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Abstract. There remain substantial uncertainties in future projections of Arctic climate change. There is a potential to 

constrain these uncertainties using a combination of paleoclimate simulations and proxy data, but such a constraint must be 

accompanied by physical understanding on the connection between past and future simulations. Here, we examine the 10 

relevance of an Arctic warming mechanism in the MH to the future with emphasis on process understanding. We conducted 

a surface energy balance analysis on 10 atmosphere and ocean general circulation models under the MH and future RCP4.5-

scenario forcings. It is found that many of the dominant processes that amplify Arctic warming over the ocean from late 

autumn to early winter are common between the two periods, despite the difference in the source of the forcing (insolation vs. 

greenhouse gases). The positive albedo feedback in summer results in an increase in oceanic heat release in the colder season 15 

when the atmospheric stratification is strong, and an increased greenhouse effect from clouds helps amplify the warming 

during the season with small insolation. The seasonal progress was elucidated by the decomposition of the factors associated 

with sea surface temperature, ice concentration, and ice surface temperature changes. We also quantified the contribution of 

individual components to the inter-model variance in the surface temperature changes. The downward clear-sky longwave 

radiation is one of major contributors to the model spread throughout the year. Other controlling terms for the model spread 20 

vary with the season, but they are similar between the MH and the future in each season. This result suggests that the MH 

Arctic change may not be analogous to the future in some seasons when the temperature response differs, but it is still useful 

to constrain the model spread in the future Arctic projection. The cross-model correlation suggests that the feedbacks in 

preceding seasons should not be overlooked when determining constraints, particularly summer sea ice cover for the 

constraint of autumn-winter surface temperature response. 25 

1 Introduction 

The magnitude of climate change has been shown to be larger at high latitudes with paleoclimate evidence (Masson-

Delmotte et al. 2013; Masson-Delmotte et al. 2006) and climate model equilibrium simulations (Manabe and Wetherald 

1975; Stouffer and Manabe 1999). The Arctic is currently experiencing a more rapid warming than the rest of the world 

(Screen and Simmonds 2010; Serreze and Barry 2011), and this Arctic amplification is expected to continue at least until the 30 



 

2 
 

end of this century (Collins et al. 2013; Laîné et al. 2016). A much slower rate of warming occurs in the Southern Ocean 

primarily due to oceanic processes (Armour et al. 2016) although it is possible that stratospheric ozone change and cloud 

feedback play additional roles (Marshall et al. 2014; Yoshimori et al. 2017). A substantial part of the uncertainty in the 

future Arctic warming projections is attributed to the differences among numerical models (Hodson et al. 2013). In addition, 

the projected range of future Arctic warming within each RCP scenario is much larger than that for the global mean. For 5 

example, the 90% confidence interval for the annual mean surface air temperature (SAT) change from the late 20th century to 

the late 21st century for the Arctic mean (67.5−90°N) is estimated as 1.6−6.9 °C, while that for the global mean is 1.1−2.6 °C 

under the RCP4.5 scenario (Collins et al. 2013). 

It is often assumed that the study of paleoclimate, particularly of warm periods, is useful for understanding future climate 

change projections. It is, however, nontrivial to demonstrate the relation between these two different periods. Earlier studies 10 

discussed whether past climate can be used as an analogue for the future and refuted the use of past warm periods as an 

analogue (Crowley 1990; Mitchell 1990). A relatively large number of studies have been conducted on the link between the 

past, including the last glacial maximum (LGM), and the future in the context of climate sensitivity based on processes and 

statistical correlation (Crucifix 2006; Hargreaves and Annan 2009; Hargreaves et al. 2007; Hargreaves et al. 2012; 

Yoshimori et al. 2009; Yoshimori et al. 2011). More recently, broader applications of the relation between paleo and future 15 

climate were summarized by Schmidt et al. (2014) who demonstrated the potential to constrain uncertainties using both 

paleoclimate simulations and proxy data. Indeed, they found a weak statistical inter-model correlation between the sea ice 

changes in the mid-Holocene (MH) and in future projections (RCP8.5 scenario) relative to the modern period. Such an 

“emergent constraint” provides a powerful tool to directly reduce the range of uncertainty, provided that the necessary 

paleoenvironmental information is available. We note that Hargreaves and Annan (2009) also found statistically significant 20 

correlations between the mid to high northern latitude temperature for the MH and an elevated CO2 scenario (2×CO2). The 

mechanism behind these emergent relations, however, remains unclear. 

The purpose of the current study is to investigate commonalities and differences in the Arctic warming mechanisms in the 

past (MH) and future, and to discuss the relevance of Arctic warming in the MH for understanding future warming based on 

physical processes. We aim to obtain insight into the feasibility of constraining uncertainty in future climate change 25 

projections using paleoclimate data. It is not, however, the purpose of the current study to derive a specific emergent 

constraint. The MH was chosen because proxy records suggest this period had a warmer Arctic state relative to the pre-

industrial period, and multi-model simulation data are available from the Coupled Model Intercomparison Project (CMIP5) 

data archive (https://cmip.llnl.gov/cmip5/). 

The data, models, and experiments are briefly explained in the next section. Analysis methods for diagnosing factors 30 

contributing to the surface temperature change in each model and to the inter-model differences are described in Sect. 3. 

Results are presented in Sect. 4, followed by discussion and conclusion in Sects. 5 and 6, respectively. 
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2 Climate models, experiments, and proxy data 

The main analysis in the current study relies on the multi-model simulation data available from the CMIP5 data archive. 

The preindustrial control (c.a., 1850 C.E.), historical (c.a., 1850-2005 C.E.), and RCP4.5 scenario (2006-2100 C.E.) 

simulations were designed and coordinated by the CMIP5 project (Taylor et al. 2012). The MH simulation was designed and 

coordinated by the Paleoclimate Modelling Intercomparison Project (PMIP3) (Braconnot et al. 2012), and later endorsed and 5 

archived as part of CMIP5. The MH aims to simulate the climate of approximately 6000 years ago, and the PMIP3 forcing 

differs only in the earth’s orbital configuration (obliquity, seasonal timing of precession, and eccentricity, Table 1) compared 

to the preindustrial simulations. The difference between the MH and preindustrial (PI) simulations (hereafter, ∆MH) and the 

difference between the RCP4.5 and historical (HIST) simulations (hereafter, ∆RCP4.5) are compared throughout the paper. 

For the MH and PI simulations, we use monthly climatological data averaged over periods longer than a century, which were 10 

already available. The climatological data are constructed from monthly time series if these data are unavailable from the 

CMIP5 dataset (Table S1). The 20-year averages for 1980−1999 are used from the HIST simulations and those for 

2080−2099 are used from the RCP4.5 simulations, so that ∆RCP4.5 represents the climate change for the entire 21st century, 

as in Laîné et al. (2016). We use 10 models that produced data for all four experiments (Table 2), and we analyze one 

simulation run (r1i1p1) for each model and each experiment. Prior to the analysis, all model output data are interpolated onto 15 

the T42 Gaussian grid (nominally 2.8°×2.8°) as in Laîné et al. (2016). A common land mask is constructed in such a way 

that a grid point is judged as ocean if more than 50% of models (that have fractional land cover data) indicate the grid point 

as ocean. The same procedure is used for the ocean mask, and consequently a small number of grid points are classified as 

neither ocean nor land. 

The simulated ∆MH is compared with temperature reconstructions based on proxy data. Sundqvist et al. (2010) compiled 20 

such a dataset primarily based on pollen and chironomids records. The oxygen isotope ratio from ice cores and borehole 

temperature are also used for the Greenland temperature. Another dataset is compiled by Bartlein et al. (2011) based on 

pollen records. We use the extended dataset of Bartlein et al. (2011) for the annual mean, which includes additional data 

from Schmittner et al. (2011) and Shakun et al. (2012) as in Harrison et al. (2014) and is available from the PMIP3 web site 

(https://pmip3.lsce.ipsl.fr/). The model ensemble mean data are further interpolated onto 2°×2° grids for comparison with 25 

Bartlein et al. (2011). 

3 Analysis method 

3.1 Surface energy balance and partial temperature changes 

Processes contributing to the surface temperature difference between two experiments are evaluated based on the surface 

energy balance equation. The basic formulation follows Lu and Cai (2010). The surface energy balance equation for a 30 

reference climate is given by 
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(1 − 𝛼)𝑆 + 𝐹 − 𝑅 −𝐻 − 𝐿 − 𝑄 = 0        (1) 

where 𝑆 = 𝑆012 + 𝑆013 and 𝐹 = 𝐹012 + 𝐹013 are the downward shortwave (SW) and longwave (LW) radiation at the surface, 

respectively, with the superscripts, “clr” and “cld”, denoting the clear-sky and cloud (total-sky – clear-sky) radiative effects, 

respectively. The upward LW radiation is given by the Stefan-Boltzmann law, 𝑅 = 𝜎𝑇67, where 𝜎 is the Stefan-Boltzmann 

constant and 𝑇6 is the surface temperature. The surface emissivity is assumed to be one. 𝐻 and 𝐿 are the net upward sensible 5 

and latent heat fluxes, respectively, and 𝑄  represents the net downward surface energy flux including the latent heat 

consumed by snow/ice melting. In the ocean, 𝑄 is stored locally or transported. For the difference (∆) between the two 

experiments, Eq. (1) becomes 

4𝜎𝑇69∆𝑇6 = :−∆𝛼𝑆 − ∆𝛼∆𝑆 + (1 − 𝛼)∆𝑆
012 + (1 − 𝛼)∆𝑆013

+∆𝐹012 + ∆𝐹013 − ∆𝐻 − ∆𝐿 − ∆𝑄 ; ≡ ∑ ∆𝑅>>     (2) 

where ∆𝑅> represents the individual energy terms. 10 

The Stefan-Boltzmann law implies that a larger surface warming (∆𝑇6) is required to balance the same amount of energy 

flux anomaly (∆𝑅) by emitting LW radiation at a colder background temperature (𝑇6). Laîné et al. (2016) called this effect 

the “surface warming sensitivity”, whose importance for the Arctic amplification has been pointed out in multiple studies 

(Laîné et al. 2016; Laîné et al. 2009; Ohmura 1984, 2012; Pithan and Mauritsen 2014). The warming sensitivity and other 

energy flux terms may be converted to the same temperature scale (partial surface temperature changes) by 15 

∆𝑇6 = ?@AB
@C
DEEEEEE∑ ∆𝑅>′> + ?@AB

@C
D
G
∑ ∆𝑅HEEEEE> + ?@AB

@C
D
G
∑ ∆𝑅>′>         (3) 

where overbars and dashes represent the global mean and deviations from the global mean (local anomaly), respectively, and 
@AB
@C
= I

7JABK
           (4) 

Equation (3) enables the quantification of the effect of a colder winter Arctic requiring more warming to balance the 

anomalous surface energy flux on the same partial temperature change scale as other components. The left side of Eq. (3) is 20 

the simulated surface temperature change. The first, second, and third terms on the right side of Eq. (3) represent local 

feedbacks evaluated with the global mean warming sensitivity, global mean feedbacks with the local warming sensitivity, 

and local feedbacks with the local warming sensitivity, respectively. Note that previous studies used the tropical mean in 

place of the global mean (Laîné et al. 2016; Pithan and Mauritsen 2014). In Sects. 4.3 and 4.5, each component of the first 

term is evaluated separately, and the second and third terms are evaluated collectively as the “S-B” effect and “synergy” 25 

effect, respectively (Table 3). Accordingly, the surface temperature change formulated by Eqs. (2) and (3) can be written in a 

more explicit form as 

∆𝑇6 = ?@AB
@C
DEEEEEE L−(∆𝛼𝑆)′ − (∆𝛼∆𝑆)′ +

[(1 − 𝛼)∆𝑆012]′ + [(1 − 𝛼)∆𝑆013]′
+(∆𝐹012)′ + (∆𝐹013)′ − (∆𝐻)′ − (∆𝐿)′ − (∆𝑄)′

O + ?@AB
@C
D
G
∑ ∆𝑅HEEEEE> + ?@AB

@C
D
G
∑ ∆𝑅>′>   

≡ (alb) + (alb*clr_sw) + (clr_sw) + (cld_sw) + (clr_lw) + (cld_lw) + (sens) + (evap) + (surface)  

            +(S-B) + (synergy)         (5) 30 
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Here 𝛼 is computed from the ratio of upward to downward SW radiations at the surface; 𝑆, 𝐹, 𝐻, and 𝐿 are taken directly 

from the model output; and 𝑄 is computed as a residual of surface heat fluxes (net radiation, sensible heat, and latent heat 

fluxes). ∑ ∆𝑅>>  is computed by summing changes in all surface energy flux terms after either averaged globally for overbars 

or the global average is subtracted for dashes. We use the average of 𝑇6 from the paired experiments (PI and MH, or HIST 

and RCP4.5) to calculate ∂𝑅/ ∂𝑇6. Although using the average of two experiments or a single experiment for this term has 5 

little impact on the results of the current study, we found that the average provided better agreement between the two sides of 

Eq. (5) for larger perturbations such as a quadrupling of the CO2 experiment. The diagnosis is made for each grid point and 

each month. All models are used in this analysis. We note that direct comparisons between different forcing simulations are 

possible as there is no change in the land-sea mask among the simulations. 

3.2 Interpretation of surface temperature change at partially ice-covered ocean grid points 10 

The surface temperature archived in the CMIP5 dataset represents the grid-mean “skin” temperature. At the fractionally 

ice-covered ocean grid points, this variable is a mixture of the sea surface temperature (SST) and ice surface temperature. 

We assume that the surface temperature 𝑇6 at each grid point is reconstructed by 

𝑇6 = (1 − 𝐴)𝑇h + 𝐴𝑇i          (6) 

where 𝑇h  and 𝑇i  are the SST and ice surface temperature, respectively, and 𝐴  is the ice concentration. The factors 15 

contributing to the surface temperature difference for the paired experiments are then diagnosed by 

∆𝑇6 = (1 − 𝐴)∆𝑇h + 𝐴∆𝑇i + (𝑇i − 𝑇h)∆𝐴.        (7) 

The first and second terms on the right side represent the effect of SST and ice surface temperature changes, respectively. 

The last term on the right side represents the effect of the ice concentration change, which is weighted by the surface 

temperature difference between ice and water: the reduction of sea ice cover (∆𝐴<0) and the exposure of the warmer ocean 20 

surface to the atmosphere (𝑇i − 𝑇h < 0) lead to an increase in the grid-mean surface temperature (∆𝑇6). In the current 

analysis, 𝑇h, 𝑇i, and 𝐴 are obtained from the average of paired experiments. We use 𝑇h in place of 𝑇i for ice-free ocean grids. 

Only five models (bcc-csm-1, CCSM4, CNRM-CM5, IPSL-CM5A-LR, and MRI-CGCM3) are used for this analysis due to 

the availability of the required variables, and the consistency of the analysis is verified by agreement between the left and 

right sides of Eq. (7). The diagnosis is made for each grid point and each month. 25 

3.3 Factors responsible for the model spread 

The fractional contribution of individual partial surface temperature changes (or feedbacks in other words) to the inter-

model spread of the simulated surface temperature change is given by 

𝑉> = ∑ l∆Am,op∆AEEEEmq(∆Aop∆AEEEE)

Jr(spI)
s
tuI × 100 [%]        (8) 

where 𝑉> is the fractional contribution and ∆𝑇 is the surface temperature change (the subscript “s” in ∆𝑇6 is omitted here). 30 

The subscripts 𝑗 and 𝑘 denote indices for feedbacks (𝑗th feedback) and models (𝑘th model out of 𝑛 models), respectively. 
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The overbars denote the average over the feedbacks (∆𝑇EEEE>), or over both the feedbacks and models (∆𝑇EEEE). 𝜎 is the inter-model 

standard deviation of the total surface temperature change. The numerator represents the product of the model spread for 

each feedback and the model spread for the total feedback, while the denominator represents the ensemble variance of the 

total feedback. Here, the key points are: 1) 𝑉> accounts for 100% of the surface temperature change when summed over the 

feedbacks; 2) positive 𝑉> means that the 𝑗th feedback amplifies the model spread, while negative 𝑉> means that it suppresses 5 

the model spread. We note that the same formula was used in Yoshimori et al. (2011) and the references therein. The 

statistical significance of the fractional contribution is tested using the Monte Carlo method by randomly shuffling the model 

index (𝑘) 105 times. The null hypothesis is that the 𝑉> neither amplify nor suppress the model spread. When the original 𝑉> is 

outside the range of the 5−95th percentile of 𝑉> resulting from the shuffling, it is considered significant. The diagnosis is 

made separately for ocean and land averages in the Arctic region (north of 60°N). All models are used for this analysis. 10 

4 Results 

4.1 Simulated surface air temperature response 

Figure 1 shows the ensemble mean of the annual mean SAT response for ∆MH and ∆RCP4.5. In both cases, the warming 

in the polar regions is larger than for the rest of the world, particularly in the Arctic. The Arctic mean response is 0.4 °C and 

3.9 °C for ∆MH and ∆RCP4.5, respectively, whereas the global mean response is −0.2 °C and 1.9 °C for ∆MH and ∆RCP4.5, 15 

respectively (see Table 2 for individual models). This feature reflects the so-called Arctic warming amplification in ∆RCP4.5. 

The warming at high latitudes and cooling at low latitudes in ∆MH are consistent with the annual mean insolation anomaly 

caused by the obliquity difference. From this figure it is unclear whether the Arctic warming in ∆MH is due to forcing and/or 

feedbacks. 

Figures 2a and 2b show the seasonal progress of the effective radiative forcing (ERF) for ∆MH and ∆RCP4.5, respectively. 20 

The ERF is the top-of-the-atmosphere (TOA) radiation change induced by the forcing constituents and is computed here 

using the atmospheric GCM (MIROC4m) of Yoshimori et al. (2018), with prescribed climatological SST and sea ice 

distribution. The ERF for ∆MH was computed by applying the PI and MH insolation to the AGCM separately with other 

boundary conditions held fixed. The TOA net radiation in the MH was averaged for 20 years after a 10-year spin-up and the 

difference from the PI was taken as ∆MH ERF. The ERF for ∆RCP4.5 was drawn using the data from Yoshimori et al. 25 

(2018) in which the time-varying historical and RCP4.5 forcing were applied continuously to the AGCM with other 

boundary conditions held fixed. The 3-ensemble-member mean of the differences between the 2080–2099 and 1980-1999 

averages was taken as ∆RCP4.5 ERF. While this so-called Hansen-style method (Flato et al. 2013; Hansen et al. 2005) is one 

of the standard procedures for calculating future scenario forcing, e.g., ∆RCP4.5, it is uncommon in paleoclimate 

applications. With this method, the ERF includes both rapid stratospheric and tropospheric adjustments as well as the land 30 

surface response to the instantaneous radiative forcing. Although the land surface response should not be considered as a 
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forcing, we present the ERF to facilitate a consistent comparison between different perturbation experiments. As a 

supplementary reference, another measure of radiative forcing evaluated by ∆𝑆l1 − 𝛼zq is presented for ∆MH in Fig. S1. 

Here, ∆𝑆 is the insolation anomaly and 𝛼z is the pre-industrial planetary albedo. The ∆MH forcing patterns in both Fig. 2a 

and Fig. S1 are qualitatively similar to the familiar insolation anomaly ∆𝑆 (e.g., Hewitt and Mitchell 1996; Ohgaito and Abe-

Ouchi 2007): an increase and a decrease in summer and autumn, respectively, in the Northern Hemisphere, and an increase 5 

and a decrease in spring and summer, respectively, in the Southern Hemisphere. For the Arctic average (> 60 °N), the peak 

positive ERF of about 19.9 W m-2 occurs in July and the peak negative ERF of about −4.8 W m-2 occurs in September. The 

∆RCP4.5 ERF is, in contrast, spatially and seasonally more homogeneous with an annual mean of about 3.0 W m−2 for the 

Arctic region. Figures 2c and 2d show the ensemble mean of the seasonal progress of SAT changes for ∆MH and ∆RCP4.5, 

respectively. A common and striking feature is that the maximum Arctic warming occurs in autumn (though the magnitude 10 

differs substantially) when the ERF is negative or weakly positive. This result suggests that feedbacks play an important role 

in shaping the seasonality of the Arctic warming for both ∆MH and ∆RCP4.5. This interpretation is in line with Zhang et al. 

(2010) for ∆MH and Laîné et al. (2016) for ∆RCP4.5. 

Figure 3 shows SAT changes over the land and ocean for individual models. The seasonality of the SAT change over land 

is distinct between ∆MH and ∆RCP4.5, but there are some similarities over the ocean: the warming is modest in summer and 15 

largest in autumn. Significantly, the model spread over the ocean is also larger in autumn than in summer. The maximum 

land warming in summer for ∆MH corresponds to the maximum local insolation anomaly, and it thus may appear that the 

SAT warming over land is not related to the SAT warming over the ocean. However, there are strong cross-model 

correlations at the 5% statistical significance level (Student’s two-tailed t-test) between the Arctic land and ocean for the 

October-November-December (OND) mean as well as for the annual mean (0.95 for OND and 0.94 for the annual mean). 20 

The statistically significant cross-model correlations at the 5% level also exist for ∆RCP4.5 (0.92 for OND and 0.89 for the 

annual mean). In addition, the inter-model variance of the Arctic-mean SAT anomaly is larger over the ocean than over land. 

Although the available surface temperature proxy data for the mid-Holocene Arctic are more abundant on land than over the 

ocean (Bartlein et al. 2011; Sundqvist et al. 2010), it is useful to focus our analysis on the oceanic region, which has a larger 

response, and to explore which processes are responsible for the model difference there. We note that there is no statistically 25 

significant correlation at the 5% significance level between ∆MH and ∆RCP4.5 for either the OND or annual means (for 

both the Arctic ocean and land). 

4.2 Comparison with proxy data 

Figure 4 shows the ensemble mean of the simulated ∆MH annual mean, July, and January SAT anomalies superimposed 

with the reconstructed SAT anomaly at proxy sites taken from Sundqvist et al. (2010). We note that a detailed comparison 30 

with earlier PMIP1 and PMIP2 simulations was given by Zhang et al. (2010). There is substantial disagreement between the 

model and the reconstruction: the warming indicated by the reconstruction is not captured by the model mean in January as 
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well as in the annual mean. The discrepancies are on the order of a few degrees. Although better agreement is seen in July, 

the simulated warming is overestimated at some North American sites. O'Ishi and Abe-Ouchi (2011) reported that the model-

data discrepancy improved substantially when the interaction between the MH climate change and vegetation distribution 

change is included in one model although the improvement is somewhat limited in other models (Zhang et al. 2010). 

Unfortunately, none of the models analyzed in the current study include this dynamic vegetation feedback. Comparisons of 5 

the model ensemble mean with Bartlein et al. (2011) for the ∆MH annual mean, warmest month, and coldest month are 

shown in Fig. S2. We note that a more comprehensive comparison with PMIP2 and PMIP3 simulations was presented in 

Harrison et al. (2014). Again, the model-data discrepancy is large although the qualitative tendencies of the warming in parts 

of Scandinavia appear in both. While these limitations need to be kept in mind, they do not reduce the significance of the 

following results on the understanding of the Arctic warming process. As stated in the introduction, it is not the purpose here 10 

to derive a specific emergent constraint using these proxy data, as such a study requires a rigorous statistical approach in 

parallel to the mechanism understanding and appropriate proxy searches, and is beyond the scope of this article. 

4.3 Partial temperature changes 

Figure 5 shows the contribution of individual energy flux components to the surface temperature change (partial 𝑇6 

changes) in the Arctic ocean diagnosed by the feedback analysis described in Sect. 3.1. As expected, the simulated 𝑇6 15 

changes (black polygonal solid lines) are reproduced by the sum of the individual contributions (blue polygonal dashed 

lines), indicating that the decomposition is useful. 

In spring (March-April-May), the total surface temperature change is negative for the case of ∆MH, whereas it is positive 

for ∆RCP4.5. Therefore, there is no analogy in the response between the two cases. While the synergy effect of local Arctic 

feedbacks and local warming sensitivity (synergy) slightly contributes to the warming in both cases, the contributions from 20 

the downward clear-sky LW radiation components (clr_lw) have opposite signs between the two cases. The albedo feedback 

(alb) exhibits a relatively large warming effect for ∆RCP4.5, accompanied by cooling due to the surface effect in late spring 

(net surface heat flux component, or equivalently ocean heat storage and dynamics components). On the other hand, the 

surface effect is positive for ∆MH, and is accompanied by anomalous turbulent heat fluxes from the ocean to the atmosphere 

(evap and sens). 25 

In summer (June-July-August), the total surface temperature change is positive but small for both ∆MH and ∆RCP4.5. 

The albedo feedback is distinctly positive for both cases. An even larger clear-sky SW radiation component (clr_sw) 

contributes to the additional warming for the case of ∆MH, which is largely driven by the astronomical forcing but it plays 

little role in ∆RCP4.5. The increased SW radiation reaching the sea surface through the albedo feedback and/or increased 

seasonal insolation is counteracted by the increased net surface heat flux component, implying that the extra energy is likely 30 

stored in the form of ocean heat content. The net result is a small surface warming in summer. It is a common feature of both 

∆MH and ∆RCP4.5 that the SW cloud radiative effect (cld_sw) weakens warming by the albedo feedback. This cancelling 



 

9 
 

role of clouds in the warm season is consistent with previous studies using future climate projections (Crook et al. 2011; 

Laîné et al. 2016; Lu and Cai 2009). In both cases, the downward clear-sky LW radiation component plays a substantial role 

in warming the surface (except for ∆MH in June). 

From September to January, the total surface temperature change is larger than in other seasons for both ∆MH and 

∆RCP4.5. From September to November, the clear-sky SW radiation component associated with the astronomical forcing 5 

contributes to the surface cooling for ∆MH, which is absent for ∆RCP4.5. From October to January for both ∆MH and 

∆RCP4.5, the positive surface effect is counteracted by the negative surface turbulent flux components, indicating that the 

heat is released from the ocean to the atmosphere in the form of latent and sensible heat fluxes. It is, however, unclear how 

the heat release to the atmosphere leads to the surface warming (or, more precisely, grid-mean skin temperature rise). This 

point is discussed in the next subsection in detail. It is a common feature of both ∆MH and ∆RCP4.5 that the LW cloud 10 

radiative effect (cld_lw) helps warming by the surface effect. This amplifying role of clouds in the cold season is consistent 

with previous studies using future climate projections (Laîné et al. 2016; Yoshimori et al. 2014). The general increase of 

cloud cover in autumn to winter for both ∆MH and ∆RCP4.5 is consistent with the enhanced greenhouse effect of clouds 

(Figs. 6a and 6c). 

Throughout the year, the downward clear-sky LW radiation component exhibits a large contribution and follows the shape 15 

of the seasonal progress of the total response for ∆RCP4.5. This component is, however, not large in winter (and June) for 

∆MH. This term includes the effect of air temperature and specific humidity changes (and also the radiative forcing of 

greenhouse gases for the case of ∆RCP4.5), and is qualitatively consistent with changes in both variables (Figs. 7a and 7c, 

and Figs. 8a and 8c). Obtaining a clear physical interpretation of its role in the surface temperature change is difficult 

because the primary component of clear-sky LW radiation is emitted from the atmospheric layer near the surface (Ohmura 20 

2001) where the temperature is tightly coupled with the surface, thus obscuring the causality. Nevertheless, the importance 

of this component has been reported in previous studies (Pithan and Mauritsen 2014; Sejas and Cai 2016). The positive local 

feedbacks in the cold season with a larger local warming sensitivity make the synergy term an important contributor to the 

total response for both ∆MH and ∆RCP4.5, as found by Laîné et al. (2016) in future climate projections. For completeness, 

the same analysis for the land surface temperature is shown in Fig. S3. 25 

4.4 Interpretation of surface temperature change in partially ice-covered ocean grids 

Figure 9 shows the surface temperature change (left side of Eq. (7), ∆𝑇6) and the individual contributions of surface 

conditions (the individual terms on the right side of Eq. (7)). The surface air temperature change (∆𝑇{) is also plotted for 

reference. The seasonal progress of ∆𝑇{ closely follows that of ∆𝑇6, suggesting the importance of understanding the grid-

mean surface temperature change. The surface and surface air temperature changes have maximum values of 3.3 and 2.9 °C, 30 

respectively, in October for ∆MH. They have maximum values of 10.2 and 9.3 °C in November for ∆RCP4.5. The figure 

indicates that the large increase in grid-mean surface temperature during winter is largely due to the ice surface temperature 
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increase when the SST anomaly decreases seasonally through oceanic heat release after its peak value (Figs. 10a and 10c). 

The contribution from ice temperature change has a maximum value of 2.2 °C in October for ∆MH and 6.8 °C in November 

for ∆RCP4.5. The contribution from SST change has a maximum value of 0.7 °C for ∆MH and 2.0 °C for ∆ RCP4.5, both in 

August. The magnitude of the SST anomaly effect on the grid-mean surface temperature change is small as the SST change 

itself is small because SST is fixed at the melting point where sea ice is present and due to the large heat capacity of sea 5 

water. The reduction of sea ice cover makes an important contribution to the grid-mean surface temperature increase during 

autumn. Its peak contribution does not, however, coincide with the timing of the maximum ice concentration anomaly (∆𝐴, 

Figs. 11a and 11c) as the effect is weighted by the surface temperature difference between the sea ice and ocean (𝑇i − 𝑇h). 

The interpretation of the results of the feedback analysis in the previous section is that the oceanic heat release in the cold 

season represented by the positive net surface heat flux term in Fig. 5 contributes to the surface air temperature rise and 10 

subsequent ice (and grid-mean) surface temperature rise. This diagnosis is simple but reveals a chain of processes whose 

temporal links are less clear from the conventional analysis on surface energy balance alone. 

4.5 Factors for the inter-model difference in surface temperature changes 

Figure 12 shows the fractional contribution of the partial surface temperature changes to the model spread in the total 

surface temperature changes. The average is taken for the Arctic ocean areas, and positive or negative values indicate factors 15 

increasing or reducing the model differences, respectively. In the following, individual components whose contributions are 

either small or inconsistent between the ∆MH and ∆RCP4.5 cases are not discussed, after considering the statistical 

significance. 

In spring (Fig. 12a), large contributions to the model spread are made by the albedo feedback (alb) and the downward 

clear-sky LW radiation component (clr_lw) for both ∆MH and ∆RCP4.5. Each of these factors contributes to more than 50% 20 

of the model spread. LW cloud feedback (cld_lw) and the synergy effect of local Arctic feedbacks and local surface warming 

sensitivity (synergy) also contribute to the model spread, but to a lesser degree. In contrast, the turbulent heat flux 

components (evap and sens) as well as the cloud SW radiation component (cld_sw) tend to suppress the model spread. 

In summer (Fig. 12b), the albedo feedback (alb) exhibits by far the largest (more than 170%) contribution to the model 

spread for both ∆MH and ∆RCP4.5. Note that the vertical scale in Fig. 12b is enlarged three-fold compared to other plots. As 25 

in spring, the downward clear-sky LW radiation component also contributes to more than 50% of the model spread. The 

surface effect (net surface heat flux component, or equivalently ocean heat storage and dynamics components) substantially 

suppresses the model spread for ∆MH, but it is insignificant for ∆RCP4.5. 

In autumn and winter (Figs. 12c and 12d), the downward clear-sky LW radiation component, LW cloud feedback, and 

surface effect contribute to the model spread, whereas the turbulent heat flux components tend to suppress it for both ∆MH 30 

and ∆RCP4.5. As the oceanic heat content is reduced in these seasons through latent and sensible heat fluxes, it is 

understandable that these two terms have opposite sign to the surface effect, similar to how the albedo feedback and surface 

effect have opposite signs in summer. The surface effect contributes to more than 40% of the model spread in autumn and 
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more than 50% in winter for both ∆MH and ∆RCP4.5. In contrast to spring and summer, the contribution by the albedo 

feedback is small in autumn and winter. 

The downward clear-sky LW radiation consistently exhibits a large positive contribution (more than 50%) in all seasons 

for both ∆MH and ∆RCP4.5. The clear-sky LW radiation is often dominant for ∆MH and ∆RCP4.5 even in spring when the 

ensemble mean shows surface cooling in ∆MH and warming in ∆RCP4.5. It is also one of major contributors to the model 5 

spread even in winter when there is little contribution from the clear-sky LW radiation to the ensemble mean response of 

∆MH. The large contribution of this term to the model spread is somewhat expected because this radiative flux largely 

reflects the surface air temperature, which is thermally coupled with the surface temperature as shown in the previous section. 

This term, however, also includes the effect of water vapor and lapse-rate changes, whose quantitative contributions are not 

evaluated separately here. The model variances of the air temperature change are concentrated near the surface in non-10 

summer season (Figs. 7b and 7d), and those of the specific humidity change are large in non-spring season (Figs. 8b and 8d). 

The relative contribution of air temperature and water vapor to the clear-sky LW radiation may thus vary with the season. 

It is also important to point out that the LW cloud feedback contributes positively to the model spread in almost all 

seasons for both ∆MH and ∆RCP4.5. While the inter-model variability in cloud cover peaks in summer for ∆MH and late 

autumn for ∆RCP4.5 (Figs. 6b and 6d), the result suggests that the correct representation of LW cloud feedback is important 15 

throughout the year. It is important to recognize that the cloud response is not, however, independent of other feedbacks such 

as sea ice cover, water vapor, lapse rate, large-scale condensation, and convection (cf. Abe et al. 2016; Yoshimori et al. 

2017). It is also important to notice that the synergy term contributes positively to the model spread. As the surface warming 

sensitivity depends on the background temperature, this result may suggest that the differences in the reference surface 

temperature, i.e., model bias, has the potential to reduce the simulated model spread. Taken together, attention needs to be 20 

paid to the models’ representation of surface albedo, turbulent heat fluxes (and thus the atmospheric stratification including 

inversion), clouds, and temperature bias to reduce the differences in the models’ response. 

These results suggest that the processes responsible for the model spread may depend on the season. While the albedo 

feedback shows only a small contribution to the autumn-winter model spread, this result does not mean that the summer 

albedo feedback is irrelevant to the model spread in autumn-winter, however. As the reduction of sea ice cover is considered 25 

to enhance the oceanic heat uptake through the enhanced albedo feedback, and the reduction of sea ice cover is also 

considered to enhance the oceanic heat release through the reduced thermal insulating effect, a chain of processes is expected. 

The model variances of the sea ice concentration change are large from late summer to early autumn with peaks in 

September-October for both ∆MH and ∆RCP4.5 (Figs. 11b and 11d), and the model variances of the ocean heat content 

change are also large in late summer to early autumn, although the peaks occur slightly earlier (Figs. 10b and 10d). These 30 

results are not sufficient to prove the existence of inter-seasonal linkage, but they are consistent with its existence. We 

calculate cross-model correlations between the summer albedo feedback and October-November-December (OND) 

feedbacks. The correlations of the summer albedo feedback are 0.72 (∆MH) and 0.60 (∆RCP4.5) with the OND surface 

effect, 0.66 (∆MH) and 0.69 (∆RCP4.5) with the OND LW cloud feedback, and 0.85 (∆MH) and 0.87 (∆RCP4.5) with the 
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OND surface temperature response (i.e., sum of all feedbacks). These values are statistically significant at the 5% level 

according to a Student’s two-tailed t-test. The significant correlations with the surface effect and with the cloud greenhouse 

effect are consistent with the chain of processes discussed in Sect. 4.4 and in previous studies (e.g., Abe et al. 2016). 

Therefore, the model spread in the OND surface temperature response is closely related to the summer sea ice distribution, 

indicating that feedbacks in preceding seasons should not be overlooked. The recent sensitivity experiment with a single 5 

model by Park et al. (2018) demonstrates the dominant influence of sea ice albedo feedback on the MH Arctic winter and 

annual mean warmings. For completeness, the same analysis for the land surface temperature is shown in Fig. S4. 

5 Discussions 

While the ensemble mean surface temperature response over the Arctic ocean shows a consistent warming trend from 

summer to autumn for both ∆MH and ∆RCP4.5, the temperature anomaly in spring is neutral or negative for ∆MH and 10 

positive for ∆RCP4.5. Although the source of the peak negative anomaly occurring in April for ∆MH is unclear without 

dedicated numerical experiments, the zonal mean patterns of ERF and surface air temperature change in Fig. 2 suggest that it 

may originate from a negative insolation anomaly at lower latitudes. This interpretation is consistent with the downward 

clear-sky LW radiation contributing to the surface cooling. In addition, the peak mid-tropospheric cooling in spring and 

warming in summer for ∆MH in Fig. 7a are suggestive of remote influence through atmospheric heat transport. The 15 

significant remote influence on the Arctic temperature change has been suggested by previous studies in the context of future 

climate change (Stuecker et al. 2018; Yoshimori et al. 2017). The opposite signs in the total surface temperature change and 

also in the partial temperature change by downward clear-sky LW radiation between ∆MH and ∆RCP4.5 do not suggest a 

strong similarity between MH and future Arctic response in spring. While the ensemble mean surface temperature response 

over the Arctic ocean shows relatively small warming in summer for both ∆MH and ∆RCP4.5, they are the downward clear-20 

sky SW radiation for ∆MH and albedo feedback for ∆RCP4.5 that dominate in the partial temperature changes. Nevertheless, 

the increased absorption of SW radiation by the ocean and increased reflection of SW radiation by clouds occur for both 

∆MH and ∆RCP4.5, suggesting that the relevant processes are controlling the Arctic response in summer. The positive 

partial temperature changes by the surface effect, cloud greenhouse effect, and synergy effect are common in ∆MH and 

∆RCP4.5 in autumn. Together with the concurrent largest warming, it is suggested that the MH Arctic warming in this 25 

season is strongly relevant to the future Arctic warming. While the contribution from downward clear-sky LW radiation to 

the partial temperature change is large throughout the year for ∆RCP4.5, it plays a role only in some months for ∆MH. As 

the near-surface air temperature is thermally coupled to the surface temperature as shown in Fig. 9, it was thought that the 

partial temperature change by downward LW radiation behaves similarly to the total surface temperature change. In the 

∆MH, however, the contribution by this component is small in winter. As this term consists of vertically uniform 30 

temperature change, lapse rate change, and water vapor change, the different behavior does not immediately mean that the 

mean tropospheric temperature response is decoupled from the surface. Nevertheless, it is possible that the different behavior 
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is caused by the remote influence from lower latitudes where insolation is reduced for ∆MH. In any case, this difference may 

weaken the similarity in the surface temperature response between ∆MH and ∆RCP4.5. 

As expected from the magnitude of the influence, the processes found to be important for the warming trend from summer 

to autumn in ∆MH and ∆RCP4.5 are also primarily responsible for the model spread in these seasons. What is interesting is 

that the processes contributing to the model spread in other seasons are relatively similar between ∆MH and ∆RCP4.5 even 5 

when the ensemble mean surface temperature response is very different. The most notable example is spring when cooling 

occurs in ∆MH and warming occurs in ∆RCP4.5. Such a discordance can occur because the feedback with the largest 

magnitude is not necessarily the feedback with the most uncertainty. In the global mean radiative feedback analogy, for 

example, Planck and water vapor feedbacks have large magnitude but the response to the smaller SW cloud feedback is 

thought to contain the most uncertainty. In spring, the albedo feedback and downward clear-sky LW radiation are the major 10 

contributors to the model spread. As discussed in the above, the temperature response in ∆MH is not highly similar to the 

future Arctic response in this season. Nevertheless, the model spread occurs through similar feedback processes. This result 

suggests that if the models are constrained by ∆MH proxy reconstruction in this season, there is a potential that the constraint 

may affect the future Arctic projection in the same season even though the response is not alike. In this sense, ∆MH Arctic 

change is useful for constraining future Arctic projection in all seasons. However, the confirmation of this statement requires 15 

a rigorous statistical analysis. 

In the current analysis, the target variable of interest is surface temperature change, and an emphasis was made on 

atmospheric feedbacks. Previous studies reported that many important feedbacks also reside in the interaction of sea ice and 

ocean (Goosse et al. 2018). For example, sea ice grows faster when it is thin and this feedback works to counter warming. 

While sea ice related terms such as albedo feedback (a function of ice cover among others) and heat release from the ocean 20 

(a function of ice thickness among others) are diagnosed, the ice thickness feedback itself was not quantified in the current 

study. Such a diagnosis would require an energy budget analysis for sea ice and probably for the mixed-layer ocean as well, 

and it is worth further investigation in the future. 

Recently, Hu et al. (2017) argued that “the global warming projection spread...is inherited from the diversity in the control 

climate state.” They also pointed out a possibility that the diversity of feedbacks can arise from the same control climate 25 

state which may be constructed from the compensation of different processes. We add to these points that there may be a 

systematic bias or uncertainty due to common, missing feedbacks in many climate models that do not appear as the model 

spread. The paleoclimate has the potential to provide a constraint for the future projections in the second and third cases, 

beyond the emergent constraint. Related to this discussion, there remains an outstanding issue to be explored. O'Ishi and 

Abe-Ouchi (2011) showed that the vegetation change in response to climate change in both the mid-Holocene and elevated 30 

CO2 experiments amplifies the Arctic warming. In particular, the expansion of boreal forest in place of tundra lowers the 

surface albedo through earlier snow melting and leads to the amplification of continental warming in spring and subsequent 

maritime warming in winter. None of the models analyzed in the current study include the effect of climate-vegetation 
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interaction. Therefore, the conclusion of the current study needs to be verified by models with a dynamic vegetation 

component. 

The current study focuses on the mid-Holocene partly because multi-model simulations for this period are easily 

accessible through the CMIP5 data archive, and the compiled reconstruction dataset is also available. There are, however, 

other periods that appear to exhibit larger Arctic warming such as the last interglacial (MIS5e), MIS11, and mid-Pliocene 5 

(Berger et al. 2016; Dutton et al. 2015; Lunt et al. 2013). These warm periods surely would be useful for expanding the 

analysis conducted in this study. While the energy balance feedback analysis has been applied to the MH, LGM, and mid-

Pliocene (Braconnot and Kageyama 2015; Hill et al. 2014), which are very useful for understanding past climate change, a 

study focusing on the relevance to the future is encouraged. It should be straightforward to expand the current study to other 

periods once the multi-model simulations are easily accessible. In addition, the current analysis does not separate the 10 

downward LW radiation in the Arctic region into local and remote origins, and thus provides only a local feedback 

perspective. As the change in orbital configurations redistributes the insolation latitudinally, a significant change in the 

meridional heat transport is expected. The change in the meridional heat transport by both the atmosphere and ocean in 

response to the wider variety of orbital configurations is worth further investigation in the future. Furthermore, expanding 

the current study to cases with more general astronomical forcing (e.g., only considering the effect of the obliquity change or 15 

precession change), and to consider the implications for the mechanism for glacial-interglacial cycles (e.g., Abe-Ouchi et al. 

2013) may also be valuable. 

6 Conclusions 

The relevance of Arctic warming mechanisms in the MH to the future under the RCP4.5 scenario was investigated. The 

emphasis was placed on the surface temperature change over the ocean where peak warming occurs nearly in the same 20 

season for both periods and the model spread is large. Although the insolation in the Arctic region decreases in autumn for 

the MH relative to the modern period, the largest MH Arctic warming occurs in autumn. Although the elevated CO2 radiative 

forcing is rather uniform globally and seasonally, the largest future Arctic warming also occurs almost in the same season as 

for the MH. Within the limited range of processes investigated, the current study suggests that the dominant processes 

causing the Arctic warming trend from summer to autumn in the MH and in the future are common: positive albedo 25 

feedback in summer (though partially counteracted by the sunshade effect from clouds), the consequent increase in heat 

release from the ocean to the atmosphere in the colder season when the atmospheric stratification is strong, and an increased 

greenhouse effect from clouds during the season with small insolation. A chain in the seasonal progress was elucidated by a 

decomposition into factors associated with SST, ice concentration, and ice surface temperature changes, whose temporal 

links are less clear from the conventional surface energy balance analysis alone. In addition, the synergy effect of local 30 

Arctic feedbacks and local warming sensitivity contributes to the enhanced warming during the cold season for both cases. 

There are some differences, however. The contribution from the downward clear-sky SW radiation is large positive in 
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summer and negative in autumn for the MH, but it plays only a minor role in the future. Furthermore, the large contribution 

from the downward clear-sky LW radiation occurs throughout the year for the future projections, but it is only distinct in 

April-May and July-October for the MH. 

The downward clear-sky LW radiation is one of the major contributors to the model spread for surface temperature 

changes throughout the year. Although whether this term originates from remote sources or local feedbacks is unclear from 5 

the current analysis, the importance of this term is common for the model spread in the MH and the future simulations. The 

processes found to be important for the warming trend from summer to autumn (albedo feedback, surface effect, cloud 

greenhouse effect, and synergy effect) are also found to be primarily responsible for the model spread in these seasons. The 

dominant feedbacks for the model spread depends on the season—albedo feedback for spring and summer, and surface effect 

for autumn and winter—although the importance of the inter-seasonal linkage of feedbacks is not excluded. Cloud feedbacks 10 

are less important for the model spread in summer and a small contribution from downward clear-sky SW radiation is found 

throughout the year. 

The fact that MH Arctic ocean warming is moderate in all seasons except for late autumn to early winter and the model 

spread is large in the cold season underlines the importance of model validation with proxy reconstruction in the cold season. 

However, the factors contributing to the model spread are also common between the MH and the future in other seasons, 15 

including spring, when opposite signs of temperature response occur. This result suggests that the	 MH Arctic change may 

not be directly relevant to the future in some seasons but it is still useful to constrain the future Arctic projection. In this 

sense, the seasonal evolution of surface temperature response in the MH Arctic is a useful variable. In practice, however, the 

available constraint would be limited to the cold season when the temperature response over the ocean is well correlated with 

that over land across models. The significant correlation found between the summer albedo feedback and autumn-winter 20 

temperature response across models suggests that feedbacks in preceding seasons should not be overlooked and the sea ice 

cover may be another useful constraint. 

The relevance between past and future climate arises not only from a common forcing to the climate system but also from 

the feedbacks inherent in the climate system. While basic physical principles do not change with time, it is not trivial that the 

dominating processes for the climate variations are the same for different climate forcing and response. Therefore, more 25 

effort should be made in seeking possible analogues in the dominant physical processes between the past and future climate, 

rather than in the past forcing. The following points are highlighted from the current study. 

• Many of the dominant processes that amplify Arctic warming over the ocean from late autumn to early winter are 

common between the two periods, despite the difference in the source of the forcing (insolation vs. greenhouse gases). 

• A chain of processes responsible for the warming trend from summer to autumn can be elucidated by the 30 

decomposition to factors associated with SST, ice concentration, and ice surface temperature changes. 

• The downward clear-sky longwave radiation is one of major contributors to the model spread throughout the year. 

Other controlling terms vary with the season, but they are similar between the MH and the future in each season. 
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• The MH Arctic change may not be analogous to the future in some seasons when the temperature response differs, but 

it is still useful to constrain the model spread in the future Arctic projection. 

• The significant cross-model correlation found between the summer albedo feedback and autumn-winter surface 

temperature response in both forcing cases suggests that the feedbacks in preceding seasons, particularly sea ice cover, 

should not be overlooked when determining constraints. 5 

Data availability 
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Temperature reconstructions from proxy data used in Fig. 4 are taken from Table 1a of Sundqvist et al. (2010). Temperature 

reconstructions from proxy data used in Fig. S2 can be downloaded from the PMIP3 web site (https://pmip3.lsce.ipsl.fr/, last 10 
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Table 1  Orbital configurations for the PI and MH experiments. The PI and MH values here represent the values for the years 

1850 C.E. and 6000 years before 1950 C.E., respectively, taken from the PMIP3 web page (https://pmip3.lsce.ipsl.fr/). They 

originate from Berger (1978). Parameters for PI may vary slightly with the model. 

 Eccentricity Obliquity (°) Longitude of perihelion 

from the vernal equinox 

– 180 (°) 

PI 0.016764 23.459 100.33 

MH 0.018682 24.105 0.87 

 

  5 
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Table 2  Models used in the current study and the annual, global and Arctic (north of 60°N) mean surface air temperature 

changes (°C). 

Model ∆MH ∆RCP4.5 

 Global Arctic global Arctic 

bcc-csm1-1 -0.13 0.87 1.74 4.27 

CCSM4 -0.22 0.01 1.83 3.89 

CNRM-CM5 0.18 1.42 2.07 5.02 

CSIRO-Mk3-6-0 0.02 0.43 2.37 3.06 

FGOALS-g2 -0.75 -0.48 1.43 3.57 

FGOALS-s2 -0.16 0.46 1.66 2.34 

GISS-E2-R -0.10 0.77 1.34 2.45 

IPSL-CM5A-LR -0.13 0.25 2.37 4.84 

MIROC-ESM -0.25 -0.27 2.58 6.00 

MRI-CGCM3 -0.02 0.81 1.70 3.84 

Mean -0.16 0.43 1.91 3.93 
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Table 3  A list of the energy flux terms used in Figs. 5 and 12. Row #1 represents the strength of the global mean feedback 

calculated with local warming sensitivity. Rows #2−10 represent the strength of local feedback calculated with global mean 

warming sensitivity. 

# Symbol Physical meaning 

1 S-B nonlinearity of Stefan-Boltzmann law 

2 alb surface albedo change 

3 alb*clr_sw nonlinear effect of surface albedo and clear-sky shortwave radiation 

changes 

4 clr_sw clear-sky shortwave radiation change 

5 clr_lw clear-sky longwave radiation change 

6 cld_sw shortwave cloud radiative effect 

7 cld_lw longwave cloud radiative effect 

8 evap surface latent heat flux via evaporation 

9 sens surface sensible heat flux 

10 surface net surface energy flux including latent heat for snow/ice melting and heat 

exchange with the subsurface 

11 synergy synergy term for local feedbacks and local warming sensitivity 

 

  5 
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Figure 1  Multi-model mean (all 10 models listed in Table 2) annual mean surface air temperature response (°C): (a) ∆MH; 

and (b) ∆RCP4.5. 5 
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Figure 2  Seasonal progress of the zonal mean effective radiative forcing, ERF (top, W m−2) and surface air temperature 

change (bottom, °C): (a) & (c) ∆MH; and (b) & (d) ∆RCP4.5. The ERF for ∆RCP4.5 is drawn using the data from 

Yoshimori et al. (2018), and it is computed in the current study for ∆MH. Both ERFs are constructed with a single model, 5 

MIROC4m-AGCM (Yoshimori et al., 2018). The surface air temperature changes are the means of all 10 models listed in 

Table 2. 
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Figure 3  Seasonal progress of the surface air temperature change (°C) in the Arctic (north of 60°N): (a) ∆MH land; (b) ∆MH 

ocean; (c) ∆RCP4.5 land; and (d) ∆RCP4.5 ocean. Thick black lines show the multi-model mean. Note that the range of 

vertical axis is different for ∆MH (a and b) and ∆RCP4.5 (c and d). 5 
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Figure 4  Surface air temperature anomaly (°C) for ∆MH from the simulations (shading) and reconstruction (solid circles): 

(a) annual mean; (b) July; and (c) January. The reconstruction data are taken from Sundqvist et al. (2010). The mean of all 

10 models listed in Table 2 was used. 5 
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Figure 5  Simulated and diagnosed surface temperature changes (°C) for the ocean (north of 60°N): (a) ∆MH; and (b) 

∆RCP4.5. The black polygonal solid lines denote simulated changes and blue polygonal dashed lines denote the sum of the 5 

diagnosed partial changes; the two lines are superimposed. The graphs represent the means of all 10 models listed in Table 2. 

See Table 3 for the interpretation of each component. 
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Figure 6  Seasonal progress of the total cloud fraction change (%) over the ocean (north of 60°N): (a) ∆MH ensemble mean; 

(b) ∆MH ensemble standard deviation; (c) ∆RCP4.5 ensemble mean; and (d) ∆RCP4.5 ensemble standard deviation. All 10 

models listed in Table 2 are used. 5 
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Figure 7  Same as in Fig. 6 but for the air temperature change (°C) (north of 60°N). All 10 models listed in Table 2 are used. 

(Note that the figure appears blocky compared to Fig. 6 due to the use of a different interpolation scheme in the plotting 

software which was chosen to avoid a technical issue for pressure coordinate, but it is irrelevant to the data.) 5 
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Figure 8  Same as in Fig. 6 but for the specific humidity change (g kg-1) (north of 60°N). All 10 models listed in Table 2 are 

used. (Note that the figure appears blocky compared to Fig. 6 due to the use of a different interpolation scheme in the 

plotting software which was chosen to avoid a technical issue for pressure coordinate, but it is irrelevant to the data.) 5 
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Figure 9  Contribution of the individual components to the surface temperature change (°C) over the ocean (north of 60°N): 

(a) ∆MH; and (b) ∆RCP4.5. The surface temperature change is decomposed into the components of the SST change ((1 −

𝐴)∆𝑇h), sea ice concentration change ((𝑇i − 𝑇h)∆𝐴), and sea ice surface temperature change (A∆𝑇i). Simulated surface 5 

temperature (∆𝑇6) and surface air temperature changes (∆𝑇{) are also plotted for reference. Only 5 models (bcc-csm-1, 

CCSM4, CNRM-CM5, IPSL-CM5A-LR, and MRI-CGCM3) are used. 
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Figure 10  Same as in Fig. 6 but for the upper ocean temperature change (°C) (north of 60°N). 9 models except for 

FGOALS-g2 listed in Table 2 are used. 
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Figure 11  Same as in Fig. 6 but for the sea ice concentration (%) (north of 60°N). All 10 models listed in Table 2 are used. 
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Figure 12  Fractional contribution of individual processes to the model spread in the simulated surface temperature change 

(%) over the ocean (north of 60°N) for ∆MH and ∆RCP4.5: (a) spring (March-April-May); (b) summer (June-July-August); 

(c) autumn (September-October-November); and (d) winter (December-January-February) means. The sum of the bar graphs 5 

in the same color for each plot adds up to 100%. The hatching indicates the contribution is statistically significant at the 10% 

level. All 10 models listed in Table 2 are used. See Table 3 for the interpretation of each component. Note that the vertical 

scale for (b) is three-fold larger than in the other plots. 

 


