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Abstract. Atmospheric variability as a function of scale
has been divided in various dynamical regimes with al-
ternating increasing and decreasing fluctuations: weather,
macroweather, climate, macroclimate, and megaclimate. Al-
though a vast amount of data are available at small scales,5

the larger picture is not well constrained due to the scarcity
and low resolution of long paleoclimatic time series. Us-
ing statistical techniques originally developed for the study
of turbulence, we analyse the fluctuations of a centimetric-
resolution dust flux time series from the EPICA Dome C ice10

core in Antarctica that spans the past 800 000 years. The tem-
poral resolution ranges from annual at the top of the core to
25 years at the bottom, enabling the detailed statistical analy-
sis and comparison of eight glaciation cycles and the subdivi-
sion of each cycle into eight consecutive phases. The unique15

span and resolution of the dataset allows us to analyse the
macroweather and climate scales in detail.

We find that the interglacial and glacial maximum phases
of each cycle showed particularly large macroweather to
climate transition scale τc (around 2 kyr), whereas mid-20

glacial phases feature centennial transition scales (average of
300 years). This suggests that interglacials and glacial max-
ima are exceptionally stable when compared with the rest of
a glacial cycle. The Holocene (with τc ≈ 7.9 kyr) had a par-
ticularly large τc, but it was not an outlier when compared25

with the phases 1 and 2 of other cycles.
We hypothesize that dust variability at larger (cli-

mate) scales appears to be predominantly driven by slow
changes in glaciers and vegetation cover, whereas at small
(macroweather) scales atmospheric processes and changes in30

the hydrological cycles are the main drivers.

For each phase, we quantified the drift, intermittency, am-
plitude, and extremeness of the variability. Phases close to
the interglacials (1, 2, 8) show low drift, moderate intermit-
tency, and strong extremes, while the “glacial” middle phases 35

3–7 display strong drift, weak intermittency, and weaker ex-
tremes. In other words, our results suggest that glacial max-
ima, interglacials, and glacial inceptions were characterized
by relatively stable atmospheric conditions but punctuated by
frequent and severe droughts, whereas the mid-glacial cli- 40

mate was inherently more unstable.

1 Introduction

Over the late Pleistocene, surface temperature variability is
strongly modulated by insolation, both at orbital (Jouzel et
al., 2007) and daily timescales. In between these two scales, 45

temperature variability has been shown to scale according
to power law relationships, thus evidencing a continuum
of variability at all frequencies (Huybers and Curry, 2006).
However, although a vast amount of high-resolution data ex-
ist for modern conditions, our knowledge of climatic vari- 50

ability at glacial–interglacial timescales is usually limited by
the lower resolution of paleoclimatic archive records, thus re-
stricting high-frequency analyses during older time sections.
Previous analyses using marine and terrestrial temperature
proxies from both hemispheres suggest a generally stormier 55

and more variable atmosphere during glacial times than dur-
ing interglacials (Ditlevsen et al., 1996; Rehfeld et al., 2018).

One of the difficulties in characterizing climate variability
is that ice core paleotemperature reconstructions rapidly lose
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2 S. Lovejoy and F. Lambert: TS3

Figure 1. TS2Temperature (blue) and dust flux (red) from the
EPICA Dome C ice core (Jouzel et al., 2007; Lambert et al., 2012a).
The dust flux time series has 32 000 regularly spaced points (25-
year resolution); the temperature series has 5752 points. The tem-
perature data are irregularly spaced and lose resolution as we go
back into the past (number of temperature data points in successive
ice ages: 3022, 1117, 521, 267, 199, 331, 134, 146). In both cases
we can make out the glacial cycles, but they are at best only quasi-
periodic.

their resolutions as we move to the bottom of the ice column.
Figure 1 shows this visually for the EPICA Dome C Antarc-
tic ice core temperature proxy (5787 measurements in all);
the curve becomes noticeably smoother as we move back in
time. In terms of data points, the most recent 100 kyr period5

has more than 3000 points (≈ 30-year resolution), whereas
the most ancient 100 kyr period has only 137 (≈ 730-year
resolution). This implies that while the most recent glacial–
interglacial cycle can be perceived with reasonable detail, it
is hard to compare it quantitatively to previous cycles or to10

deduce any general cycle characteristics.
Fluctuation analysis (Lovejoy, 2017; Lovejoy and

Schertzer, 2013; Nilsen et al., 2016) gives a relatively
simple picture of atmospheric temperature variability
(Fig. 2). The figure shows a series of regimes each with15

variability alternately increasing and decreasing with scale.
From left to right we see weather-scale variability, in
which fluctuations tend to persist, building up with scale
(they are unstable) and increasing up to the lifetime of
planetary structures (about 10 d). This is followed by a20

macroweather regime with fluctuations tending to cancel
each other out, decreasing with scale and displaying stable
behaviour. In the last century, anthropogenically forced
temperature changes (mostly from greenhouse gases)
dominate the natural (internal macroweather) variability25

at scales longer than about 10–20 years. The figure shows
that in pre-industrial periods, the lower-frequency climate
regime starts somewhere between 100 and 1000 years (the
macroweather–climate transition scale τc), indicating that
different long-frequency processes become dominant. The30

macroweather–climate transition scale marks a change of

regime where the dominant high-frequency processes asso-
ciated with weather processes (and reproduced by GCMs
in control runs) give way to a different regime, where the
variability is dominated by either the responses to external 35

forcings or to slow internal sources of variability that were
too weak to be important at higher frequencies. Further to
the right of Fig. 2, we can see the broad peak associated with
the glacial cycles at about 50 kyr (half the 100 kyr period),
and then at very low frequencies, the megaclimate regime 40

again shows increasing variability with scale. In between the
climate and megaclimate regimes, the fluctuations decrease
with scale over a relatively short range from about 100 to
500 kyr. However, the temperature fluctuations shown in
Fig. 2 display average behaviour, which can potentially hide 45

large variations from epoch to epoch. In this paper, we use a
uniquely long and high-resolution paleo-dataset to analyse
the macroweather and climate scales in detail.

We focus on the EPICA Dome C dust flux record, which
has a 55 times higher resolution than the deuterium record, 50

including high resolution over even the oldest cycle (Lambert
et al., 2012a, Fig. 1). Antarctic dust fluxes are well correlated
with temperature at orbital frequencies (Lambert et al., 2008;
Ridgwell, 2003). But the fluxes are also affected by climatic
conditions at the source and during transport (Lambert et 55

al., 2008; Maher et al., 2010). The dust data used here can
therefore be thought of as a more “holistic” climatic parame-
ter that includes not only temperature changes but describes
atmospheric variability as a whole (including wind strength
and patterns and the hydrological cycle). 60

2 Method

In order to proceed to a further quantitative analysis of
the types of statistical variability and of the macroweather–
climate transition scale, we need to make some definitions.
A commonly used way of quantifying fluctuations is the 65

Fourier analysis. It quantifies the contribution of each fre-
quency range to the total variance of the process. However,
the interpretation of the spectrum is neither intuitive nor
straightforward (Sect. 2.3). The highly non-Gaussian spiki-
ness for both dust flux and its logarithm (e.g. Fig. 3b, c), im- 70

plies strong – but stochastic – Fourier space spikes. Indeed,
Lovejoy (2018) found that the probability distributions of
spectral amplitudes can themselves be power laws. This has
important implications for interpreting spectra, especially
those estimated from single series (“periodograms”): if the 75

spectral amplitudes are highly non-Gaussian, then we will
typically see strong spectral spikes whose origin is purely
random. This makes it very tempting to attribute quasi-
oscillatory processes to what are in fact random spectral
peaks. It therefore makes sense to consider the real (rather 80

than Fourier) space variability (fluctuations). The problem
here is that the spectrum is a second-order statistical mo-
ment (the spectrum is the Fourier transform of the autocorre-

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Clim. Past, 15, 1–19, 2019 www.clim-past.net/15/1/2019/



S. Lovejoy and F. Lambert: 3

Figure 2. A composite showing root mean square (rms) Haar fluctuations (1T in units of ◦C) black and rms dust fluctuations analysed
in this paper (red, in units of milligrams per square metre per year; Lambert et al., 2012a). From left to right: thermistor temperatures at
0.0167 s resolution (Lovejoy, 2018), hourly temperatures from Landers, Wyoming (Lovejoy, 2015), daily temperatures from 75◦ N (Lovejoy,
2015), EPICA Dome C temperatures (Jouzel et al., 2007), and two marine benthic stacks (Veizer et al., 1999; Zachos et al., 2001). The
macroweather–climate transition is not in phase between the different records because the left ones (industrial side) are influenced by
anthropogenic climate change, while the right data are pre-industrial natural variability. As elsewhere in this paper, the fluctuations were
multiplied by the canonical calibration constant of 2 so that when the slopes are positive, the fluctuations are close to difference fluctuations.
The various scaling regimes are indicated at the bottom. Adapted from Lovejoy (2017).

lation function). While second-order moments are sufficient
for characterizing the variability of Gaussian processes, in
the more general and usual case – especially with the highly
variable dust fluxes – we need to quantify statistics of higher
orders, in particular, the higher-order statistics that charac-5

terize the extremes. Here, we will use two simple concepts
to describe variability and intermittency (or spikiness) of the
data.

The theoretical framework that we use in this paper is that
of scaling, multifractals, and the outcome of decades of re-10

search attempting to understand turbulent intermittency. In-
termittent, spiky transitions – characterized by different scal-
ing exponents for different statistical moments – turn out to
be the generic consequence of turbulent cascade processes.
Although the cascades are multiplicative, the extreme prob-15

abilities generally turn out to be power laws (Mandelbrot,
1974; Schertzer and Lovejoy, 1987), not log-normals (as was
originally proposed by Kolmogorov, 1962). The analyses are
based on scaling regimes and their statistical characteristics.
Because scaling is a symmetry (in this case invariance of ex-20

ponents under dilations in time), in a dynamical regime in
which two different components – such as temperature and
dust – are strongly coupled parts of the system, each may

have different scaling properties but both should respect the
scale symmetry including the transition scale at which the 25

symmetry breaks down. Therefore, the broad conclusions
of our dust flux analyses – scaling regimes and their break
points and stability or instability – are expected to be valid for
the more usual climate parameters including the temperature.
Although it is beyond our present scope, we will explore the 30

scale-by-scale relationship between EPICA dust fluxes and
temperatures in a future publication.

2.1 Haar fluctuations

The basic tool we use to characterize variability in real space
is the Haar fluctuation, which is simply the absolute differ- 35

ence of the mean over the first and second halves of an inter-
valTS4 :

1F (1t)=
2
1t

t∫
t−1t/2

F
(
t ′
)

dt ′−
2
1t

t−1t/2∫
t−1t

F
(
t ′
)

dt ′. (1)

We can characterize the fluctuations by their statistics.
For example, by analysing the whole dataset using inter- 40

vals of various lengths, we can thus define the variability as
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a function of scale (i.e. interval length). If over a range of
timescales 1t , there is no characteristic time, then this re-
lationship is a power law, and the mean absolute fluctuation
varies as

〈|1F (1t)|〉 ∝1tH , (2)5

where “〈 〉” indicates ensemble average – here an average
over all the available disjointed intervals. A positive H im-
plies that the average fluctuations increase with scale. This
situation corresponds to unstable behaviour identified with
the climate regime. In contrast, when H is negative, vari-10

ability converges towards a mean state with increasing scale.
This is the situation found in the stable macroweather regime.
Haar fluctuations are useful for the exponent range −1<
H < 1, which is valid for the dust series, and indeed for al-
most all geodata analysed to date.15

More generally, we can consider other statistical moments
of the fluctuations, the “generalized structure functions”,
Sq (1t):

Sq (1t)=
〈
|1F (1t)|q

〉
∝1tξ (q) . (3)

If the fluctuations are from a Gaussian process, then their ex-20

ponent function is linear: ξ (q)= qH . More generally how-
ever, ξ (q) is concave and it is important to characterize this,
since the non-linearity in ξ (q) is due to intermittency, i.e.
sudden, spiky transitions (for more details on Haar fluctua-
tions and intermittency, we refer to Lovejoy and Schertzer,25

2012). We therefore decompose ξ (q) into a linear and a non-
linear (convex) part K(q), with K(1)= 0:

ξ (q)= qH −K (q) , (4)

so that K(q)= 0 for quasi-Gaussian processes. Since the
spectrum is a second-order moment, the spectrum of a scal-30

ing process at frequency ω is a power law:

E(ω)≈ ω−β , (5)

where the spectral exponent β = 1+ ξ (2)= 1+ 2H −K(2);
K(2) is therefore sometimes termed the “intermittency cor-
rection”.35

2.2 Intermittency

A simple way to quantify the intermittency is thus to compare
the mean and root mean square (rms) Haar fluctuations:

S1 (1t)=
〈
|(1F (1t))|

〉
∝1tξ (1)

=1tH , (6)

S2(1t)1/2
=

〈
(1F (1t))2

〉1/2
∝1tξ (2)/2

=1tH−K(2)/2, (7)40

with the ratio

S1 (1t)/S2(1t)1/2

=

〈
|1F (1t)|

〉/〈
(1F (1t))2

〉1/2
∝1tK(2)/2, (8)

where we estimate S(1t) using all available disjointed in-
tervals of size 1t . These expressions are valid in a scaling
regime. Since the number of disjointed intervals decreases as 45

1t increases, so does the sample size; hence, the statistics
are less reliable at large 1t .

For theoretical reasons (Lovejoy and Schertzer, 2013;
Schertzer and Lovejoy, 1987), it turns out that the intermit-
tency near the mean (q = 1) is best quantified by the param- 50

eter C1 =K
′(1). Since K(1)= 0 is a basic property, it turns

out that for log-normal multifractals (approximately relevant
here), the ratio exponent K(2)/2≈ C1.

While the mean-to-rms ratio is an intuitive statistic, it does
not give a direct estimate of C1: a more accurate estimate of 55

C1 uses the intermittency function G(1t):

G (1t)= lim
1q→0

〈1F 〉

[
〈1F 1−1q

〉

〈1F 1+1q〉

]1/(21q)

∝1tξ (1)−ξ ′(1)
=1tC1 (9)

(this is exact in the limit 1q−> 0), whose exponent is C1.
The intermittency exponent C1 quantifies the rate at which
the clustering near the mean builds up as a function of the 60

range of scales over which the dynamical processes act; it
only partially quantifies the spikiness. For this, we need other
exponents, in particular the exponent qD that characterizes
the tails of the probability distributions. This is because scal-
ing in space and/or time generically gives rise to power law 65

probability distributions (Mandelbrot, 1974; Schertzer and
Lovejoy, 1987). Specifically, the probability (Pr) of a ran-
dom dust flux fluctuation 1F exceeding a fixed threshold s
is

Pr (1F > s)≈ s−qD; s� 1, (10) 70

where the exponent qD characterizes the extremes; for ex-
ample, qD ≈ 5 has been estimated for wind or temperature
(Lovejoy and Schertzer, 1986) and for paleotemperatures
(Lovejoy and Schertzer, 2013), whereas qD = 3 for precip-
itation (Lovejoy et al., 2012). A qualitative classification 75

of probability distributions describes classical exponentially
tailed distributions (such as the Gaussian) as “thin-tailed”,
log-normal (and log-Levy) distributions as “long-tailed”, and
power law distributions as “fat-tailed”. Whereas thin and
long-tailed distributions have convergence of all statistical 80

moments, power distributions only have finite moments for
orders q < qD.

2.3 How fluctuations help interpret spectra

Although spectra may be familiar, their physical interpreta-
tions are nontrivial, a fact that was underscored in Lovejoy 85

(2015). In a scaling regime – a good approximation to the
macroweather and climate regimes discussed here – the spec-
trum is a power law form (Eq. 5) where the spectral exponent
β characterizes the spectral density. Although β tells us how

Clim. Past, 15, 1–19, 2019 www.clim-past.net/15/1/2019/
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quickly the variance changes per frequency interval, its phys-
ical significance is neither intuitive nor obvious. Integrating
the spectrum over a frequency range is already easier to un-
derstand; it is the total variance of the process contributed
by the range. Therefore, we already see that β − 1 (the ex-5

ponent of the integrated spectrum) is more directly relevant
than β. But even to understand this, we need to consider
whether over a range of frequencies, the process is dom-
inated by either high or low frequencies. For this, we can
compare the total variance contributed by neighbouring oc-10

taves. For a power law spectrum, the variance ratio of one
octave to its neighbouring higher-frequency octave is 21−β .
From this, we see that β > 1 yields a ratio 21−β < 1 imply-
ing low-frequency dominance, whereas when β < 1, we have
21−β > 1 and high-frequency dominance.15

But what does low-frequency or high-frequency “domi-
nance” mean physically? For this, it is easier to consider the
situation in real space using fluctuations; the simplest rele-
vant fluctuations are the Haar fluctuations 1F discussed in
Sect. 2.2 that vary with time interval 1t as 1F ≈1tH . We20

saw that the exponents in real and spectral space were sim-
ply related by β = 1+ 2H −K(2), where K(2)> 0 due to
the spikiness (intermittency). This formula leads to two im-
portant conclusions. First, if we ignore intermittency (putting
C1 = 0, hence K(2)= 0) and assume that the mean fluctua-25

tions scale with the same exponent as the rms fluctuations,
thenH = (β−1)/2, showing again that it is the sign of β−1
that is fundamental: β > 1 implies H > 0; hence, fluctua-
tions grow with scale and the process “drifts” or “wanders”;
it is unstable. Conversely β < 1 implies H < 0; hence, fluc-30

tuations decrease with scale and the process “cancels” and
“converges”; it is “stable”. The second conclusion is that
if intermittency is strong (here we typically have C1 ≈ 0.1,
K(2)≈ 0.2), then the relationship between the second- and
first-order statistical moments is a little more complex so35

that for example, with these values and a β ≈ 0.9, we would
have high frequencies dominating the variance (β < 1) but
low frequencies dominating the mean (H > 0).

2.4 Dust flux data

The dust flux data used in this study are based on a lin-40

ear combination of insoluble particles, calcium, and non-sea-
salt calcium concentrations (Lambert et al., 2012a). Because
missing-data gaps in the three original datasets were linearly
interpolated prior to the PCACE2 , high-frequency variability
can sometimes be underestimated in short sections that fea-45

ture a gap in one of the three original datasets. This occurs in
about 25 % of all dust flux data points, although half of those
are concentrated in the first 760 m of the core (0–43 kyr BP),
when an older, less reliable dust-measuring device was used.
Below 760 m these occurrences are evenly distributed and do50

not affect our analysis. Due to the sometimes slightly under-
estimated variability, the analysis shown here is a conserva-
tive estimate (Lambert et al., 2012a).

Unlike water isotopes that diffuse and lose their temporal
resolution in the bottom section of an ice core at high pres- 55

sures and densities, the relatively large dust particles diffuse
much less and have been used to estimate the dust flux over
every centimetre of the 3.2 km long EPICA core (298 203
valid data points; Lambert et al., 2012a). The temporal reso-
lution of this series varies from 0.81 to 11.1 years (the av- 60

erages over the most recent and the most ancient 100 kyr
respectively). The worst temporal resolution of 25 yr cm−1

occurs around 3050 m depth, with the result that at that reso-
lution, there are virtually no missing data points in the whole
record (Fig. 1). We note, however, that the dust flux used 65

here is a construct of concentrations at 1 cm resolution and
accumulation rates at 55 cm resolution that were linearly in-
terpolated to match the dust concentration resolution.

3 Results

3.1 Looking at the data 70

Polar dust flux records cannot be assigned to one particular
atmospheric variable, like temperature for the water isotopes.
At any given moment, the amount of dust deposited in East
Antarctica will depend on the size and vegetation cover of
the source region (mostly Patagonia for East Antarctic dust; 75

Delmonte et al., 2008), on the amount of dust available in the
source region (can depend on the presence of glaciers), on
the strength of the prevailing winds between South America
and Antarctica, and on the strength of the hydrological cycle
(more precipitation will wash out more dust from the atmo- 80

sphere; Lambert et al., 2008). Over large scales it is thought
that temperature-driven moisture condensation may be the
major process driving low-frequency variability (Markle et
al., 2018), although that may not be true everywhere (Schüp-
bach et al., 2018). High- and low-frequency variability in the 85

dust flux record is likely driven by different processes. For
example, dust source conditions related to glaciers and veg-
etation cover may not have influenced high-frequency vari-
ability due to their relatively slow rate of change. On the
other hand, volcanic eruption or extreme events related to 90

the hydrological cycle may produce high-frequency signals
in the record. A single dust peak within a low background
may therefore reflect a short-term atmospheric disturbance
like an eruption or drought over South America or low pre-
cipitation over the Southern Ocean. The analysis presented 95

here focuses heavily on the occurrence of dust fluctuations,
the physical interpretation of which will depend on the scale
of the phenomenon.

Figure 3a shows a succession of 10 factor-of-2 “blow
downs” (upper left to lower right at 11 different resolutions). 100

In order to avoid smoothing, the data were “zoomed” in depth
rather than time, but the point is clear: the signal is very
roughly scale invariant, at no stage is there any sign of ob-
vious smoothing, and the quasi-periodic 100 kyr oscillations
are the only obvious timescale (we quantify this below). In 105
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Figure 3.

Figure 3.
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Figure 3. (a) Zooming out of the Holocene dust fluxes by octaves, by doubling the depth resolution from 1 cm (upper left) to 11 m (lower
right) resolution. Starting at the left and moving to the right and from top to bottom (see the ellipses on the first three in the sequence),
we zoom out by factors of 2 in depth maintaining exactly 290 data points (effectively non-dimensionalizing the depth; the small number of
missing data points were not interpolated so that the final resolution is not exactly 210 cm= 10.24 m). The temporal resolution is not exactly
doubled due to the squashing of the ice column; the total duration (in years) of each section is indicated in each plot; the average temporal
resolution of plots is 0.24, 0.48, 0.98, 2.02, 4.32, 10.1 24.5, 54.1, 184, 434, and 2710 years. In order to fit all the curves on the same vertical
scale, the dust fluxes were normalized by their mean over each segment. The means (in milligrams per square metre per year) are 0.44, 0.38,
0.30, 0.36, 0.35, 0.33, 0.34, 0.39, 2.48, 2.18, and 2.41, i.e. the first eight plots have nearly the same vertical scales, whereas the last three are
about 6 times larger in range. This means that all the plots except the last three are at nearly constant normalization. (b) Same as (a) but for
the absolute changes between neighbouring values in dust flux normalized by the corresponding mean over the segment (290 points). The
horizontal lines indicate the Gaussian probability levels for p = 1/290 (representing the mean extreme for a 290-point segment; full line) as
well as p = 10−6 (lower dashed line) and p = 10−9 (upper dashed line). (c) Same as (a) but for the absolute changes between neighbouring
values in the logarithms of dust flux normalized by the corresponding mean over the segment (290 points). The horizontal lines indicate the
Gaussian probability levels for p = 1/290 (representing the mean extreme for a 290-point segment; full line) as well as p = 10−5 (lower
dashed line) and p = 10−8 (upper dashed line, not the same as in b).

comparison with more common paleoclimate signals, such
as temperature proxies – which are apparently smoother but
with spiky transitions – the dust flux itself is already quite
spiky. However, it also displays spiky transitions. In Fig. 3b
we show the absolute change in dust flux, and one can vi-5

sually see the strong spikiness associated with strongly non-
Gaussian variability: the intermittency. At each resolution,
the solid line indicates the maximum spike expected if the
process was Gaussian, and the upper dashed lines show the
expected level for a (Gaussian) spike with probability 10−6.10

Again, without sophisticated analysis, we can see that the
spikes are wildly non-Gaussian, frequently exceeding the
10−6 level even though each segment has only 290 points,
with the spikiness being nearly independent of resolution.

Taking the logarithms of the dust flux is common practice 15

since it reduces the extremes and makes the signal closer to
the temperature and other more familiar atmospheric param-
eters. We therefore show the corresponding spike plot for the
log-transformed data (Fig. 3c). Although the extreme spikes
are indeed less extreme (see also Fig. 6a, b), we see that the 20

transformation has not qualitatively changed the situation,
with spikes still regularly exceeding (log-) Gaussian prob-
ability levels of 10−5 and occasionally 10−8.

3.2 Spectra

Figure 4 shows various spectral analyses (for the correspond- 25

ing fluctuation analyses, see Fig. 5). There is a clear pe-
riodicity at about (100 kyr)−1. In the double power law fit
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Figure 4. Log–log plot of the Fourier spectrum of the (25 year)−1

resolution dust concentration in frequency units of kyr−1 (red) and
the same but of the logarithms of the flux (blue). Also shown is
the average spectrum of the 5-year resolution data over the last
400 kyr (green). For the latter, the periodograms of each the four
most recent 100 kyr cycles were averaged, but the full spectral res-
olution (5 years)−1 was retained. The beta parameters are the ex-
ponents of the theoretical spectrum (see main text, the negative of
the logarithmic slope) for the macroclimate (−2.5), climate (1.7),
and macroweather (0.8) regimes. The spectra were analysed using
FFTCE3 with standard Hanning windows.

(line plot), the transition frequencies are a little lower: ω0 =

(160kyr)−1 (flux) and ωc = (145kyr)−1 (log flux), although
a Gaussian fit near the max gives a spike at (94± 9 kyr)−1.
Note that it is actually a little bit “wide” (two peaks); hence,
it is not perfectly periodic, and the amplitude is only about a5

factor 4 above the background. In comparison, the amplitude
of the annual temperature frequency peak is several thousand
times above the background (depending on the location) and
is narrower (not shown).

Since this is a log–log plot, power laws appear as straight10

lines. We show in the figure the fits to the bi-scaling function

E (ω)=
a

(ω/ω0)βh + (ω/ω0)βl
(11)

that smoothly transitions between a spectrum with E (ω)≈
ω−βh at ω > ω0 and E (ω)≈ ω−βl at ω < ω0. The figure
shows the regressions with βl =−2.5, βh = 1.7, and a =15

7.5 (mg m−2 yr−1)2 yrTS5 , ω0 ≈ (145kyr)−1 for the fluxes,
and a = 0.375 years−1, ω0 ≈ (160kyr)−1 for the logarithms
of fluxes. According to the figure, the high-frequency cli-
mate regime scaling continues to about (300 years)−1 be-
fore flattening to a very high-frequency scaling (βm ≈ 0.8)20

“macroweather” regime (Lovejoy and Schertzer, 2013). The
scaling exponents βh = 1.7 and βm = 0.8 corresponding to
the climate and macroweather regime respectively may be
compared with the values 2.1 and 0.4 for the EPICA pale-
otemperatures discussed in a future publication (compare,25

however, the red and black curves in Fig. 2). These results

Figure 5. The Haar fluctuation analysis of the entire 800 kyr dust
flux dataset (thin lines). The dashed black and solid pink lines
(top pair) represent rms fluctuations for dimensional and non-
dimensional time respectively. The solid black and blue curves are
the same but for the mean absolute (q = 1) fluctuations. The curves
with non-dimensional time lags have nominal (average) resolutions
of 25 years and the fluctuation statistics are averaged over the eight
cycles. The thick black line shows the Haar fluctuations for the most
recent 400 kyr at a 5-year resolution. Note that the peak in the curves
occurs as expected at 1t ≈ 50 kyr, i.e. at about a half cycle; the
horizontal dashed line shows that at this scale – corresponding to
the largest difference in phases – the change in the mean absolute
dust flux is about ±3 mg m−2 yr−1. Also shown (dashed vertical
line) is the (average) timescale τc ≈ 250 years at which the transi-
tion from macroweather to climate occurs. Several reference lines
(with the slopes or exponents indicated) are shown showing approx-
imate scaling behaviours.

show that temperature and dust variability are of the same
statistical type so that it is likely that the dust signal is a real
climate signal – yet the significant differences in their expo-
nents shows that it has a different information content. 30

The variability shown in Fig. 4 can be interpreted broadly
or in detail. A clear feature is the spectral maximum at around
(100 kyr)−1. The broad bispectral scaling model (Eq. 11) of
the peak already accounts for 96 % of the spectral energy
(variance), leaving only 4 % for the (extra) contribution from 35

the (near-) (100 kyr)−1 orbital frequency (using the logarithm
of the flux changes littleCE4 ). Alternatively, with a narrow
Gaussian-shaped spectral spike model, the spike is localized
at (94± 9 kyr)−1 and contributes a total of 31 % of the total
variance. However, not all of this is above what we would 40

expect from a scaling background; the exact amount depends
on how the background is defined. For example, over the
range from the 6th- to the 11th-highest frequencies in this
discrete spectrum (from (133 kyr)−1 to (72 kyr)−1), in com-
parison to the background over this range, there is an en- 45

hancement of about 80 % due to the strong peaks (the en-
hancement is about 100 % for the 7th to the 12th frequen-
cies). This means that, although the (94± 9 kyr)−1 peak rep-
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resents 31 % of the total variability over the range from
(800 kyr)−1 to (25 years)−1, it is only about 15 % above the
“background” (note that only 5 % of the total variance is be-
tween (25 years)−1 and (1 kyr)−1). We did not do the cor-
responding analysis for the (41 kyr)−1 obliquity frequency5

since Fig. 4 shows visually that it is barely discernable above
the background.

The overall conclusion is that the background represents
between 85 % and 96 % of the total variance.

3.3 Haar fluctuation analysis10

Figure 5 shows the Haar fluctuations comparing their statis-
tics for both dimensional and non-dimensional cycles as
well as for the mean and rms fluctuations (bottom and
top set of curves respectively). To start, let us consider
the direct interpretations of the fluctuations in terms of the15

variability of the dust flux. Recall that when the fluctua-
tions increase with scale, they represent typical differences,
whereas when then decrease with scale, they represent typi-
cal anomalies (deviations from long-term mean values). For
example, typical variations over a glacial–interglacial cy-20

cle (half cycle ≈ 50 kyr) are about ±3 mg m−2 yr−1 (i.e.
a range of 6 mg m−2 yr−1, the dashed horizontal line),
whereas typical variations at the 250-year minimum are ≈
±0.5 mg m−2 yr−1.

The macroweather, climate, and macroclimate regimes25

noted in Fig. 4 are also clearly visible. In Fig. 5, we
can clearly see the short regime with H < 0 (up to about
250 years), a scaling regime with H > 0 (up to glacial–
interglacial periods ≈ 50 kyr), and finally a long-time (pos-
sibly scaling) decrease in variability. The spectral and real-30

space statistics are linked via the relation β = 1+ ξ (2) (see
Eqs. 4, 5). Starting with the high-frequency macroweather
regime, the exponents H =−0.05, K(2)≈ 0.10 correspond
to β = 0.8 (Fig. 4) and the real-space macroweather–climate
transition scale (τc ≈ 250 years) is close to the spectral tran-35

sition scale (1/ωc ≈ 300 years, Fig. 4). In the middle (cli-
mate) regime, the top (rms) curves (slope 0.33) implies
ξ (2)= 0.66, β = 1.66, which is close to the correspond-
ing exponent in Fig. 4 (βh = 1.7). Finally, at the longest
(macroclimate) scales, the low-frequency part of the spec-40

trum in Fig. 4 (βl =−2.5) implies that the fluctuation expo-
nent H ≈ (βl− 1)/2=−1.75. However, this is less than the
minimum detectable by Haar analysis (H =−1); therefore,
we expect the far-right slope to equal −1 (as shown by a ref-
erence line). To correctly estimate this steep slope, one must45

use other definitions of fluctuations. We could also note that
the climate–macroclimate transition timescale is broad and a
little shorter than the value spectral value 1/ωc estimated in
Fig. 4.

Beyond confirming the results of the spectral analysis and50

allowing for direct interpretations of the fluctuation values in
terms of typical fluxes, Haar analysis also quantifies the in-
termittency from the convergence of the rms and mean statis-

tics at larger and larger timescales (see the clear difference in
slopes shown in the climate regime: 0.38 versus 0.33). This 55

underlines the limitation of spectral analysis discussed ear-
lier: the fact that it is a second-order statistic that is only a
partial characterization of the variability. Finally, the figure
also shows that regardless of whether the cycles are defined
in dimensional or in non-dimensional time, statistical charac- 60

terizations (including the exponents) are virtually unaffected.
Figure 6a shows the fluctuation probabilities of the entire

800 kyr series at a 25-year resolution (here the fluctuations
are simply taken as absolute differences at a 25-year resolu-
tion). We see that the large fluctuations (the tail) part of the 65

distribution is indeed quite linear on a log–log plot, with ex-
ponents qD ≈ 2.75 and 2.98 in time and depth respectively
(both from fits to the extreme 0.1 % of the distributions). To
get an idea of how extreme these distributions are, consider
the depth distribution with qD = 2.98. With this exponent, 70

dust flux fluctuations 10 times larger than typical fluctuations
occur only 102.98

≈ 1000 times less frequently. In compari-
son, for a Gaussian, they would be ≈ 1023 times less likely;
they would never be observed.

While the dust fluxes are always positive and so cannot 75

be Gaussians, the increments analysed here could easily be
approximately so. Nevertheless, a common way of trying to
tame the spikes is by making a log transformation of fluxes.
Figure 4 already showed that this did not alter the spectrum
very much; here it similarly has only a marginal effect. For 80

example, Fig. 6b shows that the extreme tails on the log dust
flux distribution has qD = 3.60 in time (25 years) and 4.59
in depth (at 1 cm resolution). The log-transformed variable
still displays huge extremes with the extreme log flux corre-
sponding to a log-Gaussian probability of 10−30 and 10−50

85

(time and depth respectively). Whether or not taking loga-
rithms yields a more climate-relevant parameter, it does not
significantly change the problem of intermittency or of the
extremes.

We must mention the problem of estimating the uncertain- 90

ties in the exponents. In the familiar case, we test a deter-
ministic model and then uncertainty estimates are based on
a stochastic model of the errors which are often assumed to
be independent Gaussian random variables. In our case, the
basic model is a stochastic one, and therefore one needs a 95

stochastic model of the underlying process from which one
can draw random time series. While our paper aims to pro-
vide a basis for the formulation of such a model, it is be-
yond our present scope. In order to obtain robust conclu-
sions, we instead rely primarily on cycle-to-cycle compar- 100

isons, two different definitions of time (dimensional and non-
dimensional) as well as a diversity of analysis techniques
(spectral, fluctuation analysis, probability distributions). We
should also mention that the use of fluxes (product of 1 cm
concentrations and 55 cm accumulation rate) introduces an 105

additional source of uncertainty due to the different time
ranges contained in these sections at various depths. How-
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Figure 6. (a) The probability distribution Pr(1F > s) of random
changes in dust flux (1F ) exceeding a fixed threshold s in time at
a 25-year resolution (brown; 32 000 points) and in depth at 1 cm
resolution (black; 251 075 points corresponding to the last 400 kyr).
The frequency scales on the right give the number (N ) of jumps in
each of the series that exceeds the threshold s. The straight lines
indicate power law probability tails with exponents qD indicated.
Also shown (parabolas) are the Gaussians with the same mean and
standard deviations. In time, the maximum change in flux corre-
sponds to about 28 standard deviations (i.e. to a Gauss probability
≈ 10−91); in depth, it corresponds to 51 standard deviations (i.e.
to p ≈ 10−455). On the right, we provide axes giving the actual
number of flux increments that exceed s (brown for the fluctuations
in time; black for those in depth). (b) Same as (a) except for the
increments of the log of the dust flux (brown is in time, 25-year
resolution; black is in depth, 1 cm resolution). The curves are the
closest-fitting (log-) Gaussians. The threshold S is dimensionless,
and the numerical values are correct if F is measured in units of
milligrams per square metre per year.

ever, we prefer using the fluxes because they are more di-
rectly representative of climatic changes than concentrations.

However there are some results that are worth mention-
ing. For example, Lovejoy and Schertzer (2012) performed a
numerical analysis of the uncertainties in first- and second-5

order exponent estimates obtained from Haar fluctuations of

a universal multifractal model with C1 = 0.1 and a range of
values of H (close to the value found here; see Figs. 9, 12).
When the scaling ranges covered factors of about 1000, they
found only a small bias (≈ 0.02) in estimates of H and a 10

comparable uncertainty. However, in practice – such as the
estimates here – the main source of uncertainty is the sub-
jective choice of the scaling range itself: Fig. 9 shows that
values of slopes depend on the region over which trends are
fit, hence the straight reference lines. 15

Finally, for the problem of estimating probability tail ex-
ponents (qD; Fig. 6a, b), Clauset et al. (2009) found that the
maximum likelihood method is optimal. However, they as-
sumed that the range over which the power tail was valid was
pre-determined. The real difficulty in Fig. 6a and b is that one 20

must make an initial subjective choice about the exact range
over which the exponent is estimated; using sophisticated es-
timators does not seem warranted.

3.4 Phases

Scaling is a statistical symmetry, a consequence of a time 25

and space scaling symmetry of the underlying dynamics. Be-
ing statistical means that on average the statistics at small,
medium and large scales are the same in some way (more
precisely, it holds over a statistical ensemble). The difficulty
is that on a single realization – such as that available here, 30

i.e. a single core from a single planet earth – the symmetry
will necessarily be broken. For example, in the spectrum in
Fig. 4, in each of the proposed scaling regimes, scaling only
predicts that the actual spectrum from this single core will
vary about the indicated straight lines that represent the en- 35

semble behaviour. Since this variability is strong, we made
the potential scaling regimes more obvious by either averag-
ing the spectrum over frequency bins (the red and blue spec-
tra) or by breaking the series into shorter parts and averaging
the spectra over all the parts, effectively treating each seg- 40

ment as a separate realization of a single process (green). In
any event, all that any empirical analysis can show is that the
data are consistent with the scaling hypothesis.

This already illustrates the general problem: in order to
obtain robust statistics we need to average over numerous re- 45

alizations, and since here we have a single series, the best
we can do is to break the series into disjointed segments and
average the statistics over them, assuming that the major un-
derlying processes were constant over the last 800 000 years.
Yet at the same time, in order to see the wide-range scal- 50

ing picture (which also helps to more accurately estimate
the scaling properties or exponents), we need segments that
are as long as possible. The compromise that we chose be-
tween numerous short segments and a small number of long
ones was to break the series into eight glacial–interglacial 55

cycles and each cycle into eight successive phases. As a first
approximation, we defined eight successive 100 kyr periods
(hereafter called “segments”; Fig. 7a), corresponding fairly
closely to the main periodicity of the series. As we discussed,
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the spectral peak is broad implying that the duration of each
cycle is variable – the cycles are only “quasi-periodic”. It is
therefore of interest to consider an additional somewhat flex-
ible definition of cycles as the period from one interglacial
to the next (hereafter called “cycle”; Fig. 7b). The break5

points were taken at interglacial optima: 0.4, 128.5, 243.5,
336, 407.5, 490, 614, 700, and 789 kyr BP, i.e. 96.9±18.7 kyr
per cycle. Using the latter definition, the cycles were non-
dimensionalized so that non-dimensional time was defined as
the fraction of the cycle, effectively stretching or compress-10

ing the cycles by ±19 %.
With either of these definitions, we have eight segments

or cycles, each with eight phases. Note that in our nomen-
clature, phases 1 and 8 are the youngest and oldest phases
respectively and that time flows from phase 8 to phase 1. Fig-15

ure 8 shows the phase-by-phase information summarized by
the average flux over each cycle including the dispersion of
each cycle about the mean (for the segments in panel a and
the cycles in panel b). We see that the variability is highest in
the middle of a cycle and lowest at the ends.20

The spectra showed that there were wide-scale ranges that
are on average scale–invariant power laws, and Fig. 4 quan-
tifies the glacial–interglacial cycleCE5 . We are thus inter-
ested in characterizing the scaling properties over the differ-
ent phases of the cycle; for this we turn to real-space statis-25

tics. In Fig. 9 we compare the statistics averaged over cycles
and the statistics averaged over phases. The figure shows that
the phase-to-phase differences are much more important than
the cycle-to-cycle differences. 〈|(1F (1t))|〉 (lower left). We
could also note that since the different cycles had quite simi-30

lar statistics (panels b and d), this implies that there is no bias
in the flux estimates with depth of the core.

From the global statistics (e.g. Figs. 4, 5), it is clear that in
each glacial–interglacial cycle there are two regimes, so that
before characterizing the structure functions by their expo-35

nents (e.g. H = ξ (1) for the mean fluctuations), we have to
determine the macroweather–climate transition timescale τc
whose average (from Figs. 4, 5) is 250–300 years.

One way of estimating the transition scale τc is to make
a bilinear fit of log10S1(1t) (i.e. Haar with q = 1, the mean40

absolute fluctuation) with the mean slopes −0.05 (small 1t)
and slope +0.35 (large 1t ; the values were chosen because
they are roughly the H estimates from the average over all
the cycles) (Fig. 9). The hypothesis here was that there were
two regimes, each characterized by a different exponent, each45

of which was estimated from the ensemble statistics. There-
fore, the analysis only needed to estimate the scale at which
the low-frequency process exceeded the high-frequency one.
Bilinear fits were made for each phase of each segment (blue)
as well as for each phase of each cycle (black). For each50

phase there were thus eight transition scales, which were
used to calculate the mean and its standard deviation (shown
here as representative black arrows). From the figure we see
that at first (phases 8–3) the transition scale is relatively short
(250–400 years) but that it rapidly moves to longer (1–2 kyr)55

scales for the final phases 2 and 1. The average transition
scale over all phases is around 300 years.

The figure shows that our results are robust since the
results are not very different using dimensional and non-
dimensional time (segments and cycles). Comparing the blue 60

and black curves, we see that in all cases the late phases have
much larger τc than the early and middle phases. Also shown
in Fig. 10 (dashed) is a plot of the break points estimated by a
more subjective method that attempts to visually determine a
break point on logS1–log1t plots. Again, we reach the same 65

conclusion with quantitatively very similar results: a transi-
tion of millennia for phases 1 and 2 and a few centuries in the
middle of the cycle. The cycle average value (τc ≈ 300 years)
is therefore not representative of the latest phases where τc
is many times larger (glacial maxima and interglacials). The 70

Holocene has an even larger transition scale (τc = 7.9 kyr,
marked by an X in Fig. 10), but it lies just outside the stan-
dard deviation of the first non-dimensional phases (red ar-
rows in Fig. 10). Although the Holocene value of τc is the
largest in phase 1, it corresponds to 1.55 standard deviations 75

above the mean with (assuming a Gaussian variability) a cor-
responding p value of 0.12, roughly the expected extreme of
a sample of eight; it is therefore not a statistical outlier.

Alternatively, rather than fixing a phase and determining
the variation in the mean fluctuation and intermittency func- 80

tion (Fig. 9), we can consider the variation in the Haar fluctu-
ations at fixed timescales and see how they vary from phase
to phase (Fig. 11). The figure shows the phase-to-phase vari-
ation in Haar fluctuations at 50, 100, 200, 400, 800, 3300,
and 7000 years scales (bottom to top; the dashed and solid 85

lines alternate to demarcate the different curves; they are not
uncertainties). Over the macroweather regime (up to about
400–800 years), the fluctuations tend to cancel so that the
variability is nearly independent of timescale. In contrast,
once we reach the longer scales in the climate regime (up to 90

7000 years), the fluctuations increase noticeably as the time
interval 1t is increased. For every timescale, there is a clear
cyclicity (left to right), with fluctuation amplitudes largest in
the middle phases. We note that the cycle-to-cycle variability
is fairly large; about a factor of 2 (for clarity the error bars 95

indicating this cycle-to-cycle spread were not shown).
Finally, we describe for each phase the drift tendency and

the intermittency as well as fluctuation amplitude and ex-
tremeness of the data. In Fig. 12 we show the result on
the non-dimensional phases of the range 500 years<1t < 100

3000 years (panels a and bCE6 ; the range was chosen to be
mostly in the climate regime, i.e. with 1t > τc, and it was
fixed so as to avoid any uncertainty associated with the al-
gorithm used to estimate τc). Recall that the fluctuation ex-
ponent H > 0 quantifies the rate at which the average fluc- 105

tuations increase with timescale. Similarly, the exponent C1
characterizes the rate at which the spikiness near the mean
(the intermittency exponent) increases with scale. We see
(panel a) that H is fairly high in the early phases with H
reaching small value in the later phases (with H actually a 110

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

www.clim-past.net/15/1/2019/ Clim. Past, 15, 1–19, 2019



12 S. Lovejoy and F. Lambert:

Figure 7. Panel (a): successive segments of theoretical 100 kyr long glacial cycles using usual (dimensional) time (present to past: bottom
to top, the segment number is at the far right) with the 12.5 kyr phases indicated by vertical dashed lines. The short red lines indicate the
interglacial dust minima. Each glacial–interglacial cycle is shifted by 25 units in the vertical for clarity. The red markers in (a) are mapped
to the first dashed blue line in (b). Panel (b): successive cycles using non-dimensional time (interglacial to interglacial) and then shifted by
one phase to better line up with the usual time segments (the left-most phase of the bottom line of (b) is zeroed). The average (nominal)
resolution is 25 years. The interglacial dust minima were taken as 128.5, 243.5, 336, 407.5, 490, 614, 700, and 789 kyr BP, and the data start at
373 yr BP. Each cycle is shifted by 25 units in the vertical for clarity. The data older than 789 kyr BP were not used in these non-dimensional
cycles.

little bit negative on average in phase 1 due to the large τc
value). C1, on the other hand (panel b), decreases a bit in the
middle the phases. The error bars show that there is quite a
lot of cycle-to-cycle variability.

If H quantifies the “drift” and C1 the “spikiness”, then5

Fig. 12 shows that the early phases have high drift and
medium spikiness, and the middle phases have high drift and
lower spikiness, while phases 1–2 have low drift but medium
spikiness. To understand this better, consider the transition
timescales in Fig. 10. The youngest two phases with the low10

drift and spikiness are also the phase with the longest tran-
sition scales. This means that the rate at which the variabil-
ity builds up is small and that it only builds up over a short
range of scales (from τc to roughly1t = 50 kyr – the half cy-
cle duration; this can be checked in Fig. 9, which shows the15

phase-by-phase structure functions and intermittency func-
tions). Conversely, phases 3 and 4 with high drift and high
intermittency also have a smaller τc so that both the fluctua-
tions and spikiness build up faster (Fig. 11) and over a wider
range of scales (Fig. 10).20

Another useful characterization of the phases is to directly
consider the flux variability at a fixed reference scale, taken
here as the 25-year resolution; quantifying the amplitude of

the variability of each segment by its standard deviation A
at 25-year timescale (Fig. 12c). This is not the difference be- 25

tween neighbouring values or fluctuations (as in Fig. 11), it
is rather the variability of the series itself at a 25-year reso-
lution. For each of the phases, we have eight estimates (one
from each cycle); these are used to calculate the mean (cen-
tral solid line) and standard deviation shown by the error bars 30

showing the cycle-to-cycle dispersion of the values. We can
see that the amplitude of the 25-year-scale fluctuations is
about 4 times higher in the middle of the ice age (phase 4)
than at the interglacial (phase 1). The figure clearly shows
the strong change in variability across the cycle. 35

WhereasC1 characterizes the intermittency near the mean,
we have seen that the probability exponent qD characterizes
the extreme spikiness. An extreme (low) exponent qD phase
implies that most of the time the changes in flux are small, but
occasionally there are huge transitions. Conversely, a high 40

(less extreme) qD implies that there is a wider range of differ-
ent flux changes so that most of the changes tend to be in a re-
stricted range. Figure 12d compares qD phase by phase. If the
value of qD is smaller, the extreme fluctuations are more and
more extreme relative to the typical ones. Therefore, from 45

the figure, we see that the extremes are stronger in the be-

Clim. Past, 15, 1–19, 2019 www.clim-past.net/15/1/2019/



S. Lovejoy and F. Lambert: 13

Figure 8. Panel (a): averaging over the eight cycles at a 25-year resolution, we get the above picture: the mean is brown and the 1 standard
deviation cycle-to-cycle variability is shown in red. The dashed vertical lines give a further division into 8× 12.5 kyr segments, the eight
“phases” of the cycle. Panel (b): the same but for the non-dimensional time. The relative position of the interglacial minimum at the first
dashed line is indicated.

ginning and end of the cycle and somewhat less pronounced
in the middle phases of the cycle (note that the overall mean
is 2.62± 0.42; this can be compared to the value qD = 3.60
for the overall log-transformed data; Fig. 6b). Notice that for
phase 8, qD = 2.03; this is close to the value qD = 2, below5

which the extremes are so strong that the variance (and hence
spectrum) does not converge. Summarizing, we can now cat-
egorize the phase-by-phase spikiness as strong extremes and
medium spikiness (phases 1, 2, 8) and intermediate extremes
and low spikiness (phases 3–7). For the cycle-to-cycle es-10

timates (not shown), the value qD = 2.75± 0.41 seems to
be fairly representative of all the cycles, although there is
a slight tendency for qD to decrease for the older cycles im-
plying that they may have been a bit more extreme than the
recent ones.15

4 Discussion

An attractive aspect of dust fluxes is that they are paleo-
indicators with unparalleled resolutions over huge ranges of
temporal scales. However, they come with two difficulties.
First, their dynamical interpretation is not unambiguous: they20

depend on temperature, wind, and precipitation; dust flux
variability is hard to attribute to a specific process, and it
is a holistic climate indicator. Second, their appearance as
a sequence of strong spikes is unlike that of any of the fa-

miliar proxies. Indeed, we argue that their highly spiky (in- 25

termittent) nature (i.e. with C1 > 0) is outside the purview
of conventional statistical frameworks including autoregres-
sive, moving average, or more generally quasi-Gaussian or
even quasi-log-Gaussian processes.

Due to the dominance of the continuum (spectral back- 30

ground) variability, physical interpretations must be based
on an understanding of climate variability as a function of
scale. We first consider overall analyses over the whole dust
flux series and then focus on the phases. The spectral anal-
ysis (Fig. 4) is the most familiar, and for the dust fluxes, it 35

is qualitatively similar to previous results obtained with tem-
perature data, although temperature spectra with anything ap-
proaching the resolution of Fig. 4 are only possible over the
most recent glacial cycle. The most striking spectral feature
is the peak over the background at 100 kyr periodicity. The 40

broadness of this peak already indicates the irregularity of
the Earth system response to the eccentricity-forced orbital
cycles. The (near-) absence of obliquity frequencies at 41 kyr
is notable and is consistent with the corresponding analysis
of paleotemperatures. Although there is definitely power in 45

that frequency range, it is barely larger than the background
continuum, suggesting a low response to that forcing. Finally,
our high-resolution data allow us to discern two different
power law regimes: one at low frequencies with an exponent
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Figure 9. Panels (a, b) show the intermittency function G(1t) (whose slope on the log–log plot is C1), and panels (c, d) show the mean
absolute Haar fluctuation S1(1t) (whose slope on the log–log plot is H ); (a, c) show the result for each phase after averaging over the eight
cycles with the numbers next to each line indicate=ing the phase number (each colour corresponds to the same number); (b, d) show the
result for each cycle after averaging over the phases. Here, the same colours and numbers correspond to the cycle number; shown are only
cycles 1, 4, and 8 to avoid clutter. Whereas each cycle is fairly similar to every other cycle (the (b, d)), each phase is quite different ((a, c)).
We see that the most significant difference is the fluctuation amplitude as a function of phase ((c)).

β = 1.7 and one at high frequencies with exponent β = 0.8,
with the transition between the two at around 300 years.

In Sect. 2.3, we discussed some of the difficulties inherent
in interpreting spectra and showed that the exponent of the
integrated spectrum β − 1 is more directly relevant than β5

(ignoring intermittency, this is the same as the wandering or
cancelling criterion H > 0 or H < 0). Applying this under-
standing to the dust exponents, we see that in macroweather,
there is a weak high-frequency dominance (1−β ≈ 0.2> 0),
whereas the climate regime is dominated by low frequen-10

cies (1−β ≈−0.7< 0). A plausible physical explanation
is that over long periods of time (at climate regime scales),
the amount of dust in the SHCE7 atmosphere is driven by
changes in glacier and vegetation coverage, which is itself
forced by SH temperature change. There is therefore a very15

strong correlation between dust and temperature at climatic
scales (Lambert et al., 2008). At higher (macroweather) fre-
quencies, temperature oscillations are too fast to overcome
the inertia of ice sheet and vegetation responses; dust and
temperature correlations are very low. Instead, dust deposi-20

tion in Antarctica will be more sensitive to temporary atmo-
spheric disturbances in the winds and the hydrological cycle.

To interpret the analysis by the phase of the dust record
(Fig. 12), one must understand the significance of A and of
the exponents H , C1, and qD in the context of dust deposi-25

tion. TheH exponent and the amplitudeA are directly linked
to mean fluctuations and values, A being the standard devi-
ation (〈F 2

〉
1/2) of the dust flux variability at a fixed (here,

25-year) timescale, whereas H determines the rate at which
the flux fluctuations ((〈1F (1t)2

〉
1/2)) change with timescale 30

1t . We saw that a positive H exponent signifies a tendency
to drift, whereas when H < 0, the dust fluctuations tend to
cancel each other out and the record will cluster around a
mean value. In contrast, H > 0 indicates that the dust fluxes
will not cluster around a mean value; in essence, the pro- 35

cess wanders and does not stay constant; it appears to be
unstable. The low H numbers during phases 1 and 2 (inter-
glacial and glacial maxima) indicate a very constant, stable
climatic state, with Patagonian dust production being either
very low during interglacials (low glacier activity, large veg- 40

etation cover) or very high (Patagonian ice cap fully grown,
large outwash plains on the Argentinian side). In contrast, the
high H and amplitude A values during the mid-glacial may
have been due to strong variability in glacier extent during
that time (García et al., 2018; Sugden et al., 2009) and there- 45

fore a very variable dust supply (see also Fig. 11 that shows
how the amplitude of the fluctuations at different timescales
varies with the phase). The glacial inception (phases 7 and 8)
features low A but a high H exponent. This implies that the
mean dust level was highly variable, but the dust supply was 50
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Figure 10. The transition scale τc estimated in two ways for each
of the eight phases and from two definitions of the phases. The first
method (solid lines) used a bilinear fit to the (logarithm) of the Haar
q = 1 structure function (i.e. mean absolute fluctuation) as a func-
tion of log time lag 1t . To obtain robust results, a small 1t region
with the slope −0.05 and a large1t slope+0.25 was imposed with
the transition point (τc) determined by regression. This was done
for each segment and cycle. For each phase there were thus eight
transition scales, which were used to calculate the mean of the loga-
rithm of τc and its standard deviation. Results are shown for dimen-
sional (segments, blue) and non-dimensional time (cycles, black).
The second method used to estimate τc was graphical and relied on
a somewhat subjective fitting of scaling regimes and transitions, but
without imposing small and large 1t slopes (exponents H ). The
results are shown in dashed lines; they are quite similar, although
we can note some differences for the first phase (dimensional, blue)
and the middle phases (non-dimensional, black). There is also con-
siderable cycle-to-cycle spread that was quantified by the standard
deviations. In order to avoid clutter, typical spreads are shown by the
double headed black arrows. Dashed horizontal lines show the en-
semble mean transition scale (about 250 years) as well as ensemble
mean for phases 1 and 2 (around 2 kyr), which stands out compared
to the rest of the phases. The red arrow shows 1 standard deviation
for the non-dimensional first phases, while the X marks the value of
the Holocene τc (7.9 kyr) just outside the 1σ limit.

still low, thus not allowing for large amplitude fluctuations.
The higher amplitudes in phases 6 and 7 indicate that dust
supply became abundant then. Since the Argentinian conti-
nental shelf was still submerged at that moment and the out-
wash plains not yet fully extended, the higher dust emissions5

may have been due to a transformation in vegetation cover
about 30 kyr after glacial inception, possibly accompanied
by changes in glacial and periglacial processes in the Andes.

The exponents C1 and qD are associated with the inter-
mittency or spikiness of the data. C1 is a measure of the10

sparseness (or degree of clustering) of the mean-level spikes
(i.e. whose amplitudes contribute most to the mean spike
level). It is equal to one minus the fractal dimension of
the set of spikes that exceed the mean level (D1 = 1−C1).
qD characterizes how extreme the most extreme spike val-15

ues are. The dust flux record is generally more intermittent

Figure 11. Using non-dimensional time, the amplitude of the Haar
fluctuations are averaged over all the cycles The curves from bottom
to top are for timescales of1t = 50, 100, 200, 400, 800, 1600, 3500,
and 7000 years, alternating solid and dashed lines (for clarity, only
some of the 1t’s are marked). The cycle-to-cycle variability (the
dispersion around each line) is about a factor of 2 (it is not shown
to avoid clutter).

Figure 12. The fluctuation and intermittency exponents H and C1
((a, b)) are estimated over the range 500–3000 years, as a function
phase with the standard deviations from the cycle-to-cycle variabil-
ity (all using non-dimensional time). Panel (a) (H ) shows low drift
in phases 1 and 2 but becomes driftier in the middle and older
phases. The intermittency (C1, (b)) is moderate at the beginning
and end of the cycles and a little weaker in the middle. Panel (c)
shows the amplitude of the fluctuations at 25 years determined by
the standard deviation of the dust flux (units: milligrams per square
metre per year). We see that the flux has low amplitude fluctuations
at the beginning and end of the cycles and 3–4 times higher am-
plitude fluctuations in the middle. Panel (d) shows the probability
exponent qD estimated from the 25-year resolution data for each
phase; the extreme 5 % of the flux changes were used to determine
the exponent in each phase; the cycle-to-cycle spread is indicated by
the error bars (overall average over the phases: qD = 2.62± 0.42).

www.clim-past.net/15/1/2019/ Clim. Past, 15, 1–19, 2019
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(with sparser, more clustered spikes, larger C1) in phases 8,
1, and 2 (glacial inception, interglacial, glacial maximum)
than in the mid-glacial, with also more extreme spike val-
ues (lower qD). These power law fluctuations implied by the
low values of qD are so large that according to the classi-5

cal assumptions, they would be outliers. While Gaussians are
mathematically convenient and can be justified when dealing
with measurement errors, in atmospheric science thanks to
scaling, non-linear dynamics, very few processes are Gaus-
sian. This has important applications in tipping point analy-10

sis, where noise-induced tipping points are generally studied
using well-behaved white or Gaussian noise (e.g. Dakos et
al., 2012).

The exponents characterize the variability of the dust sig-
nal over a wide range of scales. To understand the two scal-15

ing regimes, it may be helpful to recall that the ice core dust
signal depends on both the variability of the dust source and
that of the overall climate system. For example, a spike in
the dust source and a fast change in the system state (e.g.
Dansgaard–Oeschger – DO – events in the NH) could both20

produce a similar signal. However, fast changes in system
state – such as the DO events in the NH – apparently do not
occur in the SH where the corresponding signals are more
triangular and gradual in shape. High-frequency variations
in dust deposition (at scales in the macroweather regime) are25

thus likely to be dominated by dust source dynamics rather
than ice sheet changes that have generally larger reaction
times. One hypothesis is that the transition timescale τc is the
scale at which the source variability that decreases with scale
(H < 0) becomes less than the system variability that in-30

creases with scale (H > 0). The macroweather variability is
therefore likely dominated by vegetation and/or atmospheric
changes. Large-scale natural fires could alter the landscape in
a very short time, allowing for more dust uptake by the winds
and a sudden rise in atmospheric dust. The recuperation of35

vegetation cover would be more gradual, though, resulting in
a sawtooth shape of the dust spike that we do not observe in
the data. Similarly, it has been suggested that rapid climate
change in the Northern Hemisphere (e.g. DO events) would
have synchronously changed the Southern Hemisphere at-40

mospheric circulation and wind belts (Buizert et al., 2018;
Markle et al., 2017). This could again have quickly changed
the source or transport conditions but would again have re-
sulted in a sawtooth-shaped peak, either by steady regrowth
of vegetation in the dust source areas or as climate condi-45

tions in the north Atlantic gradually return to stadial (Pedro
et al., 2018).

Finally, we could mention volcanoes. Volcano eruptions
usually saturated the dust-measuring device and were mostly
cut from the record. Using the sulfate record to identify erup-50

tions is tricky because many large sulfate peaks do not have a
corresponding dust peak. This means that even if you do have
matching dust and sulfate peaks, it could be an eruption or a
coincidence. Therefore, the influence of volcanic variability
on the results cannot be completely eliminated, although our55

key results are fairly robust with respect to the phase of the
cycle and are therefore unlikely to be influenced by volcanic
eruptions.

Although the spikes occur at all scales (see Fig. 3), the
most likely explanation for the (shorter) macroweather-scale 60

dust spikes is disturbances in the atmosphere, involving ei-
ther the winds or the hydrological cycle (or both at the same
time). The obvious candidate for a perturbation that would
lead to increased dust in the atmosphere is drought. We will
therefore interpret macroweather dust spikes as multiannual 65

to multidecadal or multicentennial drought events in south-
ern South America. With this interpretation, we can con-
clude that glacial maxima, interglacials, and glacial incep-
tions were characterized by more frequent and more severe
drought events than during the mid-glacial. During glacial 70

maxima, such extreme dust events could have contributed
to Southern Hemisphere deglaciation by significantly low-
ering ice sheet albedo at the beginning of the termina-
tion (Ganopolski and Calov, 2011). In contrast, more fre-
quent dust events could have contributed to glacial inception 75

through negative radiative forcing of the atmosphere.

5 Conclusions

Until now, a systematic comparison of the different glacial–
interglacial cycles has been hindered by a limitation of the
most common paleoclimate indicators – the low resolution 80

of Pleistocene temperature reconstructions from ice or ma-
rine sediment cores. Due to this intrinsic characteristic, the
older cycles are poorly discerned; we gave the example of
EPICA paleotemperatures whose resolution in the most re-
cent cycle was 25 times higher than the resolution in the 85

oldest one. In this paper, we therefore took advantage of the
unique EPICA Dome C dust flux dataset with 1 cm resolution
measuring 320 000 cm, whose worst time resolution over the
whole core is 25 years.

Dust fluxes are challenging not only because of their high 90

resolutions, but also because of their unusually high spiki-
ness (intermittency) and their extreme transitions that occur
over huge ranges of timescales. Standard statistical method-
ologies are inappropriate for analysing such data. They typ-
ically assume exponential decorrelations (e.g. autoregressive 95

or moving average processes) that have variability confined
to narrow ranges of scale. In addition, they assume that the
variability is quasi-Gaussian or at least that it can be reduced
to quasi-Gaussian through a simple transformation of vari-
ables (e.g. by taking logarithms). In this paper, using stan- 100

dard spectral and probability distribution analysis, we show
that both the spectral and the probability tails were power
laws, not exponential and requiring nonstandard approaches.

The high resolution of the data allowed us to not only
quantitatively compare glacial–interglacial cycles with each 105

other, but also to subdivide each cycle into eight successive
phases that could also be compared to one another. One of
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the key findings was that there was a great deal of statistical
similarity between the different cycles and that within each
cycle there were systematic variations in the statistical prop-
erties with phase. These conclusions would not have been
possible with the corresponding much lower-resolution tem-5

perature proxy data.
Our variability analysis using real-space (Haar) fluctua-

tions confirmed that the majority of the variability was in the
macroweather and climate scaling regime backgrounds with
an average transition scale τc of about 300 years. In the cli-10

mate regime (timescales above τc), dust variability is more
affected by long-term hemispheric-wide climate changes af-
fecting slow-response subsystems like glaciers and vegeta-
tion, which explains the high correlation of dust and tem-
perature at these scales. In contrast, dust variability in the15

macroweather regime (timescales below τc) would have been
more influenced by short-term atmospheric perturbations
such as droughts and precipitation minima.

Using various techniques, τc was found to be systemati-
cally larger in the youngest two phases than in the middle20

and oldest phases; about 2 kyr but with nearly a factor of 4
cycle-to-cycle spread and equal to 300 years (with a factor of
2 spread) for the six remaining phases. For the Holocene, τc
was found to be 7.9 kyr, which makes it an exceptionally sta-
ble interglacial, but not a statistical outlier compared to other25

interglacials. Similarly, the typical (rms) variation in flux am-
plitude was smaller in the early phase increases by (on aver-
age) a factor of 4 from ±0.13 to about ±0.5 mg m−2 yr−1

in the middle and later phases. The Holocene (with an am-
plitude of ±0.08 mg m−2 yr−1) was again particularly stable30

with respect to the phase 1 of other cycles, but it was not an
outlier.

We addressed the task of statistically characterizing the cy-
cles by primarily characterizing the phases’ variability expo-
nents H , C1, qD, and amplitude A. We show that the atmo-35

sphere was relatively stable during glacial maxima and in-
terglacials, but highly variable during glacial inception and
mid-glacial. However, the low amplitude of dust variability
during glacial inceptions indicates that vegetation cover and
dust production processes did not significantly change until40

∼ 30 kyr after glacial inception.
We interpret the intermittency indicators as suggesting a

higher frequency of drought events and more severe droughts
during glacial inception, interglacials, and glacial maxima
than during mid-glacial conditions. These short-term spikes45

in atmospheric dust could have helped trigger Southern
Hemisphere deglaciation through albedo feedback of ice
sheet surfaces or glacial inception through negative radiative
forcing.

The results presented in this paper are largely empirical50

characterizations of a relatively less known source of cli-
mate data: dust fluxes. Dust flux statistics defy standard mod-
els: they require new analysis techniques and better physical
models for their explanation. These reasons explain why our
results may appear to be rough and approximate. Readers55

may nevertheless wonder why we did not provide standard
uncertainty estimates. But meaningful uncertainties can only
be made with respect to a theory and we have become used to
theories that are deterministic, whose uncertainty is paramet-
ric and that arises from measurement error. The present case 60

is quite different: our basic theoretical framework is rather a
stochastic one; it implicitly involves a stochastic “earth pro-
cess” that produces an infinite number of statistically iden-
tical planet earths of which we only have access to a single
ensemble member. Unfortunately, we do not yet have a good 65

stochastic process model from which we can infer sampling
errors and uncertainties. In addition, from this single realiza-
tion, we neglected measurement errors and estimated various
exponents that characterized the statistical variability over
wide ranges of timescale, realizing that the exponents them- 70

selves are statistically variable from one realization to the
next. In place of an uncertainty analysis, we therefore quan-
tified the spread of the exponents (which themselves quantify
variability). In the absence of a precise stochastic model we
cannot do much better. 75

This paper is an early attempt to understand this unique
very high-resolution dataset. In future work, we will extend
our methodology to the EPICA paleotemperatures and to the
scale-by-scale statistical relationship between the latter and
the dust fluxes. 80
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