 2015. 45 
Sweeney, J., Salter-Townshend, M., Edwards, T., Buck, C. E., and Parnell, A. C.: Statistical challenges in estimating past climate changes, 

Wiley Interdisciplinary Reviews: Computational Statistics, 10, e1437, 10.1002/wics.1437, 2018. 

Tingley, M. P., and Huybers, P.: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and 

applications to paleoclimate reconstruction problems, Journal of Climate, 23, 2759-2781, 2010. 

Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and Rajaratnam, B.: Piecing together the past: statistical insights into 50 
paleoclimatic reconstructions, Quaternary Science Reviews, 35, 1-22, https://doi.org/10.1016/j.quascirev.2012.01.012, 2012. 

Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An efficient forward model of the climate controls on 

interannual variation in tree-ring width, Climate Dynamics, 36, 2419-2439, 10.1007/s00382-010-0945-5, 2011. 

Tolwinski-Ward, S. E., Anchukaitis, K. J., and Evans, M. N.: Bayesian parameter estimation and interpretation for an intermediate model 

of tree-ring width, Clim. Past., 9, 1481-1493, 10.5194/cp-9-1481-2013, 2013. 55 
Wilkinson, B. H., and Algeo, T. J.: Sedimentary carbonate record of calcium-magnesium cycling, Amer. J. Sci., 289, 1158-1194, 1989. 

https://doi.org/10.1016/j.gca.2013.12.034
https://cran.r-project.org/package=rjags
https://www.r-project.org/
https://doi.org/10.1016/j.gca.2012.09.035
https://cran.r-project.org/package=R2jags
https://doi.org/10.1016/j.quascirev.2012.01.012


18 

 

Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, 

Science, 292, 686-693, 2001. 

Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J.: Extreme warming of 

mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data, Geology, 34, 737–

740, 10.1130/G22522.1, 2006. 5 

 

  



19 

 

 

Figure 1: Implementation of JPI for the coupled Mg/Ca and δ18O proxy systems. (a) Schematic. Grey-outlined boxes and text 

represent the three components of the Bayesian hierarchical model. Markov Chain Monte Carlo sampling is used to ‘explore’ the 

prior parameter space and develop a statistically representative posterior sample of the parameters and paleoenvironmental time 

series that are consistent with all paleo proxy and proxy calibration data (grey-filled boxes). (b) Example showing a subset from a 5 
single member of the site 690 posterior distribution. Error term values (ϵBWT) dictate the simulated paleoenvironmental time series 

trend (in this case BWT) modeled at a base frequency (white fill) and all proxy sample levels (grey fill). The environmental state and 

proxy model parameter values from the posterior sample are used to model the predicted proxy signal (here Mg/Caf; means as grey 

filled circles and probability density functions as curves). The likelihood of the posterior sample is evaluated based on the probability 

of the observed proxy data (here foraminiferal Mg/Ca, red circles) given the modeled values. 10 
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Figure 2: Reconstructed seawater Mg/Ca from 80 Ma to present. Black lines show individual draws from the posterior distribution 

for each time series; red lines show the median (solid) and 95% credible intervals (dotted). White-filled circles show individual proxy 

estimates (Dickson, 2002;Coggon et al., 2010;Lowenstein et al., 2001;Evans et al., 2018;Horita et al., 2002;de Villiers and Nelson, 

1999), black and grey symbols at the bottom of the panel show the distribution of the foraminiferal Mg/Ca proxy data and Paleogene 5 
proxy calibration data, respectively, in time. The blue line is the curve-fit estimate of seawater Mg/Ca of Lear et al. (2015). 
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Figure 3: Reconstructed bottom water temperature (a) and seawater δ18O values since 18 Ma (b). Lines as in Fig. 2. Circles show 

the distribution of foram Mg/Ca (a) and δ18O (b) data in time. Blue lines are the best estimate (solid) and uncertainty envelope 

(dashed) of the original Lear et al. (2015) interpretation of these data, using their linear “NS-LBB” calibration data set. Q = 

Quaternary. 5 
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Figure 4: Reconstructed bottom water temperature (a) and δ18O values (b) for sites 1123 (blue) and U1385 (red) based on 

simultaneous JPI of proxy data from both sites. Symbols as in Fig. 2. Solid red and blue lines show the interpretation of these records 

as by the original authors (Birner et al., 2016;Elderfield et al., 2012) recalculated using the foraminiferal Mg/Ca temperature 

sensitivity inferred here. Uncertainty estimates from the original authors (2σ) are shown as error bars. 5 
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Figure 5: Prior (black) and posterior (red) distributions for Oridorsalis umbonatus Mg/Ca (a-d) and Cibicidoides sp. δ18O (e-h) proxy 

model parameters (ref. equations 2 and 3, respectively) in the site 806 analysis. Solid and dashed lines in panel H show standard 

deviations of the calibration relationship prior to and following the 800 ka transition, respectively.  
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Figure 6: Bivariate density plots of the posterior distributions for Oridorsalis umbonatus Mg/Ca (a-c) and Cibicidoides sp. δ18O (d-f) 

proxy model parameters from the site 806 analysis. 
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Figure 7: Prior (black) and posterior (red) parameter distributions for bottom water temperature (BWT, solid) and seawater δ18O 

(δ18Osw, dashed) time series models. (a-c) Site 806. (d-f) Site U1385. (g-i) Site 1123. (a, d, and g) Error autocorrelation (models for 

both variable used the same prior in a given analysis, shown here in solid black), (b, e, and h) standard deviation of BWT error term, 

and (c, f, and i) standard deviation of δ18Osw error term. 5 
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Figure 8: Evaluating changes within and between environmental reconstructions using JPI output. (a) Site 806 bottom water 

temperature reconstruction from ~2 Ma to present, and probability of no significant change in temperature relative to modern. Grey 

and red lines show the BWT record. The blue solid line shows the JPI-estimated probability of no change relative to modern, 

calculated as the probability of a zero change value at each time step t given the posterior distribution BWT(t) – BWT(0) values. The 5 
blue dotted line shows an equivalent estimate based on comparisons across posterior samples, calculated as the probability of the 

modern median value given the posterior distribution of BWT values at time t. (b) Difference between site U1385 and 1123 seawater 

δ18O values within individual posterior samples (grey lines; red lines show mean and 95% credible intervals for the posterior), and 

probabilities of no significant difference between sites. Blue solid line shows the probability of a zero difference value given the 

posterior distribution of differences between the two sites within individual posterior samples. The blue dotted line shows an 10 
equivalent estimate based on differences between the two sites calculated from random samples of the single-site analyses. Blue 

dashed lines in both panels show 5% and 1% probability thresholds. See text for details. 
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Figure 9: Bivariate density plot of posterior values from the site 806 environmental time series models (base 50 kyr time steps only). 

All values are plotted as change relative to 18 Ma within an individual posterior sample. Dots show the median values from the 

posterior time series. 


