
Editor 

Dear Dr Lovejoy, 

 

I read the comments of the experts after the second run of review. Although most of the critical point 

raised have been clarified in your review version, I agree that there is still a number of concern to be 

dealt with before that the MS can be published in Climate of the Past. I think that the question raised by 

one of the reviewer and about the dust flux measurement is quite relevant and I strongly appreciate if 

you can improve the MS in this sense.  

 

Overall the MS reads well, it is now much clearer, and your arguments are more easily followed and 

especially the description of the results and the discussion.  

 

I look forward to see the re-revised version of the MS. 

 

Best wishes, 

Carlo Barbante 

 

Michel Crucifix 

The authors have addressed all comments point-by-point. Results are significant and the study should 

be published. I am still left with a couple of comments, all are mostly editorial comments, or at least, can 

be addressed with adequate edition.  

 

p.2: "indicating that the new long frequency processes become dominant". Not clear what is the "new" 

long-frequency process (in what sense is it 'new' and does it 'become' dominant". Perhaps be more 

explicit about what understood as of anthropogenic origin? 

Authors: 

The word “new was perhaps unfortunate, what was meant was “different” from the higher frequency 

processes, we now added: “that were too weak to be important at higher frequencies” to make this 

even more clear.  It is now stated “In the last century, anthropogenically forced temperature changes 

(mostly from greenhouse gases) dominate the natural (internal, macroweather) variability at scales 

longer than about about 10- 20 years”   

 

 

p.4 ("respect the scale symmetry") and p.11 ("Scaling is a statistical symmetry"). Turbulence theory (as, 

among others, given in the Lovevoy / Schertzer book, ch. 2) tell us how symmetry causes scaling, but the 

article here misses a proper definition of what is a "scale symmetry", or in what sense "scaling is a 

statistical symmetry". Isn’t it more accurate to state that "(statistical) scaling is a consequence of 

(physical) symmetry"?  

 

Authors: 



We were trying to make the point about scaling symmetries being broken on each realization, only 

holding exactly on an infinite ensemble.  We have now modified the opening sentences of section 3.4 to 

read:  

“Scaling is a statistical symmetry, a consequence of a time and space scaling symmetry of the 

underlying dynamics.  Being statistical means that on average the statistics at small, medium and 

large scales are the same in some way (more precisely, it holds over a statistical ensemble).” 

 

p.8 : "that may not globally be the case" : be more accurate or explicit : "although this may not be the 

case everywhere".  

 

Authors:  We improved the sentence accordingly. 

 

p. 11, l. 3: "in dimensional or nondimensional time that statistical" -> "in dimensional or nondimensional 

time, statistical"  

 

Authors: fixed 

 

p. 10, l. 12: remove second occurrence of "clearly" 

 

Authors: fixed 

 

p. 16, l. 32: "thanks to the scaling, very few processes are Gaussian". Deterministic theory is very at ease 

with explaining non-Gaussian fluctuations without resorting to scaling arguments. The Lorenz 63 system 

maps Gaussian-distributed initial conditions onto a non-Gaussian distribution of final states. 

 

Authors: Yes, we added : ” nonlinear dynamics” 

 

p. 20, ll. 17- 24 : This author response to my earlier comment left me a bit unsatisfied. It is commonplace 

in statistics to provide estimators and estimator variances for stochastic processes, a problem which can 

generally be addressed with either a frequentist or a Bayesian framework. Perhaps the most 

straightforward and classical example is the estimation of the mean of a random process, but other 

trivial and less trivial examples include the problem of estimating the coefficients of an auto-regressive 

processes, spectrum estimation, parameter estimation of non-linear stochastic dynamical systems.... So 

if I understand correctly the author's problem is the lack of a reasonable 'generic stochastic process' 

model, which they could derive a distribution from. This seems rather different than the objection they 

raise, which they claim is related to the problem of having a single draw from a stochastic process. 

Authors:  Yes, of course both points are pertinent, and we do discuss your point.   

We added the sentence “.  Unfortunately, we do not yet have a good stochastic process model from 

which we can infer sampling errors.  ” 



We have also added earlier in the text some references to some of the limited uncertainty results that 

are available for various exponents. 

 

Reviewer 3 

General remarks and major comments: 

 

Overall, the Authors have greatly improved the presented manuscript in the second version. It is now 

much clearer, and the arguments of the Authors are more easily followed and especially the description 

of the results and their discussion has won a lot. However, before the publication of the paper there are 

a few more issues that should be addressed. Especially the second one is still major in my view.  

 

The Authors always refer to “dust flux measurements” multiple times throughout the manuscript. Even 

though this might be a small detail, I think it is misleading as the dust flux is not directly measurable but 

a derived quantity that incorporates both measurements of dust concentrations as well as (model) 

inferred accumulation rates. Even worse, the dust flux data used here is the result of a combination of a 

range of different dust and dust proxy measurements. I suggest the authors reformulate for example to 

dust flux data, record or reconstruction. 

Authors: Corrected throughout the manuscript 

 

Thank you for adding the description and discussion of the data set that was employed in section 2.4 of 

the paper. One major thing, however, is still missing: The dust flux reconstruction uses 55 cm resolution 

accumulation rate reconstructions that are based on the empirical conversion of deuterium isotopic 

ratios of the water to accumulation rates. For analysis of variability beyond the resolution of 55 cm this 

poses a serious issue: Any variability beyond the resolution of the accumulation rate reconstruction is 

purely a result of the variability of the dust concentration in the ice. In turn this means that if the 

variability of the dust flux is interpreted one interprets different records at different time scales, i.e. 

fluxes at scales >55 cm and concentrations at scales <55 cm. Especially due to the fact that the time 

scales represented by these depth resolutions changes with depth in the core the effect on the 

fluctuation analysis is not entirely obvious and likely not straight forward. 

The authors should thoroughly test the effect of this on their results and clearly discuss the effect in the 

paper. 

Authors: There are two issues here, one being the contribution of the accumulation rate to the variability, 

and the other is the different effect at various depths due to ice layer thinning. In the following figure we 

have plotted in blue the Haar fluctuation for both Ca and nssCa concentrations (multiplied with a 

constant mean accumulation rate for the units to match). In black we have the dust fluxes (thick line is 

the complete record, dashed and dotted lines are specific cycles as indicated). We can see that the effect 

of the lower resolution accumulation rate is a slightly less steep gradient in the dust flux than the calcium 

concentrations, which indeed adds to the uncertainty of our exponents, although we now run into the 

question of representativeness of calcium as a dust proxy. We have added the phrase “We note, however, 

that the dust flux used here is a construct of concentrations at 1cm resolution and accumulation rates at 

55 cm resolution that were linearly interpolated to match the dust concentration resolution.” in chapter 

2.4, and the sentences “We should also mention that the use of fluxes (produce of 1cm concentrations 



and 55cm accumulation rate) introduces an additional source of uncertainty due to the different time 

ranges contained in these sections at various depths. However, we prefer using the fluxes because they 

are more directly representative of climatic changes than concentrations.” In chapter 3.3 to mention this. 

Since our main results are not impacted, we don’t think an in-depth analysis is warranted at this point.  

 

 

The interpretation of our results at various depths due to the varying resolution of the record is already 

implicitly included in Figure 9, although it was not discussed. We have now added some cycle numbers in 

the right-hand panels (cycles) and added the sentence “.  Here, the same colours and numbers 

correspond to the cycle number, shown are only cycles 1, 4, 8 are indicated to avoid clutter.” The point 

here is that if there was an effect with depth, the lines for the cycles would be ordered, from first to last 

or vice-versa. Since the cycles are quite randomly distributed, we can be sure there is no effect due to the 

depth of the cycle within the ice core. We added the sentence “We could also note that since the 

different cycles had quite similar statistics (the right hand column), that this implies that there is no bias 

in the flux estimates with depth of the core.” in the main text discussing this figure. 

 

The discussion of the uncertainties related to the analysis that was added to the conclusions is better 



placed in the discussion, in my opinion. Furthermore, I feel that the “we live in a single realization” 

argument is a little bit of an easy answer to the concerns raised in the first round of reviews. I will leave 

it up to the editor, whether a more thorough uncertainty analysis using i.e. simulations needs to be 

added or if the presented argument is sufficient. 

Authors: See our answer to a similar comment by Michel Crucifix 

 

Minor comments: 

 

P2L25ff: In the added explanation of the macroweather-climate transition scale, the authors elude twice 

to “new long frequency processes” and “new, slow internal sources of variability” without going into 

much more detail in the remainder of the paper. I suggest to either at least clearly hypothesize and 

discuss the nature of these “new” processes and sources of variability or remove the “new” from each 

of the sentences. 

Authors: See our response to same remark by Michel Crucifix 

 

P14L26ff: Where do you show the change in correlation, is the reference missing or is this planned in a 

future publication? 

Authors: Indeed, that is a figure from our next publication. Since it’s still in prep we have deleted this 

sentence from the text. 

 

P16L31ff: The whole paragraph about DO-events is repeated from above, I assume this is an editing 

error. 

Authors: Fixed 
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Abstract.  

Atmospheric variability as a function of scale has been divided in various dynamical regimes with alternating 10 

increasing and decreasing fluctuations: weather, macroweather, climate, macroclimate, megaclimate. Although a vast 

amount of data is available at  small scales, the larger picture is not well constrained due to the scarcity and low resolution of 

long paleoclimat ic time-series. Using statistical techniques originally developed for the study of turbulence, we analyse the 

fluctuations of a centimetric resolution dust flux time-series from the EPICA Dome C ice-core in Antarctica that spans the 

past 800,000 years. The temporal resolution ranges from annual at the top of the core to  25 years at the bottom, enabling the  15 

detailed statistical analysis and comparison of eight glaciation cycles, and the subdivision of each cycle into eight 

consecutive phases. The unique span and resolution of the dataset allows us to analyze the macroweather and climate scales 

in detail. 

We find that the interglacial and glacial maximum phases of each cycle showed particularly large macroweather to 

climate transition scale c (around 2 kyrs), whereas mid -glacial phases feature centennial transition scales (average of 300 20 

yrs). This suggests that interglacials and glacial maxima are exceptionally stable when compared with the rest of a glacial 

cycle. The Holocene (with c ≈ 7.9 kyrs) had a part icularly large c but it  was not an outlier when compared  with the phase 1 

and 2 of other cycles.  

We hypothesize that dust variability at  larger (climate) scales appears to be predominantly d riven by slow changes in 

glaciers and vegetation cover, whereas at small (macroweather) scales atmospheric processes and changes in the 25 

hydrological cycles are the main drivers. 

For each phase, we quantified the drift, intermittency, amplitude, and extremeness of the variability. Phases close to 

the interglacials (1, 2, 8) show low drift, moderate intermittency, and strong extremes, while the “glacial” middle phases 3-7 

display strong drift, weak intermittency, and weaker ext remes. In other words, our results suggest that glacial maxima, 

interglacials, and glacial inceptions were characterized by relatively stable atmospheric conditions, but punctuated by 30 

frequent and severe droughts, whereas the mid-glacial climate was inherently more unstable.   
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1 Introduction 

 

Over the late Pleistocene, surface temperature variab ility is strongly modulated by insolation, both at orbital (Jouzel et 

al., 2007), and daily time scales. In between these two scales, temperature variab ility has been shown to scale according to 

power-law relationships, thus evidencing a continuum of variability at  all frequencies (Huybers and Curry, 2006). However, 5 

although a vast amount of high-resolution data exists for modern conditions, our knowledge of climatic variability at g lacial-

interglacial time scales is usually limited by the lower resolution of paleoclimatic arch ive records, thus restricting high 

frequency analyses during older time sections. Previous analyses using marine and terrestrial temperature proxies from both 

hemispheres suggest a generally stormier and more variable atmosphere during glacial t imes  than during interglacials  

(Ditlevsen et al., 1996; Rehfeld et al., 2018). 10 

One of the difficulties in characterizing climate variability is that ice core paleo-temperature reconstructions rapidly 

lose their resolutions as we move to the bottom of the ice co lumn. Fig. 1 shows this visually fo r the EPICA Dome C 

Antarctic ice core temperature proxy (5787 measurements in all); the curve becomes noticeably smoother as we move back 

in time. In  terms of data points, the most recent 100 kyr period has more than 3000 points (≈30-year resolution) whereas the 

most ancient 100 kyr period has only 137 (≈730 year resolution). This implies that while the most recent g lacial-interglacial 15 

cycle can be perceived with reasonable detail, it is hard to compare it  quantitatively to previous cycles - or to deduce any 

general cycle characteristics.  

Fluctuation analysis  (Lovejoy, 2017; Lovejoy and Schertzer, 2013; Nilsen et al., 2016), gives a relatively simple 

picture of atmospheric temperature variability (Fig. 2). The figure shows a series of regimes each with  variab ility alternately 

increasing and decreasing with scale. From left  to right we see weather scale variability, in  which fluctuations tend to persist, 20 

building up with scale - they are unstable - increasing up to  the lifetime of planetary structures (about 10 days), fo llowed by 

a macroweather regime with fluctuations tending to cancel each other out, decreasing with scale, displaying stable 

behaviour.  In the last century, anthropogenically forced temperature changes (mostly from greenhouse gases) dominate the 

natural (internal, macroweather) variability at scales longer than about about 10- 20 years. In The figure shows that in pre-

industrial periods, the lower frequency climate reg ime starts somewhere between  100 and 1000 years  (the macroweather-25 

climate transition scale c) indicating that newdifferent long frequency processes become dominant.  The macroweather-

climate transition scale marks a change of regime where the dominant high frequency processes associated with weather 

processes (and reproduced by GCMs in control runs) gives way to a newdifferent regime where the variability is dominated 

by either the responses to external forcings or to new, slow internal sources of variability that were too weak to be important 

at higher frequencies .  Further to the right of Fig. 2, we can see the broad peak associated with the glacial cycles at about 30 

50kyrs (half the 100 kyr period) and then at very low frequencies, the megaclimate regime again shows increasing variab il ity 

with scale.  In between the climate and megaclimate reg imes, the fluctuations decrease with scale over a relatively short 

range from about 100 kyrs to 500 kyrs. However, the temperature fluctuations shown in Fig. 2 display average behavior, 
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which can potentially hide large variations from epoch to epoch. In this paper, we use a unique ly long and high-resolution 

paleo dataset to analyze the macroweather and climate scales in detail.   

We focus on the EPICA Dome C dust flux record, which has a 55 t imes h igher resolution than the deuterium record, 

including high resolution over even the oldest cycle (Lambert et al., 2012, Fig. 1). Antarctic dust fluxes are well correlated 

with temperature at orb ital frequencies (Lambert et al., 2008; Ridgwell, 2003). But the fluxes are also affected by climatic 5 

conditions at the source and during transport (Lambert  et al., 2008; Maher et al., 2010). The dust data used here can therefore 

be thought of as a more “holistic” climat ic parameter that includes not only temperature changes but describes atmospheric 

variability as a whole (including wind strength and patterns, and the hydrological cycle). 

 

2 Method 10 

In order to proceed to a further quantitative analysis of the types of statistical variability, and of the macroweather -

climate transition scale, we need to make some definitions. A commonly used way of quantifying  fluctuations  is the Fourier 

analysis. It quantifies the contribution of each frequency range to the total variance of the process. However, the 

interpretation of the spectrum is neither intuitive, nor straightforward  (section 2.3). The highly non-Gaussian spikiness – for 

both dust flux and its logarithm (e.g. Fig. 3b, c), implies strong – but stochastic - Fourier space spikes.  Indeed, (Lovejoy, 15 

2018) found that the probability distribution of spectral amplitudes can themselves be power laws. This has important 

implications for interpreting spectra, especially  those estimated from sing le series (“periodograms”): if the spectral 

amplitudes are highly non-Gaussian, then we will typically see strong spectral spikes whose origin is purely random. This 

makes it very tempting to attribute quasi-oscillatory processes to what are in fact random spectral peaks. It therefore makes 

sense to consider the real (rather than Fourier) space variability (fluctuations). The problem here is that the spectrum is a 20 

second order statistical moment (the spectrum is the Fourier t ransform of the autocorrelation function). While second order 

moments are sufficient for characterizing the variability of Gaussian processes, in the more general and usual case - 

especially with the h ighly variable dust fluxes - we need to quantify statistics of higher orders, in part icular, the higher order 

statistics that characterize the extremes. Here, we will use two simple concepts to describe variability and intermittency (o r 

spikiness) of the data.  25 

The theoretical framework that we use in this paper is that of scaling, multifrac tals, the outcome of decades of 

research attempting to understand turbulent intermittency.   Intermittent – spiky transitions – characterized by d ifferent 

scaling exponents for different statistical moments - turns out to be the generic consequence of turbulent cascade processes.   

Although the cascades are mult iplicative, the extreme probabilities generally turn out to be power laws (Mandelbrot, 1974; 

Schertzer and Lovejoy, 1987) - not log-normals (as was originally proposed by (Kolmogorov, 1962)).   The analyses are 30 

based on scaling regimes and their statistical characteristics.  Because scaling is a symmetry (in this case invariance of 

exponents under dilations in time), in  a dynamical reg ime in which two different  components - such as temperature and dust 

- are strongly coupled parts of the system, each may have different scaling properties, but both should respect the scale 

symmetry including the transition scale at which the symmetry breaks down.  Therefore, the broad conclusions of our dust 
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flux analyses – scaling regimes and their break points, stability/instability - are expected to be valid for the more usual 

climate parameters includ ing the temperature.  Although it is beyond our present scope, we will exp lore the scale by scale 

relationship between EPICA dust fluxes and temperatures in a future publication. 

 

2.1 Haar Fluctuations 5 

The basic tool we use to characterize variability in real space is the Haar fluctuation, which  is simply the absolute 

difference of the mean over the first and second halves of an interval: 

 

DF Dt( ) =
2

Dt
F ¢t( )d ¢t

t-Dt/2

t

ò -
2

Dt
F ¢t( )d ¢t

t-Dt

t-Dt/2

ò
 (1)

 

 We can characterize the fluctuations by their statistics.  For example, by analyzing the whole dataset using intervals 

of various lengths, we can thus define the variability as a function of scale (i.e. interval length).  If over a range of time 10 

scales t, there is no characteristic time, then this relationship is a power law, and the mean absolute fluctuation varies as : 

DF Dt( ) µDtH
 (2)

 

where “< >” indicates ensemble average, here an average over all the available d isjoint intervals. A positive H implies that 

the average fluctuations increase with  scale. Th is situation corresponds to unstable behavior identified  with the climate 

regime. In contrast, when H is negative, variability converges towards a mean state with increasing scale. This is the 15 

situation found in the stable macroweather regime.  Haar fluctuations are useful for the exponent range –1<H<1 which is 

valid for the dust series – and indeed for almost all geodata analyzed to date. 

More generally, we can consider other statistical moments of the fluctuations, the “generalized structure functions”, 

Sq(t):  

Sq Dt( ) = DF Dt( )
q

µDt
x q( )

 (3)

 20 

If the fluctuations are from a Gaussian process, then their exponent function is linear:(q) = qH. More generally 

however, (q) is concave and it is important to characterize th is, since the nonlinearity in (q) is due to intermittency, i.e. 

sudden, spiky transitions (for more details on Haar fluctuations and intermittency we refer to (Lovejoy and Schertzer, 2012)).  

We therefore decompose(q) into a linear and a nonlinear (convex) part K(q), with K(1)=0: 

 
x q( ) = qH-K q( )

 (4)
 25 

so that K(q) =0 for quasi-Gaussian processes.  Since the spectrum is a second order moment, the spectrum of a scaling 

process at frequency  is a power law: 

  E() ≈  
-

  (5) 

where the spectral exponent = 1+(2) = 1+2H - K(2); K(2) is therefore sometimes termed the “intermittency correction”. 
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2.2 Intermittency  

A simple way to quantify the intermittency is thus to compare the mean and Root Mean Square (RMS) Haar 

fluctuations: 

S1 Dt( ) = DF Dt( )( ) µDt
x 1( ) =DtH   (6) 5 

S2 Dt( )
1/2
= DF Dt( )( )

2
1/2

µDt
x 2( )/2 = Dt

H-K 2( )/2

 (7)

 

with ratio: 

S1 Dt( ) / S2 Dt( )
1/2
= DF Dt( ) / DF Dt( )( )

2
1/2

µDt
K 2( )/2

 (8)

 

where we estimate S(t) using all available d isjoint intervals of size t. These expressions are valid in a scaling regime. 

Since the number of disjoint  intervals decreases as t increases, so does the sample size, hence the statistics are less reliable 10 

at large t.   

For theoretical reasons (Lovejoy and Schertzer, 2013; Schertzer and Lovejoy, 1987), it turns out that the intermittency 

near the mean (q=1) is best quantified by the parameter C1 = K’(1).  Since K(1) = 0 is a basic property, it turns out that for 

log-normal multifractals, (approximately relevant here) the ratio exponent K(2)/2≈C1. 

While the mean to RMS rat io is an intuitive statistic, it does not give a direct  estimate of C1: a more accurate estimate 15 

of C1 uses the intermittency function G(t): 

𝐺(∆𝑡) =  lim
Δ𝑞 →0

 〈∆𝐹〉 [
〈ΔF1−∆𝑞 〉

〈ΔF1+∆𝑞 〉
]

1
(2∆𝑞)⁄

 ∝  ∆𝑡𝜉(1)−𝜉`(1) =  Δ𝑡𝐶1          (9) 

 

(this is exact in the limit q->0) whose exponent is C1. The intermittency exponent C1 quantifies the rate at which the 

clustering near the mean builds up as a function of the range of scales over which the dynamical processes act; it only 20 

partially quantifies the spikiness. For this, we need other exponents, in particular the exponent qD that characterizes 

the tails of the probability distributions. This is because scaling in space and/or time generically gives rise to power 

law probability distributions (Mandelbrot, 1974; Schertzer and Lovejoy, 1987). Specifically, the probability (Pr) of a 

random dust flux fluctuation F exceeding a fixed threshold s is: 

Pr DF > s( ) » s-qD ; s >>1
 (10)

 25 

Where the exponent qD characterizes the extremes, for example, qD ≈ 5 has been estimated for wind or temperature 

(Lovejoy and Schertzer, 1986) and for paleotemperatures (Lovejoy and Schertzer, 2013) whereas qD =3 for precipitation 

(Lovejoy et al., 2012).   A qualitative classification of probability distributions describes classical exponential tailed 
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distributions (such as the Gaussian) as “thin tailed”, log normal (and log-Levy) distributions as “long-tailed”, and power law 

distributions as “fat tailed”.  Whereas thin and long tailed distributions have convergence of all statistical moments, power  

distributions only have finite moments for orders q<qD.   

 

2.3 How Fluctuations help interpret spectra 5 

 

Although spectra may be familiar, their physical interpretations are nontrivial, a fact that was underscored in 

(Lovejoy, 2015).  In  a scaling regime –  a good approximation to the macroweather and climate regimes d iscussed here – the 

spectrum is a power law form (eq. 5) where the spectral exponent characterizes the spectral density. Although  tells us 

how quickly the variance changes per frequency interval, its physical significance is neither intuit ive nor obvious.  10 

Integrating the spectrum over a frequency range is already easier to understand; it is the total variance of the process 

contributed by the range.  Therefore, we already see that -1 (the exponent of the integrated spectrum) is more direct ly 

relevant than .  But  even to understand this, we need to  consider whether over a range of frequencies the process is 

dominated by either h igh or low frequencies.  For this, we can  compare the total variance contributed by neighboring 

octaves.   For a power law spectrum, the variance ratio  of one octave to its neighboring higher frequency octave is  2
1-

. 15 

From this, we see that > 1 yields a rat io 2
1-

 < 1 implying low frequency dominance whereas when < 1, we have 2
1-

 > 

1 and high frequency dominance.  

But what does low frequency or high frequency “dominance” mean physically?  For this, it is eas ier to consider the 

situation in real space using fluctuations; the simplest relevant fluctuations are the Haar fluctuations F discussed in section 

2.2 that varywith time interval t asF ≈ tH.   We saw that the exponents in real and spectral space were simply related 20 

by  = 1+2H –K(2) where K(2) > 0 due to the spikiness (intermittency).  Th is formula leads to two important conclusions.  

First, if we ignore intermittency (putting C1 = 0, hence K(2) = 0) and assume that the mean fluctuations scale with the same 

exponent as the RMS fluctuations, then H = ( - 1)/2 showing again that it  is the sign of  - 1 that is fundamental:  > 1 

implies H > 0 hence fluctuations grow with scale and the process “drifts” or “wanders”, it  is unstable.  Conversely  < 1 

implies H < 0 hence fluctuations decrease with scale and the process “cancels”, “converges”, it is “stable”.   The second 25 

conclusion is that if intermittency is strong (here we typically have C1 ≈ 0.1, K (2) ≈ 0.2), then the relationship between the 

second and first order statistical moments is a little more complex so that for example, with these values and a  ≈ 0.9 we 

would have high frequencies dominating the variance (< 1) but low frequencies dominating the mean (H > 0).   

 

2.4 Dust Flux Data 30 

The dust flux data used in this study is based on a linear combination of insoluble particles, calcium, and non -sea-salt 

calcium concentrations (Lambert et  al., 2012). Because missing-data gaps in the three original datasets were linearly 
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interpolated prior to the PCA, high frequency variability can sometimes be underestimated in short s ections that feature a 

gap in one of the three original datasets. This occurs in about 25% of all dust flux data points, although half o f those are 

concentrated in the first 760 m of the core (0-43 kaBP), when an older less reliable dust measuring device was used. Below 

760m these occurrences are evenly distributed and do not affect our analysis. Due to the sometimes slightly underestimated 

variability, the analysis shown here is a conservative estimate  (Lambert et  al., 2012). Because missing data gaps in the three 5 

original datasets were linearly interpolated prior to the PCA, high frequency variability can sometimes be underestimated in 

short sections that feature a gap in one of the three original datasets. This occurs in about 25% of all dust flux data points, 

although half of those are concentrated in the first 760 m of the core (0 -43 kaBP), when an older less reliab le dust measuring 

device was used. Below 760m these occurrences are evenly distributed and do not affect  our analysis. Due to the sometimes 

slightly underestimated variability, the analysis shown here is a conservative estimate.Due to the sometimes slightly 10 

underestimated variability, the analysis shown here is a conservative estimate (Lambert et al., 2012).  

Unlike water isotopes that diffuse and lose their temporal resolution in the bottom section of an ice core at high 

pressures and densities, the relat ively large dust particles diffuse much less and have been used to estimate the dust flux over 

every centimetre of the 3.2 km long EPICA core (298,203 valid measurementsdata points, (Lambert et al., 2012)). The 

temporal resolution of this series varies from 0.81 years to 11.1 yrs (the averages over the most recent and the most ancient 15 

100 kyrs respectively). The worst temporal resolution of 25 years per centimetre  occurs around 3050 m depth, with the result 

that at that resolution, there are virtually  no missing data points  in the whole record (Fig. 1). We note, however, that the dust 

flux used here is a construct of concentrations at 1cm resolution and accumulation rates at 55 cm resolution that were 

linearly interpolated to match the dust concentration resolution. 

3 Results 20 

3.1 Looking at the data 

Polar dust flux measurementsrecords cannot be assigned to one particular atmospheric variable, like temperature fo r 

the water isotopes. At any given moment, the amount of dust deposited in East Antarctica will depend on the size and 

vegetation cover of the source region (mostly Patagonia for East Antarctic dust  (Delmonte et al., 2008)), on the amount of 

dust available in the source region (can depend on the presence of glaciers), on the strength of the prevailing winds between 25 

South America and Antarctica, and the strength of the hydrological cycle (more precipitation will wash out more dust from 

the atmosphere (Lambert et al., 2008)). Over large scales it is thought that temperature-driven moisture condensation may be 

the major process driving low-frequency variability (Markle et al., 2018), although that may not globally be the casetrue 

everywhere (Schüpbach et al., 2018). High and low frequency variability in the dust flux record is likely driven by d ifferent 

processes. For examples, dust source conditions related to glaciers and vegetation cover may  not have influenced high 30 

frequency variability due to their relatively slow rate of change. On the other hand, volcanic eruption or extreme events 

related to the hydrological cycle may produce high-frequency signals in the record.  A single dust peak within a low 
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background may therefore reflect a short-term atmospheric disturbance like an eruption or drought over South America or 

low precipitation over the Southern Ocean. The analysis presented here focuses heavily on the occurrence of dust 

fluctuations, the physical interpretation of which will depend on the scale of the phenomenon. 

Fig. 3a shows a succession of 10 factors of 2 “blowdowns” (upper left to lower right at 11 different resolutions). In 

order to avoid smoothing, the data was “zoomed” in depth rather than time, but the point is clear: the signal is very roughly 5 

scale invariant, at no stage is there any sign of obvious smoothing, and the quasi-periodic 100 kyr oscillations is the only 

obvious time scale (we quantify this below). In comparison with more common paleoclimate signals such as temperature 

proxies - which are apparently smoother but with spiky transitions - the dust flux itself is already quite spiky. However, it 

also displays spiky transitions. In Fig. 3b we show the absolute change in dust flux and one can visually see the strong 

spikiness associated with strongly non-Gaussian variability: the intermittency. At each resolution, the solid line indicates the 10 

maximum spike expected if the process was Gaussian, and the upper dashed lines the exp ected level for a (Gaussian) spike 

with probability 10-6. Again, without sophisticated analysis, we can see that the spikes are wild ly non -Gaussian, frequently 

exceeding the 10-6 level even though each segment has only 290 points, with the spikiness being nearly independent of 

resolution.    

Taking the logarithms of the dust flux is a common practice since it  reduces the extremes and makes the signal closer 15 

to the temperature and other more familiar atmospheric parameters.  We therefore show the corresponding spike p lot for the 

log transformed data (fig. 3c).  A lthough the extreme spikes are indeed less extreme (see also fig. 6a, b), we see that the 

transformation has not qualitatively changed the situation with spikes still regularly exceed ing (log) Gaussian probability 

levels of 10-5 and occasionally 10-8.   

 20 

3.2 Spectra 

Figure 4 shows various spectral analyses (for the corresponding fluctuation analyses, see fig. 5). There is a clear 

periodicity at about (100 kyrs)-1. In the double power law fit (line plot), the transition frequencies are a little  lower: 0 = (160 

kyr)-1 (flux) and c = (145 kyr)-1 (log flux), although a Gaussian fit near the max gives a spike at (94±9 kyrs)-1. Note that it is 

actually a little  bit “wide” (two  peaks) hence it is not perfectly periodic, and the amplitude is only  about a factor 4 above the 25 

background. In comparison, the amplitude of the annual temperature frequency peak is several thousand times above the 

background (depending on the location) and is narrower (not shown).  

Since this is a log-log plot, power laws appear as straight lines. We show in the figure the fits to the bi-scaling 

function 

E w( ) =
a

w /w0( )
bh + w /w0( )

bl
         (11) 30 
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that smoothly transitions between a spectrum with 
 
E w( ) » w-b

h  at  > 0 and 
 
E w( ) » w-b

l  at  <0 . The figure shows 

the regressions with l = -2.5, h = 1.7, and a = 7.5 (mg/m2/yr)2yr, 0 ≈ (145kyrs)-1 for the fluxes, and a = 0.375 yr-1, 0 ≈ 

(160kyrs)-1 for the logarithms of fluxes. According to the figure, the high frequency climate regime scaling continues to 

about (300 yrs)-1 before flattening to a very h igh frequency scaling (m≈ 0.8) “macroweather” regime (Lovejoy and 

Schertzer, 2013).  The scaling exponents h = 1.7 and m=0.8 corresponding to the climate and macroweather regime 5 

respectively, may be compared with the values 2.1 and 0.4 for the EPICA paleotemperatures discussed in a future 

publication (compare however the red and black curves in Fig. 2).  These results show that temperature and dust variability 

are of the same statistical type so that it is likely that the dust signal is a real climate signal - yet the significant differences in 

their exponents shows that it has a different information content.  

The variability shown in Figure 4 can be interpreted broadly or in detail. A clear feature is the spectral maximum at  10 

around (100 kyrs)-1.  The broad bispectral scaling model (eq. 11) o f the peak already accounts for 96% of the spectral energy 

(variance) leaving only 4% for the (ext ra) contribution from the (near) (100kyrs)-1 orbital frequency (using the logarithm of 

the flux changes little). Alternatively, with a narrow Gaussian shaped spectral spike model, the spike is localised at (94±9 

kyrs)-1 and contributes a total of 31% of the total variance. However, not all of this is above what we would expect from a 

scaling background; the exact amount depends on how the background is defined. For example, over the range from the 6 th 15 

to the 11th highest frequencies in this discrete spectrum (from (133 kyrs)-1 to (72 kyrs)-1), in comparison to the background 

over this range, there is an enhancement of about 80% due to the strong peaks (the enhancement is about 100% for the 7 th to 

the 12th frequencies). This means although the (94±9 kyr)-1 peak represents 31% of the total variability over the range from 

(800 kyrs)-1 to (25 yrs)-1, it is only about 15% above the “background” (note that only 5% of the total variance is between 

(25yrs)-1 and (1 kyr)-1).  We did not do the corresponding analysis for the (41 kyr)-1 obliquity frequency since the figure 4 20 

shows visually that it is barely discernable above the background. 

The overall conclusion is that the background represents between 85% and 96% of the total variance. 

 

3.3 Haar Fluctuation Analysis  

Figure 5 shows the Haar fluctuations comparing their statistics for both dimensional and nondimensional cycles as 25 

well as for the mean and RMS fluctuations (bottom and top set of curves respectively).  To start, let’s consider the direct 

interpretations of the fluctuations in terms of the variabil ity of the dust flux.  Recall that when the fluctuations increase with 

scale, they represent typical differences whereas when then decrease with scale, they represent typical anomalies (deviat ions  

from long term mean values).  For example, typical variations over a glacial-interglacial cycle (half cycle ≈ 50 kyrs) are 

about ±3mg/m2/yr (i.e. a range of 6mg/m2/yr, the dashed horizontal line) whereas typical variations at the 250-year min imum 30 

are ≈ ±0.5mg/m2/yr.    
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The macroweather, climate, and macroclimate reg imes noted in fig. 4 are also clearly visib le.  In figure 5, we can 

clearly see the short regime with H<0 (up to about 250 yrs), a scaling regime with H >0 (up to glacial-interglacial periods 

≈50 kyrs) and finally a  long-time (possibly scaling) decrease in  variab ility.   The spectral and real -space statistics are linked 

via the relation =1+(2) (see eqs. 4, 5).  Starting with the high frequency macroweather regime, the exponents H=  -0.05, 

K(2) ≈ 0.10 correspond to = 0.8 (fig. 4) and the real space macroweather - climate t ransition scale (c ≈ 250 yrs) is close to 5 

the spectral transition scale (1/c  ≈ 300 years, Fig. 4).  In the middle (climate) reg ime, the top (RMS) curves (slope 0.33) 

implies (2) = 0.66, = 1.66 which is close to the corresponding exponent in fig. 4 (h =1.7).  Finally, at the longest 

(macroclimate) scales, the low frequency part of the spectrum in figure 4 (l = -2.5) implies that the fluctuation exponent H 

≈ (l - 1)/2 = -1.75.  However, this is less than the min imum detectable by Haar analysis (H = -1); therefore, we expect the 

far-right slope to equal -1 (as shown by a reference line).  To correctly estimate this steep slope, one must use other 10 

definit ions of fluctuations. We could also note that the climate- macroclimate transition time scale is broad and a little  

shorter than the value spectral value 1/c estimated in Fig. 4.  

Beyond confirming the results of the spectral analysis and allowing for d irect interpretations of the fluctuation values 

in terms of typical fluxes, Haar analysis also quantifies the intermittency from the convergence of the RMS and mean 

statistics at larger and larger t ime scales (see the clear difference in slopes shown in the climate regime: 0.38 versus  0.33).  15 

This underlines the limitation of spectral analysis discussed earlier, the fact that it is a second order statistic that is o nly a 

partial characterization of the variability. Finally, the figure also clearly shows that whether the cycles are defined in 

dimensional or in nondimensional time that the statistical characterizations (including the exponents) are virtually 

unaffected. 

Fig. 6a shows the fluctuation probabilities of the entire 800 kyr series at 25-year resolution (here the fluctuations are 20 

simply taken as absolute differences at 25-year resolution). We see that the large fluctuations (the tail) part of the distribution 

is indeed quite linear on a log-log plot with exponents qD ≈ 2.75 and 2.98 in time and depth respectively (both from fits to the 

extreme 0.1% of the distributions). To get an idea of how extreme these distributions are, consider the depth distribution with 

qD = 2.98. With this exponent, dust flux fluctuations 10 times larger than typical fluctuations occur only 102.98 ≈ 1000 times 

less frequently. In comparison, for a Gaussian, they would be ≈1023 times less likely; they would never be observed.   25 

While the dust fluxes are always positive and so cannot be Gaussians, the increments analyzed here could easily be 

approximately  so.  Nevertheless, a common way of trying to tame the spikes is by making a log transformation of fluxes.  

Fig. 4 already showed that this did not alter the spectrum very much; here it  similarly has only a marg inal effect.  For 

example, Fig. 6b shows that the extreme tails on the log dust flux distribution has qD =3.60 in t ime (25yrs) and 4.59 in  depth 

(at 1cm resolution).  The log-transformed variable still displays huge extremes with the ext reme log flux corresponding to a 30 

log-Gaussian probability of 10-30 and 10-50 (time, depth respectively).  Whether or not taking logarithms yields a more 

climate relevant parameter, it does not significantly change the problem of intermittency or of the extremes. 
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We must mention the problem of estimating the uncertainties in the exponents.  In the familiar case, we test a 

deterministic model and then uncertainty estimates are based on a stochastic model of the errors which are often assumed to 

be independent Gaussian random variables.  In our case, the basic model is a stochastic one and therefore one needs a 

stochastic model of the underlying process from which one can draw random time series.  While our paper aims to provide a 

basis for the formulation of such a model, it is beyond our present scope.  In order to obtain robust conclusions, we instead 5 

rely primarily on cycle to cycle comparisons, two different defin itions of time (dimensional and nondimensional) as well as a  

diversity of analysis techniques (spectral, fluctuation analysis, probability d istribu tions). We should also mention that the use 

of fluxes (produce of 1cm concentrations and 55cm accumulat ion rate) introduces an additional source of uncertainty due to 

the different time ranges contained in these sections at various depths. However, we prefer using the fluxes because they are 

more directly representative of climatic changes than concentrations. 10 

However there are some results that are worth mentioning.  For example, Lovejoy and Schertzer 2012  performed  a 

numerical analysis of the uncertainties in first and second order exponent estimates obtained from Haar fluctuations of a 

universal multifractal model with C1 = 0.1 and a range of values of H (close to the value found here see figs. 9, 12).  When 

the scaling ranges covered factors of about 1000, they found only a small bias (≈ 0.02) in estimates of H and a comparable 

uncertainty.  However, in practice – such as the estimates here - the main  source of uncertainty is the subjective choice of the 15 

scaling range itself: fig. 9 shows that values of slopes depend one the region over which trends are fit, hence the straight 

reference lines.   

Finally, for the problem of estimat ing probability tail exponents (qD; fig 6a, b), (Clauset et al., 2009) found that the 

maximum likelihood method is optimal.  However, they assumed that the range over which the power tail was valid was pre -

determined.  The real difficu lty in  fig. 6a, b is that one must make an  in itial subjective choice about  the exact range over 20 

which the exponent is estimated; using sophisticated estimators does not seem warranted. 

 

3.4 Phases 

Scaling is a statistical symmetry. In our case, it, a  consequence of a time and space scaling symmetry of the 

underlying dynamics.  Being statistical means that on average the statistics at small, medium and large scales are the same in 25 

some way. (more precisely, it holds over a statistical ensemble).  The difficulty is that on a single realizat ion – such as that 

available here, a  single core from a single p lanet earth – the symmetry will necessarily be broken. For example, in the 

spectrum Fig. 4, in each of the proposed scaling regimes, scaling only p redicts that the actual spectrum from this single core 

will vary about the indicated straight lines that represent the ensemble behaviour. Since this variability is strong, we made 

the potential scaling regimes more obvious by either averaging the spectrum over frequency bins (the red and blue spectra) – 30 

or by breaking the series into shorter parts and averaging the spectra over all the parts, effect ively treat ing each segment as a 

separate realization of a single process (green).  In  any event, all that any empirical analysis can show is that the data ar e 

consistent with the scaling hypothesis. 
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This already illustrates the general problem: in order to obtain robust statistics we need to average over numerous 

realizations – and since here we have a single series, the best we can do is to break the series in to disjo int segments and 

average the statistics over them, assuming that the major underly ing processes were constant over the last 800,000 years . Yet 

at the same t ime, in order to see the wide-range scaling p icture (which  also helps to more accurately estimate the scaling 

properties/exponents), we need segments that are as long as possible. The compromise that we chose between numerous 5 

short segments and a small number of long ones was to break the series into 8 g lacial-interglacial cycles, and each cycle  into 

8 successive phases. As a first approximat ion, we defined eight successive 100kyr periods (hereafter called  “segments”, Fig. 

7, top set), corresponding fairly closely to the main periodicity of the series. As we discussed, the spectral peak is broad 

imply ing that the duration of each cycle is variable –  the cycles are only  “quasi-periodic”. It is therefore o f interest to 

consider an additional somewhat flexib le definit ion of cycles defin ing them as the period from one interglacial to the next 10 

(hereafter called “cycle”, Fig. 7, bottom set). The break points were taken at interglacial optima : 0.4, 128.5, 243.5, 336, 

407.5, 490, 614, 700, 789 kyrs BP, i.e. 96.9±18.7 kyrs per cycle.  Using the latter definit ion, the cycles were 

nondimensionalized so that nondimensional t ime was defined as the fract ion of the cycle, effect ively stretching or 

compressing the cycles by ±19%.  

With either of these definitions, we have 8 segments or cycles, each with 8 phases . Note that in our nomenclature, 15 

phase 1 and 8 are the youngest and oldest phases, respectively, and that time flows from phase 8 to phase 1. Fig . 8 shows the 

phase by phase information summarized by the average flux over each cycle includ ing the dispersion of each cycle about the 

mean (for the segments in the top set, and the cycles in the bottom set). We see that the variability is highest in the middle of 

a cycle and lowest at the ends.  

The spectra showed that there were wide scale ranges that are on average scale invariant –  power laws – and in Fig. 20 

4 quantified the g lacial –  interglacial cycle.  We are thus interested in characterizing the scaling properties over the d ifferent 

phases of the cycle; for this we turn to real space statistics. In Fig. 9 we compare the statistics averaged over cycles and the 

statistics averaged over phases. The figure  shows that the phase to phase differences are much more important than the cycle 

to cycle differences. 
DF Dt( )( )

￼ (lower left).   We could also note that since the different cycles had quite similar 

statistics (the right hand column), that this implies that there is  no bias in the flux estimates with depth of the core. 25 

From the global statistics (e.g. Figs. 4, 5), it  is clear that in each glacial -interglacial cycle there are two regimes, so 

that before characterizing the structure functions by their exponents (e.g. H = (1) for the mean fluctuations), we have to 

determine the macroweather-climate transition time scale c whose average (from Fig. 4, 5) is 250-300 years. 

One way of estimating the transition scale c  is to make a bilinear fit of log10S1(t) (i.e. Haar with q = 1, the mean 

absolute fluctuation) with the mean slopes -0.05 (s mall t) and slope +0.35 (large t; the values were chosen because they 30 

are roughly the H estimates from the average over all the cycles) (Fig. 9). The hypothesis here was that there were two 

regimes, each characterized by a different exponent each of which was estimated from the ensemble statistics.  Therefore, the 

analysis only needed to estimate the scale at which the low frequency process exceeded the high frequency one.  Bilinear fits 
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were made for each phase of each segment (blue) as well as for each  phase of each cycle (black). For each phase there were 

thus 8 transition scales, which were used to calculate the mean and its standard deviation, (shown here as representative 

black arrows). From the figure we see that at first (phases 8-3) the transition scale is relatively  short (250-400 yr), but that it 

rapidly moves to longer (1 –  2 kyrs) scales for the final phases 2 and 1. The average transition scale over all phases is around 

300 years.  5 

The figure shows that our results are robust since the results are not very different using dimensional and 

nondimensional time (segments and cycles). Comparing the blue and black curves, we see that in all cases the late phases 

have much larger c than the early  and middle phases. Also shown in Fig. 10 (dashed) is a p lot of the break points estimated 

by a more subjective method that attempts to visually determine a break point on log S1 – log t plots. Again, we reach the 

same conclusion with quantitatively very similar results: a transition of millennia for phases 1 and 2, and a few centuries in 10 

the middle of the cycle. The cycle average value (c  ≈ 300 years) is therefore not representative of the latest phases where c  

is many times larger (glacia l maxima and interglacials). The Holocene has an even larger transition scale (c = 7.9 kyrs, 

marked by an X in Fig. 10), but it lies just outside the standard deviation of the first nondimensional phases (red arrows in  

Fig. 10).  Although the Holocene value of c is the largest in phase 1, it corresponds to 1.55 standard deviations above the 

mean with (assuming a Gaussian variability) a corresponding p value of 0.12, roughly the expected extreme of a sample o f 8; 15 

it is therefore not a statistical outlier. 

Alternatively, rather than fixing a phase and determining the variation of the mean fluctuation and intermittency 

function (Fig. 9), we can  consider the variat ion of the Haar fluctuations at fixed t ime scales and see how they vary from 

phase to phase (Fig. 11). The figure shows the phase to phase variation of Haar fluctuations at 50, 100, 200, 400, 800, 3300, 

7000 years scales (bottom to top; the dashed and solid lines alternate to demarcate the different curves, they are not 20 

uncertainties). Over the macroweather regime (up to about 400 - 800 years) the fluctuations tend to cancel so that the 

variability is nearly independent of time scale. In contrast, once we reach the longer scales in the climate regime (up to 70 00 

years), the fluctuations increase noticeably as the time interval t  is increased. For every t ime scale, there is a clear cyclicity 

(left to right), with fluctuation amplitudes largest in the middle phases. We note that the cycle to cycle variability is fairly 

large; about a factor of 2 (for clarity the error bars indicating this cycle to cycle spread were not shown). 25 

Finally, we describe for each phase the drift tendency and the intermittency, as well as fluctuation amplitude and 

extremeness of the data. In Figure 12 we show the result on the nondimensional phases of the range 500 years < t < 3000 

years, (upper left  and right; the range was chosen to be mostly in the climate regime, i.e . with t>c, and it was fixed so as to 

avoid any uncertainty associated with the algorithm used to estimate c).  Recall that the fluctuation exponent H > 0 

quantifies the rate at which the average fluctuations increase with time scale. Similarly, the exponent C1 characterizes the 30 

rate at which the spikiness near the mean  (the intermittency exponent) increases with scale. We see (upper left ) that H is 

fairly h igh in the early phases with H reaching s mall value in the later phases (with H actually a little  bit negative on average 
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in phase 1 due to the large c  value). C1 on the other hand (upper right) decreases a bit in the middle the phases. The error 

bars show that there is quite a lot of cycle to cycle variability.  

If H quantifies the “drift” and C1 the “spikiness”, then Fig. 12 shows that the early phases have high drift and medium 

spikiness, the middle phases have high drift and lower spikiness, while phases 1-2 have low drift but medium spikiness. To 

understand this better, consider the transition time scales  in Fig. 10. The youngest 2 phases with the low drift and spikiness 5 

are also the phase with the longest transition scales. This means that the rate at which the variability builds up is small and 

that it only builds up over a short range of scales (from c to roughly t = 50 kyrs, the half cycle duration, this can be 

checked on Fig. 9 that shows the phase by phase structure functions and intermittency functions). Conversely, phases 3 and 4 

with high drift and high intermittency also have a smaller c so that both the fluctuations and spikiness build up faster (Fig. 

11) and over a wider range of scales (Fig. 10). 10 

Another useful characterisation of the phases is to directly consider the flux variability at a fixed reference scale, 

taken here as the 25-year resolution; quantifying the amplitude of the variability of each  segment by its standard deviation  A 

at 25yr time scale (Fig. 12, lower left). This is not the difference between neighbouring values or fluctuations (as in figure 

11), it  is rather the variab ility of the series itself at 25-year resolution. For each of the phases, we have 8 estimates (one from 

each cycle); these are used to calculate the mean (central solid line) and standard deviation shown by the error bars showing  15 

the cycle to cycle dispersion of the values. We can see that the amplitude of the 25 yr scale fluctuations is about four times 

higher in  the middle of the ice age (phase 4) than at interglacial (phase 1). The figure clearly shows the strong change of 

variability across the cycle.  

Whereas C1 characterizes the intermittency near the mean, we have seen that the probability exponent qD 

characterizes the extreme spikiness. An extreme (low) exponent qD phase implies that most of the time the changes in flux 20 

are s mall, but occasionally, there are huge transitions.  Conversely, a h igh (less extreme) qD implies that there is a wider 

range of d ifferent flux changes so that most of the changes tend to be in  a restricted range.  Fig. 12 lower right compares qD 

phase by phase.  The s maller the value of qD, the ext reme fluctuations are more and more ext reme relative to the typical 

ones.  Therefore, from the figure, we see that the extremes are stronger in  the beginning and end of the cycle, and somewhat 

less pronounced in the middle phases of the cycle (note the overall mean is 2.62±0.42, this can  be compared to  the value qD 25 

=3.60 for the overall log transformed data, fig. 6b). Notice that for phase 8, qD = 2.03;  this is close to the value qD = 2 below 

which the extremes are so strong that the variance (and hence spectrum) does not converge.  Summarizing, we can now 

categorize the phase by phase spikiness as: extremes strong, and medium spikiness (phases 1, 2, 8), and extremes 

intermediate and low spikiness (phases 3-7). For the cycle to cycle estimates (not shown), the value qD =2.75±0.41, seems to 

be fairly representative of all the cycles, although there is a slight tendency for qD to decrease for the older cycles implying 30 

that they may have been a bit more extreme than the recent ones. 
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4 Discussion  

An attractive aspect of dust fluxes is that they are paleo indicators with unparalleled resolutions over huge ranges of 

temporal scales. However, they come with two  difficulties.  First, their dynamical interpretation is not unambiguous: they 

depend on temperature, wind, and precip itation: dust flux variab ility is hard to attribute to a specific process, it is a holistic 

climate indicator. Second, their appearance as a sequence of strong spikes is unlike that of any of the familiar proxies. 5 

Indeed, we argued that their highly spiky (intermittent) nature (i.e. with C1>0) is outside the purview of conventional 

statistical frameworks including autoregressive, moving average or more generally of quasi-Gaussian or even quasi log-

Gaussian processes. 

Due to the dominance of the continuum (spectral, background) variability, physical interpretations must be based on 

an understanding of climate variability as a function of scale. We first consider overall analyses over the whole dust flux 10 

series, and then focus on the phases. The spectral analysis (Fig. 4) is the most familiar and for the dust fluxes, it is 

qualitatively similar to previous results obtained with temperature data, although temperature spectra with anything 

approaching the resolution of Fig.  4 are only possible over the most recent glacial cycle. The most striking spectral feature is 

the peak over the background at 100 kyr periodicity. The broadness of this peak already indicates the irregularity of the Ear th 

system response to the eccentricity-forced orbital cycles.  The (near) absence of obliquity frequencies at 41 kyr is notable 15 

and is consistent with the corresponding analysis of paleotemperatures.  Although there is defin itely power in that frequency 

range, it is barely larger than the background continuum, suggesting a low response to that forcing.  Finally, our h igh -

resolution data allows us to discern two different power-law regimes, one at low frequencies with an exponent  = 1.7, and 

one at high frequencies with exponent  = 0.8, with the transition between the two at around 300 years.   

In section 2.3, we discussed some of the difficult ies inherent in interpreting spectra and showed that the exponent of 20 

the integrated spectrum -1 is more direct ly relevant than (ignoring intermittency, this is the same as the 

wandering/cancelling criterion H>0 or H<0).  Applying this understanding to the dust exponents, we see that in 

macroweather, there is a weak high frequency dominance (1-≈ 0.2 > 0) whereas the climate regime is dominated by low 

frequencies (1- ≈ -0.7 < 0).  A plausible physical explanation is that over long periods of time (at climate regime scales), the 

amount of dust in the SH atmosphere is driven by changes in glacier and vegetation coverage, which is itself forced by SH 25 

temperature change. There is therefore a very strong correlation between dust  and temperature at climatic scales (indeed, 

elsewhere we show that the correlation increases from very low to very high over the entire climate regime from 500 to 50 

kyrs).There is therefore a very strong correlation between dust and temperature at climatic scales  (Lambert et al., 2008). At 

higher (macroweather) frequencies, temperature oscillations are too fast to overcome the inertia of ice sheet and vegetation 

responses, dust and temperature correlations are very low.  Instead, dust deposition in Antarctica will be more sensitive to 30 

temporary atmospheric disturbances in the winds and the hydrological cycle. 

To interpret the analysis by phase of the dust record (Fig. 12) one must understand the significance of A and of the 

exponents H, C1, and qD in the context of dust deposition. The H exponent and the amplitude A are directly linked to mean 
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fluctuations and values , A being the standard deviation (<F2>½) of the dust flux variab ility at a  fixed (here, 25 year) time 

scale whereas H determines the rate at  which the flux fluctuations ((<F(t)2>½)) change with t ime scale t.  We saw that a 

positive H-exponent signifies a tendency to “drift”, whereas when H< 0, the dust fluctuations tend to cancel each other out 

and the record will cluster around a mean value. In contrast, H > 0 ind icates that the dust fluxes will not cluster around a 

mean value, in essence, the process wanders and does not stay constant, it appears to be unstable. The low H numbers during 5 

phases 1 and 2 (interglacial and glacial maximum) indicate a very constant, stable climat ic state, with Patagonian dust 

production being either very low during interg lacials (low glacier activ ity, large vegetation cover) or very high (Patagonian 

ice cap fu lly  grown, large outwash plains on the Argentinean side). In contrast, the high H and amplitude A values during the 

mid-g lacial may have been due to strong variability in glacier extent during that time (García et al., 2018; Sugden et al., 

2009), and therefore (García et al., 2018; Sugden et al., 2009) and therefore a very variable dust supply (see also Fig. 11 that 10 

shows how the amplitude of the fluctuations at different time scales varies with the phase). Th e glacial inception (phases 7 

and 8) features low A but a high H exponent. This implies that the mean dust level was highly variable, but the dust supply 

was still low, thus not allowing for large amplitude fluctuations. The higher amplitudes in phases 6 a nd 7 indicates that dust 

supply became abundant then. Since the Argentinean continental shelf was still submerged at that moment and the outwash 

plains not yet fully  extended, the higher dust emissions may have been due to a transformation  in  vegetation cover about 30 15 

kyr after glacial inception, possibly accompanied by changes in glacial and periglacial processes in the Andes. 

The exponents C1 and qD are associated with the intermittency, or spikiness of the data. C1 is a measure of the 

sparseness (or degree of clustering) of the mean-level spikes (i.e. whose amplitudes contribute most to the mean spike level), 

it is equal to one minus the fractal dimension of the set of spikes that exceed the mean level (D1 = 1- C1).   qD characterizes 

how ext reme the most extreme spike values are.  The dust flux record is generally more intermittent (with sparser, more 20 

clustered spikes, larger C1) in phases 8, 1, and 2 (g lacial inception, interglacial, g lacial maximum) than in  the mid -g lacial, 

with also more extreme spike values (lower qD).  These power law fluctuations implied by the low values of qD are so large 

that according to the classical assumptions, they would be outliers. While Gaussians are mathemat ically convenient and can 

be justified when dealing with measurement errors, in atmospheric science thanks to the scaling, very few processes are 

Gaussian. This has important applications in  tipping point analysis, where noise induced tipping points are generally  studied 25 

using well behaved white or Gaussian noise (e.g. Dakos et al., 2012)scaling, nonlinear dynamics, very few processes are 

Gaussian. This has important applications in  tipping point analysis, where noise induced tipping points are generally  studied 

using well behaved white or Gaussian noise (e.g. (Dakos et al., 2012)) 

The exponents characterize the variability of the dust signal over a wide range of scales.  To understand the two 

scaling regimes, it may be helpfu l to recall that the ice core dust signal depends on both the variability of the dust source and 30 

that of the overall climate system.  For example, a spike in the dust source and a fast change in the system state (e.g. 

Dansgaard-Oeschger -DO- events in the NH) could both produce a similar signal.  However , in the SH, fast changes in 

system state – such as the DO events in the NH - apparently do not occur in  the SH where the corresponding signals are 

more triangular and gradual in shape. High frequency variations in dust  deposition (at scales in the macroweather reg ime) 
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are thus likely to be dominated by dust source dynamics rather than ice sheet changes that have generally larger reaction 

times.  One hypothesis is that the transition time scale c is the scale at which the source variab ility – that decreases with 

scale (H<0) - becomes less than the system variability that increases with scale (H>0).  The macroweather variab ility is 

therefore likely due to dominated by vegetation and/or atmospheric changes.  Large-scale natural fires could alter the 

landscape in a very short time, allowing for more dust uptake by the winds and a sudden rise in atmospheric dust. The 5 

recuperation of vegetation cover would be more gradual, though, resulting in a saw-tooth shape of the dust spike that we do 

not observe in the data.  Similarly, it  has been suggested that rapid climate change in the Northern Hemisphere (e.g. DO 

events) would have synchronous ly changed the Southern Hemisphere atmospheric circu lation and wind belts (Buizert et al., 

2018; Markle et al., 2017). This could again have quickly changed the source or transport conditions but would again have 

resulted in a saw-tooth shaped peak, either by steady regrowth of vegetation in the dust source areas, or as climate conditions 10 

in the north Atlantic gradually return to stadial (Pedro et al., 2018). 

Finally, we could mention volcanoes. Volcano eruptions usually saturated the dust measuring device and were mostly 

cut from the record. Using the sulphate record to identify eruptions is tricky because many large sulphate peaks do not have a 

corresponding dust peak. This means that even if you do have matching dust and sulphate peaks, it could be an  eruption or a 

coincidence. Therefore, the influence of volcanic variability on the results cannot be completely eliminated, although our key 15 

results are fairly robust with respect to the phase of the cycle and are therefore unlikely to be influenced by volcanic 

eruptions. 

Although the spikes occur at all scales (see fig. 3), the most likely exp lanation for the (shorter) macroweather scale 

dust spikes is disturbances in the atmosphere, involving either the winds or the hydrological cycle (or both at the s ame time). 

The obvious candidate for a perturbation that would lead to increased dust in the atmosphere is drought. We will therefore 20 

interpret macroweather dust spikes as multiannual to multidecadal, multicentennial drought events in southern South 

America. With this interpretation, we can conclude that glacial maxima, interglacials, and glacial inceptions were 

characterized  by more frequent and more severe drought events than during the mid -glacial. During glacial maxima, such 

extreme dust events could have contributed to Southern Hemisphere deglaciation by significantly lowering ice sheet albedo 

at the beginning of the termination (Ganopolski and Calov, 2011). In contrast, more frequent dust events could have 25 

contributed to glacial inception through negative radiative forcing of the atmosphere. 

Since the C1 and qD exponents characterize the abruptness of changes in the signal, a spike and a fast change in the 

system state (e.g. DO event in the NH) will both produce a similar signal. However, such fast changes in system state do not 

occur in the SH where the corresponding signal to NH DO events is more triangular and gradual in shape. We therefore 

interpret the C1 and qD exponents as purely indicative of spikes in the dust signal. A short large spike (<c) in dust deposition 30 

cannot be associated with ice sheet changes which have generally larger reaction times. Its origin is therefore likely due to 

vegetation and/or atmospheric changes. Large-scale natural fires could alter the landscape in a very short time, allowing for 

more dust uptake by the winds and a sudden rise in atmospheric dust. The recuperation of vegetation cover would be more 

gradual, though, resulting in a saw-tooth shape of the dust spike that we do not observe in the data. Similarly, it has been 
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suggested that rapid climate change in the Northern Hemisphere (e.g. DO events) would  have synchronously changed the 

Southern Hemisphere atmospheric circu lation and wind belts  (Buizert et  al., 2018; Markle et al., 2017). This could again 

have quickly changed the source or transport conditions, but would again have resulted in a saw-tooth shaped peak, either by 

steady regrowth of vegetation in the dust source areas, or as climate conditions in the north Atlantic gradually return to 

stadial (Pedro et al., 2018)(Pedro et al., 2018). 5 

Finally, we could mention volcanoes. Volcano eruptions usually saturated the dust measuring device and were mostly 

cut from the record. Using the sulphate record to identify eruptions is tricky because many large sulphate peaks do not have a 

corresponding dust peak. This means that even if you do have matching dust and sulphate peaks, it could be an  eruption or a 

coincidence. Therefore, the influence of volcanic variability on the results cannot be completely eliminated, although our key 

results are fairly robust with respect to the phase of the cycle and are therefore unlikely to be influenced by volcanic 10 

eruptions. 

Although the spikes occur at all scales (see fig. 3), theThe most likely  exp lanation for athe (shorter) macroweather 

scale dust spikespikes is therefore a short-term disturbancedisturbances in the atmosphere, involving either the winds or the 

hydrological cycle (or both at the same time). The obvious (but not exclusive) candidate for a perturbation that would lead to 

increased dust in the atmosphere is drought. As a first approximat ion we We will therefore interpret shortmacroweather dust 15 

spikes as mult iannual to multidecadal, multicentennial d rought events in southern South America. W ith this interpretation, 

we can conclude that glacial maxima, interglacials, and glacial inceptions were characterized by more frequent and more 

severe drought events than during the mid-g lacial. During glacial maxima, such extreme dust events could have contributed 

to Southern Hemisphere deglaciation by significantly lowering ice sheet alb edo at the beginning of the termination 

(Ganopolski and Calov, 2011)(Ganopolski and Calov, 2011). In contrast, more frequent dust events could have contributed 20 

to glacial inception through negative radiative forcing of the atmosphere. 

5 Conclusions 

Until now, a systematic comparison of the different glacial-interglacial cycles has been hindered by a limitation of the 

most common paleoclimate indicators – the low resolution of Pleistocene temperature reconstructions from ice or marine 

sediment cores. Due to this intrinsic characteristic, the older cycles are poorly d iscerned; we gave the example of EPICA 25 

paleo temperatures whose resolution in the most recent cycle was 25 times higher than the resolution in the oldest one. In 

this paper, we therefore took advantage of the unique EPICA Dome C dust flux dataset with 1 cm resolution measuring 

320,000 cm, whose worst time resolution over the whole core is 25 years .  

Dust fluxes are  challenging not only because of their h igh resolutions, but also because of their unusually high 

spikiness (intermittency) and their extreme transitions that occur over huge ranges of time scales. Standard statistical 30 

methodologies are inappropriate for analyzing such data. They typically assume exponential decorrelat ions (e.g. 

autoregressive or moving average processes) that have variability confined to narrow ranges of scale.  In addition, they 
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assume that the variability is quasi Gaussian or at  least that it  can be reduced to quasi Gaussian through a simple 

transformation of variables  (e.g. by taking logarithms). In this paper, using standard spectral and probability distribution 

analysis, we show that both the spectral and the probability tails were power laws, not exponential, requiring nonstandard 

approaches.  

 The high resolution of the data allowed  us to not only quantitatively compare glacial-interglacial cycles with each 5 

other, but also to subdivide each cycle into 8 successive phases that could also be compared to one another. One of the key 

findings was that there was a great deal of statistical similarity between the different cycles and that within each cycle th ere 

were systematic variat ions of the statistical properties with phase.  These conclusions would not have been possible with the 

corresponding much lower resolution temperature proxy data. 

Our variability analysis using real space (Haar) fluctuations  confirmed that the majority of the variability was in the 10 

macroweather and climate scaling regime “backgrounds” with an average transition scale  c of about 300 years. In the 

climate reg ime (time scales above c), dust variability is more affected by long-term hemispheric-wide climate changes 

affecting slow response subsystems like g laciers and vegetation, which exp lains the high correlation of dust and temperature 

at these scales. In contrast, dust variability in the macroweather regime (time scales below c) would have been more 

influenced by short-term atmospheric perturbations  such as droughts and precipitation minima.  15 

Using various techniques, c was found to be systematically larger in the youngest two phases than in the midd le and 

oldest phases; about 2 kyrs but with nearly  a factor of 4 cycle to cycle spread and equal to 300 years (with a factor of 2 

spread) for the six remaining phases. For the Holocene, c was found to be 7.9 kyrs, which makes it an exceptionally stable 

interglacial, but not a statistical outlier compared to other interglacials. Similarly, the typical (RMS) variat ion in flux 

amplitude was smaller in the early phase increases by (on average) a factor of 4 from ±0.13 mg/m2/yr to about ±0.5 mg/m2/yr 20 

in the middle and later phases. The Holocene (with an amplitude of ±0.08 mg/m2/yr) was again particularly stable with 

respect to the phase 1 of other cycles, but it was not an outlier. 

We addressed the task of statistically characterizing the cycles by primarily  characterizing the phases’ variability 

exponents H, C1, qD and amplitude A. We show that the atmosphere was relatively stable during glacial maxima and 

interglacials, but highly variable during glacial inception and mid-g lacial. However, the low amplitude of dust variability 25 

during glacial inceptions indicates that vegetation cover and dust production processes did not significantly change until ~30 

kyr after glacial inception. 

We interpret the intermittency indicators as suggesting a higher frequency of drought events and more severe 

droughts during glacial inception, interglacials, and glacial maxima than durin g mid-glacial conditions. These short-term 

spikes in atmospheric dust could have helped trigger southern hemisphere deglaciat ion through albedo feedback of ice -sheet 30 

surfaces, or glacial inception through negative radiative forcing. 

The results presented in this paper are largely empirical characterisations of a relatively less known source of climate 

data: dust fluxes.  Dust flux statistics defy standard models: they require new analysis techniques and better physical models 
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for their exp lanation.   These reasons exp lain why our results may appear to be rough and approximate.  Readers may 

nevertheless wonder why we did not provide standard uncertainty estimates.  But meaningful uncertainties can only be made 

with respect to a theory and we have become used to theories that are determin istic, whose uncertainty is parametric, and that 

arises from measurement error.   The present case is quite different: our basic theoretical framework is rather a stochastic 

one, it implicit ly involves a stochastic “earth process” that produces an infinite number of statistically  identical p lanet earths 5 

of which we only have access to a single ensemble member.  FromUnfortunately, we do not yet have a good stochastic 

process model from which we can infer sampling errors  and uncertainties.  In addition, from this single realizat ion, we 

neglected measurement errors and estimated various exponents that characterized the statistical variability over wide ranges 

of time scale, realizing that the exponents  themselves are statistically  variab le from one realization to the next. In p lace of an 

uncertainty analysis, we therefore quantified the spread of the exponents (which themselves quantify variability).  In the 10 

absence of a precise stochastic model we cannot do much better. 

This paper is an early attempt to understand this unique very high-resolution data set. In future work, we will extend 

our methodology to the EPICA paleo temperatures and to the scale by scale statistical relationship between the latter and the  

dust fluxes. 

 15 
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Figures 

 

 
Figure 1: Temperature (blue) and dust flux (red) from the EPICA Dome C ice core (Jouzel et al., 2007; Lambert et al., 

2012). The dust flux time series has 32,000 regularly spaced points (25-year resolution), the temperature series, has 5,752 points. 5 
The temperature data are irregularly spaced and lose resolution as we go back into the past (number of temperature data points in 

successive ice ages: 3022, 1117, 521, 267,  199, 331, 134, 146).  In both  cases we can make out the glacial cycles, but they are at best 

only quasi-periodic. 
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Figure 2: A composite showing root mean square (RMS) Haar fluctuations (T in units of °C) black, and RMS dust 

fluctuations analysed in this paper (red, in units of mg/m2/yr, (Lambert et al., 2012)). From left to right: thermistor temperatures 5 

at 0.0167s resolution (Lovejoy, 2018) , hourly temperatures from Landers Wyoming (Lovejoy, 2015) , daily temperatures from 75 

°N (Lovejoy, 2015), EPICA Dome C temperatures (Jouzel et al., 2007), and two marine benthic stacks (Veizer et al., 1999; Zachos 

et al., 2001). The macroweather-climate transition is not in phase between the different records because the left ones (industrial 

side) are influenced by anthropogenic climate change, while the right data is pre-industrial natural variability. As elsewhere in this 

paper, the fluctuations were multiplied by the canonical calibration constant of 2 so that when the slopes are positive, the 10 

fluctuations are close to difference fluctuations. The various scaling regimes are indicated at the bottom. Adapted from (Lovejoy, 

2017). 
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Figure 3a: Zooming out of the Holocene dust fluxes by octaves, by doubling the depth resolution from 1 cm (upper left) to 

11m (lower right) resolution. Starting at the left and moving to the right and from top to bottom (see the ellipses on the first three 5 

in the sequence) we zoom out by factors of 2 in depth maintaining exactly 290 data points (effectively nondimensionalizing the 

depth; the small number of missing data points were not interpolated so that the final resolution is not exactly 210cm = 10.24m). 

The temporal resolution is not exactly doubled due to the squashing of the ice column, the total duration (in years) of each section 

is indicated in each plot, the average temporal resolution of plots are: 0.24, 0.48, 0.98, 2.02, 4.32, 10.1 24.5, 54.1, 184, 434, 2710 yr. 

In order to fit all the curves on the same vertical scale, the dust fluxes were normalized by their mean over each segment.  The 10 

means (in mg/m2/yr) are: 0.44, 0.38, 0.30, 0.36, 0.35, 0.33, 0.34, 0.39, 2.48, 2.18, 2.41 i.e. the first 8 plots have nearly the same 

vertical scales whereas the last three are about 6 times larger range. This means that all the plots except the last three are at nearly 

constant normalization. 
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Figure 3b: Same as Fig. 3a but for the absolute changes between neighbouring values in dust flux normalized by the 

corresponding mean over the segment (290 points). The horizontal lines indicate the Gaussian probability levels for p = 1/290 5 

(representing the mean extreme for a 290-point segment, full line), as well as p = 10-6 (lower dashed) and p = 10-9 (upper dashed).  

 

 

  



 

25 

 

 

 

Figure 3c: Same as Fig. 3a but for the absolute changes between neighbouring values in the logarithms of dust flux 

normalized by the corresponding mean over the segment (290 points). The horizontal lines indicate the Gaussian probability levels 

for p = 1/290 (representing the mean extreme for a 290-point segment, full line), as well as p = 10-5 (lower dashed) and p = 10-8 5 

(upper dashed, not the same as in fig. 3b). 

 

 

  



 

26 

 

 

 

Figure 4: Log-log plot of the Fourier spectrum of the (25yr)-1 resolution dust concentration in frequency units of kyrs -1 

(red) and the same but of the logarithms of the flux (blue). Also shown is the average spectrum of the 5-year resolution data over 

the last 400 kyrs (green). For the latter, the periodograms of each the four most recent 100 kyr cycles were averaged, but the full 5 

spectral resolution (5yrs)-1 was retained. The beta parameters are the exponents of the theoretical spectrum (see main text, the 

negative of the logarithmic slope) for the macroclimate (-2.5), climate (1.7), and macroweather (0.8) regimes. The spectra were 

analyzed using FFT with standard Hanning windows. 
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Figure 5: The Haar fluctuation analysis of the entire 800 kyr dust flux data set (thin lines). The dashed black and solid pink 

(top pair) represent RMS fluctuations for dimensional and non-dimensional time, respectively. The solid black and blue curves are 

the same but for the mean absolute (q =1) fluctuations. The curves with non-dimensional time lags have nominal (average) 

resolutions of 25 years and the fluctuation statistics are averaged over the 8 cycles. The thick black line shows the Haar 5 

fluctuations for the most recent 400 kyrs at 5-year resolution. Note that the peak in the curves occurs as expected at t ≈ 50kyrs i.e. 

at about a half cycle; and the horizontal dashed line shows that at this scale - corresponding to the largest difference in phases – 

the change in the mean absolute dust flux is about ± 3 mg/m2/yr. Also shown (dashed vertical line) is the (average) time scale c ≈ 

250yrs at which the transition from macroweather to climate occurs. Several reference lines (with the slopes/exponents indicated) 

are shown showing approximate scaling behaviours. 10 
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Figure 6a: The probability distribution Pr(F > s) of random changes in dust flux (F) exceeding a fixed threshold s; in 

time at 25 year resolution (brown, 32,000 points), and in depth at 1cm resolution (black, 251,075 points corresponding to the last 

400 kyrs). The frequency scales at the right give the number (N) of jumps in each of the series that exceeds the threshold s. The 5 

straight lines indicate power law probability tails with exponents qD indicated. Also shown (parabolas) are the Gaussians with the 

same mean and standard de viations. In time, the maximum change in flux corresponds to about 28 standard deviations (i.e. to a 

Gauss probability ≈ 10-91), in depth, to 51 standard deviations (i.e. to p ≈ 10-455).   On the right, we provide axes giving the actual 

number of flux increments that exceed s, brown for the fluctuations in time, black for those in depth. 

 10 

 

 

  



 

29 

 

 
 

Figure 6b: Same as 6a except for the increments of the log of the dust flux (brown is in time, 25-year resolution, black is in 

depth, 1 cm resolution), the curves are the closest fitting (log) Gaussi ans.  The threshold S  is dimensionless, and the numerical 

values are correct if F is measured in units of mg/m2/yr. 5 
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Figure 7: Top set: successive segments of theoretical 100 kyr–long glacial cycles using usual (dimensional) time (present to 

past: bottom to top, the segment number is at the far right) with the 12.5 kyr phases indicated by vertical dashed lines. The short 

red lines indicate the interglacial dust minima. Each glacial-interglacial cycle is shifted by 25 units in the vertical for clarity.   The 5 

red markers in the upper plot get mapped to the first dashed blue line in the lower plot. 

Bottom set: successive cycles using nondimensional time (interglacial to interglacial) and then shifted by one phase to better 

line up with the usual time segments (the left most phase of the bottom line of the lower plot is zeroed). The average (nominal) 

resolution is 25 years. The interglacial dust minima were taken as 128.5, 243.5, 336, 407.5, 490, 614, 700, 789 kyrs B.P. and the data 

start at 373 yrs B.P. Each cycle is shifted by 25 units in the vertical for clarity. The data older than 789 kyrs were not used in these 10 

nondimensional cycles. 
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Figure 8: Top set: Averaging over the 8 cycles at 25-year resolution, we get the above picture: the mean is brown and the 

one standard deviation cycle to cycle variability is shown by the red. The dashed vertical lines give a further division into 8 x 5 

12.5kyr segments, the 8 “phases” of the cycle.  

Bottom set: the same but for the nondimensional time. The relative position of the interglacial minimum at the first dashed 

line is indicated. 
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Figure 9: The top row shows the intermittency function G(t) (whose slope on the log-log plot is C1) and the bottom row, 

the mean absolute Haar fluctuation S1(t) (whose slope on the log-log plot is H), the left column shows the result for each phase 

after averaging over the 8 cycles with the numbers next to each line indicate the phase number (each colour corresponds to the 5 

same number); the righthand column shows the result for each cycle after averaging over the phases.  Here, the same colours and 

numbers correspond to the cycle number, shown are only cycles 1, 4, 8 to avoid clutter.    Whereas each cycle is fairly similar to 

every other cycle (the right column), each phase is quite different (the left column). We see the most significant difference  is the 

fluctuation amplitude as a function of phase (lower left). 
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Figure 10: The transition scale c estimated in two ways for each of the 8 phases and from two definitions of the phases. The 

first method (solid lines) used a bilinear fit to the (logarithm) of the Haar q=1 structure function (i.e. mean absolute fluctuation) as 

a function of log time lag t. To obtain robust results, a small t region with the slope -0.05 and a large t slope +0.25 was imposed 5 

with the transition point (c) determined by regression. This was done for each segment and cycle. For each phase there were thus 

8 transition scales, which were used to calculate the mean of the logarithm of c and its standard de viation. Results are shown for 

dimensional (segments, blue) and nondimensional time (cycles, black).  

The second method used to estimate c was graphical and relied on a somewhat subjective fitting of scaling regimes and 

transitions, but without imposing small and large t slopes (exponents H). The results are shown in dashed lines, they are quite 10 

similar although we can note some differences for the first phase (dimensional, blue) and the middle phases (nondimensional, 

black). There is also considerable cycle to cycle spread that was quantified by the standard de viations.  In order to avoid clutter, 

typical spreads are shown by the double headed black arrows. Dashed horizontal lines show the ensemble mean transition scale 

(about 250 years) as well as ensemble mean for phases 1 and 2  (around 2 kyrs), which stands out compared to the rest of the 

phases. The red arrow shows one standard deviation for the nondimensional first phases, while the X marks the value of the 15 

Holocene c (7.9 kyr) just outside the 1-sigma limit. 
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Figure 11:   Using nondimensional time, the amplitude of the Haar fluctuations are averaged over all the cycles The curves 

from bottom to top are for time scales of t = 50, 100, 200, 400, 800, 1600, 3500, 7000 years, alternating solid and dashed (for 

clarity, only some of the t’s are marked). The cycle to cycle variability (the dispersion around each line) is about a factor of 2 (it is 5 

not shown to avoid clutter).  
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Fig.12:  The fluctuation and intermittency exponents H and C1 (top row) are estimated over the range 500 – 3000 years, as 

a function phase with the standard de viations from the cycle to cycle variability (all using nondimensional time).  The upper left 5 

(H) plot shows low drift in phases 1 and 2 but become driftier in the middle and older phases.  The intermittency (C1, upper right) 

is moderate at the beginning and end of the cycles, and a little weaker in the middle.  The lower left shows the amplitude of  the 

fluctuations at 25 years determined by the standard deviation of the dust flux (units: mg/m2/yr).  We see that the flux has low 

amplitude fluctuations at the beginning and end of the cycles and 3-4 times higher amplitude fluctuations in the middle.  The lower 

right shows the probability exponent qD estimated from the 25-year resolution data for each phase; the extreme 5% of the flux 10 

changes were used to determine the exponent in each phase; the cycle to cycle spread is indicated by the error bars (overall 

average over the phases: qD = 2.62±0.42). 
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